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Introduction

In this note we will first define linear differential systems with singulari-
ties, and then give a sufficient condition for their integrability (Theorem I
below), similar to Frobenius’ theorem. As an application we will prove that
a compact manifold M is completely determined by the Lie algebra L(M) of
all analytic vector fields on M along with an isotropy subalgebra of L(M)
(Theorem 2). On this regard we recall that Myers [4] proved that M is
completely determined by the ring F(M) of all analytic functions on M.

We shall always be in the analytic category. The Lie algebra L(M) of the
vector fields is a module over the function ring F(M).

DEFINITION. A linear differential system on M is an F(M)-submodule of
L(M).

This notion is a generalization of the usual linear differential system
(without singularities), i.e., a vector subbundle of the tangent bundle T(A)
(indeed any real analytic vector bundle has sufficient ample sections, [57), or
a “distribution ” as Chevalley calls [2]. A vector subspace L of L(M) over
the reals R generates a unique F(M)-module L¥. We shall understand L¥ under
the linear differential system of L. Given a subspace L of L(M) and a point x
of M, weput L(x)={u(x)|lusel}and L,={ues L|lu(x)=0 0—-L,—L—Lx)—0
is exact). L(x) is a subspace of the tangent space T, (M) to M at x, which
we call the integral element of L at x. An integral manifold N of L is by
definition a connected submanifold of M such that each tangent space to N is.
an integral element of L; T, (N)=L(x), xe N. The linear differential system
L* of L has the same integral elements and integral manifolds as L. If L is
a Lie subalgebra ¢f L(M), then so is L¥ and L, is a subalgebra of L, which
we call the isotropy subalgebra of L at x.

THEOREM 1. If L is a Lie subalgebra of L(M), then M has a unique par-
tition M= {N} by integral manifolds N of L. (That is, M is the disjoint union
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of the members N of R.)

This is exactly the Frobenius theorem as described in [2] (Theorem 2, p.
94), in the special case where dim L(x) is independent of x. Theorem 1 is
false in the C=-category (see §1).

An abstract transitive Lie algebra (L, L,) is a pair of a Lie algebra L and
its subalgebra L, without containing nonzero ideals of L and having dim L/L,
finite. We say that another abstract transitive Lie algebra (L/, L) is isomor-
phic with (L, L,) when there exists an isomorphism of L’/ onto L which sends
L{ onto L,, When M is connected, (L(M), L(M),) gives an example of an
abstract transitive Lie algebra for any point x of M.

THEOREM 2. Let M, N be two compact connected analytic manifolds. If
there exists an isomorphism o« of (L(M), L(M),) onto (L(N), L(N),) for some
ac M and be N, then there exists an isomorphism [ of an analytic manifold
M onto N which induces «.

The proofs will be elementary except the usage for Theorem 2 of the fact
that T(M) and its jet bundles have sufficiently ample (analytic) sections.

We thank Professor Kuranishi for criticism and Professors S.S. Chern and
S. Kobayashi for comments.

§1. Proof of Theorem 1

Let 91, be the set of all the integral manifolds of L which contain the
point x of M.

(1.D Jl, is not empty for any point x.

Proor. Take m elements uy, ---, u, of L such that (u,(x))<x<m 1S a base
of L(x). Fix a coordinate system (x%) around x. Let u} be the components of
u,. We may assume that det (u8),<q,g<» never vanishes on a neighborhood U
of x. For simplicity, throughout the proof of (1.1), we denote by the same
symbol L the linear differential system of L considered as a subspace of L(U),
so that L is an F(U)-module. Then L contains the vector fields v,, 1< a <m,
of the form: v,=0/0x%}+ 3 vid/0x* with all v € F(U) vanishing at x. Let

m<A=n

Li_,, be the space spanned by these v, over R, and L{ be the subspace of L
defined by Lj={veLlv= 3 v49/0x*, v e F(U)}. We put L’'=L{_+L}

m<2=n

(L} might well be denoted by L%, though it shall not.) L’ is a subalgebra of L.
In fact we readily have

1.2 LL, L']C L.

Besides L is clearly the linear differential system of L’. Therefore (1.1) follows
from

1.3 L’ has an integral manifold which contains x.
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(1.3) will be proved after the demonstration of (1.4), in which the ana-
lyticity will be used. Let N be exp L{_,(x), i.e., the image of the imbedding:
v—(exp v)(x) of some neighborhood of the zero in L/, (= R™) into M, where
(exp v)(x) is as usual the point x(1) on the curve x(¢) given by the ordinary
-differential equation dx(t)/dt=v(x(t)) with x(0)= x.

1.9 The vector fields in L} vanish everywhere on N.

Take any vector field w in Lj. We know that w vanishes at x. Let v be
any member of L{_,. It suffices to show that w vanishes on the integral curve
(exp tv)(x) of v with initial point x. The successive derivatives of w (or its
components in terms of (x*)) with respect to the parameter ¢ are obtained by
applying ad(v) to w repeatedly; (d/dt)*w =[(ad v)*, w], which is inductively
defined by [v, [(ad v)*', w]], k=1,2,3,--. They vanish at x by [1.2} Since
w is analytic, w vanishes on that curve. (1.4) is proved.

We will complete the proof of (1.3) by showing that (Va(3))ica<m Span
T,N) at each point y of N so that N is an integral manifold of L/, hence
of L. Let u and v be any two members of L{,. Then the point f(s, ¢
=exp (t((su+v))(x) lies on N whenever this makes sense for (s, )= Rz To
show the above, we claim that

(15) [af(s’ t)/asjs=0 = tu(f(or t)) .

The left hand side of is a vector field, u’, on the curve f(0,f. u’
vanishes at x=/(0,0) and satisfies the ordinary differential equation du’/dt
=u+3@v/0xHu’* in terms of the fixed coordinate system (x?), since we have
0f/ot = (su-+v) at f(s, t) by the definition of f so that 0%//0s0t = u+3}((su-+v)
/0x% - (0f%/0s). On the other hand fu satisfies the same equation with the same
initial condition along the curve f(0,t). In fact we have 0(tu)/0t=u-1(0u/ot)
=u+t30u/o0x)vi=u—t[u,v]+t30v/ox)u’ =u-+t+ 3 (0v/0x®)(tu}, the last
equality being due to and (1.4). Thus we obtain u’=tu and [1.5) is proved.
Hence (1.3) is proved, and so is (1.1).

In passing to the global part, we need the local uniqueness, or more
precisely

(1.6) For two members Ny, N, of J,, I, contains some NCN,N\N,.

Proor orF (1.6). Let L., be a subspace of L with dimension = L. ;(x)
= L(x). For any vector field v in L._,, the restriction of v to N,, N, are vector
fields v, v, on these integral manifolds N;, N, of L. We have three exponen-
tial maps of L., into M, N, and N, respectively, which are of course given
by the equations dx(t)/dt =v(x(t)), dx,/dt =v, and dx,/dt =v, with x(0)= x,(0)
= x,(0) = x respectively. Each of them is an imbedding defined on a neigh-
borhood of 0 in L., We may assume the definition domains are the same,
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U. Restricted to U, these imbeddings are the same if they are considered as
maps into M, since then they are all given by integral curves of v passing
through x. The common image N is what is wanted.

Now we conclude the proof of Theorem 1. For any point x of M, we put
N,= \U N. N, is non-empty by (1.1). The topology and the analytic struc-

Neqy

tures are given by the charts of all N in JI, by virtue of (1.6). The topology
of N, is stronger than the one induced from M. Hence N, is a Hausdorff
space. Thus N, is a submanifold of M. When M is paracompact, M has a
Riemannian metric, which can be induced on N, so that N, is metrizable and
therefore N, is paracompact. Finally = {N,|x e M} is a partition of M. In
fact the union of M is clearly M, and the distinct members of 9 are disjoint.
We will prove this. Suppose N,N\.N, contains a point z. Then N, and N,
belong to JI, so that N,, N, are contained in N,. This argument also gives
that N, is contained in N, and N,. Thus we have N,=N,=N,. The unique-
ness of M is obvious by (1.6). The proof of Theorem 1 is complete.

Counter-example for the C*-category. Let M be R? with the usual co-
ordinate system (x, y). Let L be the space of C> vector fields on M spanned
by 0/0x and {f(x)d/dy|f is a C> function on M with all the derivatives f%®
vanishes at (0,0), £=0,1,2,---}. If a point p of M lies on the y-axis, then we
have dim L(p)=1 and L(p) is parallel to the x-axis, while we have dim L(p)
=2 otherwise. Therefore, there does not exist an integral manifold through a
point on the y-axis. This example shows that Theorem 1 is false in the Cx-
category. Theorem 1 holds good in a special case where M is compact and
L is finite dimensional, as is well known.

QUESTION. Does there exist “a prolongation” so that L gets free of
singularities? In other words, does there exist an analytic manifold M with
an analytic surjection m:M—M which has a linear differential system [
without singularities such that I is isomorphic with a given Lie algebra
Lc L(M) in some natural way? When dim L is finite, the answer is affirma-
tive. Put M=GXM to see this, where G is the simply connected Lie group
with Lie algebra L. L is isomorphic with the right-invariant vector fields on
G. From this, it is obvious how to define L on M.

ANOTHER QUESTION. The converse of Theorem 1 is false. The partition
% should have some further property in order to be given by the maximal
integral manifolds of a linear differential system.

§2. Proof of Theorem 2

Our method is basically the one used by E. Cartan frequently. Indeed we
ill construct in MXN the graph of the mapping f: M— N by means of a
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suitable linear differential system. We lift up tne vector fields L(M) and L(N)
onto MxXN via the identification T(MXN)=T(M)xT(N), obtaining the Lie
algebra L*=:{the vector fields u*|u*(x, y)= (u(x), a(u)(y)) for (x,y)e MXN,
u<s L(M)} where « is the given isomorphism: (L(M), L(M)g)— (L(N), L(N),).
By Theorem 1, there exists a unique maximal integral manifold I of the linear
differential system L passing through (a, ). [I' will be the graph of f/ whose
existence we have to show. Given a positive integer p, we denote by J(T(M))
the p-jet bundle {j2u|jxe M, u < L(U), and U is some neighborhood of x in M}
where j2u denotes as usual the equivalence class of the local vector fields v
around x which has the same derivatives as u of degrees up to p (including
0) at x with respect to some (and so every) coordinate system.

(2.1) If two jets j,, j, € J(T(M)) have the distinct sources x,y then there exists
some u in L(M) such that one has jRu=j, and jPu=j,.

This is an immediate consequence of H. Cartan’s theorem [1] combined
with Grauert’s [3] or of Shiga’s and which might be more or less obvious
if one admits that an analytic manifold can be analytically and regularly im-
bedded into some R™.

We say that a subalgebra L of L(M) is transitive at a point x of M when
L(x) equals T,(M). Hereafter we will write L for L(M). The following (2.2)
and (2.3) are corollaries to (2.1).

(2.2) L is transitive at each point of M.
(2.3) If x and y are distinct points of M, then L, is transitive at y.

(24) If L' is a subalgebra of L with dim L/L’ =n=dim M, then, for any point
x of M, L’ is either transitive at x or equal to L,.

Proor. (The compactness of M is not necessary.) Suppose neither is
the case. Then g=dim L’/L} differs from 0 and »n. Let L, be the ideal
{ue L,|{u, L] L} of L,. Then the Lie algebra L.,=L./L, naturally acts
on L_,=L/L, as the general linear Lie algebra on L., dim L.,=n? by
(2.1). Its subalgebra L}/L;NL, leaves invariant the subspace L’/L) of
L/L,. 1t follows that dim L//L. "L’ £ (n+n)—(n—g@+n—q)q)=dim L/L,
—(n—q)(g+1). Hence we have g=n—1 by the assumption dim L/L’=mn. Thus
L’DL, 1t is not hard to see that this leads to a contradiction by showing
that [L/, L,] must necessarily contain L, in view of (2.1). (2.4) is proved.

Now we begin with the proof of Theorem 2. (It might be worth noting
that M and N are not assumed to be simply connected. By this reason, L(M)
or L(N) cannot be replaced by an arbitrary transitive subalgebra.) We have
dim M=dim N by (2.2). Let z¥, z¥ be the projections of M XN onto M, N
respectively. The differential dz¥ sends L*(x, y) C T, (MXN) onto T,(M)
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for any point (x, y) of M XN by (2.2), and the analogous for dz¥. The kernel
of the restriction dz¥|L*(x, y) equals {u* = L*|u e L(M),}. The analogous for
dr¥ is {u* e L*|a(u) = L(N),}. Hence, in case a(L(M),)=L(N), L*(, y) is
isomorphic with T,(M) through dz¥. And, in the contrary case, a(L(M),) is
transitive at y by (2.4) (applied to N), which shows that L* is transitive at
(x,y). Thus we have proved

(25) The following four conditions are equivalent for a point (x,y) of MXN:

) alL(M)) = L(N),,

(2) L* is not transitive at (x, y),

(3) d=a* induces an isomorphism of L*(x, y) onto T,(M), and
(4) dz" induces an isomorphism of L*(x, y) onto T,(N).

To conclude the proof of Theorem 2, we denote by /' the maximal integral
manifold passing through (g, b) of the linear differential system L*. By (2.5)
and the assumption that a(L(M),)=L(N), [’ is immersed as an open sub-
manifold into M (resp. N) by z¥ (resp. z¥). Hence the image z™(") (resp.
a¥(I")) will coincide with M (resp. N) if I’ is proved to be compact. And [~
will be compact if it is closed. Suppose (x, y) adheres to I'. Clearly we have
dim L¥(x, y)=n by (2.5). By (2.5) and the argument above, there exists a point
x’ of M such that (x/, y) belongs to I'. Again by (2.5) we have a(L(M),)
= L(N), = a(L(M),), hence L(M), = L(M),. We thus have x’=x, by (2.3) and
(25). Thus, (x,y) belongs to I'. Finally it remains to show that z¥ (resp.
7™) restricted to I” is injective. (Then I' will be the graph of the required
map f: M— N. That f induces a will be obvious.) But the proof of the
injectiveness is implicit in that of the closedness of /I'. Theorem 2 is proved.

QuEesTION 3. Can L(M), L(N) in Theorem 2 be replaced by transitive Lie
algebras when M, N are simply connected?

QuEsTION 4. Is Theorem 2 true in the C«-category? Moreover can such
a question be discussed in terms of some relation between Lie algebras in the
two categories?

University of Tokyo and
Research Institute for
Mathematical Sciences, Kyoto
Kyoto University

Bibliography

[17 H. Cartan, Variétés analytiques réelles et variétés analytiques complexes, Bull.
Soc. Math. France, 85 (1957), 77-99.

[2] C. Chevalley, Theory of Lie groups, I, Princeton Univ. Press, 1946.

{37 H. Grauert, On Levi’s problem and the imbedding of real analytic manifolds,



404 T. NaAGANO

Ann. Math., 68 (1958), 460-472.

(4] S.B. Myers, Algebras of differentiable functions, Proc. Amer. Math. Soc., 5
(1954), 917-922.

[5] K. Shiga, Some aspects of real analytic manifolds and differentiable manifolds,
J. Math. Soc. Japan, 16 (1964), 128-142; 17 (1965), 216-217.



	Linear differential systems ...
	Introduction
	\S 1. Proof of Theorem ...
	\S 2. Proof of Theorem ...
	Bibliography


