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ABSTRACT

We propose a method for simulating linear elastic crack growth through an isogeometric bound-
ary element method directly from a CAD model and without any mesh generation. To capture
the stress singularity around the crack tip, two methods are compared: (1) a graded knot in-
sertion near crack tip; (2) partition of unity enrichment. A well-established CAD algorithm is
adopted to generate smooth crack surfaces as the crack grows. The M integral and Ji integral
methods are used for the extraction of stress intensity factors (SIFs). The obtained SIFs and

crack paths are compared with other numerical methods.

Key Words: Isogeometric analysis; NURBS; Linear elastic fracture; Boundary element method;

Crack growth.

1 Introduction

Meshing and remeshing is one of the most human interactive task in fracture simulation. Most
if not all, commercial codes do not offer completely automatic approach for industrial fracture
simulations. The difficulties associated with computational fracture mechanics have various
sources. First, given a CAD model of the component, a suitable mesh has to be generated,

usually orders of magnitude finer in the region(s) where cracks are introduced, than the mesh
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used for stress analysis. Second, the discontinuities engendered by the cracks must be followed
during crack propagation. Third, the discretization must be able to reproduce the large gradi-
ents (singularities in the case of linear elastic fracture mechanics (LEFM)). This requirement,
combined with that of capturing discontinuities as they evolve implies that relatively fine meshes
must be continuously regenerated as cracks propagate. Fourth, reliable and general fracture
models remain elusive. For LEFM, the Paris law or its cousins are commonly used. Such laws
compute the increment in crack advance as a proportional to some power m(m > 1) of the stress
intensity factor (SIF). A small error eg;p in the STF thus leads to an accumulated error scaling

as megrr at each of the tens of thousands of crack growth steps required for each simulation.

Consequently, various approaches have been developed to overcome, or at least alleviate those

difficulties as listed in Table 1.

CAD & Mesh IGA [1], IGABEM [2][3], automatic remeshing [4]
Discontinuities Meshless [5], XFEM [6], BEM [7]
Large gradients & Singularities XFEM [6], XIGA [8][9], cohesive IGA [10]

XFEM error estimators [11][12], XSPR [13][14]

Models & Error homogenization & multiscale fracture modeling [15][16]

Table 1: Difficulties associated with crack modeling and main remedies, see also Rabczuk et al
[17]

The boundary element method (BEM) has been applied for simulating fracture problems for
several decades due to the fact that (1) the governing equations are accurately satisfied in the
domain interior with the use of fundamental solution and the discretization of the geometry and
approximation of the quantities of interest only occur over the boundary. BEM is in particular
able to capture the stress concentration or singularity better than domain integration methods
such as the finite element method (FEM) [18]; (2) the dimensionality of the problem in BEM
is reduced by one and only the boundary geometry and discretization must be modified when
cracks evolve, which simplifies the remeshing procedure. An important issue for modeling
fracture using BEM is the degeneration of the system matrix when the source points are placed
on overlapping crack surfaces. Much work was done to address this problem. Blandford et al [19]
used the multi-region method to model crack problems by dividing the domain into sub-domains
along the crack surface and introducing artificial boundaries. This approach is cumbersome in
dealing with multiple cracks and crack propagation problems. Synder and Cruse [20] developed

a modified fundamental kernel for infinite domains containing flat, traction free cracks in a 2D



mixed-mode problem. However, the proposed kernel is limited to flat cracks. The most popular
approach to overcome the degeneration of the system is to prescribe displacement boundary
integral equation (BIE) on one crack surface and traction BIE on the other crack surface. The
method is called dual boundary element method (DBEM) [21]. DBEM provides an efficient way
to model cracks of arbitrary 1D and 2D geometries [22][23][7][24]. Another approach is known
as the displacement discontinuity method (DDM) [25], which is mostly suitable for problems
with symmetry. In this method, the two overlapping crack surfaces are replaced by one of the
surfaces, which decreases the computational model size. Also the displacement and traction
discontinuities on the crack surface are used as primary quantities instead of displacement and
traction on the two crack surfaces in DBEM. in such a case, even a single traction BIE can
be used for fracture problems [26]. DDM was later proved to be a special case of DBEM by
Partheymiiller et al [27], who also extended the application of DDM from symmetric loaded
cracks to asymmetric loaded cracks. However the displacement field on the crack surface is
indirect since only displacement discontinuity is obtained. Additional postprocessing needs to
be done to retrieve the displacement solution which increases the implementation complexity

and the computational burden.

Another branch of work has focused on the Galerkin formulation of BEM, particularly sym-
metric Galerkin BEM (SGBEM), for fracture mechanics, which is primarily based on DDM
[28]129](30]. In Galerkin formulations, the error estimation theory is well developed and the
boundary continuity requirement is relaxed to be C° for hyper-singular BIE due to the weak
form [31]. However, double integrals must be evaluated which makes the method slower but
also more stable than the collocation BEM. In order to make the crack modeling more efficient
for large scale problems, hybrid BEM-FEM schemes were proposed [32][33|[34]. The general
idea is to subdivide the cracked domain into two sub-domains, the BEM sub-domain and the
FEM sub-domain, to take advantage of both methods. Some other methods like boundary
element-free method [35] and the scaled boundary finite element method (SBFEM) [36] were

also proposed and applied to fracture modeling .

The accurate evaluation of stress intensity factors (SIFs) plays a pivotal role in crack growth
modeling. Due to the 1/4/r stress singularity in the vicinity of the crack tip, special care should
be taken in the numerical methods in order to absolutely obtain more accurate SIFs. One

approach to capture the asymptotics of the displacement and stress fields in the vicinity of



a crack is the use of special crack tip elements; for example, quarter-point elements [37][38],
which can exactly represent the 1/4/r singularity in the near-tip stress field and allow a direct
extraction of the SIFs [39]. Another possibility is the hybrid crack element, developed in both
the FEM and the BEM communities [40][41], which introduces asymptotic behavior of the
stress field around crack tip into the tip-element so that the SIFs can be computed directly and

accurately.

The virtual crack closure technique (VCCT) based on the Irwin’s integral of strain energy release
rates, is a common method to extract SIFs in both the FEM and the BEM, and has recently
been extended to extended finite element method (XFEM) and extended element-free Galerkin
method (XEFG) [42][43]. Since the near-tip singular behavior is already known as Williams’
solution, the idea is to remove the singularity and extract the SIFs directly[44|. However, the
Williams’ solution is only valid in the ‘near-tip’ region. The determination of this ‘near-tip’

region for simulation is ambiguous in practical problems.

J integral based methods are regarded as very accurate approaches to extract SIFs in both FEM
and BEM communities. Different approaches to the extraction of J; (J) were developed, such as
the symmetric and asymmetric decomposition of J; [45] and the M integral (interaction energy
integral) [46]. Chang and Wu [47] proposed the J; method which does not require any auxiliary
fields and is suitable for both flat and curved cracks. We note that in the implementation of
FEM/XFEM and other domain type methods, these contour integrals are always cast into
domain integrals since the FEM solutions and the related quantities (in particular stresses) are
known inside the domain [48][49][6]. However, in BEM it is easier to deal with contour integrals,
since obtaining solutions inside the domain requires additional integration. While evaluating
Jir and M integrals along the crack surfaces is done directly and straightforwardly due to the
boundary nature of BEM solutions. The latter two contour integral methods, namely Jj and

M integrals are discussed in detail in this paper.

The isogeometric analysis (IGA) [1] has been proposed as an alternative methodology to the
traditional Lagrange polynomial based analyses. The IGA utilizes the same splines, that are
used to exactly represent the geometry, as basis functions for the approximation of the unknown
fields, which builds up a more direct link between CAD and analysis. Non-uniform rational

B-splines (NURBS) based IGA has been widely investigated in many areas [50][51][52][53][54].



More flexible geometrical representation techniques, such as T-splines [55][56], PHT splines [57]
and LR Splines [58] etc., have been introduced to overcome the major difficulty of NURBS, i.e.
the lack of local refinement due to its tensor product structure. Recently the IGA has been
incorporated with BEM (namely the isogeometric BEM (IGABEM)) and applied to exterior
potential-flow problems [59], potential problems [60], elastostatics [2][3], shape optimization [61],
Stokes flow [62] and acoustic [63][64] etc. More recently, IGABEM has been investigated with
trimmed NURBS geometry [65]|[66] and a posteriori error estimator is proposed for adaptive
IGABEM [67]. A fast IGABEM solver has been developed in [68].

The IGABEM presents another way for isogeometric analysis due to the natural fit between the
two methods. Currently, the dominated CAD geometry only provides surface description by
smooth splines. This is in consistence with the basic feature of the BEM since only the unknown
fields (displacement and traction) along the boundary is required to approximate. And the
convergence of collocation BEM with splines has been investigated which forms a solid basis
for the combined methodology [69][70] and latest work can be referred in [71]. In this paper, a
new application of IGABEM is discussed in detail for linear elastic fracture problems. It should
be noted that knot insertion in B-splines can introduce discontinuities in the geometry, which
makes it possible to extend IGA to fracture mechanics [72][10]. The higher order continuity
provided by splines also enables a more straightforward expression of the traction BIE for crack
modeling. This paper presents a basic scheme for fracture modeling and crack propagation in

2D domains.

The paper is organized as follows: The concept of NURBS is reviewed shortly in section 2.
The basics of the DBEM for fracture modeling are briefly reviewed in section 3, and more
details follow, including collocation and singular integration in DBEM. Section 4 details the
approaches developed for extraction of the SIFs, based on the M integral and the J integral.
Section 5 outlines a modified NURBS approach to simulate crack growth using NURBS based
representation for cracks. Numerical examples are shown both for fracture analysis and crack

propagation, in comparison with other popular methods such as SGBEM, XFEM and XEFG.



2 NURRBS basis functions

NURBS basis functions are the generalization of B-spline functions that allows a ‘projection’
from square and cubic domains to form complex geometries. So the basic concept of B-spline is
first outlined. B-spline basis functions are defined over a knot vector, which is a non-decreasing
sequence of real numbers given in the parameter space. A knot vector is denoted as Z =
{€1,&, ..., Entpi1}, where €4 € R is the A" parameter coordinate (knot), p is the order of the
polynomial in B-spline basis functions, n is the number of the basis functions. For a given order

p, the B-spline basis functions N4, with 1 < a < n are defined by the Cox-de Boor recursion:

1 &a<é<éam
Nao(§) = (1)

0 otherwise,
then, for p > 0,

£—¢a Eatpt1 — &
Nap€) = 7" Nap-1(8) + 7=———"—Nas1p-1(8). (2)
Ea+p — &4 Eatpt1 — €At
The continuity of B-spline basis functions at £4 can be decreased by repeating the knot several
times. If €4 has multiplicity k (é4 = 441 = ... = €44k—1), then the basis functions are CP~*
continuous at £4. Particularly, when k = p, the basis is C° and k = p+1 leads to a discontinuity

at £4. If the first and last knot have k = p 4 1, the knot vector is called an open knot vector.

More details can be referred in [73].

Having defined the B-spline basis functions N = {N4,}%_;, we can describe a curve C(§)
in R% (ds is the spatial dimensionality, ds = 2 in this paper) by a group of control points
P = {P4}"_, with them as:

C(&) = PaNap($). (3)
A=1

A NURBS curve is defined in the same way but by replacing the B-spline basis functions by
NURBS basis functions. For example, a NURBS curve C'(£) can be described as:

C() = PaRay($), (4)
A=1
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Figure 1: Crack model
where R4 ), are the NURBS basis functions, which are defined as

_ WANA,p(é)
Z%:l WBNB,p(g) ‘

Rap(§) (5)

wp is the weight associated with the B* control point. Note that R4 is only non-zero on the

knot interval [£,, &p]) defined by p + 1 control points.

3 Isogeometric DBEM for fracture modeling

3.1 Problem formulation

Consider an arbitrary domain 2 which contains a crack as in Figure 1. The boundary I' is
composed of ', where Dirichlet boundary conditions are prescribed (known displacement u),
I'; where Neumann boundary conditions are prescribed (known traction t). The remaining part
of the boundary is assumed to be traction free. The crack I'; is composed of two coincident faces:
I+ and T'.- is assumed also traction free. s = (s1, s2) denotes the source point and x = (z1, 22)
the field point. The displacement BIE at source point s is given by finding u,t : Q — R? such

that
ci5(5)u(s) + ]{ T35, %) (x)AT () = /F Ui (s, %)t (x)dT (x), (6)

where the U;;, T;; are called fundamental solutions and for linear elasticity, given by

Usj(s,x) = W [(3 )5yl (i) + r,m]—] , (7)
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Tij(s,x) = _47r(11—1/) {g;;[(l — 20)0i5 + 211 ] — (1 = 2v) (1 n; — r’jm)} , (8)

for 2D under plane strain conditions, where u = E/[2(1 + v)], E is Young’s Modulus and v
Poisson’s ratio. Components Tj; exhibit a singularity of O(1/r) and the sign f implies that the

corresponding integrals are understood in the sense of the Cauchy Principal Value, |r| = |x —s|.

and Uj;; is weakly-singular (of order O(In(1/r))).

The idea of the boundary element method is to discretize the boundary geometry and the
physical fields using sets of basis functions. Subsequently, the source point is placed at the
collocation points and the displacement BIE (6) is transformed into a corresponding system of
linear algebraic equations. However, when the domain contains a crack, the collocation points
on the overlapping surfaces (refer to Figure 1 (b)) I' .+ coincide with I' .~ and the system matrix
becomes singular. This difficulty is overcome in dual boundary element methods by prescribing

the traction BIE on one of the crack faces (I'.— in Figure 1(b)), and the displacement BIE on

C
the other crack surface (I'.+) and on the rest of the boundary I'. The traction BIE is obtained
by differentiation of the displacement BIE with respect to s and multiplication by the elastic

tensor Fjjp:

cij(s)t; 7[51] s, x)u; (x)dI(x ][KU s, x)t;(x)dI'(x), 9)

8ij (S, X)
0sq

8Upj (S, X)

Sij(s,%x) = Eitpg s
q

ng(s), Kij(s,x) = Eipq ng(s), (10)

where S;; is the hypersingular kernel (O(1/r?)) and the sign f denotes the Hadamard finite
part integrals and Kj;; is of order O(1/r). The fundamental solutions for the traction BIE are

detailed in Appendix A. ¢;;(s) = 0.50;; when the source point s is on a smooth boundary.

3.2 NURBS discretization of the boundary integral equations

In the NURBS based isogeometric concept, the physical field is approximated by the same
NURBS basis functions as those used to describe the geometry I' = C(£). The displacement

and traction fields can be approximated as follows:

=Y Ray(&)d, (11)
A=



ti(&) = Y Rap(©)qf, (12)
A=1

We define an element in the parameter space as an interval between two consecutive non-
repeated knots [{,,&] and linearly map it to interval [—1, 1], which is called the parent space
[1] and the number of elements is N.. We define é as the parent coordinate of the field point x
n [—1,1], &, as the parent coordinate of the source point s in [—1,1], and J(é) is the Jacobian
transformation from physical to parent space. The transformation process for one NURBS

element (the knot interval [,,&]) to the parent space [—1,1] is shown in Figure 2. And we

have R
F f - fa f‘f‘ 5 + fa
=@ = @t PO F L)
? (13)
I =5
d€ d¢
Then the above form can also be written via the elemental approximation as:
A~ p+1 A~
w(é) = 3 Ni(é)d, (14)
I=1
p+1

t(E) = S Nid)al, (15)
I=1

where

Ni(§) = Rap(8)- (16)

And d;, gq; are displacement and traction control variables respectively. The relation between
the local index I and the global index A is given by the element connectivity [2|. Substituting

the discretized displacements and tractions into the BIEs will give,

p+1 Ne p+1 Ne ptl
S ChEd + 33 T =03 Uldl. am)
=1 e=11=1 e=11=1
p+1 Ne pt1 Ne ptl
ICICIED HICHES S SE a9
=1 e=11=1 e=11=1

where the jump term and integrals of the fundamental solutions are respectively written as:

Ci(s) = ciN1(&s), (19)



JQT—> s s) = S(&(EE))@

T é
s

(a) (b)

Figure 2: Coordinate system in IGABEM: (a) the element containing collocation point s in the
global space; (b)the parametric space and parent space

7= [ Tl x@ @6 (20)
UéZ/?%@m@WW®ﬂ©£, (21)
st = [ suex@N©sEnE &2
K= [ Ko x@)NIOIEE 23)

3.3 Treatment of singular integrals

Integrating the weakly-singular, strongly-singular and hyper-singular kernels in Equations (20)-
(23) is a major difficulty in BEM. In the present work, weakly-singular integrals are evaluated
using Telles’ transformation [74]. Strongly-singular integrals in Equation (6) are treated in two
different ways. In the first approach, the singularity in 7T;; is removed by the regularization
method, based on use of simple solutions [75][76], i.e. the rigid body motions, which satisfy
Equation (6) with zero tractions. Adding and subtracting term u(s) in Equation (6), the

strongly-singular equation can be transformed into the regularized form:

[ Tt 30000~ )Ar 0 = [ Uis(5.30t; (00 ). (24)
N

r
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After discretization, Equation (24) becomes

Ne p+1 N. p+1
YD Pydi=3%% Uld, (25)
e=11=1 e=1I=1
where
! 2 2 ~ ~ ~
Ph= [ Tylex(@)N1(6) - Ni€) @ 26)

The implementation of Equation (24) is simple and does not require calculation of jump term
¢ij(s). However, when Equation (24) is used at coincident points on crack surfaces, the sin-
gularity corresponding to only one of the points is removed. There have been many attempts
to overcome this difficulty. For example, creating artificial integration surfaces, excluding the
second singular point [77][78| is a possibility. However, the creation and evaluation along the
artificial surface is expensive computationally [79] and is particularly cumbersome to deal with
in the framework of isogeometric analysis. Therefore, in the present work, Equation (24) is
used only on the non-cracked boundary, while on crack surfaces, the approach, known as the
singularity subtraction technique (SST), is used [80]. SST is applied to both strongly-singular
and hyper-singular integrals after the parametrization in the parent space (Equations (20), (22)
and (23)). The essential idea of the method is to expand the production of the kernel function,
the shape function and the Jacobian J (é) into Taylor series in the vicinity of the collocation
point, and split the integrands into regular and singular parts. Then the singular terms can be

evaluated analytically, while for regular terms standard Gauss quadrature is sufficient. Take

the hyper-singular integral term Sfjl as an example:

1 1
sh= [ Suex@Ni©16é = [ FE.daé @

The function F(&,€) can be expanded as:

A~

F—Z(éS) F—1<§S)
52 + 5 +0(1), (28)

F(é& é) -

where 6 = f—és. The details to obtain F_g and F_; with a NURBS basis are given in Appendix

11



A and are studied in detail in [80][81]. The final form of (27) is given by:

/‘ (£, €)dé = /(:&,—Féa—pﬁ@>%

# ) (g ) £ Pl

— &
l_gs .

The first integral in (29) is regular and it is evaluated using standard Gaussian quadrature.

3.4 Partition of unity enrichment formulation

The partition of unity (PU) enrichment method [82] has been well studied in FEM to model
problems with a priori knowledge about the solution. See Sukumar et al [83], Moés et al[84],
Gravouil et al [85] for application of XFEM to 3D crack propagation and Bordas and Moran
[86], Bordas et al [87], Wyart et al [88] for industrial damage tolerance assessment using XFEM.
It was also shown in the literature that the accuracy of the stress intensity factors for 3D linear
elastic fracture mechanics was insufficient for coarse meshes and always oscillatory. A posterori
error estimate were derived [14][12][11][89] and implemented within the commercial software

Morfeo to control the discretization error [12][11].

The approximation of the primary field by PU enrichment is decomposed by two parts: a
regular part and an enriched part. The latter allows the approximation to reproduce specific
information on the solution through additional degrees of freedom. And the enrichment idea
has been introduced within BEM as well [35]|[63]. Simpson et al [81] first proposed the idea
of enrichment in BEM to capture the stress singularity around the crack tip. The enriched

displacement approximation with a NURBS basis writes:

x)= Y Ni(x) ZM»Z@Z, (30)

Ie JeAN;

where d! are the regular DOFs. af are the crack tip enriched DOFs. See [87] for implementation
details in an XFEM framework. Since in BEM the crack is explicitly modeled by two overlapping
surfaces, the Heaviside enrichment is not required. .47 and A7 are the collections of regular
control points and enriched control points, respectively. The crack tip enrichment functions are

defined as:

12



{p1(r,0),l =1,4} = {fsm fcos fsm sinf, \/rcos— sm@} (31)

where (r,0) are the polar coordinates associated with the crack tip. If the enrichment is done
in a small vicinity of the crack tip, where the crack can be regarded as a straight line, i.e. in
Equation (31) angle § = 7 and the set of four crack tip enrichment functions can be reduced

to one, i.e. ¢(r) = +/r. Then Equation (32) results in:

= > Nix)d + Y Ny(x)d(x)al. (32)

Ienr JeN;

Substituting the above equation into (6) and (9) and discretizing with a NURBS basis, the

enriched displacement and traction boundary integral equations can be obtained, respectively:

p+1 Ne p+1 Ne p+1
Z $)(dj + 6(s)a) + D Y (Tpd; + Tiéaj) = > Ujsaj, (33)
e=1 1T e=1 1T
p+1 Ne p+1 Ne p+1
o chs)th + 3N (Shdh + Sheal) =3 Kl (34)
I e=1 1 e=1 1

Note that topological enrichment is used, i.e. only the elements containing the crack tip are
enriched, the enrichment terms do not need to be computed for unenriched elements. Differing
from [81] where the discontinuous quadratic Lagrange elements are enriched, the enrichment
for the NURBS basis will lead to blending elements due to the continuity of the basis. The
singular integration for enriched elements can be done with SST as in section 3.3 as long as the
local expansion for ¢(r) = /r at the collocation point with respect to intrinsic coordinate is

written explicitly.

3.5 Continuity requirements and collocation strategy

Methods for evaluating strongly-singular and hyper-singular integrals (20), (22), (23), described
above, are implicitly or explicitly based on Taylor expansions of the integrands in the vicinity
of the collocation point. Since the essential feature of the isogemetric approach is to represent
displacements, tractions and the geometry using the same NURBS basis functions, special

attention should be paid to the continuity of NURBS basis functions at the collocation points

13



o collocation point

- element boundary

(a) (b)

Figure 3: Mesh discretization for a mode I crack: (a) discontinuous Lagrange element (p = 2),
(b) NURBS (p = 2)

where the Taylor series are expanded.

In the classical boundary element method a common way to guarantee the existence of integrals
in (20), (22), (23) is by the so-called discontinuous quadratic Largange elements [22], i.e. placing
collocation points inside an element, where the quadratic polynomials are C*° continuous. The
same approach can be implemented with NURBS parametrization, since inside the elements
NURBS basis functions are infinitely smooth, i.e. the SST can be used directly to treat all
singularities. In Figure 3 (a) and (b) examples of boundary discretization are shown for classical
BEM and IGABEM respectively, where the collocation points in IGA are generated by Greville
abscissae [90] and the collocation points are moved inside the elements when higher order

continuity is necessary.

For the enrichment formulation, since enriched DOFs are introduced, additional source points
need to be collocated to balance the number of system unknowns. The location of the source
points plays an important role in the condition number of the BEM system matrix. It reveals
that for crack tip enrichment, when the additional collocation points are inside the enriched
element, the system condition remains small and gives accurate solutions (see [81] for more

details). Nevertheless, the specific location inside the crack tip element has little influence on

14
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Figure 4: Mesh and collocation for crack surfaces

the final results. Hence in this work, the additional source points are inserted within the crack
tip element and spread uniformly between the original collocation points. Figure (4) illustrates

the scheme applied in this paper for collocation on the crack surface.

However, the classical theory of boundary integral equations admits much weaker continuity
requirements, i.e. the Cauchy and Hadamard integrals exist for CH*(T')(0 < a < 1) density
functions (known as Holder continuous) [91]. Therefore, strongly singular and hyper-singular
equations, and all the more so the regularized equation (24), can be used at collocation points
located at the edges of the elements in IGABEM, provided that the NURBS basis is sufficiently
smooth. However, optimal collocation strategies remain the subject of further research, and

require more detailed theoretical and numerical studies.

4 Evaluation of stress intensity factors

4.1 Ji-integral

In this section, two different kinds of J integral based methods for the extraction of SIFs are
briefly reviewed. The first one is the J; method proposed in [47|, which is the more general

case of the J integral. The definition of the Ji in 2D is given as:

Jp = tho FE(W(Sjk — ojju;)ngdl = tho 5 Pyjn;dr, (35)

where Py; is the Eshelby tensor, W = 1/20;;¢;; is the strain energy density, n; is the unit

outward normal of I'c. J; represents a special case, the J integral. Throughout the paper we
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(a) (b)

Figure 5: Path definition for J integral

will use these two notations interchangeably. All the variables are defined in the crack tip local
coordinate system (zg, o) as in Figure 5 (a). However, from the numerical point of view, it is
difficult to calculate the limit in Equation (35), so that the definition of Jj is usually modified
in the following way. Since the integral of the Eshelby tensor is equal to zero for any closed
contour, which does not contain a defect, additional contours I'; '+, ['.- are introduced, such

that Equation (35) can be rewritten as [92]
Jr = lim / ijnde_/ijnde—i—/ ijnde‘—i—/ ijnjdf. (36)
Fe=0Jr, r T+ r._

When k£ = 1, for a flat crack n; = 0 along the crack surfaces and thus along the contours I' .+

and I'.~ the integral is zero, and Equation (36) simplifies to:

le/Pljnde. (37)
T

This expression shows the path independence of the J integral for a flat crack. But for the Jo
integral, the term associated with the crack surface cannot be omitted since ne = 1 and this

term leads to a singularity in numerical evaluation.

The most general 2D scenario must account for curved cracks. The associated contribution
from the crack surfaces to both J; and Jo cannot in general be neglected. It should be noted
that the energy density W — 1/r when approaching the crack tip since both o;; and ¢;; tend

to 1/4/r. The integrand along the crack surface will remain of O(1/r), and this kind of singular

16



integral cannot be treated in a regular way. In [92] and [47], the crack surface was split into a

far field part and a near-tip part (Figure 5(b)) in order to evaluate the singular integral:

i = / Pyngdl + [ [W]njdl + / [W]njdr. (38)
T '

R—r

The far field part is integrated by regular Gauss quadrature. The near-tip part integral on the
crack surface can be simply omitted for J;(k = 1), since ny is mostly zero, while for Jo(k = 2),
the near-tip part exhibits the O(1/r) singularity. The energy jump [W] on the near-tip surface

can be evaluated as in [92]:
—4K11040

E2nr

where 0, is called T-stress. Thus near-tip part of [W] can be represented as a proportion to

[W] = +O(r'/?), (39)

the r1/2

Jy = / Pyjn;dl + / [W]nfdr + Angrt/2. (40)
r R—r

Since two unknown variables Jo and A appear in the above equation, the integral cannot be
evaluated at once. The splitting procedure needs to be performed several times by taking
different r, and a group of values of Js and A can be found in order to extrapolate Jy for
the case of no splitting. In Equation (40), as long as the O(1/7'/2) can be captured, the J
integral can be correctly evaluated and the STFs can be deduced (see Appendix B). Nevertheless,
the choice of the extraction radius ‘r’ becomes path dependent and problem dependent in real

applications.

4.2 M integral

The M integral is another possible method to extract the SIFs. By applying the J integral under
two states, the actual state (denoted with superscript ‘1’), and the auxiliary state (superscript

‘2’), and adding them together:

8(u§1) + u(-Q))
—t "t ~In

1, « 2)\, (1 2 1 2 i
JIH2) = / [g(az(j) + Uz(j))(Gz('j) + Egj))51j - (Uz(j) + Ugj)) I ;dl’ (41)
e 1
Rearranging the two state terms gives
JA+2) — g 4 g@) 4 p12) (42)
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where

ou? oult
E [W 15 — 0y e 0. e n;dl, (43a)
w2 — O'S)EEJQ-) = ag)eg;). (43b)

Once the M integral has been evaluated, the SIFs can be extracted directly (see Appendix B).
But we note that in Yau et al’s work [46], a flat crack surface is assumed. When applied to
practical problems, the radius of the contour circle should be chosen ‘small enough’ to guarantee

that within the domain bounded by I', the crack is ‘almost’ straight.

In this paper, the M integral is adopted. A detailed comparison of both methods applied to

curved cracks is provided in the forthcoming sections.

Once the SIFs have been obtained, the maximum hoop stress criterion is used to determine
the direction of crack propagation. We assume that the crack propagates in the direction 6,
such that the hoop stress is maximum, which is given (see 93], for example) by the following
expression. Note that the quantity of interest determining the accuracy of each propagation

step is the ratio (K;7/Kr)

—2(K11/K))
1++/1+8(K /K2 |

0. = 2arctan

5 2D NURBS crack propagation

A NURBS crack propagation algorithm is outlined next. The conceptual idea for the defor-
mation of the NURBS curve representing the crack is realised by moving the control points to
make the curve satisfy the external constraints under a user-defined function [94]|. For crack
growth, the external constraint is the movement of the position of crack tip (or crack front in
3D). Paluszny et al implemented the idea in FEM to represent crack growth or intersection by
updating the control points to satisfy the constraints given by fracture parameters [95]. The

algorithm is briefly reviewed as follows:

e [nitiation: represent the crack by the NURBS curve;

e Calculate the new physical position of the crack tip M’ (the space constraint). This is

determined by specified fracture criterion given in section 4.2;
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Figure 6: NURBS modification for crack growth. (a)Original crack and new crack tip M’;
(b)Knot insertion to refine the crack tip element; (c)Move the control points to obtain new
crack curve by the presented algorithm

e Specify the parametric coordinate & (the parametric constraint) of the old crack tip M;

e Define the influence functions f. Here for 2D fracture these functions are selected as the
NURBS basis functions at the parametric constraint £ (which is called natural deformation
in [94]). f(A) = Rap(§), A=1,...,n, n is the number of NURBS basis function of the

corresponding control point Py.

e Calculating the motion vector of each control point m(A): the movement of the control

points is given by

f(4) e, e= W (45)

M) = S R OB

The process to stretch a NURBS curve to simulate crack growth in 2D is illustrated in Figure
6. Certain knot insertion should be done at the crack tip element in order to capture the
local changes. We note that refining the crack tip element also helps improve the solution near
the crack tip, and a graded mesh refinement is designed as in Figure 4, where the new knots
are inserted consecutively at the (1/2)!, i = 1,2,3,4... of the distance to the crack tip in

parametric space (the obtained meshes are denoted as R1, R2, R3, R4...).

6 Numerical examples

In this section, several numerical examples are presented to verify the proposed method for
fracture analysis. We first give examples to study the behavior of the (X)IGABEM on static
fracture analysis. Then the application to crack propagation by comparing against XFEM is
demonstrated. A fixed number of Gauss points (ngp = 30) is adopted for the integration of both

singular and nearly-singular integrals, although we note that it would be desirable to develop
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Figure 7: Edge crack

adaptive quadrature rules for the nearly-singular integrals in BEM. The order of NURBS basis

and discontinuous lagrange basis is taken as 2 for all the examples.

6.1 Edge crack

Figure 7 illustrates the chosen edge crack problem. we use the first-term asymptotic solution of
a crack problem [96] (refer to the auxiliary displacements in Appendix B), which we prescribe
as Dirichlet boundary condition on the outer boundaries, while keeping crack faces traction
free. The parameters £ =1, v =0.3,a=1, L = 2. For a mode I crack, Ky =1, K;; = 0 and
for a mode II crack, K7y = 0, Kj; = 1. Thus the numerical displacement field on the crack as

well as the SIFs can be compared to the analytical solution.

6.1.1 Ability of the method to capture the crack tip singularity

An accurate approximation of the solution near the crack tip is crucial to the accurate evaluation
of fracture parameters such as the SIFs. Three scenarios are studied here, uniform meshes,
graded refinement and enrichment of the crack tip element with function given in Equation

(32). Figure 8 shows the displacement u, along the upper crack surface for the mode I problem.
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Figure 8: u, along the upper crack surface. It can be observed that in all cases, the numerical
displacements agree well with the analytical solution, even for coarse meshes. The graded
refinement and enrichment method both give improved results near the crack tip

The crack is discretized by 3 uniform elements. It can be observed that in all cases, the
numerical displacements agree well with the analytical solution, even for coarse meshes. The
graded refinement and enrichment method both give improved results near the crack tip. To
further assess the accuracy of these methods, the error in the displacement Ly norm of the

displacements along the crack surfaces, given by

frc(u — Uegt) T (0 — ey )dT

er, = -
fl“c ul ug dl

(46)

is plotted in Figure 9. We check the convergence results by inserting the knots at (1/2)°
consecutively until ¢ = 4 described in Figure 4 (the results are denoted as R1, R2, R3 and
R4 respectively). It can be seen that enrichment achieves an accuracy which is intermediate
between R3 and R4 graded meshes while the convergence rate is improved by 55% compared to
the graded mesh refinement. In the following examples for static crack and crack propagation,

the graded mesh refinement by 4 successive knot insertions is used for study further.
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Figure 9: Relative error in L9 norm of the displacement along the crack surface. Note that R1,
R2, R3 and R4 correspond to the crack tip element’s refinement by consecutive knot insertions
at (1/2), (1/2)2, (1/2)® and (1/2)* of the distance to the crack tip in parametric space. It
can be seen that enrichment achieves an accuracy which is intermediate between R3 and R4
graded meshes while the convergence rate is improved by 55% compared to the graded mesh
refinement

6.1.2 SIFs comparison with Lagrange basis

To evaluate the potential of IGABEM for fracture, the SIFs given by the M integral are com-
pared to those from Lagrange elements using uniform meshes and no special treatment for the
crack tip. The radius for the M integral is taken as the distance from the crack tip to the
third collocation point counting from the crack tip, thus with mesh refinement, the extraction
domain will shrink. A convergence check for the error in the normalized SIFs K7, Ky is shown
in Figure 10. It can be observed that the precision provided by NURBS basis is much higher
(one order of magnitude for approximately 500 DOFs) than that of discontinuous Lagrange
basis. Because discontinuous Lagrange basis typically leads to more nodes than NURBS basis
for a given number of elements (as presented in Figure 3), the convergence results are re-plotted
in terms of number of elements in Figure 11. For the two coarsest meshes of 4 elements per
edge, the Lagrange basis is more accurate than NURBS, but with mesh refinement, the NURBS
becomes superior, due to a larger convergence rate. From both figures, it is observed that the

convergence rates of SIFs by NURBS basis is 5 ~ 8 times higher than those by discontinuous
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Figure 10: Convergence results of SIF for the mode I and mode Il crack. It can be observed
that the precision provided by NURBS basis is much higher (one order of magnitude for ap-
proximately 500 DOFs) than that of discontinuous Lagrange basis

Lagrange basis.

6.2 Inclined centre crack

In this example, The SIFs are calculated for a plate with an inclined crack under remote biaxial
tension such that o = ogg is applied in the y-direction and o = Aog is applied in the z-direction,
where A is the load ratio and oo = 1. The inclined centre crack with angle 8 varies from 0 to
/2, see Figure 12. The edge length of the plate L = 1, crack length 2a = 0.02. L >> a so
that the numerical results can be compared with the analytical solution for an infinite plate,
given in [97]. The elasticity parameters are E' = 1, v = 0.3. The SIFs in this example obtained

by the M integral can be compared to the analytical ones as follows:

K1 = oy/ma(cos? B + Asin?B), (47a)
Kir = ov/ma(l — N)cospsing. (47b)

The mesh of the crack surface was refined uniformly for both the discontinuous Lagrange basis
BEM (LBEM) and NURBS (IGABEM). The local graded refinement for crack tip elements

described in Figure 4 is also performed (the corresponding result is denoted as IGABEM(r)).
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Figure 11: Convergence results of SIF for the mode I and mode II crack, plotting in terms of
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Figure 12: Physical model of an inclined center crack problem

24



Assuming the number of elements for the crack is m, a convergence check is done with the crack
angle = 7/6 at load ratio A = 0.5 (biaxially loaded). The results are given in Table 2 and
3. Here the SGBEM results [30] are also given as a reference. It can be concluded that the

proposed local crack tip refinement gives a very good accuracy for practical applications.

The SIFs are then compared for different angles at A = 0 (uniaxially loaded). In this case, the
crack is discretized by 4 uniform elements, and for IGABEM, the crack tip element is further

refined in the same fashion. The SIFs are given in Table 4.

KI/K}axact

SGBEM | LBEM | IGABEM | IGABEM(r)
0.9913 | 1.00451 | 1.00982 1.00120
1.0002 | 1.00333 | 1.00769 1.00105
1.0001 | 1.00268 | 1.00633 1.00090
1.0002 | 1.00230 | 1.00539 1.00080
1.0003 | 1.00206 | 1.00474 1.00074
1.0003 | 1.00190 | 1.00426 1.00070
1.0003 | 1.00177 | 1.00389 1.00066
1.0003 | 1.00167 | 1.00359 1.00064
1.0003 | 1.00159 | 1.00336 1.00062
1.0003 | 1.00152 | 1.00316 1.00060
1.0003 | 1.00142 | 1.00285 1.00058

T2 S|l ook w 3

Table 2: Normalized K in inclined centre crack

K /K7
m | SGBEM | LBEM | IGABEM | IGABEM(r)
3 1.0075 1.00104 1.00647 1.00146
4 1.0009 1.00129 1.00656 1.00129
5 1.0010 1.00158 1.00607 1.00113
6 1.0009 1.00160 1.00550 1.00102
7 1.0014 | 1.00153 1.00500 1.00096
8 1.0005 1.00143 1.00458 1.00091
9 0.9997 1.00134 1.00424 1.00087
10 1.0009 1.00126 1.00396 1.00085
11 0.9992 1.00119 1.00373 1.00083
12| 1.0013 | 1.00112 | 1.00353 1.00081
14| 1.0004 | 1.00102 | 1.00322 1.00079

Table 3: Normalized Ky in inclined centre crack

6.3 Arc crack

The circular arc crack under remote uniform biaxial tension is used to further validate the

effectiveness of the proposed method for curved cracks. The problem is defined in Figure 13.
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Ky Ky

3 Exact | IGABEM(r) SGBEM Exact | IGABEM(r) SGBEM

0 1.0000 | 1.0006(6.0e — 4) | 1.0002(2.0c —4) | 0.0000 | 0.0000(< L.e — 4) | 0.0000(< L.e — 4)
7/12 | 0.9330 | 0.9336(6.4c —4) | 0.9332(2.1¢ —4) | 0.2500 | 0.2503(1.2¢ — 3) | 0.2502(8.0¢ — 4)
7/6 | 0.7500 | 0.7505(6.7c — 4) | 0.7502(2.7¢ —4) | 0.4330 | 0.4336(1.4e — 3) | 0.4334(9.2¢ — 4)
/4 0.5000 | 0.5003(6.0e — 4) 0.5001(2.0e — 4) 0.5000 | 0.5006(1.2e — 3) 0.5004(6.0e — 4)
/3 0.2500 | 0.2501(4.0e — 4) 0.2500(< 1.e —4) | 0.4330 | 0.4335(1.2¢ — 3) 0.4333(6.9¢ — 4)
5m/12 | 0.0670 | 0.0670(< l.e —4) | 0.0670(< 1.e —4) | 0.2500 | 0.2503(1.2¢e — 3) 0.2502(8.0e — 4)
7/2 | 0.0000 | 0.0000(< L.e —4) | 0.0000(< L.e —4) | 0.0000 | 0.0000(< L.e —4) | 0.0000(< L. — 4)

Table 4: SIFs and relative error (in brackets) for the inclined centre crack
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Figure 13: Physical model of the arc crack
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Here L = 1,24 =0.01, L >> a, E =1, v =0.3. In the test 0 = 1,8 = 7/4. The analytical
SIFs are given by [98] as:

B cos(5/2)
K= U‘/ﬁusm—%ﬁp)’ (48a)

_ sin(8/2)
K][—U\/EHTW. (48b)

m elements are used to discretize each crack surface with crack tip elements refined as in Figure
4. A convergence check for the SIFs are listed in Table 5. Here the SIF extraction from both
the Ji integral method and the M integral method are compared. Both methods use the same
radius R, and the partition of the crack surface for the J integral is done by experience at
r =0.03R,0.04R,0.05R,0.06 R, 0.07R. The results of the two methods are comparable, differing
only at the fourth digit. But we note that the Ji integral method is more computationally
expensive than the M integral as (1) it needs integration on the crack surfaces; (2) the crack
surface needs to be partitioned into two parts; (3) the integration needs to be performed several

times as described in section 4.1.

KI/K;xact K]I/K;}:act

m | M integral | Ji integral | M integral | Ji integral
10 1.00045 0.99972 0.97506 1.00309
14 1.00014 0.99979 0.98621 1.00248
17 1.00011 0.99982 0.98642 1.00217
20 1.00009 0.99985 0.98657 1.00195
23 1.00002 0.99987 0.99407 1.00176
26 1.00002 0.99989 0.99413 1.00163

Table 5: SIFs for the arc crack

6.4 Crack growth in a plate with rivet holes

The purpose of this example is to evaluate the potential of IGABEM for crack growth. The
problem is chosen from the XFEM work by Moés et al [6]. The geometry and loading conditions
are illustrated in Figure 14 (6 = 7/4, initial crack length a = 0.1). The material parameters
E = 1000, v = 0.3. Below we compare three crack paths:

(1) the crack path, obtained by IGABEM (abbreviated as IGABEM’),

(2) the crack path, obtained by XFEM in [6] (abbreviated as ‘XFEM(M)’),

(3) the crack path, obtained by the in-house XFEM code (abbreviated as ‘XFEM*’).

For IGABEM crack growth 12 elements are used for each circle and 3 elements for each edge
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Figure 14: Physical model of rivet holes plate with initial cracks emanating from the holes. The
initial crack lengths are 0.1, (Moés et al, 1999).

@)

and for the initial cracks. The crack tip elements are further refined in the way described in
section 5. We assume that each crack advances Aa = 0.05 at each step, which is identical to

the increment chosen in [6] for the finest mesh. We grow the crack for 16 steps.

Next, all three crack paths - (1), (2) and (3) - are compared in Figure 15. The tip positions and
SIFs for the left crack in each step are further compared in Table 6. It can be observed that
the tip positions and the crack paths in all three cases are quasi-identical during propagation.
From Figure 16 (a) we note that SIFs display significant difference in steps 9 ~ 12. However,
the crack growth direction is defined by the ratio K;;/K; which is shown in 16 (b) and after
these values of Kj;/K are employed into the crack growth criteria, the final difference in the
crack tip positions between all three paths does not exceed the difference in the third digital

sign.

6.5 Three holes plate bending problem

A three point bending beam with three holes is simulated to further verify the robustness

and accuracy of IGABEM for crack propagation. The geometry and loading conditions are
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Figure 15: Crack path comparison. XFEM(M) is from Moés et al, 1999; XFEM* is from the
in-house XFEM code

IGABEM XFEM* XFEM(M)

Step T Ye Tc Ye e Ye
Initial | 2.1488 | 2.5707 | 2.1488 | 2.5707 | 2.1488 | 2.5707
1 2.1986 | 2.5665 | 2.1986 | 2.5662 | 2.1986 | 2.5663
2 2.2481 | 2.5596 | 2.2481 | 2.5593 | 2.2481 | 2.5595
3 2.2981 | 2.5575 | 2.2981 | 2.5570 | 2.2981 | 2.5575
4 2.3481 | 2.5564 | 2.3480 | 2.5556 | 2.3481 | 2.5581
5 2.3981 | 2.5573 | 2.3980 | 2.5564 | 2.3981 | 2.5562
6 2.4480 | 2.5598 | 2.4480 | 2.5587 | 2.4480 | 2.5600
7 2.4980 | 2.5614 | 2.4979 | 2.5604 | 2.4980 | 2.5608
8 2.5463 | 2.5485 | 2.5463 | 2.5477 | 2.5465 | 2.5488
9 2.5885 | 2.5217 | 2.5885 | 2.5209 | 2.5886 | 2.5219
10 2.6324 | 2.4978 | 2.6324 | 2.4968 | 2.6321 | 2.4972
11 2.6824 | 2.4986 | 2.6823 | 2.4990 | 2.6820 | 2.4998
12 2.7324 | 2.5000 | 2.7323 | 2.4997 | 2.7320 | 2.5013
13 2.7823 | 2.5035 | 2.7821 | 2.5036 | 2.7819 | 2.5037
14 2.8311 | 2.5144 | 2.8307 | 2.5157 | 2.8306 | 2.5151
15 2.8805 | 2.5217 | 2.8802 | 2.5223 | 2.8802 | 2.5217

Table 6: Tip position for left crack tip with Aa = 0.05. XFEM(M) is from Moés et al, 1999,
XFEM* is from the in-house XFEM code. The final difference in the crack tip positions between
all three paths does not exceed the difference in the third digital sign
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Figure 16: SIF comparison of the left crack tip for the whole process of crack propagation.
XFEM(M) is from Moés et al, 1999, XFEM* is from the in-house XFEM code
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Figure 17: Physical model of the three point bending beam with 3 holes

illustrated in Figure 17. The material parameters are £ = 1000, v = 0.37. Plane strain
conditions are assumed. With variation of the position of the initial crack, different crack
trajectories were obtained experimentally in [99]. Here the position of the initial crack is set
as d = 5, a = 1.5. This example has been solved using XFEM and XEFG [100] as well. The
crack advance Aa is set to be 0.052 for both XFEM and IGABEM. The model is discretized by
27,869 nodes and 55,604 triangular elements for XFEM. And for IGABEM, 82 elements and
230 DOFs are used. Crack tip mesh refinement is used without enrichment. In [100], the XEFG
model size is not given, but the crack increment Aa = 0.1. Figure 18 compares the crack growth
paths using all the mentioned methods. All the crack paths agree well with the experiments.
Of course, due to the differences in discretization and crack increment, the numerical results do
differ. It can be observed that the IGABEM reproduces slightly better the experimental crack
trajectory than the XFEM for the case when the crack passes through the first hole. Figure 19
compares the SIFs from XFEM and IGABEM. We note that significant difference in SIF values
and the ratio of Kj;/Ky occur when the crack passes near the first hole. A possible explanation

for this could be that in XFEM, the domain used for SIF extraction is allowed to be intersected
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Figure 18: Crack paths (XEFG result Aa = 0.1 is from Ventura et al, 2002)

with the boundary of the domain.

6.6 Crack propagation in an open spanner

The last example consists in simulating the failure process of an open spanner due to crack
propagation, in which the geometry is taken directly from CAD. The physical configuration is
shown in Figure 20. As in industrial damage tolerance assessment [86], we assume that a small
defect has initiated from the surface at the area of high stress concentration obtained from an
elastostatic analysis [2]. The initial geometry including the crack is given in Figure 21. The
crack will grow with Aa = 0.1. Figure 22 presents the deformed geometry with the crack. This
example gives a straightforward illustration of the concept of seamless integration of CAD and

failure analysis, since no mesh generator is required and the crack path is obtained directly

from CAD.

7 Conclusions

A detailed procedure to model linear elastic fracture problem using the NURBS based IGABEM

is proposed in this work. The dual BIEs is introduced so that cracks can be modeled in a single
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Figure 19: Comparison of the SIFs for the whole process of crack propagation
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Figure 20: Boundary conditions, materials and geometry of the open spanner (Simpson et al,
2012)
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Figure 21: Control points and NURBS representation of the open spanner
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Figure 22: The deformed geometry after 10 steps of crack propagation
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domain. Different treatments for crack tip singularity are investigated including crack tip graded
mesh refinement and partition of unity enrichment. The popular approaches to extract SIFs
are compared in the framework of IGABEM and it proves that the M integral is more efficient
for SIF extraction in IGABEM. The cracks are modeled directly by NURBS, and an algorithm
for modifying the NURBS curve is implemented to describe the crack propagation. Numerical
examples shows that:

(1) The IGABEM can obtain a higher accuracy than Lagrange basis based BEM for the same
model size or DOFs. The convergence rate in SIFs has been improved by 5 ~ 8 times than
BEM with discontinuous Lagrange basis without any treatment to the crack tip;

(2) Both crack tip graded mesh refinement and enrichment can improve the displacement field
near the crack tip, and the graded mesh refinement is selected to apply in the crack growth;
(3) The proposed crack growth procedure can lead to C' smooth crack trajectory and agrees
well with those results from XFEM.

(4) A procedure for damage tolerance assessment directly from CAD is presented, which does

not require any mesh (re)generation.

The authors believe that the crack propagation in three dimensional domain would benefit more
thanks to the smooth crack representation and higher order continuous NURBS basis, which
would provide a distinct solution scheme for fracture analysis when compared to the idea in the

framework of FEM /XFEM.
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Appendix A

The fundamental solutions for traction BIE are:

1
Kij = 747T(1 — I/)?“ [(1 — 21/)((52‘3"/“7]{; + (Sjk’l“’i — 6ikr,j) + 2’/“’@'7“,]'7“7]6]?1]@(5) (49)
i or
Sij = 7271_(1 — V)T2 {26—[(1 — 2V)5ikr,j + V((Siﬂ",k + 5jk7"7i) — 4T,i7",j7“,k]
+ 2u(nr jr g + ngrr ) — (1 — 4v)din; (50)

+ (1 = 2v)(2n 77 + 0ijng + 5jkni)}nk(s)
Now we present the SST formula for the hyper-singular integral as follows. Expanding the

components of distance between field and source points as Taylor series in parent space gives:

B S R w1 B (et )
= e TS T e T2 T
= A E) B EP 4 oy
= A6 + B;d® + O(6%)
and
2 2
- ()
2’f:1 (52)
C = ZAkBk
k=1
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The first and second derivatives are:

diL‘i dNa a

e~ e "

d%z; d?N,

ez~ ae (53
dé  d€ aé

d?z; A%z 1dEN2

a2 de? (dé)

The derivative r; can be expressed as

T; — S; é Ak:Bk

A3

T =

, - 14+<&A A >5+0@)
+

= d;jo + dind 0(52)

The term 1/72 can be expressed as

1 1 2C
2= g g oW

(55)
S, S,
=g+ o 0

The component of Jacobian from parametric space to physical space can be expressed as:

J1(€) = Ji0(&) + J11 (&) (€ — &) + O((€ — &)?)

= JlO(gs) + jé

J11(€6)0 + O(6?)

J2(€) = Ja0(&s) + Jo1 (&) (€ — &) + O((€ — &)P)

— JoE) + 8| s + 00
aé le=¢,
Le.,
T©) = Jw(e) + B Ju(e)s+ o)
k . k0O\Ss dé =, k1\Ss
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and we note that

_[dy dz
n(¢) = [dg’ _dg] (57)
ie.,
n(§) = Jk(€)/J ()
And the NURBS basis function is also expanded as:

A A dN,
Na(ﬁ) = Na(gs) + df

- dN,
= Na(gs) + df

= aO(és) +Na1(és)

(e

d¢
—= O+
§=¢s dé- =& (58)

dé .6+ 0%
dé lé=¢,

The detail form of hyper-singular kernel S;; is (plane strain)
I or
Sij(s,x) = W{Qa—n [(1-— V)i j + v(dir K + OjkT i — 47”72'T‘7j?”,k)]
+ QV(TZZ'TJ’I”’]C + nkT’yiTjj) - (1 - 41/)5Z-knj

+ (1 —2v)(2n v ) + 655k + 5jknz‘)}nk(és)

A~

= ()

Noting that ng(§) = Ji(£)/J(§), Use the above expansions to rewrite h(&) as:

AN hU(éS) hl(éé’)
h(§) = G + G 5+ 0(8?) (60)

ho(€s) = <2V(Ji0dj0dk:0 + Jrodiodjo) + (1 — 2v)(2Jj0di0dro + i ko + 6k Jio)

=+ (1 — 41/)51'ij0> ﬁ”&(fs)
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hi(&s) = [Q(dquo +diJn) ((1 — 2v)dirdjo + v(0ijdro + djrdio) — 4dz’0dj0dk0>

+2v (Jio(djldko + djodi1) + Jindjodrko + Jro(dirdjo + diodj1) + Jkldiodj0>

(62)
+ (1 —-2v) (2<Jj1di0dk0 + Jjo(dindro + diodi1)) + 035k + 5ijil>
M ~
(1 — AN Ty | —
(1= )0 | (&)
Thus,
: A 18 : ° 2 2 dg 2 2
HEN(E)T(E) = (ho(E) + 1 €6+ 06™)) (Nao(€) + L2, Na(€03 + 0(6%))
! (63)
d
— hoNao + (h1 Nao + hoNaldE] )0
. 1 . A
F(&s,8) = ——=—= (&) Na(§)J(E)
r2(&s,€)
S_ S_ d
= (52 + 5+ + 0() (hoNao + (71 Nao + hoNaldg )6+ 0()
R (64)
1hoNao + S—a(h1 Nao + hoNay %
_ S_ahoNuo S_1hoNao + S_2(h1Ngo + ho 1d€‘é:és) Lo
62 )
N
= + 5 +0(1)
Appendix B
Once the J; and Jy are evaluated properly, K7 and Kj; can be found easily. Since
K? + K?
Jl = % (65&)
2K K
Jo = — ;5, &l (65b)
where E' = E/(1 — v?) for plane strain condition. And K; and K can be solved as [92]:
B E'J, Jo\ 2\ 1/2771/2
K=+ {= = (- (7)) 1} (662)
B E'J, Jo\ 2\ 1/2771/2
K=+ {=2 1= (- (F)) ) (66b)
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The signs of K7 and Kj; correspond to the signs of crack opening displacement [uq] and [Jus],

respectively. If [u;] > 0, K > 0. The term in brace can be determined as :
if|Jur]| > [[uz]|, take+ (67a)

1f| [[ul]H < |[[u2]]|7take— (67b)

Combined with Equation 65a, the following relationship can be obtained for the M integral,

2
o WK + KK (68)

1,2) _
M2 — =

Let state 2 be the pure mode I asymptotic fields with K}z) =1, Kﬁ) = 0 and K7 in real state

1 can be found as
2

K}l) — EM(L mode ) (69)

The Kj; can be given in a similar faghion.

(2)

ij

The auxiliary stress field o’ and displacement field u§2) are given as:

K? 0 30y K2 ¢ o 36
Ogx(r,0) = ! cosi (1 — sinfsin3—> S sini (2 + cosfcos%>

V2mr 22 V2mr 2
(r,0) = K?) cosg (1 +singsin3—0> + Kﬁ) SinQCOSQCOSﬁ
T T w2 270 2) " amr 2 22
(2) (2)
K™ 0 60 30 K 0 .6 . 30
0) = B ¥y (00,30
Ty (7, 0) Wsmzco%cos 5 + \/%COSQ( singsin—

Ug(r,0) = ?Z\/;cosg </@' -1+ 281n22> (70)
+ HE)KH\/;SiDg (K +1+ 2(:0522)
uy(r,0) = Zj@sing </€ +1-— 2c0522>

+ (l—i_g)KH\/;cosg <1 — K+ 2sin22>

where (r,6) are the crack tip polar coordinates and

—~

“:2uﬁy) (71
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3—4v, Plane strain
o= (72)
(1-v)/(3+v), Plane stress

The auxiliary strain field can be obtained by differentiating u; with respect to the physical

coordinate.
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