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Linear Current-Mode Active Pixel Sensor
Ralf M. Philipp, Student Member, IEEE, David Orr, Student Member, IEEE, Viktor Gruev, Member, IEEE,

Jan Van der Spiegel, Fellow, IEEE, and Ralph Etienne-Cummings, Member, IEEE

Abstract—A current mode CMOS active pixel sensor (APS) pro-
viding linear light-to-current conversion with inherently low fixed
pattern noise (FPN) is presented. The pixel features adjustable-
gain current output using a pMOS readout transistor in the linear
region of operation. This paper discusses the pixel’s design and
operation, and presents an analysis of the pixel’s temporal noise
and FPN. Results for zero and first-order pixel mismatch are pre-
sented. The pixel was implemented in a both a 3.3 V 0.35 m and
a 1.8 V 0.18 m CMOS process. The 0.35 m process pixel had an
uncorrected FPN of 1.4%/0.7% with/without column readout mis-
match. The 0.18 m process pixel had 0.4% FPN after delta-reset
sampling (DRS). The pixel size in both processes was 10 10 m2,
with fill factors of 26% and 66%, respectively.

Index Terms—CMOS analog integrated circuits, image sensors.

I. INTRODUCTION

T
HE NEED FOR compact, low power devices provides

an increasing impetus for sensors integrating imagers

and processing circuits on a single die. Current mode active

pixel sensors (APS) provide an attractive alternative to the

traditional voltage mode APS for focal-plane image processing.

The use of current output pixels has two main advantages

over the use of their voltage-mode counterparts. First, they

simplify many on-chip computation tasks; large scale com-

putations can be performed on the focal plane using current

mode computation-on-readout [1]–[3]. Second, many current

mode pixels, including the proposed pixel, have fixed output

voltages, eliminating the requirement to charge and discharge

the column capacitances during readout, yielding the potential

for significantly higher scan-out rates. Many proposed current

mode active pixel sensors have suffered from high fixed pattern

noise (FPN) [4] and have nonlinear transfer characteristics

[5], [6]. These nonlinearities reduce the effectiveness of the

typical offset-removal circuits used to improve FPN figures [7].

Other current mode pixels have had inverted light-to-output

current relationships (producing the maximum output current at

minimum light) [6]. The referenced current mode imagers have

FPN figures between about 1% [6] and 4% [4]. Their nonlinear

conversion characteristics make it difficult to further reduce

this FPN using offset correction. First-order FPN cancellation

techniques assume linearity; increasing pixel linearity increases
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the efficacy of those techniques. Ref. [8] proposes a technique

to lower the power consumption of the technique proposed in

[6], thereby allowing operation at higher bias current levels,

which increases that pixel’s linearity. Numbers for FPN were

not provided. The current mode imagers in [6] and [8] require

significant output currents in order to achieve linear operation;

currents on the order of hundreds of microamps are required,

values that are impractical when designing focal plane compu-

tation circuits to simultaneously read out multiple pixels.

Voltage mode CMOS image sensors have shown superiority

in FPN figures, achieving better than 0.01% matching, or 12 bit

image quality after offset correction [9]. A voltage mode tech-

nique of note is the active column sensor (ACS) [10], where the

pixel’s output transistor acts as half of a unity-gain amplifier.

This technique retains the benefits of a standard APS design,

but reduces the gain errors seen in the APS source-follower.

In this paper, we describe a current-mode imager with

inherently low fixed-pattern noise. 10 10 m pixels were

implemented in standard 3.3 V 0.35 m and 1.8 V 0.18 m

CMOS processes. The pixel described in this paper has an

uncorrected FPN of 0.7% without and 1.4% with column-par-

allel readout circuits (0.35 m process) and 0.4% after offset

correction (0.18 m process).

The 0.35 m process implementation included two

128 128 pixel image sensors, with 10 10 m pixels, that

were used as part of a focal-plane image processing circuit.

The description of the imager’s application can be found

elsewhere [1]; this paper describes the analysis of the imagers

themselves. The 0.18 m process implementation included a

single 256 256 array of 10 10 m pixels. The authors

have implemented the proposed pixel in two additional pro-

cesses: 0.5 m 5 V CMOS [11] and 0.18 m 3-D integrated

silicon-on-insulator [12].

In Section II of this paper, we describe the proposed pixel’s

design, operation, and light-to-output current transfer function.

In Section III, we describe the generalized readout scheme for

the pixel, as well as the readout scheme used in the 0.18 m

process imager. An analysis of temporal and fixed pattern noise

is presented in Section IV. Results are given in Section V.

II. THE PIXEL

A. Pixel Operation

The pixel, shown in Fig. 1, along with its readout archi-

tecture, is operated as follows. Switch M1 resets the pixel’s

integrating node to a fixed voltage . After the

signal is raised, turning M1 off, the photocurrent is integrated

for a fixed period, producing a voltage directly proportional

to the incident light intensity. is set so that it is slightly

more than one -threshold below the positive supply

0018-9200/$25.00 © 2007 IEEE
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Fig. 1. Active pixel sensor and generalized imager schematic. Voltage source V is external to the pixel. All bulk terminals tied to V .

(1) to ensure that the readout transistor M2 is always above

threshold:

(1)

The integrated voltage is converted to an output column

current by transistor M2, acting as a transconductance am-

plifier, as shown in (2). Under the assumption that is con-

stant and equal to (4), the transconductance , given by

(5), is approximately linear. can be controlled by varying

. An image sensor incorporating this pixel could vary

to increase readout speed, lower power consumption, or to im-

plement a scaling term in a spatial or temporal filter.

(2)

(3)

(4)

(5)

The conversion gain from photo-generated electrons to

is given by

(6)

where is the capacitance at the integrating node.

Switch M3 connects the pixel to the output bus, typically a

column or row line of the image. Ideally, M3 has zero on-resis-

tance , meaning that the voltage drop across M3 ( )

is 0 V. This approximation, given by (4), becomes less valid at

low supply voltages, owing to lower gate source voltages. The

finite on resistance of M3 produces nonlinear effects that in-

crease as the supply voltage is reduced. These effects can be

ignored in a first-order analysis of the pixel’s behavior, but pro-

vide a limit to the pixel’s scalability. The analytical solution for

the complete pixel transfer characteristic, including the effects

of M3 on resistance, is provided in the Appendix. If the entire

imager shares a single readout circuit, as shown in Fig. 1, the

series resistance of any switches in the column scanner/decoder

can be included in M3’s series resistance.

The pixel’s integration range at is from down to

0 V. Unlike a standard three–transistor (3T) voltage mode APS,

the proposed pixel’s lower integration limit is set by the photo-

diode, not the readout structure. The proposed pixel is capable

of integrating to slightly below 0 V, to the point where the pho-

todiode’s forward current equals the photocurrent. The full in-

tegration range of the pixel is one pMOS threshold less than

the power supply. For the 0.35 m process used, 3.3 V,

0.78 V, and the integration range was 2.5 V, while for

the 0.18 m process used, 1.8 V, 0.45 V, and

the integration range was 1.2 V. This compares favorably to a 3T

APS, which loses two nMOS thresholds (including substantial

body effect) and an nMOS , which would provide an inte-

gration range of less than 2 V and 0.7 V for the same processes,

respectively. A 3T APS employing a pMOS reset transistor, as

seen in many modern APS pixels, loses an nMOS threshold and

an nMOS , providing a similar integration range to the

proposed pixel.

B. Wells

The use of pMOS devices requires the use of an in-pixel

n-well. Since the photodiode itself cannot reside in the n-well,

the pixel’s minimum size is constrained by n-well spacing re-

quirements. The test imagers used 10 10 m pixels with 26%

and 66% fill factors in standard 0.35 m and 0.18 m processes,

respectively. The 0.18 m process pixel’s 10 10 m size was

dictated by external system requirements unrelated to this work.

The additional area was used solely for the photodiode; readout

transistors were scaled with the process feature size. In a stan-

dard submicron process [13], the minimum pitch for a regular

pixel layout is 32 , where is approximately 1/2 the minimum

gate length ( 0.2 m, 0.1 m and 32 6.4 m, 3.2 m

for the 0.35 m and 0.18 m processes used, respectively).

Modifying the pixel to use nMOS devices would not elimi-

nate the well requirement, as the photodiode would have to re-

side in an n-well (p+ diffusion to n-well). Well spacing require-

ments could be avoided by using an n+ to p-substrate diode with



2484 IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 42, NO. 11, NOVEMBER 2007

Fig. 2. Generalized image readout circuit. Note thatA is in units of output unit
per amp. r is the input impedance of the device.

nMOS devices. The pixel’s layout would then be nearly iden-

tical to a standard 3T APS, as the reset could be to (no sep-

arate would be required). While this would significantly

increase the pixel’s fill factor or decrease its size, such a design

would have several undesirable properties, including having the

largest output current (highest noise) at the lowest light level,

and reducing the available integration range by one threshold

voltage.

III. IMAGE READOUT

A. Generalized Readout Circuit

Image readout from the pixel is accomplished using any cir-

cuit that applies a voltage to the drain of M3 while pro-

viding a way to measure the pixel’s output current (called ,

assuming a column parallel readout scan). The input impedance

, ideally zero, should be less than the series resistance of the

pixel’s select transistors. The readout circuit’s gain is in units

of readout unit per amp, where the readout unit would typically

be amps or volts (meaning the circuit would be called a current

conveyor or transimpedance amplifier, respectively). The gen-

eral form of this readout circuit is shown in Fig. 2.

Linear pixel operation is achieved when is close to, but

below, , keeping M2 in the triode (linear) region of oper-

ation. The pixel operates with a nonlinear (quadratic) transfer

characteristic when is brought further away from , such

that M2 is in the saturation region. The use of the pixel in this

manner will not be discussed in this work.

It should be noted that many readout structures, such as

the current conveyor discussed below, will require some

steady-state input bias current to guarantee reliable operation

(i.e., speed, stability). This can be achieved either by adding

a bias current source, or by simply lowering so as to

provide a sufficient current when . This has

the benefit of slightly increasing pixel linearity, as the pixel’s

behavior is least linear when M2 is just above threshold.

No double-sampling/offset correction of any kind was per-

formed on the image outputs in the 0.35 m design; the 0.18 m

design used a current memory unit to implement double-sam-

pling offset removal. Methods of performing offset correction

on currents are discussed in [5], and function much like voltage-

domain offset correction.

Fig. 3. Readout circuit used in 0.18 �m process. Current conveyor and delta-
reset sampling.

B. Current Conveyor Readout

The proposed pixel implemented in the 0.35 m process used

column-parallel first-generation current conveyors (CCI+) to fix

the pixel output voltage and provide a copy of the pixel output

current. The input impedance of these circuits was simulated to

be 100–200 in the region of expected pixel output currents.

This was significantly less than the 2.4 k on-resistance of the

pixel row select switch. The input impedance of the CCI+ “vir-

tual ground” was therefore neglected; the virtual ground was

considered perfect. The circuits used are described in [11]; how-

ever, the proposed imager’s implementation was column par-

allel (one per column instead of one per chip) and did not in-

clude a double-sampling circuit.

The readout scheme for the 0.18 m design is presented

in Fig. 3. The readout scheme is composed of two parts.

The first part employs a second-generation current conveyor

circuit (CCII+) [12]. This circuit is composed of a two-stage

operational amplifier with a Miller compensation capacitor

operated in a negative feedback mode via transistor M1. The

amplifier had a gain bandwidth product of 50 MHz and a DC

gain of 80 dB. The negative feedback configuration pinned

the inverting input terminal of the opamp to . The

low-frequency input resistance of the current conveyor is given

by

(7)

in which is the transconductance of M1.

The minimum output current from the pixel in the 0.18 m

process was 1 A during the reset interval and the measured

input resistance of the current conveyor was 10 . The input ca-

pacitance of the current conveyor consists of 256 drain capac-

itances (from M3 in the pixel) plus the line capacitance of the

2.5 mm long metal bus. With a total input capacitance of 300 fF,

the time constant of the current conveyor circuit is 1 ns, giving
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an operational bandwidth of 0.3 Grad/s or 53 MHz. The varia-

tions of the input terminal of the current conveyor over 10 A

input range have been measured to be less than 1 . The high

readout bandwidth is desirable when analog processing units are

implemented as part of the readout circuitry.

The second part of the 0.18 m process readout circuitry is the

delta-reset sampling (DRS) offset suppression circuitry, which

is a modified version of the current memory cell described in

[15]. A single offset suppression circuit is used for the entire

image array, alleviating column FPN. The DRS cell is composed

of coarse and fine sub-memory cells. During the memorization

stage of the coarse memory cell, charge injection errors depen-

dent on the input current level are introduced. These signal-de-

pendent charge injections are memorized in the fine memory

cell and subtracted from the coarse memory cell.

The DRS of the pixel is performed in two steps. Initially, the

output current, after integration, is memorized in the memory

cell. The pixel is then reset and the reset-phase output current is

subtracted from the previously memorized uncorrected output

current. The final current output is independent of the voltage

threshold variations of the readout transistor M2 in Fig. 1.

IV. NOISE

A. Pixel Temporal Noise

The pixel circuit uses a pMOS transistor to provide hard reset

to a fixed voltage . This has the advantage of eliminating

image lag and guaranteeing reset to a precise voltage, but at the

cost of increased reset noise versus a conventional soft reset.

Pixels with hard reset exhibit noise, given by (8), whereas

pixels with soft reset have reset noise as low as [16].

It should be noted that the DRS circuit used in the 0.18 m

process imager doubles the effect of noise, since noise

power from two uncorrelated reset phases is added.

(8)

During integration, the dark current and the photo-gen-

erated current contribute shot noise:

(9)

Note that this assumes that the dark current, coming from the

photodiode and the reset device, flows in the same direction as

the . The leakage at the drain of the reset device and the reset

device’s subthreshold off-current each contribute dark current

opposite in direction to the photocurrent, thus increasing the

magnitude of pixel shot noise. The use of a reset switch that is

two threshold voltages away from “on” ensures that a minimum

of subthreshold current flows through the reset device in the

0.35 m process pixel.

The case where the all dark current components flow in the

same direction as the photocurrent (or if there is no dark cur-

rent), a “best case” situation, provides a lower limit (10) for the

total shot noise power for a given integrated voltage:

(10)

TABLE I
INPUT-REFERRED RANDOM AND FIXED PATTERN NOISE

For a temperature of 300 K, the power in the photon and dark

current shot noise is greater than the reset noise power when the

integrated voltage is above 26 mV (11), or about 1% and 2%

of full-scale integration voltage in the 0.35 m and 0.18 m

process pixels, respectively. This demonstrates that the reset

noise is of importance only at low integration (i.e., brightness)

levels. Reset noise provides a lower limit on the resolvable pixel

integration voltage (most important at short integration times),

while dark current provides a lower bound on the resolvable

light level (most important at long integration times).

(11)

The minimum detectable signal is determined by the power

of the reset noise and dark current shot noise. The pixel’s

readout thermal noise is proportional to signal power and does

not limit the dynamic range. Dark current shot noise power is

proportional to integration time, as is the signal power; therefore

the dynamic range (DR) remains constant regardless of integra-

tion time, as long as the reset noise dominates the dark current

shot noise. This happens when the integration time is less

than

(12)

The dark current was measured by resetting the pixels once

and then reading multiple images in zero light. This measure-

ment was repeated multiple times and the results were aver-

aged. Calculated and measured noise values are summarized in

Table I.

B. Readout Temporal Noise

The small-signal circuit in Fig. 4 was used to compute the

readout noise from thermal sources. Readout noise was referred
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Fig. 4. Readout temporal noise sources, including generalized readout circuit.
Noise is measured at I . C is the column (pixel output) capacitance.

to the circuit’s output . The output (typically column or row)

3 dB bandwidth is given by (13). This bandwidth was suf-

ficient in both imagers to assume steady-state conditions for

readout noise analysis.

(13)

The output ( ) referred noise due to transconductor M2 and

row select switch M3 are given by

(14)

(15)

By definition, the total power of the output-referred thermal

noise due to the readout circuit (excluding M2 and M3) is not

band-limited; the noise power is limited only by temperature.

The circuit’s input impedance is inherently low (on the order of

tens to hundreds of ohms), and a wide variety of possible circuit

architectures exist. The contribution of the output noise source

itself is therefore ignored.

The readout temporal noise amplitude produced in M2 (16) is

proportional to the square-root of its drain-source conductance,

which is proportional to the integrated pixel voltage (17).

(16)

(17)

The maximum output temporal noise occurs at a full-scale inte-

gration voltage of 2.4 V and 1.2 V ( V) in the 0.35 m

and 0.18 m process pixels, respectively. The calculated output

temporal noise for the 0.35 m process pixel at full scale (with

2.9 V) is 56 nA . Referred back to the pixel, this is ap-

proximately 5.7 mV , or 1500 . Since the output current is

linearly proportional to the integrated voltage, the output noise

power is roughly proportional to the light level. At 10% full-

scale, the input-referred output noise is about 2.2 mV . The

0.18 m process pixel was calculated to have 8.2 mV of total

(excluding ) input-referred temporal noise at full-scale (with

1.7 V). The resulting calculated full-scale signal-to-

noise ratios (SNR) are 42 dB and 39 dB for the 0.35 m and

0.18 m process imagers, respectively.

Lowering the pixel output voltage, and thus increasing the

pixel transconductance, decreases the input-referred readout

noise and increases the SNR. For a given pixel voltage, the rms

readout noise grows only slightly with increasing transconduc-

tance, but the noise level, when referred back to the pixel, is

divided by a larger number. 2.8 V was calculated to

have 4 mV of input referred noise at full-scale. This comes at

the price of increased power consumption and a smaller linear

integration range.

C. Fixed Pattern Noise

The pixel, operating without FPN, is considered to follow the

model:

(18)

where the integrated light level is converted to a current

by the ideal linear transconductance . An offset

current , uniform across the pixel array and indepen-

dent of light level, is considered part of the ideal transfer char-

acteristic.This analysis considers pixel FPN to consist of addi-

tive offset ( ) and multiplicative gain ( ) errors, both

normalized:

(19)

The proposed APS utilizes a hard reset to a fixed voltage;

therefore reset transistor threshold mismatch does not contribute

significantly to pixel FPN. However, readout transconductor M2

threshold mismatch contributes directly to the pixel output cur-

rent mismatch. This mismatch is part of the additive

term, meaning that does not appear in (20), and can be re-

moved using double-sampling techniques.

(20)

Unlike the standard 3T APS, the proposed pixel’s transfer

function includes a significant nonunity gain term (5) that is

set by the transistors in the pixel. Mismatch in this gain term

contributes directly to observed fixed pattern noise at nonzero

output. This gain term is proportional to , which includes

the size ratio of M2 (3). This multiplicative mismatch is not

removed by standard mismatch-correction (offset-removal) cir-

cuits; a minimum 2-point correction is required to remove this

error. The use of a separate reset voltage enables such a 2-point

correction by allowing all pixels’ to be set to the same fixed

voltage, thereby extracting slope information. This technique

would also permit in situ acquisition of the data necessary for

readout gain correction without the need for uniform illumina-

tion or complex spatiotemporal processing schemes [18], and
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Fig. 5. Pixel transfer characteristics: integrated voltage to output current.
V = 3.3 V for 0.35 �m pixel, V = 1.8 V for 0.18 �m pixel.

was used below to characterize the pixels’ transfer function, but

was not implemented for image readout.

(21)

Due to the sensitivity to transistor characteristics described by

(20) and (21), the test imagers’ readout transconductors M2

were made significantly larger than minimum size: a square de-

vice of roughly triple the minimum width in the 0.35 m process

and a rectangular device of for the 0.18 m process.

The 0.35 m process test imager contained a column-parallel

readout structure, which introduced significant inter-column

mismatch. To remove the effects of this mismatch, which

would not be present if a global readout circuit were used, FPN

calculations were performed along the column. The individual

column FPN values were then combined (root-mean-square)

to compute the FPN. This method makes the assumption that

the pixel itself does not have any inherent column-to-column

bias in its mismatch; the mismatch is assumed to be random

over the imager [19]. The measured pixel FPN was 0.7% at

full scale. The FPN, when including the effects of the column

circuit mismatch, was 1.4% at full scale.

The FPN in the gain term was also evaluated by forcing each

pixel to a range of reset voltages and reading the output cur-

rent. The relationship between and for various output

voltages is plotted in Fig. 5. Note that direct manipula-

tion of takes into account neither variations in the pixels’

quantum efficiency nor the variations in pixel capacitance. Nei-

ther of these two considerations is unique to this pixel, which

uses a standard n+ diffusion to p-substrate diode.

Linear curve fits were performed on measured transfer curves

between and to acquire and (multiplica-

tive and offset FPN values). The deviation of each pixel’s first-

order fit from the global first-order fit was obtained. The distri-

bution of these deviations ( and ) is shown in

Fig. 6(a) and (b) for the 0.35 m and 0.18 m process imagers,

respectively. It can be seen that the pixel mismatch sees similar

amounts of offset FPN and gain FPN. Note that these data, taken

at values from 0 to 50% saturation, exhibit higher mismatch

levels than the imager operating at full scale (down to 0 V); the

use of a pMOS reset transistor did not permit directly control-

ling below 1.1 V and 0.5 V for the 0.35 m and 0.18 m

process imagers, respectively.

The calculated and measured results for temporal and fixed

pattern noise in the 0.35 m and 0.18 m process pixels are

summarized in Table I.

V. RESULTS

A. 0.35 m Process

The 0.35 m process pixel was implemented in a 3.3 V n-well

0.35 m CMOS process with four metal and two polysilicon in-

terconnect layers. The pixel was 10 10 m in size and had

a 26% fill factor. The test chip included two 128 128 pixel

imagers with column parallel readout and on-chip analog cur-

rent-mode computation circuitry. Offset correction circuits such

as correlated double-sampling (CDS) or delta-reset sampling

(DRS) were not used on the chip.

The measured rms dark current was 4 fA (100 mV/s), or 4.2%

of full-scale per second. The resulting dynamic range, including

the effects of calculated reset noise and measured dark current

shot noise, as well as readout thermal noise on the integrated

dark current, is 64 dB at 33 ms. The tested pixel’s dy-

namic range is constant at 67 dB up to approximately 25 ms of

integration time, at which point it begins to decrease because of

dark current shot noise.

The imager’s power consumption is determined primarily by

the pixel output current and the readout circuit, which was not

individually measurable in the test chip. By design, the image

readout power consumption is proportional to output current,

and therefore proportional to light intensity. The test chip used

column-parallel readout circuitry to read an entire row of 128

pixels simultaneously for use in analog current-mode compu-

tation circuits. The simulated power consumption, with all 128

columns active pixels illuminated at 50% of saturation bright-

ness, was 4 mW. Scanning one pixel requires approximately

six times the pixel output current, or approximately 60 W (as-

suming 50% saturation) plus the power consumption of the dig-

ital scanning circuits.

A sample image is shown in Fig. 7. The imager’s character-

istics are summarized in Table II.

B. 0.18 m Process

The 0.18 m process pixel was implemented in a 1.8 V n-well

0.18 m CMOS process with six metal and one polysilicon in-

terconnect layers. The pixel was 10 10 m in size and had a

66% fill factor. The test chip included a 256 256 pixel imager

with global readout and offset correction circuits.

The 0.18 m image sensor was tested for linearity, FPN,

and memory unit (DRS unit) accuracy. The image sensor was

composed of 256 256 photo elements, with pixel size of

10 10 m and a fill factor of 66%. The transfer characteris-

tics of the photo pixels were measured and presented in Fig. 8.

The horizontal axis presents the output current as a function
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Fig. 6. (a) Offset and gain error distributions (0.35�m process pixel). (b) Offset
and gain error distributions (0.18 �m process pixel, after double-sampling).

of integration time. The set of curves was recorded at different

light intensities from 0 W cm to 36 W cm . The power

supply voltage ( ) was 1.8 V, column voltage ( ) was

1.7 V, and reset voltage ( ) was 0.8 V. The photo pixels

Fig. 7. Sample image. 0.35�m process: 128�128 pixels. No offset correction.
Note that the majority of the FPN is the form of readout column mismatch.

TABLE II
IMAGE SENSOR CHARACTERISTICS

were held in reset mode from 0 s to 20 ms, at which point the

reset transistor was turned off, allowing the pixel to begin inte-

grating the photocurrent for an integration time 60 ms.

Given the bias voltages ( and ), the pixel output

current remained linear within 99% for light intensities up to

9 W cm . For this light intensity, the measured FPN after

DRS was 0.4%.

For the higher light intensity of 36 W cm , the linearity of

the output current was reduced to 88%. This nonlinearity is due

to several factors. First, the pixel integration voltage was below

0 V, near its lowest possible value. Additionally, the high output

current creates a large voltage drop across the switch transistor

M3; the approximation given by (4) becomes less valid. Hence,
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Fig. 8. Output current as a function of time and light intensity for 0.18 �m
process imager (reset at 20 ms).

readout transistor M2 sees substantially different drain voltages,

and thus transconductances, during the reset and readout phases.

This voltage difference causes nonlinear current output, which

reduces the effectiveness of the DRS circuit.

The third contribution to the nonlinear output is the mobility

degradation due to the high of transistor M2, which is more

pronounced in technologies with smaller feature sizes. The FPN

figure for this light level increases to 0.85%. For high intensities,

the image sensor can be biased with a reset voltage closer to

, or a higher column voltage, which will decrease the output

current. Hence, the pixel’s linearity can be increased, which in

turn will decrease the FPN, at the cost of decreased SNR.

A large dark current can also be observed in Fig. 8;

the output current under zero illumination decreases with time.

This indicates that the dark current, coming from the reset tran-

sistor, flows in the reverse direction of the photocurrent. An av-

erage of 80 fA (1 V/sec) dark current was measured,

with a standard deviation of 30 fA. In addition, less than 0.5%

of the total number of pixels exhibited very large dark current

( 800 fA). These “dead” pixels were excluded from the

FPN measurement. The large negative dark current, from tran-

sistor off-current and gate leakage, was attributed to the use of

a standard 0.18 m CMOS process.

Comparing Figs. 5–8, it can be seen that the 0.18 m process

pixel is least linear at high levels of integration and high output

currents. The effects for high light levels reflect pixel saturation,

which are not unique to this imager. The behavior at lower light

levels (12 W cm and lower) is far more linear, and reflects

the transfer characteristics shown in Fig. 5.

Offset correction was performed using a current memory unit.

The memory unit was tested for various input currents at a sam-

pling rate of 10 MHz; the results are presented in Fig. 9. For a

current range of 20 A, the maximum measured error current

was less than 20 nA. This indicates that the memory unit can

replicate/memorize a current over a 20 A range with 10 bit

accuracy at a 10 MHz sampling rate. The bidirectional input cur-

rent can be memorized in the memory cell due to a constant bias

Fig. 9. A memory unit is used to implement a DRS unit. The output error cur-
rent is measured as a function of the input current.

current flowing through the memory transistors. As long as the

input current is smaller than the bias current, the memory cell

can memorize the current. In the measurements shown in Fig. 9,

the bias current was set to 22 A, allowing for successful mem-

orization of an input current of 21.5 A. The bidirectional

current memory cell can be easily used as a part of a processing

unit, where the input current can be scaled with both positive

and negative coefficients. The offset currents can be cancelled

out by memorizing a scaled version of an input current and sub-

tracting it from a scaled version of a reference current.

The total power consumption of the 0.18 m process imager

was simulated to be 0.6 mW, including the double-sampling

unit. The tested chip included three double sampling units,

which, together with the 256 256 pixel imager, consumed

2.5 mW, excluding digital scanning circuits.

C. Comparison

The 0.35 m and 0.18 m process imagers exhibited linear

transfer characteristics shown in Fig. 5. Both were within 6% of

linear (worst case) for integrated values up to 50% of full-scale

integration. Both imagers’ linearity worsened at the extremes

of integration (Figs. 5 and 8); by lowering the reset voltage, lin-

earity could be increased at the cost of reduced dynamic range.

The 0.18 m process imager exhibited worse uncorrected FPN

than the 0.35 m process imager (1.4% versus 0.7%), but was

equipped with double-sampling circuits that reduced FPN to

0.4%.

Using standard CMOS rules, directly scaling the 0.35 m

process pixel’s layout to the 0.18 m process would result in

a 5 5 m pixel size. This would quadruple the imager spa-

tial resolution, but the reduced well capacity would decrease the

dynamic range and SNR.

The high subthreshold leakage in the 0.18 m process pixel’s

reset transistor created a large dark current, which was about 20

times larger than in the 0.35 m process pixel. This issue

could be addressed in future work through the use of a 3.3 V

thick-oxide nMOS reset transistor [20].
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VI. CONCLUSION

A current mode active pixel sensor with low fixed pattern

noise, implemented in both 0.35 m and 0.18 m standard

CMOS processes, has been presented. The image sensors’ char-

acteristics are summarized in Table II. The underlying pixels in

the 0.35 m process imager exhibited only 0.7% FPN, a result

that was achieved without on-chip correction of any kind. The

0.18 m process imager attained 0.4% FPN after delta-reset

sampling. The imagers’ light-to-output current transfer charac-

teristics were within 6% of linear. The current output pixels are

suitable for use in focal plane computation-on-readout image

processing tasks.

APPENDIX

The analytical solution for the pixel transfer characteristic

(from integrated voltage to output current ) is shown

in the equation at the top of the page.

Using linear triode transistor models, ignoring the quadratic

drain–source dependence, yields the following simplification,

which is valid for small drain–source voltages:
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