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LINEAR DIMENSIONALITY OF LANDSAT AGRICULTURAL DATA WITH 

IMPLICATIONS FOR CLASSIFICATION 

S. G. Wheeler and P. N. Misra 
Federal Systems Division 

International Business Machines Corporation 
Houston, Texas 

Q. A. Holmes 
National Aeronautics and Space Administration 

Johnson Space Center 
Houston, Texas 

I. ABSTRACT 

A model for the LANDSAT multispectral scanner 
data, representing a generalization of the commonly 
used Gaussian model, has been formulated and ana
lyzed. The model hypothesizes that the data for 
different crop types essentially lie on distinct 
hyperplanes in the feature space. Tests of this 
model reveal that: (1) the agricultural data from 
any single acquisition (i.e., four-channel) of 
LANDSAT are essentially two dimensional, regardless 
of the crop type; and (2) the data from different 
sites and different stages of crop development all 
lie on planes which are parallel. These findings 
have significant implications for data display, 
claSSification, feature extraction, and signature 
extension. 

II. INTRODUCTION 

Standard models used in classifying remotely
sensed multispectral data from agricultural sites 
start with an assumption that observations from a 
field constitute a sample from a probability dis
tribution characterized by its crop-type. In most 
cases this probability distribution is assumed to be 
Gaussian, completely specified by a mean vector and 
a dispersion matrix. Estimates of these parameters 
based on a sample characterize the crop-type, and 
are called its "signature." This model will be 
referred to as the point-signature model. 

Experience with LANDSAT multispectral scanner 
data, however, has shown that the average values of 
observations from different agricultural fields of 
the same crop usually vary much more than would be 
expected under the assumption of a common probabili
ty distribution. As an example, Figures 1 and 2 
provide plots of mean vectors for several wheat and 
nonwheat fields in a LANDSAT subframe. These data 
were collected in four different passes of the 
Satellite over the same location at different times 
d~ng the growth cycle of wheat, each pass contri
buting a 4-vector of observations. The idea of . 
Using data from multiple acquisitions at different 
biological phases of the wheat crop to estimate 
wheat acreage in the United States is currently 
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being used in an experiment being conducted by NASAl. 
In Figures 1 and 2, the variability of data within 
fields has been indicated by bs.rs of length two 
standard deviations for some representative fields 
and channels. As can be seen, the variability of 
the mean values is much larger than would be expec
ted from the point-signature model. In fact, 
hypothesis tests for equality of mean vectors 
across fields usually fail even if the pixel-to
pixel correlation structure of the multispectral 
scanner data be taken into account. 

The objective of the work presented in this 
paper is to analyze a model for the data which 
generalizes the point-signature model by permitting 
a limited variability in the probability distribu
tions associated with the different fields of a 
class. The hope is that use of such a model will 
aid with our understanding of LANDSAT data and lead 
to improvements in our ability to classify these 
data. The model is described in the next section, 
and, with greater mathematical detail, in the Appen
dix. Section IV presents the results of tests of 
this model with the LANDSAT data from single and 
multiple acquisitions, and discusses their implica
tions for data display and classification. 

III. THE HYPERPLANE MODEL 

The model is described by the following test
able assumption: The mean values associated with 
different fields of a crop-type all lie on a sin
gle hyperplane of dimension r, which can be 
determined from the data. That is, the mean vector 
\lij for the j-th field in class i has the form 

(1) 

where \loi and Ei are, respectively, a p-vector and 

a pxr matrix where p (>r) is the number of channels 
used in gathering the data. Under this model, the 
hyperplane associated with the i-th class is repre
sented by the pair (\l ., E.) and the r-vectors ~'j 

oJ. J. 3. 

account for the variability observed in the field 
averages. The use of the model, if it is shown to 



hold for LANDSAT data, lies in the fact that it 
constrains the observed variability of field mean 
values to lie within a space of lower dimensionality 
than that represented by the number of channels. 
The remaining dimensions are either noise or repre
sent changes in the structure of the hyperplanes 
across classes. 

A likelihood ratio test for hypothesis (1) and 
the maximum likelihood estimates for ~ij' ~oi' Ei , 

and a ij are given in the Appendix. The derivation 

of the test statistic, used to establish dimension
ality r, and the maximum likelihood estimates of the 
parameters have assumed that the data are multi
variate normal, independent from pixel to pixel, and 
have a common, known covariance matrix. Since these 
assumptions are generally violated for LANDSAT data, 
the distribution of the test statistic, shown to be 
chi-squared in the Appendix, is only approximately 
chi-squared. 

IV. TESTING THE MODEL ON LANDSAT DATA 

Single-Pass Data 

The model was tested on LANDSAT data from 
several agricultural sites with identical results. 
As an example, results are reproduced here for four
channel data from a site in Nebraska. These data 
were taken from a set of known fields: ten of wheat 
and eleven of nonwheat. Field averages for some 
of these are given in Table 2 and plotted in Figure 
1. The model (1) was tested on data for each set of 
fields separately, and then on all fields taken to
gether. The test statistics and the estimates of 
the parameters of the plane are given in Table 1. 

The test statistic measures the total deviation 
of the mean vectors of the fields in the class from 
the hypothesized r-dimensional plane (r=0,1,2,3). 
Suppose data are given for k. fields of class (i.e., 

~ 

crop type) i. Let nij and Xij be, respectively, the 

number of pixels and the average value of the obser
vations for the j-th field, j=1,2, •.. ,k., and let 
~ ~ 

Li be the estimated covariance matrix for the fields 

of this class. The values of the test statistic for 
different values of r are given by 

k 
t. = Ii 
~r j=l 

~ 

nij (xij-~ij;r)1 L~l (xij-~ij;r)' 

where ~;j"r is the best estimate of ~ on r • ij an-
dimensional plane which gives the best possible fit 
to the data. For example,~. is the average 

~ ~j;o 

(over j) of X. j ; ~ .. 1 is the best estimate of the 
~ ~J; 

mean value on the straight line of best fit; and so 
on. 

For each of the three classes (nonwheat, wheat, 
and pooled data) in Table 1, there is a sharp drop 
in the values of the test statistic between r=l and 
r=2. Note that the values of the test statistics 
for r=2 in each case are large when compared with a 
chi-squared distribution with the appropriate 
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degrees of freedom. This, however, is to be 
expected in view of earlier remarks about the vio
lation of assumptions under which the distribution 
of the test statistic was derived. The conclusion 
from Table 1 is that these data (nonwheat and wheat) 
all lie on a two-dimensional plane. 

The plane of data variability for each of the 
three classes in Table 1 has been characterized by 
~o and the first two of the orthonormal basis ve~-
tors, el and e2' ~o is a point on this plane, and 

el and e2 span a subspace in which the vectors 

{observation - ~ } essentially lie. In spite of the 
o 

different look each characterization appears to have, 
the planes so defined are nearly identical. For 
example (using superscripts nw and w to denote iden_ 
tification of a vector with classes nonwheat and 

wheat, respectively), it is easily seen that {el nw , 

e2nw} and {elw, e2w} span the same subspace; the 

component of elnw along elw is 0.997, and its total 

component in the subspace spanned by {elw, e2w} is 

0.9995. 

To complement this geometric argument, we have 
developed a chi-squared test for the "equality" of 
planes. Using this approach, the test statistic for 
the pooled data is partitioned into a sum of compo
nents, which.provide tests for dimensionality, 
parallelness, and equality of planes cif the indivi
dual classes. Use of this technique confirms the 
conclusion from Table 1 that the planes determined 
by the nonwheat and wheat data separately, are 
identical. 

A similar analysis of data from several sites 
has led to the same conclusion; namely, the four
channel LANDSAT data lie on a two-dimensional plane, 
and the planes associated with data from different 
sites and different stages of crop development are 
all essentially parallel. This fact has very signi
ficant implications for data display, feature 
extraction, classification, and signature extension. 

Consider the following transformation of the 
observed field means {Y.}. 

~ 

x. 
~ 

The transformation matrix is orthogonal and vector 
y. gives the components of the observed field mean 
~ 

in a new coordinate frame obtained by a rotation of 
the old one. The advantage of this representation 
of observations lies in the fact that the first two 
axes of the new coordinate frame are parallel to the 
plane of data variability and the other two are 
orthogonal to it. The first two elements of y. give 

~ 

the components of the observation vector in the 
plane of data variability, and each of the remaining 
two is nearly the same regardless of the class from 
which the observation came. 

The observed mean vectors for wheat and non
wheat fields given in Table 2 (see also Figure 1) 



F 

were transformed to get their representation in the 
rotated coordinate frame. As a demonstration of the 
near-parallelness of the planes of variability from 
one set of data to another, the orthogonal matrix 
used here is the one obtained from the data for 16 
nonwheat fields from a site in Oklahoma. The origi
nal and transformed observations are given in Table 
3. 

In the new coordinate frame, the relative 
positions of the data are almost entirely charac
terized by the first two components. A plot of 
these two components on a plane retains the relative 
positions of the data points as they were in the 
original observations, and reveals the separability 
(or, confusion) among wheat and nonwheat data not 
apparent in the table of the original data. 

Figures 3a through 3d give plots of the compo
nents of the means of the nonwheat and wheat fields 
in the plane of data variability for data acquired 
in four different passes of LANDSAT over this 
Nebraska site at times chosen to coincide with 
distinct biological growth phases of the wheat crop. 
The data shown in Table 3 are among those plotted in 
Figure 2a. For each of the four sets of data 
corresponding to four passes, the plane of data 
variability used is the one determined for the Okla
homa site referred to earlier. It should be noted 
that variability seen in the last two components of 
the transformed means would have been considerably 
less had we used in each case the plane determined 
by the data from that pass. The plane, after all, 
is estimated by "best" fit to data. The fact that a 
plane that best fitted data from a set of 16 non
wheat fields in Oklahoma at a certain time of the 
year can reasonably fit the data from wheat and non
wheat fields in Nebraska collected at four different 
times of the year appears to be fairly strong evi
dence for constancy (or, at least, parallellness) of 
the planes of data variability. 

Now consider the matter of classification of 
data. The original hypothesis was that the wheat 
data lie on a distinct plane which might be charac
terized as its signature. This loosening up of the 
standard point-signature model, it was hoped, would 
account for much of the variability in wheat data by 
disregarding the position of a data point on the 
plane and taking the classification statistic as the 
distance from the plane. For data acquired in a 
single pass of LANDSAT, it was seen that no distinc
tion can be made in the planes of variability for 
the wheat and the nonwheat data. The position of 
the data points on the plane, however, can be used 
to discriminate among classes. Figures 3a through 
3d, plots of the components of wheat and nonwheat 
field averages in the plane of variability, show a 
tendency for the elements of a class to group or 
cluster. Since the location of points in the plane 
is governed by the a vectors in the basic model (1), 
discrimination can be based upon estimates of thes~ 
values. The maximum likelihood estimate of the a 
as~ociated with observation x belonging to the i-th 
class is given by 

a = (E' E. -1 E)-1 E' E -1 (x - ]J .) 
~ i o~ 

and, asymptotically, a has a r-variate normal 
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distribution with mean, say ai' which depends upon 

the class and covariance matrix given by the 
expression 

(E ' E. -1 E)-1 
~ 

Thus, a maximum likelihood classification procedure 
in the plane is to estimate the a vectors from 
training fields for a class, estimate their mean 
value a., and classify by minimizing the statistics 

~ 

H. = (a - a.)1 E' E.-1 E (a - a.) 
~ ~ ~ ~ 

over the choice of classes. This is essentially a 
linear feature selection technique which reduces 
the dimensionality by disregarding the noise contri
buted by components outside the variability plane. 
Tests of this technique have yielded classification 
results virtually identical to results achieved 
using the original four-dimensional data. The prime 
advantage of this technique for LANDSAT data lies in 
the fact that classification results can be compared 
visually with a plot in two dimensions. 

Multiple-Pass Data 

Test of model (1) with multiple-acquisition 
data was also carried out for data from several 
sites. Results of this part of the study are not 
conclusive because it was difficult to find enough 
data from locations having multiple passes and a 
relatively large number of defined fields in the 
different classes to perform a satisfactory ana~y
sis. The tentative conclusion is as follows: While 
four-channel data from the different acquisitions 
taken separately lie on parallel planes, taken 
together the wheat and nonwheat data tend to lie on 
hyperplanes whose distinctness becomes more discern
ible as the number of passes increases from two to 
four. There, however, are some unresolved issues. 

Results are presented here for four-pass 
registered data from a site in Kansas. Data were 
taken for a set of 42 known fields: 28 of wheat and 
14 of fallow. The wheat fields were arbitrarily 
assigned to one of two wheat classes so that each 
contained 14 fields. The fallow fields constituted 
class 3. The likelihood ratio test statistics for 
dimenSionality analysis were computed for each class 
separately, and for class "ALL" consisting of all 42 
fields. The likelihood ratio test statistics for 
class wheat 1 are given in Table 4. The data for 
each of the three classes were found to lie essen
tially on eight-dimensional hyperplanes; the pooled 
data for the three classes appear to lie on an 
11- to l2-dimensional hyperplane. 

The fact that the pooled data lie on a hyper
plane whose dimensionality is greater than that for 
the data for each class taken separately suggests 
distinctness of the class hyperplanes. To determine 
the relative orientations of the eight-dimensional 
class hyperplanes in the feature space, the compo
nent of each basis vector for the hyperplane of a 
class was computed in the subspaces spanned by the 
eight basis vectors of each of the other two 
classes. Clearly, if the hyperplanes were parallel, 
each basis vector for the hyperplane of a class 



would be entirely contained in the subspace spanned 
by the eight basis vectors for every other class. 
The first seven basis vectors of the wheat 2 hyper
plane were found to have components of length 0.937-
0.981 in the subspace spanned by the basis vectors 
of wheat 1; the eighth basis vector, however, had a 
large component (=0.8) out of this subspace. Only 
the first five basis vectors of the fallow hyper
plane had large components parallel to wheat 1 
hyperplane. The inadequacy of data (an eight
dimensional hyperplane fitted to 14 points in a 16-
dimensional space) makes it difficult to draw defi
nitive conclusions, but it appears that the wheat 1 
and wheat 2 hyperplanes are nearly parallel, while 
the wheat and fallow hyperplanes are not. This, 
though, is difficult to reconcile with the behavior 
of the four-channel data analyzed separately for 
each pass. 

It is instructive to examine how well the 
wheat 1 hyperplane fits the data from wheat 2. To 
this end, maximum-likelihood estimates of the mean 
vectors of fields in class wheat 2 are computed on 
the hyperplane of wheat 1. Table 5 gives the ob
served mean vectors and the estimates for three of 
the fields. In view of the large differences in the 
observed mean vectors, the fit is surprisingly good. 

The classification of data with the model of 
distinct hyperplanes entails computation of the fol
lowing weighted distances of the observation from 
the different class hyperplanes 

d. = (x - fl.)' E.-1 (x - fl.) , 
~ ~ ~ ~ 

where x is the observation, fli its estimate on the 

hyperplane of class i, and Ei the covariance matrix 

for the fields in class i. The observation is 
assigned to a class for which this distance is the 
shortest. The per-field classification of wheat 2 
data in wheat 1 and fallow using this procedure 
assigned the data to wheat 1 with no misclassifica
tion. 

V. DISCUSSION 

The test of the proposed model for LANDSAT 
multispectral scanner data from agricultural fields 
has yielded useful information on the structure of 
these data. The two-dimensional representation of 
the four-channel data by a known transformation 
provides a valuable tool for data analysts. Impli
cations of this structure of the data for feature 
extraction and classification have been discussed in 
Section IV. An additional aspect of crop classifi
cation using LANDSAT data is the so-called signature 
extension problem, which consists of estimating mean 
observation vectors for a crop type at a site on the 
basis of training data available at another site. 
Clearly, the fact that the data must lie on a known 
plane provides an important constraint for this 
estimation procedure. 

Preliminary analysis suggests that the conclu
sion on parallelness of the planes of variability 
of data from different acquisitions may be strength
ened--the planes may be identical. Additional work, 
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however, is needed to establish this. Experience 
with a limited amount of nonagricultural data (water ' 
mountains, roads, clouds, etc.) indicates that these' 
too may lie in the same plane as the agricultural 
data, but, here again, additional work is required. 

Tests of the proposed model using data from 
four acquisitions during different biological phases 
of the wheat crop reveal that the data, treated as,a 
16-dimensional vector, essentially lie on an eight
dimensional hyperplane. Also, the hyperplanes s 
defined from multiple passes appear to be suffi
ciently separated to allow classification based on 
distance from the class hyperplanes. This distinc
tion of the multiple pass hyperplanes, if not an 
artifice of our limited data set, appears to be 
inconsistent with the results from dimensionality 
analysis of single pass datam, where the class 
planes were found indistinguishable. 

Perhaps a physical interpretation can be given 
to the plane of variability of the agricultural 
data. In a model developed by Kauth2 ,3 an attempt 
was made to extract from the data the variability 
attributable only to changes in the soil type. This 
was done by identifying in the feature space a plane 
on which most of the variability of the soil reflec
tances lay. The information on the green and yellow 
crop development, it was concluded, lay in the 
directions orthogonal to the plane. The result was 
the so-called Tasselled Cap coordinate frame where 
components of the transformed observation were iden
tified with soil, growing vegetation, mature vege
tation, and noise. In the transformations presented 
in this paper, however, no such identification of 
directions or planes could be made with the crop 
phenolOgy. 

APPENDIX 

Linear Functional Relationship Among Mean Vectors 

To study the nature of variability among the 
mean vectors o'f fields of a certain class, consider 
the following model. Let there be p-variate normal 
populations N (fll, E), ..• , N (fl, E) with a common 

p p k 
dispersion matrix. Consider the following hypothe
sis on the functional relationship among the popula
tion means 

fli = flo + E ai' i = 1,2, •.. , k; k > p, (A.l) 

where flo is an unknown p-vector, E is an unknown pxr 

matrix of full rank (r<p), and a. is an unknown r-
~ 

vector. According to hypothesis (A.l), the popula
tion means {fl.} lie on an r-dimensional hyperplane 

~ 

completely defined by flo and E. Given the sample 

means from these populations, a hypothesis test can 
be carried out to see if (A.l) holds for some value 
of r and, if so, to identify the hyperplane by esti
mating fl and E. Note that fl is a point on the 

o 0 

hyperplane, and, speaking loosely, the column vec
tors of E span the hyperplane. The matrix E is not 
uniquely defined, since the mean value fl. does not 

~ 



change if E is replaced by EA, where A is nonsingu

lar, and a is replaced by A-la. 

Consider two special cases of (A.l): If ~l 

~2 ... = ~k' it would be concluded that these 

population means lie on a zero-dimensional hyper
plane; i.e., r = 0; conversely, if the {~i} are 

located randomly in the p-dimensional space, 
hypothesis (A.l) would be rejected for all values of 
r < p. 

Suppose that n
i 

observations are taken from 

N (~.,~) and X. is their average value (i = 1, 2, 
p 1 1 

... , k). Let x be the overall average value and B 
the between groups corrected sum of squares and 
products matrix: 

k Y.j ! x = L n. n. 
i=l 1 

1 i=l 1 

k 
B L n. (Xi - x) (Xi - x)'. 

i=l 1 

The logarithm of the likelihood of the observed 
sample means is then 

The test statistic for likelihood ratio test of 
hypothesis H (A.l) is 

o 

L min 
H 

o 

k 

L 
i=l 

(x.-~ -E a.)'~-l(x._~ -E a.). 
1 0 1 1 0 1 

From References 4 and 5, minimization of the 
expression on the right-hand side yields 

L = A + ... + A , 
r+l p 

where {A.} are the roots, arranged in decreasing 
1 

order, of determinantal equation 

IB - HI = 0, 

and under the null hypothesis, L follows a chi
squared distribution with (p-r) (k-r-l) degrees of 
freedom 

L - X2 {(p-r) (k-r-l)}. 

Th~likelihood ratio test for dimensionality consists 
p 

of computing {A.} and comparing n = L Aj' m = 
1 m j=m+l 

0,1, ... , p-l, with the distribution function of a 
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X2 with {(p-m) (k-m-l)} degrees of freedom. Ifn 
r 

and nr +l are significantly small when compared to 

their X2 distribution while n
r

_
l 

and n
r

_
2 

are large, 

then the dimensionality of the configuration of the 
mean vectors is inferred to be r. 

The above analysis assumes that the k normal 
populations have a common dispersion matrix ~, 
which is known. If ~ is not known, an estimate can 

be substituted in its place. The X2 test remains a 
valid asymptotic test, though approximate for finite 
sample sizes. The assumption of equality of the 
dispersion matrices is usually justifiable on the 
grounds that the tests on means are, as a rule, 
sufficiently robust against this violation. The 
computation of the test statistic, without this 
assumption, requires difficult numerical minimiza
tion. 

To determine the maximum likelihood estimates 
of the parameters {~ ,E} of the hyperplane, consider 

o 
the follo~ing simultaneous reduction of matrixes ~ 

and B. There exists a nonsingular matrix M such 
that 

E MM' 
and 

B 
where 

II 

M II M' 

diag (Al' A2' ... , A ). p 

Then, from Reference 5 

consists of the first r columns of M, denoted later 

as Ml, and ~o = x. 

The maximum likelihood estimate of ~i is given 

by: 

where (M-l)l consists of the first r rows of M- l . 
Because E in the basic model is not unique, Ml has 

frequently been replaced in our discussion by an 
orthonormal matrix E derived from Ml' This leads to 
some simplification in discussing the planes. For 
general E, the estimate of a

i 
is given by &i 

(E' E-l E)-l E' E- l (X. - x). 
1 

Note that the likelihood ratio test statistic 
nr is the sum of generalized Euclidean distances 

between Xi and ~i 

k 
nr = Ln. (x. 

i=11 1 

~ 

- ).Ii)' ~-l (Xi - ~i)' 
~ ~ 

and the r-hyperplane {~ ,E} is obtained by a 
o 

weighted least-squares fit through the configuration 
of {x.}, i = 1,2, ... , k. 

1 

! , 
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1. 

2. 

3. 

FIELD , 

1 

2 

3 

4 

5 

Table.1. The Dimensionality Test Statistics 

and Estimates 

Degrees of Test 
r Freedom Statistic 

Nonwheat data 0 40 1038.0 

(11 fields) 1 27 335.9 

2 16 70.0 

3 7 15.5 

Wheat data 0 36 1153.2 

(10 fields) 1 24 274.4 

2 14 56.7 

3 6 11.4 

Pooled data 0 64 3505.5 

(21 fields) 1 60 1393.6 

2 36 1-55.8 

3 18 47.7 

Table 2. Field Means and Their llaximum 

Likelihood Estimates on the Plane 
of Data Variability 

NOlMlEAT DATA WHEAT DATA 

Maximum Maximum 
Likelihood Likelihood 
Estimate Estimate 

Field Mean on the Plane Field Mean on the Plane 

24.421 24.396 22.500 24.863 

21.816 21.653 23.012 22.926 

34.053 33·937 24.617 25.096 

19.156 19.168 12.329 12.351 

23.933 23.542 27.000 26.597 

19.667 20.057 26.233 26.456 

37.233 36.628 26.400 27.686 

21.633 21.707 13.100 13.205 

24.212 23.96' 26.981 26.735 

20.909 20.937 26.667 26.731 

35.894 35;799 26.222 27.994 

20.879 20.833 13.352 13.349 

27.729 27.290 25.750 25.453 

27.708 37.753 23.854 23.998 

37.521 37.369 36.104 35.645 

20.042 19.955 19.750 19.806 

24.700 24.619 27.455 27.236 

22.450 22.606 27.682 27.689 

28.450 27.342 33.641 33.811 

13.650 14.042 17.409 17·352 
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. 
~o 

25.234 

23.512 

36.164 

20.309 

26.113 

25.465 

30.042 

15.266 

25.639 

24.412 

33.343 

17.986 

FIELD # 

1 

2 

3 

4 

5 

Orthonormal Basis Vectors 
el e2 e3 

0.409 -0.072 0.909 

0.856 -0.242 -0.393 

-0.077 -0.762 -0.059 

-0.307 -0.595 0.129 

-0.144 -0.436 0.685 

-0.265 -0.616 -0.502 

-0.813 0.129 0.306 

-0.497 0.352 -0.431 

-0.081 -0.420 -0.780 

-0.177 -0.661 0.477 

0.764 0.283 0.237 

0.616 0.046 0.328 

Table 3. Field Mean Vectors 

in the Original and Rqtated 

Coordinated Frames 

e, 

-0.047 

0.227 

-0.641 

0.732 

0.566 

-0.091 

-0.478 

0.666 

0.457 

-0.009 

0.530 

0.715 

NOlMlEAT DATA WHEAT DATA 

Transformed Transformed 
Field Mean Field Mean Field Mean Field Mean 

24.421 49.624 22.590 42.757 

21.816 7.437 23.012 1.807 

34 .053 6.323 24.817 5.660 

19.158 6.408 12.329 5.854 

23.933 50.910 27.000 48.203 

19.867 11.679 26.233 2.151 

37.233 7.102 26.400 6.068 

21.633 6.567 13.100 5.515 

24.212 50.602 26.961 118.402 

20.909 9.900 26.667 2.335 

35.694 6.615 28.222 5.689 

20.679 6.740 13.352 5.772 

27.729 56.955 25.750 52.654 

27.708 5.364 23.654 7.257 

37.521 5.664 36.104 6.325 

20.042 6.434 19.750 6.279 

24.700 45.165 27.455 53.814 

22.450 1.062 27.682 2.112 

26.450 6.522 33.841 5.455 

13.650 5.129 17.409 6.177 

I 

1 
~ 

1 

I 



1 

2 

3 
4 

5 
6 

7 
6 

9 
10. 

11 

12 

13 

1.4 

1.5 
1.6 

Table 4. Likelihood Ratio Test Statistics 

for Dimensionality AnalYsis 

of 4-Pass (l6-Channel) Data 

Statistics 
Degrees of for Wheat 1 

Dimensionality Freedom (14 Fields) 

0. 208 15.616.1 
1 180 9.837.1 
2 154 5.898.6 

3 130- 3.728.9 
I; 108 1.941.4 

5 88 1.10.2.8 
6 70 552.1 

7 54 285.7 
8 40. 139.0. 

9 28 53.4 
10 18 25.5 
11 10 7.8 
12 4 1.6 

13 0 0.0. 

14 - 0..0 

15 - 0.0 

Table 5. The Mean Observation Vectors for Fields 

of Wheat 2 and Their Maximum-Likelihood 

Estimates (MLE) on the Wheat 1 lIyperplane. 

Field 1 Field 2 Field 3 

Mean MLE Mean MLE Mean MLE 

32.949 32.870 37.291 37.491 34.845 34.630. 

35.424 35.107 42.40.0. 41.881 38.0.00 31.866 

35.846 36.051 46.416 46.265 41.106 41.153 

11.0.71 16.972 22.945 22.859 24.10.1 24.0.56 

26.608 21.311 26.236 26.390. 26.081 26.695 

26.232 26.696 30..691 30.276 26.507 26.713 

31.638 32.60.7 36.945 36.60.1 41.636 41.527 

16.555 16.595 1.9.654 19.50.1 24.40.5 24.422 

40.293 40..165 41.927 41. 315 40.90.5 41.675 

46.040 46.432 49.20.0. 48.242 46.190. 48.477 

52.859 53.160 54.90.9 54.0.25 55.014 54.60.4 

26.091 25.995 26.109 26.391 26.993 26.676 

52.0.40. 51. 351. 52.0.1.6 52.786 54.10.8 54.20.0. 

63.434 61.461 61.213 61.466 64.1.62 62.911 

61.566 66.242 66.0.13 67.956 14.115 74.576 
31.727 31..461 31.273 31. 567 34.561 34.627 
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