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6 

Abstract 7 

Dimensionality reduction is an important aspect in the pattern classification 8 

literature, and linear discriminant analysis (LDA) is one of the most widely studied 9 

dimensionality reduction technique. The application of variants of LDA technique 10 

for solving small sample size (SSS) problem can be found in many research areas e.g. 11 

face recognition, bioinformatics, text recognition, etc. The improvement of the 12 

performance of variants of LDA technique has great potential in various fields of 13 

research. In this paper, we present an overview of these methods. We covered the 14 

type, characteristics and taxonomy of these methods which can overcome SSS 15 

problem. We have also highlighted some important datasets and software/packages. 16 

17 

Introduction 18 

In a pattern classification (or recognition) system, an object (or pattern) which is 19 

characterized in terms of a feature vector is assigned a class label from a finite number 20 

of predefined classes. For this, the pattern classifier is trained using a set of training 21 

vectors (called the training dataset) and its performance is evaluated by classifying the 22 

feature vectors from the test dataset (which is normally different from the training 23 
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dataset). In many pattern classification problems, the dimensionality of the feature 1 

vector is very large. It is therefore imperative to reduce the dimensionality of the 2 

feature space for improving the robustness (or generalization capability) and 3 

computational complexity of the pattern classifier. Different methods used for 4 

dimensionality reduction can be grouped into two categories: feature selection methods 5 

and feature extraction methods. Feature selection methods retain only few useful 6 

features and discards less important (or low ranked) features. Feature extraction 7 

methods reduce the dimensionality by constructing a few features from the large 8 

number of original features through their linear (or non-linear) combination. There are 9 

two popular feature extraction techniques reported in the literature for reducing the 10 

dimensionality of the feature space. These are principal component analysis (PCA) and 11 

linear discriminant analysis (LDA). PCA is an unsupervised technique, while LDA is a 12 

supervised technique. In general, LDA outperforms PCA in terms of classification 13 

performance.  14 

 15 

The LDA technique finds an orientation 𝐖 that transforms high dimensional feature 16 

vectors belonging to different classes to a lower dimensional feature space such that the 17 

projected feature vectors of a class on this lower dimensional space are well separated 18 
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from the feature vectors of other classes. If the dimensionality reduction is from 1 

𝑑-dimensional (ℝ𝑑) space to ℎ-dimensional (ℝℎ) space (where ℎ < 𝑑), then the size of 2 

the orientation matrix 𝐖 is ℝ𝑑×ℎ; i.e., it has ℎ column vectors. The orientation matrix 3 

𝐖 is obtained by maximizing the Fisher’s criterion function; in other words by the 4 

eigenvalue decomposition (EVD) of 𝐒𝑊
−1𝐒𝐵 , where 𝑆𝑊 ∈ ℝ𝑑×𝑑  is within-class scatter 5 

matrix and 𝐒𝐵 ∈ ℝ𝑑×𝑑 is between-class scatter matrix. For a 𝑐-class problem, the value 6 

of ℎ  will be min(𝑐 − 1, 𝑑) . If the dimensionality 𝑑  is very large compared to the 7 

number of training vectors 𝑛 , then 𝐒𝑊  becomes singular and the evaluation of 8 

eigenvalues and eigenvectors of 𝐒𝑊
−1𝐒𝐵  becomes impossible. This drawback is 9 

considered to be the main problem of LDA and is commonly known as the small sample 10 

size (SSS) problem (Fukunaga, 1990). 11 

 12 

Over last several years, the discriminant analysis research is centered on developing 13 

algorithms that can solve SSS problem. In this overview, we focus on the LDA based 14 

techniques that can solve SSS problems. For brevity, we refer these techniques as 15 

LDA-SSS techniques. We provide taxonomy, characteristics and usage of these 16 

LDA-SSS techniques. The objective is to make the readers aware of the benefits and 17 

importance of these methods in the pattern classification applications. In addition, we 18 
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have also highlighted some existing software/packages or programs useful for the 1 

LDA-SSS problem and mentioned about some of the commonly used datasets. Since 2 

these packages are not available from one place, we have developed Matlab functions 3 

for various LDA-SSS methods and it can be downloaded from our website (<http: link 4 

will be provided upon the acceptance of the paper>).  5 

 6 

Linear discriminant analysis 7 

As mentioned earlier, the LDA technique finds an orientation 𝐖 that reduces high 8 

dimensional feature vectors belonging to different classes to a lower dimensional 9 

feature space such that the projected feature vectors of a class on this lower dimensional 10 

space are well separated from the feature vectors of other classes. This technique is 11 

illustrated in Figure 1, where two-dimensional feature vectors are reduced to 12 

one-dimensional feature vector. The feature vectors belong to three different classes 13 

namely C1, C2 and C3. An orientation is to be found where the projected feature vectors 14 

(on a line) of a class are to be maximally separated from the feature vectors of other 15 

classes. It can be observed that orientation 𝐖̂ does not separate projected feature 16 

vectors quite well. However, rotating the line further to orientation 𝐖 and projecting 17 

two-dimensional feature vectors on this orientation separate the projected feature 18 

vectors of a class with other classes. Thus, the orientation 𝐖 is a better selection than 19 
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the orientation 𝐖̂ . The value of 𝐖  can be obtained by maximizing the Fisher’s 1 

criterion function 𝐽(𝐖). This criterion function depends on three factors: orientation 𝐖, 2 

within-class scatter matrix ( 𝐒𝑊 ) and between-class scatter matrix ( 𝐒𝐵 ). If the 3 

dimensionality reduction is from 𝑑-dimensional space to ℎ-dimensional space, then the 4 

size of orientation matrix 𝐖 is 𝑑 × ℎ, and 𝐖 has ℎ ≤ min(𝑐 − 1, 𝑑) (where 𝑐 is the 5 

number of classes) column vectors known as the basis vectors. 6 

 7 

 8 

Figure 1: An illustration of LDA technique 9 

 10 

To define LDA explicitly, let us consider a multi-class pattern classification problem 11 

with c classes. Let X = {𝐱1, 𝐱2, … , 𝐱𝑛} denotes 𝑛 training samples (or feature vectors) in 12 

a 𝑑-dimensional space having class labels Ω = {𝜔1, 𝜔2, … , 𝜔𝑛}, where 𝜔 ∈ {1,2, … , 𝑐} and 13 

𝑐 is the number of classes. The set X can be subdivided into 𝑐 subsets X1, X2,…, Xc 14 

where Xj belongs to class 𝑗 and consists of 𝑛𝑗 number of samples such that: 15 
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 𝑛 = ∑ 𝑛𝑗
𝑐
𝑗=1  1 

and Xj ⊂ X and X1 ∪ X2 ∪…∪ Xc = X. 2 

 3 

If 𝛍𝑗 is the centroid of Xj and 𝛍 is the centroid of X, then the total scatter matrix 4 

𝐒𝑇 ∈ ℝ𝑑×𝑑 , within-class scatter matrix 𝐒𝑊 ∈ ℝ𝑑×𝑑  and between-class scatter matrix 5 

𝐒𝐵 ∈ ℝ𝑑×𝑑 are defined as (Duda and Hart, 1973, Sharma and Paliwal, 2006; 2008b) 6 

 𝐒𝑇 = ∑ (𝐱 − 𝛍)(𝐱 − 𝛍)T
𝐱∈𝐗 , 7 

 𝐒𝑊 = ∑ ∑ (𝐱 − 𝛍𝑗)(𝐱 − 𝛍𝑗)
T

𝐱∈𝐗𝑗

𝑐
𝑗=1 , 8 

and 𝐒𝐵 = ∑ 𝑛𝑗
𝑐
𝑗=1 (𝛍𝑗 − 𝛍)(𝛍𝑗 − 𝛍)

T
. 9 

where 𝐒𝑇 = 𝐒𝐵 + 𝐒𝑊. The Fisher’s criterion as a function of 𝐖 can be given as 10 

 𝐽(𝐖) = |𝐖T𝐒𝐵𝐖|/|𝐖T𝐒𝑊𝐖| 11 

where | ∙ | is the determinant. The orientation matrix 𝐖 is the solution of eigenvalue 12 

problem 13 

 𝐒𝑊
−1𝐒𝐵𝐰𝑖 = 𝜆𝑖𝐰𝑖 14 

where 𝐰𝑖 (for 𝑖 = 1 … ℎ) are the column vectors of 𝐖 that correspond to the largest 15 

eigenvalues (𝜆𝑖). There are several other criterion function also used which provide 16 

equivalent results (Fukunaga, 1990). 17 

 18 
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In the conventional LDA technique, 𝐒𝑊 needs to be non-singular. However, in the SSS 1 

case, this scatter matrix becomes singular. To overcome this problem, various LDA-SSS 2 

methods have been proposed in the literature. The next section discusses variants of 3 

LDA technique. 4 

 5 

Variants of LDA technique (LDA-SSS) for solving SSS problem 6 

In LDA-SSS, there are four informative spaces namely, null space of 𝐒𝑤 (𝐒𝑤
𝑛𝑢𝑙𝑙), range 7 

space of 𝐒𝑊  (𝐒𝑊
𝑟𝑎𝑛𝑔𝑒

), range space of 𝐒𝐵  (𝐒𝐵
𝑟𝑎𝑛𝑔𝑒

) and null space of 𝐒𝐵  (𝐒𝐵
𝑛𝑢𝑙𝑙 ). The 8 

computations of these spaces are very expensive and different methods use different 9 

strategies to tackle the computational problem. A popular way of reducing the 10 

computational complexity is by doing a preprocessing step. The preprocessing step is 11 

described as follows. It is known that the null space of 𝐒𝑇  does not contain any 12 

discriminant information (Huang et al., 2002). Therefore, the dimensionality can be 13 

reduced from 𝑑-dimensional space to 𝑟𝑡-dimensional space (where 𝑟𝑡 is the rank of 𝐒𝑇) 14 

by applying PCA as a pre-processing step. The range space of 𝐒𝑇 matrix, 𝐔1 ∈ ℝ𝑑×𝑟𝑡, is 15 

used as a transformation matrix. In the reduced dimensional space the scatter matrices 16 

is given by: 𝐒𝑤 = 𝐔1
T𝐒𝑊𝐔1  and 𝐒𝑏 = 𝐔1

T𝐒𝐵𝐔1 . After this procedure 𝐒𝑤 ∈ ℝ𝑟𝑡×𝑟𝑡  and 17 

𝐒𝑏 ∈ ℝ𝑟𝑡×𝑟𝑡  are reduced dimensional within-class scatter matrix and reduced 18 

dimensional between-class scatter matrix, respectively.  19 
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 1 

These four informative spaces are illustrated in Figure 2 after carrying out the 2 

preprocessing step1; i.e., the data is first transformed to the range space of 𝐒𝑇. Let the 3 

transformed spaces are depicted by 𝐒𝑤
𝑛𝑢𝑙𝑙, 𝐒𝑤

𝑟𝑎𝑛𝑔𝑒
, 𝐒𝑏

𝑛𝑢𝑙𝑙 and 𝐒𝑏
𝑟𝑎𝑛𝑔𝑒

. In Figure 2, the 4 

symbols 𝑟𝑤, 𝑟𝑏 and 𝑟𝑡  are the rank of matrices 𝐒𝑊, 𝐒𝐵 and 𝐒𝑇 , respectively. If the 5 

samples in training set are linearly independent then 𝑟𝑡 = 𝑟𝑤 + 𝑟𝑏 and their values will 6 

be 𝑟𝑡 = 𝑛 − 1, 𝑟𝑤 = 𝑛 − 𝑐 and 𝑟𝑏 = 𝑐 − 1. Further, the dimensionality of spaces 𝐒𝑤
𝑛𝑢𝑙𝑙 7 

and 𝐒𝑏
𝑟𝑎𝑛𝑔𝑒

 will be identical. Similarly, the dimensionality of spaces 𝐒𝑤
𝑟𝑎𝑛𝑔𝑒

 and 𝐒𝑏
𝑛𝑢𝑙𝑙 8 

will be identical.  9 

 10 

These four individual spaces contain significant discriminant information useful for 11 

classification. This is illustrated in Figure 32 where the classification performance 12 

obtained by the individual spaces is shown. Among these spaces, 𝐒𝑏
𝑛𝑢𝑙𝑙 is the least 13 

effective space, but it still contains some discriminant information. Different 14 

combinations of these spaces are used in the literature for finding the orientation 15 

                                                   
1 These four spaces can also be represented in Figure 2 without performing a preprocessing step. In 

that case, 𝑟𝑡 in the figure will be replaced by the dimensionality 𝑑 and the size of the spaces will 

change accordingly. 
2 For this experiment, first we project the original feature vectors onto the range space of 𝐒𝑇 matrix 

as a pre-processing step. Then all the spaces are utilized individually to do dimensionality reduction 

and to classify a test feature vector, the nearest neighbor classifier is used. To obtain performance in 

terms of average classification accuracy, 𝑘-fold cross-validation process has been applied, where 𝑘 = 5. 

The details of the datasets have been given later in Section ‘Datasets’. 
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matrix 𝐖. The following four combinations have been used most in the literature: 1) 1 

𝐒𝑊
𝑟𝑎𝑛𝑔𝑒

 and 𝐒𝐵
𝑟𝑎𝑛𝑔𝑒

, 2) 𝐒𝑊
𝑛𝑢𝑙𝑙 and 𝐒𝐵

𝑟𝑎𝑛𝑔𝑒
, 3) 𝐒𝑊

𝑛𝑢𝑙𝑙 , 𝐒𝑊
𝑟𝑎𝑛𝑔𝑒

  and 𝐒𝐵
𝑟𝑎𝑛𝑔𝑒

, and 4) 𝐒𝑊
𝑛𝑢𝑙𝑙 , 𝑆𝑊

𝑟𝑎𝑛𝑔𝑒
,2 

𝐒𝐵
𝑟𝑎𝑛𝑔𝑒

 and 𝑆𝐵
𝑛𝑢𝑙𝑙 . Based on these distinct combinations, we categorize the following 3 

LDA-SSS techniques into one of the four categories: null LDA (NLDA) (Chen et al., 4 

2000), PCA + NLDA (Huang et al., 2002), orthogonal LDA (OLDA) (Ye 2005), 5 

uncorrelated LDA (ULDA) (Ye et al., 2004), QR-NLDA (Chu and Thye, 2010), fast NLDA 6 

(FNLDA) (Sharma and Paliwal, 2012a), discriminant common vector LDA (CLDA) 7 

(Cevikalp et al., 2005), direct LDA (DLDA) (Yu and Yang, 2001), kernel DLDA (KDLDA) 8 

(Lu et al., 2003a), parameterized DLDA (PDLDA) (Song et al., 2007), improved DLDA 9 

(IDLDA) (Paliwal and Sharma, 2010), pseudoinverse LDA (PILDA) (Tian et al., 1986), 10 

fast PILDA (FPILDA) (Liu et al., 2007), improved PILDA (IPILDA) (Paliwal and 11 

Sharma, 2012), LDA/QR (Ye and Li, 2005), approximate LDA (ALDA) (Paliwal and 12 

Sharma, 2011), PCA+LDA (Swets and Weng, 1996; Belhumer et al., 1997), regularized 13 

LDA (RLDA) (Friedman, 1989; Lu et al., 2003b, 2005; Zhao et al., 1998, 1999, 2003), 14 

eigenfeature regularization (EFR) (Jiang et al., 2008), extrapolation of scatter matrices 15 

(ELDA) (Sharma and Paliwal, 2010), maximum uncertainty LDA (MLDA) (Thomaz et 16 

al., 2005), penalized LDA (PLDA) (Hastie et al., 1995), two-stage LDA (TSLDA) 17 

(Sharma and Paliwal, 2012b), maximum margin criterion LDA (MMC-LDA) (Li et al., 18 
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2003) and improved RLDA (IRLDA) (Sharma et al., 2013).  1 

 2 

The classification accuracies of several of these methods have been computed on three 3 

datasets (for description of datasets please refer to Section Datasets) and 2-fold 4 

cross-validation results are shown in Table 1 and their average classification 5 

performance over 3 datasets is shown in Figure 4.. The nearest neighbor classifier has 6 

been used for classification purpose.  7 

 8 

Figure 2: An illustration of all the four spaces of LDA when SSS problem exist. 9 

 10 

Table 2 shows the categorization (or taxonomy) of these LDA-SSS methods. It should be 11 

noted that different LDA-SSS techniques use different combinations of spaces and the 12 

performance of a given LDA-SSS technique depends on the particular combination it 13 

uses. In addition, it depends in what manner these spaces are combined. Four 14 



11 

 

categories are depicted (types 1-4). Most of the techniques fall under the first three 1 

categories. The fourth category (type-4) has not been fully explored in the literature. 2 

Figure 5 depicts average classification performance of all types over 3 face recognition 3 

datasets. Further characterization of these categories is discussed in the following 4 

subsections. 5 

 6 

 7 

Figure 3: Average classification accuracy over 𝑘-fold cross-validation (𝑘 = 5) using 8 

spaces 𝐒𝑤
𝑛𝑢𝑙𝑙 , 𝑆𝑤

𝑟𝑎𝑛𝑔𝑒
, 𝐒𝑏

𝑟𝑎𝑛𝑔𝑒
 and 𝑆𝑏

𝑛𝑢𝑙𝑙. 9 

 10 

 11 

Table 1: Classification accuracies (in percentage) of several LDA based techniques. 12 

Techniques ORL AR FERET Average 

DLDA  89.5 80.8 92.9 87.7 

OLDA 91.5 80.8 97.1 89.8 

PCA+LDA  86.0 83.4 95.7 88.4 

RLDA  91.5 75.4 97.3 88.1 

MLDA  92.0 76.2 97.8 88.7 

EFR  92.3 81.8 97.7 90.6 

TSLDA 92.3 87.7 97.7 92.6 

PILDA 91.0 82.1 96.1 89.7 

FPILDA 91.0 82.1 96.1 89.7 

NLDA 91.5 80.8 97.1 89.8 
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ULDA 88.3 89.6 97.1 91.7 

QR-NLDA 91.5 80.8 97.1 89.8 

FNLDA 91.5 80.8 97.1 89.8 

CLDA 91.5 80.8 97.1 89.8 

IPILDA 87.5 87.9 97.1 90.8 

ELDA 90.8 87.0 97.1 91.6 

ALDA 91.3 72.1 96.7 86.7 

IDLDA 91.5 72.7 96.9 87 

IRLDA 92.0 81.9 97.7 90.5 

 1 

 2 

Figure 4: Average classification accuracies (in percentage) of several LDA based 3 

techniques over 3 datasets. 4 

 5 

 6 

Table 2: Taxonomy for LDA based algorithms used for solving SSS problem 7 

TYPE-1 

𝐒𝑊
𝑟𝑎𝑛𝑔𝑒

+ 𝐒𝐵
𝑟𝑎𝑛𝑔𝑒

 

TYPE-2 

𝐒𝑊
𝑛𝑢𝑙𝑙 + 𝐒𝐵

𝑟𝑎𝑛𝑔𝑒
 

TYPE-3 

𝐒𝑊
𝑛𝑢𝑙𝑙 + 𝐒𝑊

𝑟𝑎𝑛𝑔𝑒
+ 𝐒𝐵

𝑟𝑎𝑛𝑔𝑒
 

TYPE-4 

All spaces 

DLDA 

KDLDA 

PDLDA 

PILDA 

FPILDA 

LDA/QR 

PCA+LDA 

MMC-LDA 

NLDA 

PCA+NLDA 

OLDA 

ULDA 

QR-NLDA 

FNLDA 

CLDA 

IPILDA 

RLDA 

ALDA 

EFR 

ELDA 

MLDA 

IDLDA 

PLDA 

IRLDA 

TSLDA 

 8 

 9 
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 1 

Figure 5: Average classification accuracy of best 3 methods of a particular type over 2 

three face recognition datasets (ORL, AR and FERET). (For Type 4 only 1 method has 3 

been selected). It can be observed that as the type increases the average performance 4 

improves. However, the improvement is based on how effectively the spaces are utilized 5 

in the computation of the orientation matrix. 6 

 7 

Type-1 based techniques 8 

LDA-SSS techniques of type-1 category employ 𝐒𝑊
𝑟𝑎𝑛𝑔𝑒

 and 𝐒𝐵
𝑟𝑎𝑛𝑔𝑒

 spaces to compute 9 

the orientation matrix 𝐖 and therefore discard 𝐒𝑊
𝑛𝑢𝑙𝑙 and 𝐒𝐵

𝑛𝑢𝑙𝑙. This could, however, 10 

affect the classification performance adversely as the discarded spaces have significant 11 

discrimination information. Some of these methods compute 𝐖 in two stages (e.g. 12 

DLDA) and some in one stage (e.g. PILDA). In general, type-1 methods are economical 13 

in computing the orientation matrix. However, their performances are not as good as 14 

that of other types of methods.  15 

 16 
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Type-2 based techniques 1 

Techniques in this category utilize 𝐒𝑊
𝑛𝑢𝑙𝑙 and 𝐒𝐵

𝑟𝑎𝑛𝑔𝑒
 spaces and discard the other two 2 

spaces. It has seen empirically (in Figure 3) that for most of the datasets, 𝐒𝑊
𝑛𝑢𝑙𝑙 contains 3 

more discriminant information than other spaces for classification performance. 4 

Therefore, employing 𝐒𝑊
𝑛𝑢𝑙𝑙 in a discriminant technique would enable to compute better 5 

orientation matrix 𝐖 compared to Type-1 based techniques. However, since these 6 

techniques discard the other two spaces, its classification performance is suboptimal. 7 

The theory of many of these techniques are different, but they produce almost similar 8 

performance in terms of classification accuracy. The computational complexity of some 9 

of the type-2 methods is high. Nonetheless, they show encouraging classification 10 

performances.  11 

 12 

Type-3 based techniques 13 

To compute the orientation matrix 𝐖, the techniques in this category utilize the three 14 

spaces; i.e., 𝐒𝑊
𝑛𝑢𝑙𝑙 , 𝐒𝑊

𝑟𝑎𝑛𝑔𝑒
 and 𝐒𝐵

𝑟𝑎𝑛𝑔𝑒
. All the three spaces contain significant 15 

discrimination information and since Type-3 techniques employ more spaces than the 16 

previous two categories (Type-1 and Type-2), intuitively it would give a better 17 

classification performance. However, different strategies of combining these three 18 
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spaces would result in different level of generalization capability. These methods 1 

require higher computational complexity. But produce encouraging performance if all 2 

the three spaces are effectively utilized. 3 

 4 

Type-4 based techniques  5 

It has been seen (in Figure 3) that though 𝐒𝐵
𝑛𝑢𝑙𝑙 is the least effective space, it still 6 

contains some discrimination information useful for classification. If 𝐒𝐵
𝑛𝑢𝑙𝑙 can also be 7 

used appropriately with the other spaces for the computation of orientation matrix 𝐖, 8 

then classification performance can be further improved. So far very few techniques 9 

have been explored in this category. The computational complexity in this category is 10 

very high but they can produce good classification performance provided that all the 11 

spaces are utilized effectively. 12 

 13 

This section illustrated the four informative spaces for solving SSS problem. Based on 14 

the utilization of different spaces, various techniques can be categorized into 4 types. 15 

However, it is possible that performance of techniques in a given type can vary. This is 16 

because various techniques (of a particular type) apply the spaces for computing the 17 

orientation matrix in different ways. Therefore, how effectively spaces are utilized can 18 

vary the performance of techniques (this can be observed from Table 1 where techniques 19 

of a particular type vary in performances). Nonetheless, in general utilizing spaces 20 

effectively would improve the performance (as shown in Figure 5 for best 3 methods).  21 

 22 

Review of LDA based techniques for solving SSS problem 23 

In this section, we review some of the common LDA based techniques for solving SSS 24 
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problem. In a SSS problem, the within-class scatter matrix 𝐒𝑊 becomes singular and 1 

its inverse computation becomes impossible. In order to overcome this problem, 2 

approximation of inverse of 𝐒𝑊 matrix has been used to compute the orientation matrix 3 

𝐖. There are various techniques to compute this inverse in the literature in different 4 

ways. Here we review some of the techniques:  5 

 6 

Fisherface (PCA+LDA) technique 7 

In Fisherface method, 𝑑-dimensional features are firstly reduced to ℎ-dimensional 8 

feature space by the application of PCA and then LDA is applied to further reduce 9 

features to 𝑘 dimensions. There are several criteria for determining the value of ℎ 10 

(Belhumeur et al., 1997; Swets and Weng, 1996). One way is to select ℎ = 𝑛 − 𝑐 as the 11 

rank of 𝐒𝑊 is 𝑛 − 𝑐 (Belhumeur et al., 1997). The advantage of this method is that it 12 

overcome SSS problem. However, the drawback is that some discriminant information 13 

has been lost in the PCA application to 𝑛 − 𝑐 dimensional space. 14 

 15 

Direct LDA 16 

Direct LDA (DLDA) is an important dimensionality reduction technique for solving 17 

small sample size problem (Yu and Yang, 2001). In the DLDA method, the 18 
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dimensionality is reduced in two stages. In the first stage, a transformation matrix is 1 

computed to transform the training samples to the range space of 𝐒𝐵; i.e.,  2 

𝐔𝑟
T𝐒𝐵𝐔𝑟 = 𝚲B

2 , 3 

or 𝚲𝐵
−1𝐔𝑟

T𝐒𝐵𝐔𝑟𝚲𝐵
−1 = 𝐈𝑏×𝑏, 4 

where 𝐔𝑟 corresponds to the range space of 𝐒𝐵 (i.e., 𝚲𝐵) and 𝑏 = 𝑟𝑎𝑛𝑘(𝐒𝐵). 5 

In the second stage, the dimensionality of this transformed samples is further 6 

transformed by some regulating matrices; i.e., the transformation matrix 𝐔𝑟𝚲𝐵
−1 is used 7 

to transform 𝐒𝑊 matrix as 8 

𝐒̂𝑊 = 𝚲𝐵
−1𝐔𝑟

T𝐒𝑊𝐔𝑟𝚲𝐵
−1 = 𝐅𝚺𝑤

2 𝐅T, 9 

or 𝚺𝑤
−1𝐅T𝚲𝐵

−1𝐔𝑟
T𝐒𝑊𝐔𝑟𝚲𝐵

−1𝐅𝚺𝑤
−1 = 𝐈𝑏×𝑏 10 

Therefore, the orientation matrix of DLDA technique can be given as 𝐖 = 𝐔𝑟𝚲𝐵
−1𝐅𝚺𝑤

−1. 11 

The benefit of DLDA technique is that it does not require PCA transformations to 12 

reduce the dimensionality as required by other techniques like Fisherface (or 13 

PCA+LDA) technique (Swets and Weng, 1996; Belhumeur et al., 1997). 14 

 15 

Regularized LDA 16 

When the dimensionality of feature space is very large compared to the number of 17 

training samples available, then the 𝐒𝑊  matrix becomes singular. To overcome this 18 
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singularity problem in the regularized LDA (RLDA) method, a small perturbation to the 1 

𝐒𝑊  matrix has been added (Friedman, 1989; Zhao et al., 1999; Dai and Yuen, 2007). 2 

This makes the 𝐒𝑊 matrix non-singular. The regularization can be applied as follows: 3 

 (𝐒𝑊 + 𝛿𝐈)−1𝐒𝐵𝐰𝑖 = 𝜆𝑖𝐰𝑖 4 

where 𝛿 > 0 is a perturbation term or regularization parameter. The addition of 𝛿 in 5 

the regularized method helps to incorporate both the null space and range space of 𝐒𝑊. 6 

However, the drawback is that there is no direct way of evaluating the parameter as it 7 

requires heuristic approaches to evaluate it and a poor choice of 𝛿 can degrade the 8 

generalization performance of the method. The parameter 𝛿 has been added just to 9 

perform the inverse operation feasible and it has no physical meaning. 10 

 11 

Null LDA technique 12 

In the null LDA (NLDA) technique (Chen et al., 2000), the ℎ column vectors of the 13 

orientation 𝐖 = [𝐰1, 𝐰2, … , 𝐰ℎ] are taken to be in the null space of the within-class 14 

scatter matrix 𝐒𝑊; i.e., 𝐰𝑖
𝑇𝐒𝑊𝐰i = 0 for 𝑖 = 1 … ℎ. In addition, these column vectors 15 

have to satisfy the condition 𝐰𝑖
𝑇𝐒𝐵𝐰i ≠ 0 for 𝑖 = 1 … ℎ.  16 

 17 

Since the dimensionality of the null space of 𝐒𝑊 is 𝑑 − (𝑛 − 𝑐), we will have 𝑑 − (𝑛 − 𝑐) 18 
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linearly independent vectors satisfying the two above mentioned conditions. Since 1 

𝑑 − (𝑛 − 𝑐) is greater than ℎ, Chen et al. (2000) have used eigen analysis of 𝐒𝐵 matrix 2 

to select ℎ leading eigenvectors from these 𝑑 − (𝑛 − 𝑐) vectors to form the orientation 3 

matrix W. Thus, in the null space method W is found by maximizing |𝐖T𝐒𝐵𝐖| subject 4 

to the constraint |𝐖T𝐒𝑊𝐖| = 0, i.e., 5 

 𝐖 = arg max|𝐖T𝐒𝑊𝐖|=0 |𝐖T𝐒𝐵𝐖| 6 

The null LDA technique finds the orientation W in two stages. In the first stage, it 7 

computes W such that 𝐒𝑊𝐖 = 0: i.e., data is projected on the null space of 𝐒𝑊 and 8 

throws the range space of 𝐒𝑊 . Then in the second stage it finds W that satisfies 9 

𝐒𝐵𝐖 ≠ 0  and maximizes |𝐖T𝐒𝐵𝐖| . The second stage is commonly implemented 10 

through the PCA method applied on 𝐒𝐵. When the dimensionality d of the original 11 

feature space is very large in comparison to sample size 𝑛, the evaluation of null space 12 

becomes nearly impossible as the eigenvalue decomposition of such a large 𝑑 × 𝑑 13 

matrix will lead to serious computational problems. This is a major problem. There are 14 

two main techniques in this respect suggested in the literature for computing the 15 

orientation W. In the first technique, a pre-processing step is introduced where the PCA 16 

technique is applied to reduce the dimensionality from 𝑑 to 𝑛 − 1 by removing the null 17 

space of 𝐒𝑇. In the reduced 𝑛 − 1 dimensional space it is possible to compute the null 18 
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space of 𝐒𝑊. This pre-processing step is then followed by the two steps of the null space 1 

LDA method (Huang et al., 2002). In the second technique, no pre-processing is 2 

necessary but the required null space of 𝐒𝑊 is computed in the first stage by first 3 

finding the range space of 𝐒𝑊, then projecting the data onto this range space followed 4 

by subtracting it from the original data. After this step, the PCA method is applied to 5 

carry out the second stage. It can be seen that in both the techniques range space of 𝐒𝑊 6 

was thrown which could have some discriminant information for classification.  7 

 8 

Orthogonal LDA 9 

Orthogonal LDA (OLDA) method (Ye, 2005) has shown to be equivalent to the null LDA 10 

method under a mild condition; i.e., when the training vectors are linearly independent 11 

(Ye and Xiong, 2006). In his method, the orientation matrix W is obtained by 12 

simultaneously diagonalizing scatter matrices. Therefore, a matrix 𝐴1 can be found 13 

which diagonalizes all scatter matrices; i.e., 14 

𝐀1
T𝐒𝐵𝐀1 = 𝚺𝐵, 𝐀1

T𝐒𝑊𝐀1 = 𝚺𝑊 and 𝐀1
T𝐒𝑇𝐀1 = 𝐈𝑇, 15 

where 𝐀1 = 𝐔1𝚺𝑇
−1𝐏, 𝐔1 is range space of 𝐒𝑇, 𝚺𝑇 is eigenvalues of 𝐒𝑇 and 𝚺𝑇

−1𝐔1
T𝐇𝐵 =16 

𝑷𝚺𝑸T (𝐒𝐵 = 𝐇𝐵𝐇𝐵
T). The orientation matrix 𝐖 can be found by orthogonalizing matrix 17 

𝐀1; i.e., 𝐀1 = 𝐐𝐑, where 𝐖 = 𝐐. 18 
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 1 

In this method, the dimensionality is reduced from ℝ𝑑 to ℝ𝑐−1. The computational 2 

complexity of OLDA method is better than null LDA method and is estimated to be 3 

14𝑑𝑛2 + 4𝑑𝑛𝑐 + 2𝑑𝑐2 flops (where c is the number of classes). 4 

 5 

QR-NLDA 6 

Chu and Thye (2010) proposed a new implementation of null LDA method by doing QR 7 

decomposition. This is faster method than OLDA. Their approach requires 8 

approximately 4𝑑𝑛2 + 2𝑑𝑛𝑐 computations. 9 

 10 

Fast NLDA 11 

Fast NLDA (FNLDA) method (Sharma and Paliwal, 2012a) is an alternative method of 12 

NLDA. It assumes that the training vectors are linearly independent. In this method, 13 

the orientation matrix is obtained by using the relation 𝐖 = 𝐒𝑇
+𝐒𝐵𝐘 where 𝐘 is a 14 

random matrix of rank 𝑐 − 1. This method is so far the fastest method of performing 15 

null LDA operation. The fast computation is achieved by using random matrix 16 

multiplication with scatter matrices. The computational complexity of FNLDA is 17 

𝑑𝑛2 + 2𝑑𝑛𝑐.  18 
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 1 

Pseudoinverse method 2 

In the pseudoinverse LDA (PILDA) method (Tian et al., 1986), the inverse of 3 

within-class scatter matrix 𝐒𝑊  is estimated by its pseudoinverse and then the 4 

conventional eigenvalue problem is solved to compute the orientation matrix W. In this 5 

method, a pre-processing step is used where feature vectors are projected on the range 6 

space of 𝐒𝑇 to reduce the computational complexity (Huang et al., 2002). After the 7 

pre-processing step, the reduced dimensional within-class scatter matrix 𝐒̂𝑊  is 8 

decomposed as 9 

 10 

𝐒̂𝑊 = 𝐔𝑤𝐃𝑤
2 𝐔𝑤

T , where 𝐔𝑤 ∈ ℝ𝑡×𝑡, 𝐃𝑤 ∈ ℝ𝑡×𝑡, 𝑡 = 𝑟𝑎𝑛𝑘(𝐒𝑇)  11 

𝐃𝑤 = [
𝚲𝑤 0
0 0

] and 𝚲𝑤 ∈ ℝ𝑤×𝑤 (𝑤 is the rank of 𝐒𝑊 such that 𝑤 < 𝑡).  12 

Let the eigenvectors corresponding to the range space of 𝐒̂𝑊  is 𝐔𝑤𝑟  and the 13 

eigenvectors corresponding to the null space of 𝐒̂𝑊 is 𝐔𝑤𝑛, i.e., 𝐔𝑤 = [𝐔𝑤𝑟 , 𝐔𝑤𝑛], then 14 

the pseudoinverse of 𝐒𝑊 can be expressed as 15 

 𝐒̂𝑊
+ = 𝐔𝑤𝑟𝚲𝑤

−2𝐔𝑤𝑟
T  16 

The orientation matrix W can now be computed by solving the following conventional 17 

eigenvalue problem 18 
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𝐒̂𝑊
+ 𝐒̂𝐵𝐰𝑖 = 𝜆𝑖𝐰𝑖 

where 𝐒̂𝐵 is the between-class scatter matrix in the reduced space. It can be observed 1 

that the null space of within-class scatter matrix is discard which would sacrifice some 2 

discriminant information.  3 

 4 

Eigenfeature regularization  5 

In eignefeature regularization (EFR) method (Jiang et al., 2008), 𝐒𝑊 is regularized by 6 

extrapolating its eigenvalues in its null space. The lagging eigenvalues of 𝐒𝑊  is 7 

considered as noisy or unreliable which are replaced by an estimation function. Since 8 

the extrapolation has been done by an estimation function, it cannot be guaranteed to 9 

be optimal in dimensionality reduction. 10 

 11 

Extrapolation LDA 12 

In extrapolation LDA (ELDA) method (Sharma and Paliwal, 2010), the null space of 𝐒𝑊 13 

matrix is regularized by extrapolating eigenvalues of 𝐒𝑊  using exponential fitting 14 

function. This method utilizes range space information and null space information of 15 

𝐒𝑊 matrix. 16 

 17 



24 

 

Maximum uncertainty LDA 1 

The maximum uncertainty LDA (MLDA) method is based on maximum entropy 2 

covariance selection approach that overcomes singularity and instability of 𝐒𝑊 matrix 3 

(Thomaz and Gillies, 2005). The MLDA is constructed by replace 𝐒𝑊 with its estimate 4 

in the Fisher criterion function. This is computed by updating less reliable eigenvalues 5 

of 𝐒𝑊. 6 

 7 

Two stage LDA 8 

The two stage LDA (TSLDA) method (Sharma and Paliwal, 2012b) exploits all the four 9 

informative spaces of scatter matrices. These spaces are included in two separate 10 

discriminant analyses in parallel. In the first analysis, null space of 𝐒𝑊 and range 11 

space of 𝐒𝐵 are retained. In the second analysis, range space of 𝐒𝑊 and null space of 12 

𝐒𝐵 are retained. It has been shown that all four spaces contain some discriminant 13 

information which is useful for classification. 14 

 15 

Applications of the LDA-SSS techniques 16 

In many applications the number of features or dimensionality is much larger than the 17 

number of training samples. In these applications, LDA-SSS techniques have been 18 
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successfully applied. Some of the applications of LDA-SSS techniques are described as 1 

follows: 2 

 3 

Face recognition 4 

Face recognition system comprises of two main steps: feature extraction (including face 5 

detection) and face recognition (Zhao et al., 2003; Sanderson and Paliwal, 2003). In 6 

feature extraction step, an image of a face (of size 𝑚 × 𝑛) is normally represented by the 7 

illumination levels of 𝑚 × 𝑛 pixels (giving a feature vector of dimensionality 𝑑 = 𝑚𝑛) 8 

and in the recognition step an unknown face image is identified/verified. Several 9 

LDA-SSS techniques have been applied for this application (e.g. Swets and Weng, 1996; 10 

Zhao et al., 1998, 1999).  11 

 12 

Cancer classification 13 

The DNA microarray data for cancer classification consists of large number of genes 14 

(dimensions) compared to the number of tissue samples or feature vectors. The high 15 

dimensionality of the feature space degrades the generalization performance of the 16 

classifier and increases its computational complexity. This situation, however, can be 17 

overcome by first reducing the dimensionality of feature space, followed by classification 18 
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in the lower-dimensional feature space. Different methods used for dimensionality 1 

reduction can be grouped into two categories: feature selection methods and feature 2 

extraction methods. Feature selection methods (e.g. Golub et al., 1999; Furey et al., 3 

2000; Mak and Kung, 2006; Cui et al., 2010; Sharma et al., 2011, 2012d, 2012e, 2012f) 4 

retain only a few useful features and discard others. Feature extraction methods 5 

construct a few features from the large number of original features through their linear 6 

(or nonlinear) combination. A number of papers have been reported for the cancer 7 

classification task using the microarray data (Dudoit et al., 2002; Li et al., 2003, 2005; 8 

Moghaddam et al., 2006; Sharma and Paliwal, 2008a). 9 

 10 

Text document classification  11 

In the text document classification, a free text document is categorized to a pre-defined 12 

category based on its contents (Aas and Eikvil, 1999). The text document is a collection 13 

of words. To represent a given text document as a feature vector, a finite dictionary of 14 

words is chosen and frequencies of these words (e.g. monogram, bigram etc.) are used as 15 

features. Dimensionality reduction and classification techniques are applied for the 16 

categorization of a document. The LDA-SSS techniques have also been applied to text 17 

document classification (e.g. Ye, 2005; Ye and Xiong, 2006). 18 

 19 
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Datasets 1 

In this section we cover some of the commonly used datasets for LDA related methods. 2 

Three types of datasets have been depicted. These are face recognition data, DNA 3 

microarray gene expression data and text data. The description of datasets is given in 4 

Table 43. 5 

 6 

Table 4: Description of datasets 7 

Dataset Description 

Face recognition  

AR (Martinez, 2002) Contains over 4000 color images of 126 people’s faces (70 men and 56 women). Images are with 

frontal illumination, occlusions and facial expressions. 

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html  

ORL (Samaria 

and Harter, 1994 

Contains 400 images of 40 people having 10 images per subject. The images were taken at different 

times, varying the lighting, facial expressions (open / closed eyes, smiling / not smiling) and facial 

details (glasses / no glasses). 

http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html 

FERET (Phillips et al., 2000) Contains 14126 images from 1199 individuals. Images of human heads with views ranging from 

frontal to left and right profiles. 

http://www.itl.nist.gov/iad/humanid/feret/feret_master.html  

Yale (Belhumeur et al. 1997) Contains 165 images of 15 subjects. There are 11 images per subject, one for each of the following 

facial expressions or configurations: center-light, with glasses, happy, left-light, with no glasses, 

normal, right-light, sad, sleepy, surprised and wink. 

http://cvc.yale.edu/projects/yalefaces/yalefaces.html 

Cancer classification  

Acute leukemia (Golub et al., 1999) Consists of DNA microarray gene expression data of human acute leukemias for cancer 

classification. Two types of acute leukemias data are provided for classification namely acute 

lymphoblastic leukemia (ALL) and acute myeloid leukemia (AML). The dataset is subdivided into 

38 training samples and 34 test samples. The training set consists of 38 bone marrow samples (27 

ALL and 11 AML) over 7129 probes. The testing set consists of 34 samples with 20 ALL and 14 

AML, prepared under different experimental conditions. All the samples have 7129 dimensions and 

all are numeric. 

ALL subtyoe (Yeoh et al. 2002) Consists of 12558 genes of subtypes of acute lymphoblastic leukemia. The dataset is subdivided 

into 215 training samples and 112 testing samples. These train and test sets belong to seven classes 

namely T-ALL, E2A-PBX1, BCR-ABL, TEL-AML1, MLL, hyperdiploid >50 chromosomes and 

other (contains diagnostic samples that did not fit into any of the former six classes). The training 

samples per class are 28, 18, 9, 52, 14, 42 and 52 respectively. The test samples per class are 15, 9, 

6, 27, 6, 22 and 27 respectively. 

Breast cancer (van’t Veer, 2002) This is a 2 class problem with 78 training samples (34 relapse and 44 non-relapse) and 19 testing 

samples (12 relapse and 7 non-relapse) of relapse and non-relapse. The dimension of breast cancer 

dataset is 24481. 

GCM (Ramaswamy et al., 2001) This Global Cancer Map (GCM) dataset has 14 classes with 144 training samples and 46 testing 

samples. There are 16063 number of gene expression levels in this dataset. 

MLL (Armstrong et al., 2002) This dataset has 3 classes namely ALL, MLL and AML leukemia. The training data contains 57 

leukemia samples (20 ALL, 17 MLL and 20 AML) whereas the testing data contains 15 samples (4 

ALL, 3 MLL and 8 AML). The dimension of MLL dataset is 12582. 

Lung adenocarcinoma (Beer et al., 2002) Consists of 96 samples each having 7129 genes. This is a three class classification problem. Out of 

96 samples, 86 are primary lung adenocarcinomas, including 67 stage I tumor and 19 stage III 

tumor. An addition of 10 non-neoplastic lung samples are provided.  

Lung (Gordon et al., 2002) Contains gene expression levels of malignant mesothelioma (MPM) and adenocarcinoma (ADCA) 

of the lung. There are 181 tissue samples (31 MPM and 150 ADCA). The training set contains 32 

                                                   
3 For more datasets on face see Ralph Gross (2005), Zhao et al. (2003) and http://www.face-rec.org/databases/. For 

bio-medical data see Kent Ridge Bio-medical Repository (http://datam.i2r.a-star.edu.sg/datasets/krbd/). 

http://www2.ece.ohio-state.edu/~aleix/ARdatabase.html
http://www.cl.cam.ac.uk/research/dtg/attarchive/facedatabase.html
http://www.itl.nist.gov/iad/humanid/feret/feret_master.html
http://cvc.yale.edu/projects/yalefaces/yalefaces.html
http://www.face-rec.org/databases/
http://datam.i2r.a-star.edu.sg/datasets/krbd/
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of them, 16 MPM and 16 ADCA. The rest of 149 samples are used for testing. Each sample is 

described by 12533 genes. 

Prostate (Singh et al., 2002) This is a 2-class problem with tumor class versus normal class. It contains 52 prostate tumor 

samples and 50 non-tumor samples (or normal). Each sample is described by 12600 genes. A 

separate test contains 25 tumor and 9 normal samples. 

SRBCT (Khan et al., 2002) Consists of 83 samples with each having 2308 genes. This is a four class classification problem. 

The tumors are Burkitt lymphoma (BL), the Ewing family of tumors (EWS), neuroblastoma (NB) 

and rhabdomyosarcoma (RMS). There are 63 samples for training and 20 samples for testing. The 

training set consists of 8, 23, 12 and 20 samples of BL, EWS, NB and RMS respectively. The 

testing set consists of 3, 6, 6 and 5 samples of BL, EWS, NB and RMS respectively. 

Colon tumor (Alon et al., 1999) Contains 2 classes of colon tumor samples. A total of 62 samples are given out of which 40 are 

tumor biopsies (labelled as ‘negative’) and 22 are normal (labelled as ‘positive’). Each sample has 

2000 genes. The dataset does not have separate training and testing sets. 

Ovarian cancer (Petricoin III et al., 2002) Contains 253 samples of ovarian cancer (162 samples) and non-ovarian cancer (91 samples). The 

dimension of feature vector is 15154. These 15154 identities are normalized prior to processing. 

Central nervous system (Pomeroy et al., 

2002) 

This is a two class problem with 60 patient samples of central nervous system embryonal tumor. 

There are 21 survivors and 39 failures which contribute to 60 samples. There are 7129 genes of the 

samples of the dataset. 

Lung cancer 2 (Bhattacharjee et al., 2001) This is a 5-class problem with a total of 203 normal lung and snap-frozen lung tumors. The dataset 

includes 139 samples of lung adenocarcinoma, 20 samples of pulmonary carcinoids, 6 samples of 

small-cell lung carcinomas, 21 samples of squamous cell lung carcinomas and 17 normal lung 

samples. Each sample has 12600 genes. 

Text document classification  

Reuters-21578 (Lewis, 1999) Contains 22 files. The first 21 files contain 1000 documents and the last file contains 578 

documents. 

TREC (2000) Large collection of text data.  

Dexter (Blake and Merz, 1998) Collection of text classification in a bag-of-word representation. This dataset has sparse continuous 

input variables. 

 1 

Packages 2 

In this section we list some of the packages available. This is shown in Table 5. We have 3 

also developed in our laboratory a LDA-SSS package (written in Matlab), which 4 

provides the Matlab functions for computing 𝐒𝑊
𝑛𝑢𝑙𝑙 , 𝐒𝑊

𝑟𝑎𝑛𝑔𝑒
, 𝐒𝐵

𝑟𝑎𝑛𝑔𝑒
 and 𝐒𝐵

𝑛𝑢𝑙𝑙 , and 5 

implementation of several LDA-SSS techniques such as DLDA, PILDA, FPILDA, 6 

PCA+LDA, NLDA, OLDA, ULDA, QR-NLDA, FNLDA, CLDA, IPILDA, ALDA, EFR, 7 

ELDA, MLDA, IDLDA and TSLDA.   8 

 9 

Table 5: Packages 10 

Code/package Description 

WEKA (Witten and Frank, 2000)  

(A Java based data mining tool with open 

source machine learning software) 

 

Weka is a collection of machine learning algorithms for data mining tasks. The algorithms can 

either be applied directly to a dataset or called from person’s Java code. Weka contains tools for 

data pre-processing, classification, regression, clustering, association rules, and visualization. It is 

also well-suited for developing new machine learning schemes. 

 

http:/www.cs.waikato.ac.nz/ml/weka/ 

LDA-SSS This is Matlab based package, it contains several algorithms related to LDA-SSS. The following 

techniques/functions are in this package:  DLDA, PILDA, FPILDA, PCA+LDA, NLDA, OLDA, 

ULDA, QR-NLDA, FNLDA, CLDA, IPILDA, ALDA, EFR, ELDA, MLDA, IDLDA and TSLDA 

<LINK WILL BE PROVIDED UPON ACCEPTANCE OF THE PAPER> 

Dimensionality reduction techniques This package is mainly written in Matlab. It includes a number of dimensionality reduction 
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techniques listed as follows: multi-label dimensionality reduction, generalized low rank 

approximations of matrices, ULDA, OLDA, kernel discriminant analysis via QR (KDA/QR) and 

approximate KDA/QR. 

http://www.public.asu.edu/~jye02/Software/index.html 

MASS package The MASS package is based on R and contains functions for performing linear and quadratic 

discriminant function analysis. 

 

http://www.statmethods.net/advstats/discriminant.html 

DTREG DTREG is a tool for modeling business and medical data with categorical variables. This includes 

several predictive modeling methods (e.g., multilayer perceptron, probabilistic neural networks, 

LDA, PCA, factor analysis, linear regression, decision trees, SVM etc.) 

 

http://www.dtreg.com/index.htm 

dChip dChip software is for analysis and visualization of gene expression and SNP microarrays. This has 

interface with R software. It is capable of doing probe-level analysis, high-level analysis (including 

gene filtering, hierarchical clustering, variance and correlation analysis, classifying samples by 

LDA, PCA etc.) and SNP array analysis. 

 

https://sites.google.com/site/dchipsoft/home 

XLSTAT XLSTAT is data analysis and statistical solution for Microsoft Excel. The XLSTAT statistical 

analysis add-in offers a wide variety of functions (including discriminant analysis) to enhance the 

analytical capabilities of Excel for data analysis and statistics requirements.  

 

http://www.xlstat.com/en/ 

 1 

 2 

Conclusion 3 

In this paper, we reviewed LDA-SSS algorithms for dimensionality reduction. Some of 4 

these algorithms provide the-state-of-the-art performance in many applications. We 5 

discuss and categorize LDA-SSS algorithms into 4 distinct categories based on the 6 

combination of spaces of scatter matrices. We have also highlighted some datasets and 7 

software/packages useful to investigate the SSS problem. The LDA-SSS package 8 

written in our laboratory has been made available (<LINK will be provided>). 9 
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