
13Linear EnKFUpdate

TheKalman filter or its ensemble version, the ensembleKalman filter, is optimal for a
linear model and -measurement operator. This chapter will comprehensively discuss
theEnKFanalysis scheme and its properties, focusing on an ensemble-subspace com-
putation of the inverse. We demonstrate the importance of taking into account corre-
lations in the model errors. Furthermore, we study the efficient ensemble-subspace
inversion method that allows computing the analysis update at a linear cost in both
the number of measurements and the state dimension. We also show how to reduce
sampling errors by increasing the number of measurement-perturbations realizations
used to represent the measurement-error-covariance matrix.

13.1 EnKF Update Example

We will use an example from Evensen (2021) in the following discussion. The
purpose of this example is to illustrate the properties of the update scheme of the
ensembleKalman filter (EnKF) as described inChap. 8, when using themeasurement
perturbations to represent the measurement error covariance matrix. In addition, this
example verifies the robustness of the projection of themeasurement error covariance
matrix onto the ensemble of predicted measurements. Finally, the update is identical
to the EnRML algorithm’s solution in the linear case, and as such, the results are
representative of the EnRML smoother update.

The test example uses a one-dimensional periodic domain with 1024 gridpoints
and �x = 1. In this domain, we simulate a smooth pseudo-random function with
mean μ = 4, variance σ 2 = 1, and decorrelation length rd = 40, representing the
unknown truth,

ztrue ∼ N(
μ = 4, σ 2 = 1, rd = 40

)
. (13.1)

The constant μ = 4, is just added for plotting purposes.
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The first guess solution is generated by simulating another realization z ∼
N(0, 1, 40) and adding it to the truth, i.e.,

zfg = z + ztrue − 4√
2

+ 4. (13.2)

The factor
√
2 ensures that the variance of zfg is equal to one.

The initial ensemble is created by adding random realizations z j ∼ N(0, 1, 40)
to the first guess zfg,

zfj = zfg + z j . (13.3)

The measurements are distributed uniformly over the domain and sampled from
a perturbed true solution according to

d j = H(ztrue + z j ), (13.4)

with either uncorrelated, z j ∼ N(0, 0.25, 0), or Gaussian, z j ∼ N(0, 0.25, 40),
perturbations. Here,H is the linear measurement operator that extracts the measure-
ments from the functions ztrue + z j .

The following experiments use the same reference truth, measurements, initial en-
semble, and random seed. However, when it is essential to eliminate sampling errors,
we use extended ensemble sizes. Thus, although there are seed dependencies in the
obtained solutions, the different methods should produce the same ‘nswer. Further-
more, in most experiments, we can attribute differences in the results to the methods
used. Thus, our approach is different from running multiple data-assimilation exper-
iments with varying seeds.

13.2 SolutionMethods

In the following, we study two prominent cases, one with a diagonal measure-
ment error-covariance matrix and another with correlated errors, ei , simulated from
Eq. (13.4) and with rd = 40. For the two cases of uncorrelated and correlated mea-
surement errors, the EnKF computes the analysis using either an exactly specified
measurement error-covariance matrixCdd or representing the measurement error co-
variance by the perturbations in E. SinceH is a linear operator, we follow the EnKF
update Eq. (7.3), rather than Eq. (7.12) because for this linear example, we do not
need to consider the modification in Eq. (7.11).

The case with a full-rank measurement error-covariance matrix solves

Xa = Xf + AST
(
SST + Cdd

)−1(D − HX
)
, (13.5)

where the ensemble perturbation matrix is A = X�. The matrix C = SST + Cdd is
formed and then inverted by computing an eigenvalue decomposition C = Q�QT.
The inverse is just C = Q�+QT where the use of a pseudo inverse is needed in case
the matrix C is poorly conditioned.
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When using an ensemble representation for the measurement error-covariance
matrix Cdd = EET, we can solve for the update from

Xa = Xf + AST
(
SST + EET)−1(D − HX

)
. (13.6)

In the examples below, the line labels used in the figures indicate the scheme
used to compute the matrix inversion. The line label Cdd denotes using the standard
EnKF analysis equation with a full rank measurement error-covariance matrix Cdd,
as explained above. The curves with line label EE correspond to the EnKF update
when the samples in E replace the “exact” analytic measurement error covariance
matrix Cdd, and we use the ensemble subspace scheme.

Using E to represent the measurement error-covariance matrix introduces addi-
tional sampling errors. However, we will see below how to reduce these sampling
errors to a negligible level with a simple algorithm modification. I.e., one uses a
larger number of realizations in E to represent Cdd better. The code used is the test
case from https://github.com/geirev/EnKF_analysis.git.

13.3 Example 1 (Large Ensemble Size)

The first example uses 50 measurements and a large ensemble size of 2000 to reduce
sampling errors. Figure13.1 shows the results for the two cases with either diagonal
or correlated measurement errors.

The upper-left plot shows the EnKF estimates for the case with uncorrelated
measurement errors for each grid cell numbered with indexes 1–1024. The two
schemes, represented by the lines labeled Cdd and EE, give similar results in this
case. The upper-right plot shows the prior and posterior error variances for the two
updates, and again they are nearly identical. Finally, the lower-left plot presents the
EnKF estimates for the case with correlated measurement errors. In this case, we
also see that the results using the exact and approximate schemes (Cdd and EE) are
nearly identical.

An apparent difference between the two cases is that, with uncorrelated errors,
the measurements are scattered randomly about the correct solution. In contrast,
with correlatedmeasurement errors, successivemeasurements will have similar error
values, and they follow a smooth curve. The nonzero measurement correlations’ role
is to reduce the strength of the update, and the result is an update with a more
substantial variance. By taking the measurement error correlations into account, we
inform EnKF that neighboring measurements make the same error and reduce their
accumulated impact.

https://github.com/geirev/EnKF_analysis.git
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Fig.13.1 Simple update example: The upper plots present the results for a case with uncorrelated
measurement errors, while the lower plots give the results when usingmeasurements with correlated
errors and decorrelation length rd = 40. The left plots show the results for the posterior ensemble
means, while the right plots provide the associated error estimates. The line labels Cdd, EE, denote
different numerical implementations of the inversion scheme used, as is explained in the text. The
ensemble size is 2000

13.4 Example 2 (Ensemble Size of 100)

We now repeat the previous experiment from Example 1 using a more common
ensemble size of 100. The purpose is to illustrate the impact of sampling errors
when using the measurement error perturbations in E to represent Cdd. Figure13.2
shows thatwith 100 realizations, the additional sampling errors introduced by scheme
EE lead to a slight deviation between the two estimates. More problematic is the
underestimation of the ensemble variance. In a sequential data-assimilation context,
this underestimation would have to be compensated for, e.g., by using inflation, to
avoid possible filter divergence. In the following example, we will learn how to
reduce these sampling errors to a negligible level.

13.5 Example 3 (Augmenting theMeasurement Perturbations)

The benefit of using Eq. (13.6) over Eq. (13.5) is the reduced computational cost,
but also the fact that it is easier to sample perturbations with accurate statistics than
constructing a full-rank measurement error covariance matrix. An approach for re-
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Fig.13.2 Simple update example: Same as Fig. 13.1 but using an ensemble size of 100 realizations

ducing the sampling errors in scheme EE is to augment columns of new realizations
of measurement perturbations to E. This modification only slightly increases the
computational cost of the algorithm when computing �+UTE in Eq. (8.48) and is
a simple modification of the code. Figure13.3 shows the results using 100 realiza-
tions and correlated measurement errors, and when using 1000 samples in E. The
augmentation of additional columns to E in Exp. 3 significantly reduces the errors
in the estimated means and variances for the two cases with correlated and uncorre-
lated measurement errors compared with the results from Exp. 2. It is clear that the
two schemes Cdd and EE, solving Eqs. (13.5) and (13.6) respectively, give almost
identical results. In this case, the measurement error perturbations’ projection onto
the ensemble subspace does not significantly impact the results. Thus, the sampling
errors introduced by using E to represent Cdd can be made negligible by increasing
the sample size in E to only a minor additional cost.

Evensen (2021) found that the algorithm works well with different measure-
ment error decorrelation lengths.When themeasurement perturbations include small
scales not represented by the predicted measurements’ ensemble, the projection onto
the ensemble anomalies in S introduces an approximation. The truncation of small
scales in themeasurement errors leads to a slight underestimation of themeasurement
error variance.
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Fig.13.3 Simple update example: Same as Fig. 13.2 but using an ensemble size of 1000 realizations
to represent E

13.6 Example 4 (Large Number of Measurements)

Figure13.4 shows results from the final example where the number of measurements
increased from 50 to 200, i.e., twice the ensemble size. In this case, we apply a trun-
cation at 99% of the variance when computing the inversion, retaining 29 singular
values when computing the singular value decomposition of S. Again, the results
obtained are very similar using the two algorithms. It is also interesting to see how

Fig.13.4 Simple update example: Same as Fig. 13.3 but for a case with 200 measurements, which
is twice the ensemble size, and with measurement-error correlations rd = 40
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the measurements’ impact reduces at the grid cells with indices 400–500. Note that
there is no indication of the so-called “ensemble degeneracy,” and the analysis en-
semble retains a significant variance. The posterior variance using 200measurements
is similar to the one obtained using only 50 observations. This result indicates that
including additional dependent measurements does not introduce much new infor-
mation in this example.
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