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Introduction

In this note we will first define linear differential systems with singulari-
ties, and then give a sufficient condition for their integrability (Theorem 1
below), similar to Frobenius’ theorem. As an application we will prove that
a compact manifold $M$ is completely determined by the Lie algebra $L(M)$ of
all analytic vector fields on $M$ along with an isotropy subalgebra of $L(M)$

(Theorem 2). On this regard we recall that Myers [4] proved that $M$ is
completely determined by the ring $F(M)$ of all analytic functions on $M$.

We shall always be in the analytic category. The Lie algebra $L(M)$ of the
vector fields is a module over the function ring $F(M)$ .

DEFINITION. A linear differential system on $M$ is an $F(M)$ -submodule of
$L(M)$ .

This notion is a generalization of the usual linear differential system
(without singularities), $i$ . $e.$ , a vector subbundle of the tangent bundle $ T(M\rangle$

(indeed any real analytic vector bundle has sufficient ample sections, [5]), or
a “ distribution ” as Chevalley calls [2]. A vector subspace $L$ of $L(M)$ over
the reals $R$ generates a unique $F(M)$ -module $L^{F}$ . We shall understand $L^{F}$ under
the linear differential system of $L$ . Given a subspace $L$ of $L(M)$ and a point $x$

of $M$, we put $L(x)=\{u(x)|u\in L\}$ and $L_{x}=\{u\in L|u(x)=0\}(0\rightarrow L_{x}\rightarrow L\rightarrow L(x)\rightarrow 0$

is exact). $L(x)$ is a subspace of the tangent space $T_{x}(M)$ to $M$ at $x$ , which
we call the integral element of $L$ at $x$ . An integral manifold $N$ of $L$ is by
definition a connected submanifold of $M$ such that each tangent space to $N$ is
an integral element of $L;T_{x}(N)=L(x),$ $x\in N$. The linear differential system
$L^{F}$ of $L$ has the same integral elements and integral manifolds as $L$ . If $L$ is
a Lie subalgebra cf $L(M)$ , then so is $L^{F}$ and $L_{x}$ is a subalgebra of $L$ , which
we call the isotropy subalgebra of $L$ at $x$ .

THEOREM 1. If $L$ is a Lie subalgebra of $L(M)$ , then Mhas a unique par-
tition $\mathfrak{R}=\{N\}$ by integral manifolds $N$ of L. (That is, $M$ is the disjoint union
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of the members $N$ of $\mathfrak{R}.$)

This is exactly the Frobenius theorem as described in [2] (Theorem 2, $p$ .
94), in the special case where $\dim L(x)$ is independent of $x$. Theorem 1 is
false in the $C^{\infty}$-category (see \S 1).

An abstract transitive Lie algebra $(L, L_{0})$ is a pair of a Lie algebra $L$ and
its subalgebra $L_{0}$ without containing nonzero ideals of $L$ and having $\dim L/L_{0}$

finite. We say that another abstract transitive Lie algebra $(L^{\prime}, L_{0}^{\prime})$ is isomor-
phic with $(L, L(|)$ when there exists an isomorphism of $L^{\prime}$ onto $L$ which sends
$L_{\acute{0}}$ onto $L_{0}$ . When $M$ is connected, $(L(M), L(M)_{x})$ gives an example of an
abstract transitive Lie algebra for any point $x$ of $M$.

THEOREM 2. Let $M,$ $N$ be two compact connected analytic manifolds. If
there exists an isomorphism $\alpha$ of $(L(M), L(M)_{a})$ onto $(L(N), L(N)_{b})$ for some
$a\in M$ and $b\in N$, then there exists an isomorphism $f$ of an analytic manifold
$M$ onto $N$ which induces $\alpha$ .

The proofs will be elementary except the usage for Theorem 2 of the fact
that $T(M)$ and its jet bundles have sufficiently ample (analytic) sections.

We thank Professor Kuranishi for criticism and Professors S. S. Chern and
S. Kobayashi for comments.

\S 1. Proof of Theorem 1

Let $\Re_{x}$ be the set of all the integral manifolds of $L$ which contain the
point $x$ of $M$.
(1.1) $\Re_{x}$ is not empty for any point $x$ .

PROOF. Take $m$ elements $u_{1}$ , $\cdot$ .. , $u_{m}$ of $L$ such that $(u_{\alpha}(x))_{1\leqq\alpha\leqq m}$ is a base
of $L(x)$ . Fix a coordinate system $(x^{i})$ around $x$ . Let $u_{\alpha}^{i}$ be the components of
$u_{\alpha}$ . We may assume that ($iet(u^{\beta_{\chi}})_{1\leqq\alpha.\beta\leqq m}$ never vanishes on a neighborhood $U$

of $x$ . For simplicity, throughout the proof of (1.1), we denote by the same
symbol $L$ the linear differential system of $L$ considered as a subspace of $L(U)$ ,
so that $L$ is an $F(U)$ -module. Then $L$ contains the vector fields $v_{\alpha},$

$1\leqq\alpha\leqq m$ ,

of the form: $v_{\alpha}=\partial/\partial x^{\alpha}+\sum_{m<\lambda\leqq n}v_{\alpha}^{\lambda}\partial/\partial x^{\lambda}$ with all $v_{\alpha}^{\lambda}\in F(U)$ vanishing at $\chi$ . Let

$L_{(-1)}^{\prime}$ be the space spanned by these $v_{\alpha}$ over $R$ , and $L_{0}^{\prime}$ be the subspace of $L$

defined by $L_{0}^{\prime}=\{v\in L|v=\sum_{m<J.\leqq n}v^{\lambda}\partial/\partial x^{\lambda}, v^{\lambda}\in F(U)\}$ . We put $L^{\prime}=L_{(-1)}^{\prime}+L_{0}^{\prime}$ .
($L_{0}^{\prime}$ might well be denoted by $L_{x}^{\prime}$ , though it shall not.) $L^{\prime}$ is a subalgebra of $L$ .
In fact we readily have
(1.2) $[L^{1}, L^{\prime}]\subset L_{0}^{\prime}$ .
Besides $L$ is clearly the linear differential system of $L^{\prime}$ . Therefore (1.1) follows
from
$(l.3)$ $L^{\prime}$ has an integral manifold which contains $\chi$ .
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(1.3) will be proved after the demonstration of-(1.4), in which the ana-
lyticity will be used. Let $N$ be $\exp L(-1)(x),$ $i$ . $e.$ , the image of the imbedding:
$v\rightarrow(\exp v)(x)$ of some neighborhood of the zero in $L_{(-1)}^{\prime}(\approx R^{m})$ into $M$, where
$(\exp v)(x)$ is as usual the point $x(1)$ on the curve $x(t)$ given by the ordinary
differential equation $dx(t)/dt=v(x(t))$ with $x(0)=x$ .

(1.4) The vector fields in $L_{0}^{\prime}$ vanish everywhere on $N$.
Take any vector field $w$ in $L_{0}^{\prime}$ . We know that $w$ vanishes at $x$ . Let $v$ be

any member of $L_{(-1)}^{\prime}$ . It suffices to show that $w$ vanishes on the integral curve
$(\exp tv)(x)$ of $v$ with initial point $x$ . The successive derivatives of $w$ (or its
components in terms of $(x^{i}))$ with respect to the parameter $t$ are obtained by
applying $ad(v)$ to $w$ repeatedly; $(d/dt)^{k}w=[(adv)^{k}, w]$ , which is inductively
defined by $[v, [(adv)^{k-1}, w]],$ $k=1,2,3,$ $\cdots$ They vanish at $\chi$ by (1.2). Since
$w$ is analytic, $w$ vanishes on that curve. (1.4) is proved.

We will complete the proof of (1.3) by showing that $(v_{\alpha}(y))_{1\leqq a\leq m}=$ span
$T_{y}(N)$ at each point $y$ of $N$ so that $N$ is an integral manifold of $L^{\prime}$ , hence
of $L$ . Let $u$ and $v$ be any two members of $L_{(-1)}^{\prime}$ . Then the point $f(s, t)$

$=\exp(t(su+v))(x)$ lies on $N$ whenever this makes sense for $(s, t)\in R^{2}$ . To
show the above, we claim that

(1.5) $[\partial f(s, t)/\partial s]_{s=0}=tu(f(0, t))$ .

The left hand side of (1.5) is a vector field, $u^{\prime}$ , on the curve $f(O, t)$ . $u^{\prime}$

vanishes at $x=f(O, 0)$ and satisfies the ordinary differential equation $du^{\prime}/dt$

$=u+\sum(\partial v/\partial x^{i})u^{\prime i}$ in terms of the fixed coordinate system $(x^{v})$ , since we have
$\partial f/\partial t=(su+v)$ at $f(s, t)$ by the definition of $f$ so that $\partial^{2}f/\partial s\partial t=u+\Sigma(\partial(su+v)$

$/\partial x^{i})\cdot(\partial f^{i}/\partial s)$ . On the other hand $tu$ satisfies the same equation with the same
initial condition along the curve $f(O, t)$ . In fact we have $\partial(tu)/\partial t=u+t(\partial u/\partial t)$

$=u+t\Sigma(\partial u/\partial x^{i})v^{i}=u-t[u, v]+t\Sigma(\partial v/\partial x^{i})u^{i}=u+\Sigma(\partial v/\partial x^{i})(tu‘‘)$ , the last
equality being due to (1.2) and (1.4). Thus we obtain $u^{\prime}=tu$ and (1.5) is proved.
Hence (1.3) is proved, and so is (1.1).

In passing to the global part, we need the local uniqueness, or more
precisely

(1.6) For two members $N_{1},$ $N_{2}$ of $\mathcal{T}l_{x},$ $yl_{x}$ contains some $N\subset N_{1}\cap N_{2}$ .

PROOF OF (1.6). Let $L_{(-1)}$ be a subspace of $L$ with dimension $=L_{(-1)}(x)$

$=L(x)$ . For any vector field $v$ in $L_{(-1)}$ the restriction of $v$ to $N_{1},$ $N_{2}$ are vector
fields $v_{1},$ $v_{2}$ on these integral manifolds $N_{1},$ $N_{2}$ of $L$ . We have three exponen-
tial maps of $L_{(-1)}$ into $M,$ $N_{1}$ and $N_{2}$ respectively, which are of course given
by the equations $dx(t)/dt=v(x(t)),$ $dx_{1}/dt=v_{1}$ and $dx_{2}/dt=v_{2}$ with $x(O)=x_{1}(0)$

$=x_{2}(0)=x$ respectively. Each of them is an imbedding defined on a neigh-
borhood of $0$ in $L_{(-1)}$ . We may assume the definition domains are the same,
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$U$. Restricted to $U$ , these imbeddings are the same if they are considered as
maps into $M$, since then they are all given by integral curves of $v$ passing
through $\chi$ . The common image $N$ is what is wanted.

Now we conclude the proof of Theorem 1. For any point $x$ of $M$, we put
$N_{x}=\bigcup_{N\in\Re_{x}}$ N. $N_{x}$ is non-empty by (1.1). The topology and the analytic struc-

tures are given by the charts of all $N$ in $7l_{x}$ by virtue of (1.6). The topology
of $N_{x}$ is stronger than the one induced from $M$. Hence $N_{x}$ is a Hausdorff
space. Thus $N_{x}$ is a submanifold of $M$. When $M$ is paracompact, $M$ has a
Riemannian metric, which can be induced on $N_{x}$ , so that $N_{x}$ is metrizable and
therefore $N_{x}$ is paracompact. Finally $\mathfrak{R}=\{N_{x}|x\in M\}$ is a partition of $M$. In
fact the union of $\mathfrak{R}$ is clearly $M$, and the distinct members of ee are disjoint.
We will prove this. Suppose $N_{x\cap}N_{y}$ contains a point $z$ . Then $N_{x}$ and $N_{y}$

belong to $X_{z}$ so that $N_{x},$ $N_{y}$ are contained in $N_{z}$ . This argument also gives
that $N_{z}$ is contained in $N_{x}$ and $N_{y}$ . Thus we have $N_{x}=N_{z}=N_{y}$ . The unique-
ness of $\mathfrak{R}$ is obvious by (1.6). The proof of Theorem 1 is complete.

Counter-example for the $C^{\infty}$-category. Let $M$ be $R^{2}$ with the usual co-
ordinate system $(x, y)$ . Let $L$ be the space of $C^{\infty}$ vector fields on $M$ spanned
by $\partial/\partial x$ and { $f(x)\partial/\partial y|f$ is a $C^{\infty}$ function on $M$ with all the derivatives $f^{(k}$

)

vanishes at $(0,0),$ $k=0,1,2,$ $\cdots$ }. If a point $p$ of $M$ lies on the y-axis, then we
have $\dim L(p)=1$ and $L(p)$ is parallel to the x-axis, while we have $\dim L(p)$

$=2$ otherwise. Therefore, there does not exist an integral manifold through a
point on the y-axis. This example shows that Theorem 1 is false in the $C^{\infty_{-}}$

category. Theorem 1 holds good in a special case where $M$ is compact and
$L$ is finite dimensional, as is well known.

QUESTION. Does there exist “ a prolongation “ so that $L$ gets free of
singularities? In other words, does there exist an analytic manifold $\tilde{M}$ with
an analytic surjection $\pi:\tilde{M}\rightarrow M$ which has a linear differential system $\tilde{L}$

without singularities such that $\tilde{L}$ is isomorphic with a given Lie algebra
$L\subset L(M)$ in some natural way? When $\dim L$ is finite, the answer is affirma-
tive. Put $\tilde{M}=G\times M$ to see this, where $G$ is the simply connected Lie group
with Lie algebra L. $L$ is isomorphic with the right-invariant vector fields on
$G$ . From this, it is obvious how to define $\tilde{L}$ on $\tilde{M}$.

ANOTHER QUESTION. The converse of Theorem 1 is false. The partition
$\mathfrak{R}$ should have some further property in order to be given by the maximal
integral manifolds of a linear differential system.

\S 2. Proof of Theorem 2

Our method is basically the one used by E. Cartan frequently. Indeed we
ill construct in $M\times N$ the graph of the mapping $f:M\rightarrow N$ by means of a
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suitable linear differential system. We lift up rne vector fields $L(M)$ and $L(N)$

onto $M\times N$ via the identification $T(M\times N)=T(M)\times T(N)$ , obtaining the Lie
algebra $L^{*}=$ {the vector fields $u^{*}|u^{*}(x, y)=(u(x), \alpha(u)(y))$ for $(x, y)\in M\times N$,

$u\in L(M)\}$ where $\alpha$ is the given isomorphism: $(L(M), L(M)_{a})\rightarrow(L(N), L(N)_{b})$ .
By Theorem 1, there exists a unique maximal integral manifold $\Gamma$ of the linear
differential system $L$ passing through $(a, b)$ . $\Gamma$ will be the graph of $f$ whose
existence we have to show. Given a positive integer $p$ . we denote by $J^{l}(T(M))$

the p-jet bundle { $j_{x}^{p}u|x\in M,$ $u\in L(U)$ , and $U$ is some neighborhood of $x$ in $M$ }
where $j_{x}^{p}u$ denotes as usual the equivalence class of the local vector fields $v$

around $x$ which has the same derivatives as $u$ of degrees up to $p$ (including
$0)$ at $x$ with respect to some (and so every) coordinate system.

(2.1) If two jets $j_{x},$ $j_{y}\in J^{P}(T(M))$ have the distinct sources $x,$ $y$ then there exists
some $u$ in $L(M)$ such that one has $j_{x}^{p}u=j_{x}$ and $j_{y}^{p}u=j_{y}$ .

This is an immediate consequence of H. Cartan’s theorem [1] combined
with Grauert’s [3] or of Shiga’s [5] and which might be more or less obvio $JS$

if one admits that an analytic manifold can be analytically and regularly im-
bedded into some $R^{m}$ .

We say that a subalgebra $L$ of $L(M)$ is transitive at a point $x$ of $M$ when
$L(x)$ equals $T_{x}(M)$ . Hereafter we will write $L$ for $L(M)$ . The following (2.2)
and (2.3) are corollaries to (2.1).

(2.2) $L$ is transitive at each point of $M$.

(2.3) If $x$ and $y$ are distinct points of $M$, then $L_{x}$ is transitive at $y$ .
(2.4) If $L^{\prime}$ is a subalgebra of $L$ with $\dim L/L^{f}=n=\dim M$, then, for any point

$x$ of $M,$ $L^{\prime}$ is either transitive at $x$ or equal to $L_{\chi}$ .

PROOF. (The compactness of $M$ is not necessary.) Suppose neither is
the case. Then $q=\dim L^{\prime}/L_{x^{\prime}}$ differs from $0$ and $n$ . Let $L_{1}$ be the ideal
$\{u\in L_{x}|[u, L]\subset L_{x}\}$ of $L_{x}$ . Then the Lie algebra $L_{(0)}=L_{x}/L_{1}$ naturally acts
on $L_{t-1)}=L/L_{x}$ as the general linear Lie algebra on $L_{\mathfrak{c}-1)},$ $\dim L_{(}0$)

$=n^{2}$ , by
(2.1). Its subalgebra $L_{x^{\prime}}/L_{x}^{\prime}\cap L_{1}$ leaves invariant the subspace $L^{\prime}/L_{x^{\prime}}$ of
$L/L_{x}$ . It follows that $\dim L^{\prime}/L_{1}\cap L^{J}\leqq(n+n^{2})-((n-q)+(n-q)q)=\dim L/L_{1}$

$-(n-q)(q+1)$ . Hence we have $q=n-1$ by the assumption $\dim L/L^{\prime}=n$ . Thus
$L^{\prime}\supset L_{1}$ . It is not hard to see that this leads to a contradiction by showing
that $[L^{\prime}, L_{1}]$ must necessarily contain $L_{x}$ in view of (2.1). (2.4) is proved.

Now we begin with the proof of Theorem 2. (It might be worth noting
that $M$ and $N$ are not assumed to be simply connected. By this reason, $L(M)$

or $L(N)$ cannot be replaced by an arbitrary transitive subalgebra.) We have
$\dim M=\dim N$ by (2.2). Let $\pi^{M},$ $\pi^{N}$ be the projections of $M\times N$ onto $M,$ $N$

respectively. The differential $d\pi^{M}$ sends $L^{*}(x, y)\subset T_{(x.y)}(M\times N)$ onto $T_{x}(M)$
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for any point $(x, y)$ of $M\times N$ by (2.2), and the analogous for $d\pi^{v}$ . The kernei
of the restriction $d\pi^{M}|L^{*}(x, y)$ equals $\{u^{*}\in L^{*}|u\in L(M)_{x}\}$ . The analogous for
$d\pi^{N}$ is $\{u^{*}\in L^{*}|\alpha(u)\in L(N)_{y}\}$ . Hence, in case $\alpha(L(M)_{x})=L(N)_{y},$ $L^{*}(x, y)$ is
isomorphic with $T_{x}(M)$ through $d\pi^{M}$ . And, in the contrary case, $\alpha(L(M)_{x})$ is
transitive at $y$ by (2.4) (applied to $N$ ), which shows that $L^{*}$ is transitive at
$(\gamma_{\vee}y)$ . Thus we have proved

(2.5) The following four conditions are equivalent for a point $(x, y)$ of $M\times N$ :

(1) $\alpha(L(M)_{x})=L(N)_{y}$ ,

(2) $L^{*}$ is not transitive at $(x, y)$ ,

(3) $d\pi^{M}$ induces an isomorphism of $L^{*}(x, y)$ onto $T_{x}(M)$ , and
(4) $d\pi^{N}$ induces an isomorphism of $L^{*}(x, y)$ onto $T_{y}(N)$ .
To conclude the proof of Theorem 2, we denote by $\Gamma$ the maximal integral

manifold passing through $(a, b)$ of the linear differential system $L^{*}$ . By (2.5)

and the assumption that $\alpha(L(M)_{a})=L(N)_{b},$ $\Gamma$ is immersed as an open sub-
manifold into $M$ (resp. $N$ ) by $\pi^{M}$ (resp. $\pi^{N}$). Hence the image $\pi^{M}(\Gamma)(re3p$ .
$\pi^{N}(\Gamma))$ will coincide with $M$ (resp. $N$ ) if $\Gamma$ is proved to be compact. And $\Gamma$

will be compact if it is closed. Suppose $(x, y)$ adheres to $\Gamma$ . Clearly we have
$\dim L^{*}(x, y)=n$ by (2.5). By (2.5) and the argument above, there exists a point
$x^{\prime}$ of $M$ such that $(x^{\prime}, y)$ belongs to $\Gamma$ . Again by (2.5) we have $\alpha(L(M)_{x},)$

$=L(N)_{y}=\alpha(L(M)_{x})$ , hence $L(M)_{x^{\prime}}=L(M)_{x}$ . We thus have $x^{\prime}=x$ , by (2.3) and
(2.5). Thus, $(x, y)$ belongs to $\Gamma$ . Finally it remains to show that $\pi^{M}$ (resp.
$\pi^{N})$ restricted to $\Gamma$ is injective. (Then $\Gamma$ will be the graph of the required
map $f:M\rightarrow N$. That $f$ induces $\alpha$ will be obvious.) But the proof of the
injectiveness is implicit in that of the closedness of $\Gamma$ . Theorem 2 is proved.

QUESTION 3. Can $L(M),$ $L(N)$ in Theorem 2 be replaced by transitive Lie
algebras when $M,$ $N$ are simply connected?

QUESTION 4. Is Theorem 2 true in the $C^{\infty}$-category? Moreover can such
a question be discussed in terms of some relation between Lie algebras in the
two categories?
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