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1. INTROODUCTION

In discriminant analysis, often a two-step procedure is followed; first,
training samples are obtained to set up a discriminant rule and then, indiv-
iduals are classified using the sample-based rule. However, if the criterion
for assigning the training samples to their true classes is imperfect, some
training samples may be misallocated. For example, this arises in discrimi-
nation of zrops in an area using spectral data acquired from a satellite.

The scene image of the area is analyzed to delineate crop features and train-
ing samples are assigned crop labels based on visual interpretation of their
spectral observations. This can lead to mislabeling of crops for some training

samples and thus, may adversely affect the performance of a discriminant rule.

Presently we :tudy the linear discriminant analysis in the presence of mis-
allocation in a training set. Suppose that individuals come from one of the
two classes C; and Ca. A p-dimensional random vector X is measured on each
individual. It is assumed that X has the multivariate normal distribution with
mean ui and covariance matrix I for Cy, 1=1,2, In a training sample of n
individuals, suppose nj are allocated into C) and np=n-n) into Cz. If ay

is the fraction of training samples from C; that are misallocated, i=1,2, the
two samples of sizes ny and n, represent mixed classes, say CI and CE,
instead of the original classes Cy and C,. Let X? and X; and S* denote

the sample means and the pooled sample covariance matrix, respectively. Then
a random observation X can be classified on the basis of 1inear discriminant

function (Anderson, 1958) given by

A(X) = Bg *+ 8% (1.1)



OF POOR QUALITY
whare 1
B = log(ny/ng) - (1/2)(% - ¥)* §° (% + F1)
foasT @ - (1.2)

The classification procedure is to regard the observed value, X coming from
Cy or C, according as the discriminant value, i(}) < OQor > 0, respectively.

Then the error rates for the procedure are g ven by
Ry = Prob {X(X) > 0 | X €y, Xy, ", §*}
Ry = Prob {X(X) < 0 | X Cp, Xy, Tp", 5%} (1.3)
[
and i1ts average error rate is given by

R = %1 Ry + w2Rp (1.4)
where %) and n3 are the probabilities associated with Cy and Cj,

Assuming that training samples are randomly misallocated, Lachenbruch (1966)
and MclLachlan (1972) studied Ry and Ry for their expected values and variances.
However, a random misallocation model is unrealistic, particularly if the ob.
servation X is itself used in determining the allocation. Lachenbruch (1974)
suggested a non-random allocation model with two variations to it. His cri-
terion for allocation was based on the distances of an observation from the
class means. Presently, we propose an allocation model in which misallocation
of a sample depends upon its observation. The random and non-random mis-
allocation models of Lachenbruch become special cases of this new model

(Section 2).
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For the discriminant function in (1.1), we give the asymptotic distribution of
the discriminant boundary and obtain the asymptotic mean and variance of each
of the error rates, R}, Ry, and R (Section 3). We take the same approach

that was used by Efron‘$}975) and extend his normal discrimination results

to the case of misallocated training samples. The present study can also be
viewed as an extension of Sayre (1980) who gives the asymptotic distribution

of R assuming correct allocation for the training sanples; although we here

do not explicity give the distribution. MclLachlan (1972) has given the asymp-
totic means and variances ot the error rates for random misallocation, but his
derivation is limited to only one of the iwo misallocation ratgs being non-zero.
Lachenbruch (1966, 1974) investigated the means and variances of Ry and R

for his models using simulations. Michalek and Tripathi (1980) discussed the
problem for random misallocation, but they stuaied the discrimination between
the mixed classes and not between the original classes. Given in Sections 4
and 5 are certain numerical results showing the adverse effect of misallocation
on the linear discriminant boundary and the associated error rates.

2. MISALLOCATION MODELS

Suppose A2=(u1-u2)’ -1 (uy-up). By means of linear transformations,

one can reduce the class structuras in the canonical form (Efron 1975), where

-a/2 8/2
L‘l‘[ ]'L‘Z‘[ ] L=l (2.1)
0 0

s0o that the class means y) and up are alinned along the xj-axis. Suppose

allocation of an individual is made using its observation X. It is desirable
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to consider an allocation so that chance of misallocation for an individual
increases as its observation deviates further away from the mean of its true
class in the direction of the mean of the other class. So let the probability
of misallocation of an individual from Cy into C3.4 be g4(z), | = 1,2, where
g1(z) is a monotone increasing function and g2(z) is a monotone decreasing
function with z to be along the xj-axis. Suppose fi(z) ts the frequency func-

tion of the first component of random vector X for C4 and

ny o= [© fi(2)dz, {1 =1,2,
)

Define the misallocation rate aj by

o = (Umy) [® gq(2)fy(2)dz, 1 = 1,2. (2.2)

Given a) and a2, the functions gj and g2 can be specified differently.
The ranaom misallocation model (Lachenbruch 1966, McLachlan 1972, Michalek
and Tripathi 1980) corresponds to the uniform case given by, and to be called

model (a):

(a) Random Misallocation
For X ¢ Cj, let
gi(z) = a3, 1 =1,2. (2.3)

Another model, to be called model (b), is obtained by specifying g; and g2
as follows:
(b) "Truncated" Model:
For X ¢ Cy, let
’0 y 2 € 2y

gl(z)'lu 1>
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and for X ¢ Cp, let
u ,z¢<ap
92(2) -}
lo 252 (2.4)

where a4 is determined from (2.2). After solving it, we obtain
a) = -(a/2) + Z1-a1/u
az-A/2+Z° /u
2

where Z, denotes the y-percentage point of the standard normal distribution.

If we assume u=1 and aj=ap=0, then one obtains the complete separation model
of Lachenbruch (1974). His other non-random model can be obtained by taking
the aj as percentage points of the chi square distribution with p degrees of

freedom.

Though models (a) and (b) are easy to implement and hence, these are appealirng,
they may not be always suitable. Instead, it may perhaps be more appropriate
to let the probability of misallocation increase as the observed value deviates

away from the mean of its true class. Gne such model can be defined as follows:

(c) Exponential Model:
For X e Cy, let

(0 , 2 € =Af2

91(z) =) 2
ll-exp(-k1[z+A/2] /2), z)> -a/2
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and for X ¢ Cp, let
1-exp( -k [2-8/23%/2), 2 < /2
g92(z) = {

0o ., 2> 4/2 (2.5)
where ki is determined from (2.2). It easily follows that
Ky = (1-2a4)72 - 1,

In practice, the misallocation rates aj will be subject to sampling vari-

ation. Hence, these rates are being considered as random variables.

In Appendix A, we derive the mean vectors and the covariance matrices of the
mixture distributions of CY and C3, and inssection 3, we give the dis-
criminant analysis for arbitrary functions g and g2 as defined earlier.

For numerical computations presented in sections 4 and 5, we consider the
special cases, models (a), (b) and (c), and compare the performances of the
discriminant rule associated with the discriminant function in (1.1) for

these models.

3. DISCRIMINANT BOUNDARY AND ERROR RATES

When the parameters are inown, the discriminant rule is: classify X into

Cy if A(X) < 0 and into C2, utherwise, where
M) = Bo + 8 X (3.1)

2,2
By » 109(x]/%3) = (w3 = u11)/2 (1 + €)

By = (up - uy)/(1 + &)
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BJ'O .3'2. o!o.p
and w{. 'E' “;1' “;1 and £ as defined in Appendix A.

As discussed by Efron (1975), the “Optimum" boundary, A(X)=0, is the
(p-1)-dimensional plane orthogonal to xj-axis and intersecting it at

T = -Bo/B1. (3.2)

For large sample size n, the sample-based boundary, i(g)-o, is the plane
intersecting the xj-axis at t = r+«dr with normal vector at an angle de
from the xj-axis, where dt and de represent small deviations from 0. With
no loss of generality, suppose t>0. Then the distances of u; and yj

from the optimum boundary are
Dy =4/2 +x, Dz =4/2-n, (3.3)
and those from the sample-based boundary are
dy = (Dy+dt) cos(de), dp=(D2-dt) cos(de). (3.4)

Refer to Efron(1975) for a pictorial description of the two-discriminant

boundaries and other related details.
The error rates can now be written in terms of these distances:

RY = ¢(-D;) , R$ = e(-Dp) (3.5)
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for the "optimum" boundary, and
Ri=¢(-d), Rz=e(-dp) (3.6)

Tor the sample-based boundary, where ¢ stands for the standard normal cdf,
Let ¢ denote the density function of standard normal. Then, ignoring higher

than second order differential terms, we have (Efron, 1975)

Ry ~ R - o(0)dx + (0y/2) #(0)C(er)° + (de)]

Ry = RS + #(D,)dr + (0/2) #(0p)i(dr)° + (de)’] (3.7)
where

dr = -(dsy + td8))/8) .

(de)? = [(d82)2 + (d83)% + .... + (d8,)2)8,2 (3.8)

with d8j = (85 - 8j) denoting the error in the estimate 5j,

j = 0,1,2,...,p, given in (1.2). We denote dg(l) =(d8), dBp,....d8y)" .

Since n is large, one may assume that /i(dso. dg(l))‘ has a limiting normal
distribution with mean 0 and covariance matrix Vg. In Appendix B, we obtain

ya and write it in the form,

og0 c01 O
Vo = |oo o O
0 0 g2l

with quantities agg, 001, o]] and (22 expressed in terms of basic

input parameters, v}, %2, a], a2 and 4, among others,
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It follows from (3.8) that
0,2 = E{{dr)?] .
= (agg *+ 210y + 12 0q)/8%. (3.10)
Suppose we define
dwj = dBj/B1s §=2,3,.00F.
Then its variance is

2w app/88s §22,3,0000p. (3.11)

<

“3

Next, /fn(dt, dw) has a 1imiting normal distribution with mean 0 and

covariance matrix Iygf‘. where

110
T=(1/8) [OOI]

The covariance matrix may be written as

where owz- azzlef.

Since (de)? = ; (m.,J)2 and n(dwj)zlomz ~ x§, 3=2,3,....04

n(de)z/cu2 ~ x&-l' Furthermore, n(d-r)z/ot2 ~ le.

{The symbol ~ should read "asymptotically distributed as".)
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From (3.7) and the abov: dist~iSutional results, the asymptotic moments of
the error rates can 'ow be easily obtained. Since (dt)2 and (de)? arc

asymptotically unciorrelated and

EC(dr)2] = o /n, EC(de)?D = (p-1) o, P/m
and
V[(d1)2] = 20,02, V[(de)?] = 2(p-1)0,*/n2,
the asymptotic means of Ry and Rz, ignoring second and higher order terms,

are given by

E[R,] = RO + (Dy/2n) ¢(Dy) [0, + (p-1)0, 2]
E[R,] = RY + (Dp/2n) #(Dp) (0,2 + (P-1)0,2] €3.12)
For the asymptotic second order moments, ignoring third and higher order

terms, we have the variances and covariances of Ry and Ry as follows:

VIR, = (1/n)e2(Dy) {o 2 + (Dfs2m)[a . + (p-1)0, %1}
VIR,] = (1/n)e2(Dy) {o ¢ + (D§/2n)[o* + (p-1}0, 41}
Cov[Ry, Rpd = (1/n)e(Dy)e(Rp)-0.2 + (D1D/2n)
[o4 + (0-1)0, 41}, (3.13)

where atz and cwz are functions of elements of Bgs By and yg.

Clearly, E[Ri] approiches R?. i=1,2, as n becomes infinite.

For the average error rate, we have

E[R] = RO + (1/2n) [n;0; o(Dy) + w50, 6(Dy)] [0, 2 + (p-1) 0,2)
V[R] = %, V[Ry] + 7,2 V[Rp] + 2 %y 7, Cov(Ry, Rp), (3.14)

where V[R1], V[P2] and Cov[Ry, R] are as given in (3.13).
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4. NUMERICAL RESULTS
Computations were made to evaluate the asymptotic covariance matrix yg
for following cases of input pi-ameters:
7] = .5, .7
a=2,4

a1 =0, .1, .2, .3, .4andap = 0

This was done for all three misallocation models discussed in section 2.

We specified u =.5 in model (b), equation (2.4), sc that there is a fifty-
fifty chance of misallocation for an observation that falls beyond a thres-
hold point. Based on these computations, we obtained <, OTZ. auz and the
means and variances of the error rates given in equations (3.12), (3.13) and
(3.14). Table 1 lists the values of t, o 2 and g 2. From these numerical

results, we find that UTZ

increases as @y increases from 0 to .4, except

there is a slight decrease when a=2, w}=.7 and model (c) for misallocation.

The results for ouz are mixed; it is constant in the case of misallocation

moael (a) and it decreases as a] increases for models (b) and (c), provided A=2.
When a=4, it first decreases and then increases.

2

The values of OTZ «nd o,° are considerably higher for model (a) than for

other two models. This is an expected result because the boundary is subject
to higher variatility under random mixing in training samples. Next, the

rate of increase in 012

as a function of a; is higher for A=4 than for
a=2. Again, this is expected since a higher rate of misallocation in
training samples will lead to a larger change in the variance of a mixture

distribution when C; and C, are more separated and, hence, causing a large

increasé in 012.
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1. Values c¢c. v and Variances a,z and %2 Associated With the Sample-Based Boundary

X] = .9 ] = o/
(ags a2) —WrsaTTecation WodeT — - —RrsaTocaton WodeT —
(2a) (b) (c) (2) (v) (c)

(1) a=2
(0, 0) 0 0 0 .424 424 424
(o]. 0) ‘.221 -.192 ‘.191 0214 0092 .089
(.2, 0) -.491 -.398 -.375 -.074 -.167 -.186
2.3. 02 -.819 -.649 -.565 -.463 -.443 -.435
.4' n ‘10218 '1.001 ‘0776 '0976 ‘0815 '.681
(0, 0) 1.000 1.000 1.000 1.360 1.360 1.360
(.1, 0) 2.157 1.1.6 1.130 1.929 1.308 1.235
(«2, 0) 4.327 1.541 1.184 3.475 1.717 1.216
(.3, 0) 8.248 2.473 1.211 7.088 2.542 1.133
(-4, 0) 15.549 5.373 1.296 15.564 5.178 1.072
(0, 0) 2.000  2.000  2.000 2.190  2.190  2.190
(-1, 0) 2.000 1.068 1.051 2.190 .845 .824
(-2, 0) 2.000 747 .R33 2.190 .488 +286
(.3, 0) 2.000 .644 .248 2.190 .387 .074
(.4, 0) 2.000 173 .098 2.190 .515 .005
ii)a =4
(0, 0) 0 0 0 212 212 212
(.1, 0) -.277 -.257 -.257 -.065 -.145 -.147
(.2’ 0) ‘.617 "0553 -0535 ".413 -.477 '0493
(.3, 0) -1.034 -.916 -.847 -.874 -.860  -.853
(.4, 0) -1.546 -1.398 -1.207 -1.483 -1.373 -1.248
(0, 0) 1.000 1.000 1.000 1.193 1.193 1.193
(.1, 0) 2.741 1.497 1.480 2.236 1.751 1.703
(.2, 0) 5.821 2.653 2.012 4.558 2.756 2.182
(.3, 0) 10.948 4,976 2.642 9.464 4.765 2.623
(.4, 0) 19.324 10.391 3.494 18.998 9.885 3.125
(0, 0) 1.250 1.193 1.193 1.298 1.193 1.193
(-1, 0) 1.250 .511 .497 1.298 .324 .309
(-2, 0) 1.250 .266 .122 1.298 .094 .009
(.3, 0) 1.250 .194 .002 1.298 .044 .077
(.4, 0) 1.250 .285 .055 1.298 .109 .343
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If we consider the complete separation modei, 1.e., u=l, or the cther non-
random model of Lachenbruch (1974), the mixture distridbutions will have smaller
varfances than the original distributions have. As such, the variance o,z

may be smaller as compared to the case of no misallocation allowed in samples.
In turn, this may lead to smaller values for the expected error rates, as it
was observed by Lachenbruch in his sampling study. His study was, of course,
restricted to the 1inear discriminant function without the term of

log :I/:; or its estimate 1og ny/n, as may be the case with respect

to the discriminant boundary, optimum or sample-based.

In Table 2, we present the asymptotic expected values and standard deviations
(SD) of Ry, Rz, and R corresponding to v}=.5, 4=2, p=2 and a) and a)

as considered in Table 1. Similar results can be easily computed for the other
cases by making use of the values of t, °t2 and owz from Table 1. It is seen
that E[Ry] and SD[R;] increase, whereas E[Rp] and SD[R,] decrease as a)
increases. When a;>0 and aj=0, n;/u; < %y/%p=1 and a)-a>0

and hence, the discriminant boundary shifts away from up; in the direction

of uj) as a) increases, causing the error rate to increase for Cy and

to decrease for C3. For the average error rate, E[R] and SD[R] increase as
the misallocation rate a) increases. Thus, th2re is an adverse effect on

the average error rate R due to misallccation of samples from one class to

another.

In 1imit, E[R;]=RY, 1=1, 2, and E[R]=R? as n becomes infinite. The
values of Ry, R3, and RO obtained for n= = are also given in Table

2. The corresponding standard deviations are, of course, zero.
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2. Asymptctic Means and Standard Deviations of Ry, R2 and R (v1=.5, a=2, p=2)

n=10C n= «
(a1 a2) MisalTocation Model Misallocation Wodel
(a) (v) (c) (a) (b) (c)
(0, 0) .162 .162 .162 .159 .159 .159
g.l, 0) .223 .212 .212 .218 .210 .209
E[R1] .2, 0; .311 .276 .268 .305 273 .266
(.3, 0 .432 .365 .333 .428 .363 .332
(.4, 0) .594 .500 .412 .586 .500 .411
(0, 0) .162 .162 .162 .159 .159 .159
(.1, 0) .116 .119 .119 .111 .117 .117
E[R7] (.2, 0) .074 .084 .086 .068 .081 .085
(.3, 0) .042 .052 .060 .034 .050 .059
(.4, 0) .020 - .026 .039 .013 .023 .038
(0, 0) .162 .162 .162 .159 .159 .159
(.1, 0) .169 .166 .166 . 165 .163 .163
E[R] (.2, 0) .193 .180 177 .187 177 .175
(.3, 0) .237 .208 .197 .231 . 206 .195
(.4, 0) .307 .263 .225 .300 .262 .22%
(0, 0) .025 .025 .025
(.1, 0) .044 .031 .031
so(R;] (.2, 0) .073 .041 .036
(.3, 0) .113 .059 .040
(.4, 0) .154 .092 .044
(0, 0) .025 .025 .025
(.1, 0) .028 .021 .021
SD[R2] (.2, 0) .028 .019 .017
(.3, 0) .023 .016 .013
(.4, 0) .016 .013 .009
(0, 0) .004 .004 .004
(.1, 0) .010 .006 .006
sb[rR] (.2, 0) .024 .012 .010
(.3, 0) .046 .022 .014
(.4, 0) .070 .040 .017

i
-
¥

s
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5. SMALL SAMPLE RESULTS

Because of complex algebric expressions involved in the evaluation of !E'
we conducted a Monte Carlo sampling experiment to check the accuracy of
asymptotic results as well as to study the error rates when the training sample
size is small. Normal random numbers were generated using the technique of

Box and Muller (1958). The simulation study was limited to p=2, A =2, 4,

and n=20, 50, 100. The numbers of training samples from C; and C; were taken

to be proportional to their a-priori probabilities. Though there were

many other cases, we have chosen to give here the results for the case of »1=.69,
ay=.087, a,=.226 (this is equivalent to x1=.7, aj=.1 and aj=.2

in terms of mixed classes), A=2, Table 3 presents the means and standard devia-

tions of Ry and Ry for n=20, 50, 100 obtained from the sampling experiment

as well as from the theoretical results given in (3.12) and (3.13).

Besides misallocation models (a), (b), and (c), we also consider the case of

no misallocation in training samples, i.e., aj=ap=0. This is listed as model (o)
in Table 3. Based on these and other results, we find a good agreement between
the sampling and asymptotic results. When n=100, the two sets of values of
E[R1], E[R2], SD[R1] and SD[Rp] agree at least up to second decimal place.

Moreover, the agreement holds quite weli even for small sample size of n=20.

A comparison between the results for model (o) and of other three models shows
that misallocations under models (b) and (c) lead to about the same results
that are obtained with no misallocation in training samples. The actual error rates

are considerably biased and have much larger variances with random misallocation.

e 10k 1
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3. The Means and Standard Deviations of Ry and R)

(v1=.69, a1=.087 ap=.226, A=2, p=2)

Sampling - Asymptotic

Misallo- Misallo-
Parameter Misallccation Model cation Misallocation Mo-el cation

(a) (o) (¢) {0) (a) (d) <7 (o)

i) n=100
E[Ry] .044  .081 .090 .078 .046 .082  .086 .081
E[R2] .434  .286  .267 291 .416 .280  .268 .286
SO[R; ] .023 .021 .022 .017 .027 .021 .019 .017
SO(R2] .118 .048  .047 .042 117 047 .040 040
11) n=50
E[R1] .057 .085 .087 .084 . 055 .084 .088 .085
E[R2] .423 .291 276 .289 .421 .282 .269 .289
SO[R; ] .036 .029 .025 .025 .040 .030 .027 .025
SD[R2] .143 .072 .051 .054 .166 .067 .057 .056
{ii1) n=20
E[R;] .083 .095 .096 .089 .079 .091 .094 .096
E[R2] .482 323 295 .323 +435 .289 .275 299
SCCRy] .112 .060 .043 .044 .074 .049 .044 .042

SO(R2] .237 137 .115 .101 .264 .106 .090 .090

TP
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So, if an allocation procedure for training samples is formulated based on the
concept underlying models (b) and (c), the effect of misallocation on the

linear discriminant analysis for two classes can be minimized.

6. CONCLUDING REMARKS

In practice, g*=log uI/u; or its estimate, as may be the case, is not in-
cluded in the discriminant boundary. This leads to what is sometimes referred
to as the Fisher classification rule, Otherwise, it may be called the Bayes
classification rule. To study the difference in the error rates caused by

the exclusion of ¢*=log ni/ny from the discriminant function as given in (l.1),
we obtained the means and standard deviations of Ry and Ry for each rule. The
results are presented in Table 4 for the case of v)2.69, a}=.087, a2=.226

and n=100. Results are also given for the case of %1=.69, a1=0,a2=0.

Since simulation and asymptotic results are almost same when n=100, either of
two sets of results can be considered., We have listed in Table 4 the results

obtained by the Monte Carlo method.

A comparison between the results of misallocation models (a), (b), (c¢), and

those of no misallocation model (o) shows that the means and standard deviations
of R} and Ry, and hence, of R, are less affected due to misallocation in the case
of Fisher rule than for the Bayes rule, particularly when misallocation is
random. This difference is more in the case of a=4, Since w;-.7. and

% =.69, % /%5 is approximately equal to =/%,. So the ratio n/n,

can be considered an equally good estimate of x1/v2, and thus, hardly intro-
duces any additional shift in the discriminant boundary, otherwise obtained

from the correctly allocated samples. However, when the two ratios, v/v)
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4. The Means and Standard Deviations of Ry and Ry for Fisher and Bayes Classi-
fication Rules

(v1=.69, a)=.087, ap=.226, p=2, n=100)

Fisher Bayes
Ro
Misallo- Misallo-
Parameter Misallocation Model cation Misallocation Model cation
a 3 (0) [€)) (b) (c) 0
i) as=2
E[R; ] .189 .150 .147 .158 .044 .081 .090 .078
E[R2] .148 .178 179 .166 .434 .286 267 «291
SD[Ry] .034 .023 .024 .027 .023 .021 .022 017
SD[R>] .031 .026 .028 .027 .118 .048 .047 .042
ii) A=4
E[Ry] .039 .028 .026 .024 .007 .010 .011 .015
E[R: ] .019 .023 .025 .024 .112 .061 057 .038
SO[R;] .015 .008 .008 .006 .006 .005 .00% .004

SD[R2] .008 .007 .008 .006 .066 .021 .020 .011
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and w1/x2 are not the same, the shift due to the inclusion of log ny/n2

in the discriminant function may become considerable and hence, it may cause
higher bias as well as higher variance for an error rate. Thus, unless the
allocation procedure for the training samples is objertively formulated as
reflected in our models (b) and (c), the use of Fisher rule may be preferred

over the Bayes rule because of its robustness property.
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APPENDIX A
Mixture Distributions of Cl* and Cz*

We obtain parameters of the two mixture distributions by expressing these in
terms of K1s Kas L, ay and B First we obtain these parameters by consider-
ing the orginal class structure and then give these parameters for the case of
canonical form.

Without loss of generality, let y, and y, be aligned along the x;-axis and the
conditional means in other dimensions, given x;, be

Migpey "Wyt Yy (K ende 3 B 3 eeeep (A-1)

for X ¢ Ci, i=1, 2. Suppose 02 denotes the common variance of the two
distributions for X, the first component of random vecto: X. Llet pj

and ti denote the mean vector and covariance matrix for Ci. i=1, 2. The
frequency function of X; for c, can be written as

£1(2) = [1 - 9;(2)] f;(2) + 95_4(2) f;_4(2) (A-2)

where g4(z) and fy(z), 1 = 1, 2, are as defined in section 2.

Then the probability associated with C: is

* *
v, ’ffi (z) dz
~

= (1 -“1)“1. +c3_1'3-.i. 1 = 1' 2

(A-3)

» *
and L) + T, ® 1.
Define

L z - u
LR f( g, (2)f (2)dz
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and (A-4)

1" 2wy
vi * 1151 ( ] ) 91(2)f1(l)d2, 1= 1, 2.

Now the elements of u:. i =1, 2, are obtained as follows:

For

* *
11 --3-;/ zfl(z)dz

1 %=

it follows from (2.2) and (A-2) to (A-4) that
* %
TR T MMyt My (e ¢ Mo) *mpap(uyy ¢ mya)
* + +
=gt Roplugyy = ugy) * (mpam, - waym o,
Similarly

* % *
oMy = Takipy = Moy (Mpy - uyy) - (mpepmy - wyaymy e,

For j = 2, 3, **+, p, we have
Y ) f.(z)d 2)f.(2)d
“luij = "1j|z[1 - gl(z)] 1(1) z+ uzjlzgz(-) z(z) z,

Making substitutions from (A-1) and simplifying it, we get
* % *
Ty T TPyt Tt (Mg - uqy) *vy(ngegmy - miamy o,

Similarly,

2"'2;] - "0 (uzj - ulj) - YJ (uzazmz - wlulml)a.
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Let
‘J =My - Myye J=1,2 ¢, P
t = wam, - Tiam (A-5)
a.; = Izcz/l; and u; L] 11u1/t;.
Then

® *

"lj = "lj + ay GJ + th o/:1

*

Moy = ¥py - a; 6;] - yjt o/a; (A-6)
J=l, eecy P

where v, = 1. Another form of (A-6) that will be used in the derivation of

covariance matrices zI and 2; is:

“;j =My - WU - a;) Gj + th 0/!;
(A-7)

*

1 u] t 1 - 02 6 - '-t g '2.

* * “
£y = ExLOX - w8 - vp) ]

can be written as




O pooR Q¥
g .j Ex 0K - k) (8 - ) 122F](2)e
-[ [E"!'l + (gllz - E;)(!llz - B;)'] [1 - Ql(l)lfl(l)dz
+ [ [zw + (g - 21 gy, - n‘{)’]gz(z)fz(z)dz (A-8)

where %) |2 and Llll are the conditional mean vector and covariance matrix of X

given z. This easily follows from the conditional expectation argument, The
elements of g”z, i=1, 2, are given in (A-1) with xq replaced by z. Lletting

0
L -[ Eyzfi(l)dz
-t®

110.150 -/ ':_:_ngi(z)fi(z)dz
and making substitutions from (A-1), (A-6) and (A-7) in (A-8), it can be shown
that

E; = Ee + az(l - u;) éé‘ + ('1 + xl) u’ﬂz/l;
(A-9)

» » *

+ vl(f.l + x5 )d/ll

where
* * *
Xy = 11(t|11)2 - ilal[vl + (tlll)z -2 ml(tl'l)]
* *
+ tzaz[vz + (t/'ll)z -2 ml(t/'l)]

* * * *
¥ - 01[(1 -a)t o+ 'llalml] + (1 - ul)[-alt + 'lalmll'
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Similarily, the covariance matrix g; can be obtained as

» * ] 4 . *
L =E0 +ay(l - ap)ss + (r, + xphy o%h,

. . (A-10)
+ vz(ﬁ +18 )a/:;
where
xp = tp(tp)? - wp, [V, + (£ 2 + 2my(th)]
+nja [V + (tg)F 4 2m (L))

vy mapl(1 - ap) t -wam] - (1-ay) ozt +7gam,].

In the discriminant function, we use the pooled covariance matrix which is an

estimate of the weighted covariance matrix, g* n w;;; + w;g;. which 1s given by

® L4 Ld
I =L+n8§ +xyxo

~

Zevie vx8 e (A-11)

where
» * Lt 4 * * L 4
no=a (l-al)w1+az (1-02)12
X =Xy *Xp
] -vl +V2-

with 8, t and a"'s are as defined in (A-5). In obtaining (A-11), we have made

use of the fact that L0 +y y ol =g,

In the case of canonical form, the mean vectors for C:, i =1, 2, and the

weighted covariance matrix are
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b} = (=01 - 20])(8/2) + t/a}l gy
by = [(1 - 2ap)(8/2) - t/apl g
AR
where

g = (1,0, e, 0)

2

€ snA“+x+24 .

These expressions are obtained from (A-6) and (A-11) by. recognizing that
sl.A.Yl-landqz.1,;_:_-_1_,andsj =0and v, =0, § =2, 3, 0, P

2"
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Derivation of Y.

£

(1) = (2) E 3 o0 LA N ]
Let ¢ Yo and g (022.023' N °pp)' where Ga90 Sa3» » pp are the

elements of the upper triangular matrix of § with its first row excluded,

1

Suppose !'(1) is the first row of g" and g'(z) is the vector of elements of

the upper triangular matrix, less g*(l) of "1, In the determination of Yoo

there is no need to consider 2(2) and o'(z) } €.9., refer to Lemma 2 in Efron

*
(1975). Suppose ¢ = log LA P TIR log ﬂ;/';. and

0 = (60 iy e M)

L d

2 = (a1s 9 oy o)

(8-1)
)
X (e)
and
9_*‘ = ((*l !;o !;v g.(l)). (B-Z)
Then by the §-method (Rao, 1973), we have
* . 2 .
(ag )(ag ) (ag ) (ag )
V. = V. B-3
RIS )
where
% Ve
Yl %l
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The elements of Y. can be obtained by evaluating the asymptotic variances for
¥

the maximum 1ikelihood estimates of y. Restricting ourselves to the case of

canonical form, we have the following asymptotic variances of ﬁ, and é(l).
- 1
n V[!‘] - ;—-L. i=1, 2
i
o(l)y . (2-4)
nV[g*]=1+Eg,

and their asympotic covariance zero, where 511 » glg;. Determination of

V. and V.. would require the misallocation model to be specified. We skip the
a fa

specifics and sketch the main steps involved in obtaining these matrices,

Define the random variable y by

0, Sample observation X is correctly allocated
Y * )1, sample observation X is misallocated

If XeCy, then it can be 2en from (2.2) and (A-4) that E[y] = ay,
VIyl = o4 (1 - ay), EDyz] = aymy and E[(y2)2] = ELy22] = a;v,, (say).

So the asymptotic elements of V. are given by
a

~

n V{3, ] = V Iyl = a1 - q)
n V[d;\mi] = Vlyz] = av, - (mﬂ!\i)z (8-5)
n Cov [;1 '°/1\m1] = Cov [y, yz] = ai(l - ay )m1

1«1, 2
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Noting that these variables are independent for Cy and Cy, all elements of V.

2
are obtained in (B-5). Next, V.. may be derived by the use of 5-method.
fa
L] . . 3
Denote g = g(8). Then da = (“-)dg and do(da) = do(de) (“-).
Thus
> 32 -
V.« E[48(da) 1 = V. (gg) (8-6)
8 g =
It can be shown that
da 3a a
S | . 1. (2
Wy, e Ty O 55 " (M Y
Ja,m da,m da,m
1M1 (2) 1M1 "1 (3
W lel » Wﬁ- 0‘ T Gl(ml 1 ml)
(8-7)
Ja Ja 3a
2 2 . 2 . (2)
Wy, W, e Lo R Y
agma dagmy (2) 9 (3)
e 0. gy 22 ' The almy™" - my)

where
(r) r ]
“1"‘1 - z 91 (l)’(l) b4

which can be easily evaluated by specifying g4{z), i = 1, 2.

-
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Though the matrices —5 and W are somewhat complex, their derivations are
90

fairly straight forward. These are as follows:

a8, | [ . TSR 2 2 .
__.2. 1 11_ . ) SN -%—(u* -u*)ej
20 I +% =1 I+¢ =1 21 11/ ~1
] ~
w || g ; L o8
Ny f drrerEn l-orvriu Oz -vaMd
agﬂ
0 |
T |a (5-9)
2 _
where
9 2 9 9
9 (1-ep1 el -(tr)l
89* *
~_ .|9 el (1 -a,)1  (t/m,)]
£ ' 2 2
9 -
A, 822 321
. -

with



and

(- 4
<

)
!9'3

with
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ag"(1)
~ .Z(nA+1oE 4 fna + (I-E.)
%, TR i e A
g (1) 5(1)
322 = - agl
*(1)
g '_g1+x+¢A)E _‘1+!+¢A2(I-E
30(1) (1 +£)2 ~11 1+¢ ~oo~
B " T 0
3 Il 2 2
1%2 "1"2
LB * x * "
:é (F+u) g ;%(92""11)51 - e
®
1 1 1
® k¢ k1
1,4 * 2,4 * 1
“Flzrvaly mF(z-w)e nd!
) 1
2 2 2
i '1 i '2 Zwl
(1+¢)2 (1+¢)2 (1 +¢)2
] 9
X 30 & X Fﬁ;«%

M,
* * *? *
+ t:z(wl2 - wzz)/wlznzz

(13

2. *2 *2y e ¥2 *2
+t (wz - )/11212 .

3E_ .20y . 2 2 * ) Xk *
a¢(1 2::2 aj + az) + 2 M‘.(cxlvr2 + (1 az)wl)/tlwz

)
ommﬁf““w

S Ry
1]
[,

Nﬂ 'I Nﬂ
o
—

2:2

T (1+g)2

* * * *
gy mupg) & gy - wpy) g |

* * * *
m; = Az(l - 2«1 +a% - ag) + 2 At(uzﬂl + (1 - al) '2)/"1'2
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