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Abstract

The search for a logic which captures polynomial time is one of the most
important challenges in finite model theory. During the last years, significant
new insights were obtained by the systematic study of the descriptive complexity
of queries from (linear) algebra. These investigations were initiated in 2007 by
a striking result of Atserias, Bulatov, and Dawar, who showed that fixed-point
logic with counting (FPC) cannot define the solvability of linear equation
systems over finite Abelian groups. Their result triggered the development
of new candidates for capturing polynomial time, for instance of rank logic
(FPR), which was introduced by Dawar, Grohe, Holm, and Laubner in 2009.
Before that, only few other candidates had been proposed, of which certainly
the most important one is Choiceless Polynomial Time (CPT), developed by
Blass, Gurevich, and Shelah in 1999. This thesis continues the search for a
logic capturing polynomial time in the light of the following leading questions.

(I) How can the algorithmic principles for solving linear equation systems
be captured by logical mechanisms (such as operators or quantifiers)?

(II) Are there interesting classes of structures on which the solvability of
linear equations systems can be used to capture polynomial time?

Ad (I), we study in Chapter 3 the inter-definability of linear equation
systems over finite Abelian groups, rings, and modules. Our aim is to transform
linear equation systems over these algebraic domains into equivalent linear
equation systems over simpler domains, such as fields, or cyclic groups, via a
reduction which is definable in fixed-point logic. For linear equation systems
over ordered Abelian groups, rings, and modules, and also for certain interesting
classes of unordered commutative rings, we obtain a reduction to cyclic groups.
Moreover, we establish a reduction to commutative rings for the general case.
In Chapter 4, we study rank logic (FPR), which extends FPC by operators
to compute the rank of definable matrices over finite fields. Our main result
validates a conjecture of Dawar and Holm: rank operators over different prime
fields have incomparable expressive power. An important consequence is that
rank logic, in the original definition with a distinct rank operator for every
prime, fails to capture polynomial time, and should be replaced by a more
powerful version with a uniform rank operator. We further show that, in the
absence of counting, solvability quantifiers are weaker than rank operators.

Ad (II), we introduce in Chapter 5 a class of linear equation systems, so
called cyclic linear equation systems, which are structurally simple, but general
enough to describe the Cai-Fürer-Immerman query, and thus separate FPC

from polynomial time. Our main result is that CPT can express the solvability
of cyclic linear equation systems. In Chapter 6, we use this definability result to
show that CPT captures polynomial time on structures with Abelian colours,
a class containing many of the known queries which separate FPC from
polynomial time. Our result further solves an open question of Blass, Gurevich,
and Shelah: the isomorphism problem for multipedes is definable in CPT.





Zusammenfassung

Die Suche nach einer Logik für Polynomialzeit ist eines der wichtigsten offenen
Probleme im Gebiet der Endlichen Modelltheorie. In den letzten Jahren wurden
neue Erkenntnisse erzielt durch die Analyse der deskriptiven Komplexität von
Problemen aus der (Linearen) Algebra. Gestartet wurden diese Untersuchungen
2007 nach einem Resultat von Atserias, Bulatov und Dawar welches zeigt, dass
Fixpunktlogik mit Zählen (FPC) die Lösbarkeit linearer Gleichungssysteme
über endlichen Abelschen Gruppen nicht ausdrücken kann. Dieses Ergebnis
führte nicht zuletzt zur Definition neuer Kandidaten von Logiken für Polyno-
mialzeit, zum Beispiel von Ranglogik (FPR), welche 2009 von Dawar, Grohe,
Holm und Laubner eingeführt wurde. Ein weiterer wichtiger Kandidat ist
Choiceless Polynomial Time (CPT), eine Logik die bereits 1999 von Blass,
Gurevich und Shelah vorgeschlagen wurde. Diese Arbeit setzt die Suche nach
einer Logik für Polynomialzeit fort, geleitet durch die folgenden Fragen.

(I) Wie repräsentiert man algorithmische Techniken zum Lösen linearer Glei-
chungssysteme durch logische Mechanismen (Quantoren, Operatoren)?

(II) Auf welchen Strukturklassen kann das Lösbarkeitsproblem für lineare
Gleichungssysteme genutzt werden, um Polynomialzeit einzufangen?

Zu (I) betrachten wir in Kapitel 3 das Lösbarkeitsproblem für lineare Glei-
chungssysteme über endlichen Abelschen Gruppen, Ringen und Moduln. Unser
Ziel ist die Reduktion auf einfache Bereiche, z.B. auf Körper oder zyklische
Gruppen, wobei die Transformationen in Fixpunktlogik definierbar sein soll.
Wir zeigen, dass eine Reduktion auf zyklische Gruppen möglich ist für Glei-
chungssysteme über geordneten Gruppen, Ringen und Moduln, und auch für
Systeme über gewissen Klassen kommutativer Ringe. In Kapitel 4 betrachten
wir Ranglogik, das heißt die Erweiterung von FPC um Operatoren, die den
Rang von Matrizen über endlichen Körper definieren. Unser Hauptergebnis
bestätigt eine Vermutung von Dawar und Holm: Rangoperatoren über ver-
schiedenen Primkörpern haben unterschiedliche Ausdrucksstärke. Eine wichtige
Folgerung ist, dass Ranglogik, in der ursprünglichen Definition mit einem
separaten Rangoperator für jede Primzahl, nicht Polynomialzeit einfängt, und
durch die stärkere Logik mit uniformem Rangoperator ersetzt werden sollte.
Weiter zeigen wir, dass, ohne Hinzunahme von Zähloperatoren, Matrizenrang
nicht durch entsprechende Lösbarkeitsquantoren ausgedrückt werden kann.

Zu (II) führen wir in Kapitel 5 zyklische lineare Gleichungssysteme ein.
Solche System sind strukturell einfach, aber dennoch stark genung, um das Cai,
Fürer, Immerman Problem zu kodieren, und damit um FPC von Polynomialzeit
zu trennen. Unser Hauptergebnis ist, dass CPT die Lösbarkeit zyklischer
Gleichungssysteme ausdrücken kann. In Kapitel 6 benutzen wir dieses Resultat
um zu zeigen, dass CPT Polynomialzeit einfängt auf Strukturen mit Abelschen
Farben. Dieses Ergebnis löst auch ein offenes Problem von Blass, Gurevich und
Shelah: das Isomorphieproblem von multipedes ist definierbar in CPT.
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Chapter 1

Introduction

Finite model theory is the study of model-theoretic questions on classes of
finite structures, such as the analysis of the expressive power of logics, or the
search for relations between properties of axiom systems and their models.
The motivation to focus on finite structures primarily stems from the manifold
applications of mathematical logic in computer science, for example in database
theory, in complexity theory, or in artificial intelligence, where most objects of
interest are finite, see [33, 34, 49, 65, 72, 79] for details. From the mathematical
perspective, restricting to finite structures opens the door to study novel model-
theoretic questions, and, at the same time, it creates the demand for new proof
techniques which are tailored to study these questions over finite structures,
as many classical model-theoretic tools apply to infinite structures only.

This thesis focuses on descriptive complexity theory, a particular research
area of finite model theory which studies connections between definability and
algorithmic complexity. More precisely, the aim is to find relations between
the definability of a structural property P in a logical formalism and the
computational complexity of deciding the property P algorithmically, measured
in terms of the required algorithmic resources (such as time, space or the
number of processors used in a parallel computation). Ideally, one tries to
establish a precise match, that is, given an algorithmic complexity class C (for
example, C can be NP,Ptime or Logspace), we want to find a logic L which
can define precisely those properties of finite structures that can be decided
with resource bounds according to C.

This central idea of capturing (algorithmic) complexity classes by formal
logics is exemplified by a seminal result of Ronald Fagin, which is commonly
identified as the birth of descriptive complexity theory. In 1974, Fagin proved
that the properties of structures that can be decided in non-deterministic
polynomial time (NP) are exactly those properties that can be expressed in
existential second-order logic (Σ1

1) [35]. His result gives a completely new and
machine-independent characterisation of the NP-properties, and it initiated
the search for such insightful correspondences also for other complexity classes.

In fact, having a characterisation of a complexity class C by a logic L
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2 Chapter 1. Introduction

is desirable for many reasons and we want to mention some of them. Most
importantly, it may be possible to transfer techniques and results between
the areas of mathematical logic and complexity theory, in order to obtain
new tools and ideas to solve (longstanding open) problems from both areas.
Probably, the most significant example would be the separation of complexity
classes (such as Ptime and NP) by model-theoretic methods (or, vice versa,
the separation of complexity classes might yield new insights about the relation
of the corresponding logics). Furthermore, we can learn something about the
structure of algorithms, specifically about their basic building blocks: what
are the logical elements in L (quantifiers, operators, induction principles)
which are needed to cover all algorithms with certain resource bounds? Of
course, depending on the logic L, we can also get new handles on the structure
of classes from C. For instance, if L allows the stratification along natural
parameters (e.g. the number of variables, the quantifier depth or the alternation
depth), then we know that, up to a certain threshold, every problem in C
is invariant with respect to these fragments of L. In other words, we could
retrieve knowledge about structural properties of classes of complexity C by
analysing syntactic fragments of L by model-theoretic techniques.

From Fagin’s result, it readily follows that every level of the polynomial-time
hierarchy can be captured by the corresponding fragment of second-order logic.
In particular, second-order logic captures the full polynomial-time hierarchy.
Also for other important classes above NP, such as Pspace or ExpTime, one
soon found characterisations in terms of natural logics [64]. Unfortunately,
the situation for complexity classes below NP is entirely different. Until
today, we have no logical characterisation of any of the important complexity
classes below NP such as Ptime, NLogspace or Logspace. In fact, all
capturing results we have for such classes only hold when we impose auxiliary
structural assumptions on the input structures. A particular important case
arises when we restrict to ordered structures, that is to structures which
have a built-in linear order on their universe. Interestingly, for the case of
ordered structures, we have logical characterisations of Ptime (see below),
of NLogspace, and of Logspace by means of very natural languages. For
instance, NLogspace is captured by the extension of first-order logic by a
transitive closure operator and we obtain Logspace if we replace this operator
by an operator for deterministic transitive closures, see also [50, 61, 63, 64, 87].

However, that an abstract structure (like a graph) contains a complete
linear order on its universe is a very specific and rather atypical structural
property (we discuss the significant role of orders in the following section more
precisely). Thus, the search for logics capturing complexity classes below NP

over general finite structures, or at least over more natural classes, remains
the central challenge in descriptive complexity theory.

In this thesis, we continue the search for a logic for polynomial time.
Specifically, we take up recent insights about the relevance of linear algebra
in this quest, most importantly, of the solvability problem for linear equation
systems over finite algebraic domains.
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1.1 A logic for polynomial time

The widely accepted theoretical model for “efficient computability” is the
complexity class polynomial time (Ptime). Unfortunately, as such, this model
does not provide much insight neither into the nature of efficiently solvable
problems, nor into the structure of efficient algorithms. Hence, it would be
valuable to have an alternative, specifically a logical, characterisation of Ptime,
to obtain a clearer view onto these interesting aspects of efficient computability.

The first ones who raised the question for a logical characterisation of
polynomial time were Chandra and Harel in the context of database theory.
More precisely, they asked for a natural database query language which can
express exactly those queries which are decidable in polynomial time [23]. The
benefit of such a language is immediate: it would be as powerful as possible
with the guarantee that each expressible query can be evaluated efficiently.

Of course, if we want to answer the question of Chandra and Harel, then
we first have to specify what is considered to be a “natural query language”,
or, in our terms, what is consider to be a logic. Moreover, it strongly matters
whether, and also how, formulas of this logic can be translated effectively
into equivalent polynomial-time algorithms (at least, for the application as a
database query language, the mere existence of an equivalent polynomial-time
algorithm is not sufficient, but we require an effective way to construct an
equivalent algorithm from a given formula). In [53], Gurevich made these
requirements precise and formulated the following question which became the
central challenge in the field of descriptive complexity theory: Is there a logic
which captures polynomial time? We discuss the precise definition of this
question in Section 2.1. For further details and for a nice review of different
effectivity conditions, we recommend the survey of Martin Grohe [47].

Gurevich himself conjectured that there is no logic capturing polynomial
time. However, proving his conjecture is extremely difficult, since it would
separate Ptime from NP (recall that NP is captured by the logic Σ1

1). In
fact, the Ptime vs. NP-question is often considered as a central motivation
for the search of a logic capturing polynomial time. The hope is that, even
if Gurevich’s conjecture turns out to be false and if we find a logic L which
captures Ptime, then we can adapt tools from finite model theory for L (like
Ehrenfeucht-Fraïssé games) to separate the logic L from the logic Σ1

1 (which
would separate Ptime and NP).

Order invariance Finding a logical characterisation of polynomial time
turns out be extremely challenging which is due to the following mismatch
between logics and algorithms. Although many algorithms are designed to
decide properties of abstract structures, like graphs or relational databases,
their inputs are not abstract structures themselves, but encodings of such
structures as strings (for example, the adjacency matrix of a graph). On the
other hand, the formulas of a logic are evaluated directly on the structure
and not on (one of) its string encoding(s). Hence, algorithms and logics both
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decide (or define) structural properties of the same objects, that is of relational
structures, but they operate on very different levels of representation.

At first glance, the differences between abstract structures and their string
encodings might not seem too significant. The crucial point is, however, that
by each of the known and efficient ways, to represent a structure by a string,
we always have to specify (at least, implicitly) a linear order on the elements of
the encoded structure. Consider, for example, a string enc(G) which specifies
the adjacency matrix of some graph G. Then, indeed, the order in which the
vertices of G appear in the string enc(G), that is the order of rows and columns
of the adjacency matrix, determines a linear order < on the vertices of the
encoded graph. Hence, the string enc(G) does not only encode the graph G
itself, but it encodes an ordered version (G,<) of the graph G.

Of course, if we actually want to represent an ordered graph (G,<) by a
string, then we can just take the built-in linear order < of (G,<) to fix the
order of vertices for the string encoding. In other words, we can encode ordered
graphs in such a way that the implicit linear order, which is determined by
the string encoding, coincides with the linear order which was already part of
the original (ordered) graph (G,<) (hence, we have not added any additional
structure by the encoding). In general, however, a relational structure A,
such as a graph, does not contain a built-in linear order. Still, if we want to
represent A by a string, then this string always encodes a structure which, in
contrast to A, has a linear order on its universe. This, in turn, leads to the
following fundamental question: how can we encode A, which has no built-in
linear order, by a string enc(A), which represents an ordered structure (A,<),
or, in other words, how can we reasonably identify the unordered structure A

with an ordered structure (A,<)?
Unfortunately, at least as long as we are interested in efficient encodings,

the answer is: we don’t know. Of course, this is not really satisfactory, since
we obviously want to give abstract structures as inputs to algorithms. The
common solution thus simply looks as follows. Given an abstract structure A,
we first extend A by some linear order < on its universe, and then we take the
string representation enc(A,<) of the ordered structure (A,<) as one of the
possible string representations of A. The obvious shortcoming of this approach
is that the same structure A is encoded in many different ways (the concrete
encoding depends on the order that we choose on the universe). In particular,
algorithms will get different string encodings of isomorphic structures A ≅B

as inputs, although isomorphic structures certainly share the same structural
properties. Still, since an algorithm can just ignore the implicit linear order,
which only comes from the encoding and which is not part of the original
structure, this is a practicable way to represent structures by strings.

For completeness, let us remark that, in principle, there is a way to obtain
a unique string encoding enc(A) also for every (unordered) structure A (for
example, one could just take the lexicographically least encoding enc(A,<)
among all possible extensions (A,<) of A by a linear order <). This also means
that, basically, there is a way to resolve the above problem that isomorphic
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structures are mapped to different string encodings. Unfortunately, it is
far open whether such a canonical encoding enc(A) of A can be computed
efficiently (this problem is known as the structure canonisation problem, which
is at least as hard as the structure isomorphism problem, see [68] for a survey
and for references to background). Hence, if we want to encode structures
as inputs for polynomial-time algorithms (and, of course, the same holds for
all complexity classes below), then the approach of encoding structures by
a canonical string is not feasible, since there might be no efficient way of
precomputing a canonical encoding enc(A) of A in the first place.

As a consequence, we cannot escape the fact that isomorphic structures are
encoded by different strings. This, however, also means that not all algorithms
really decide properties of structures. For example, an algorithm which accepts
the encoding enc(A,<1) of A with respect to some linear order <1, but which
rejects an encoding enc(A,<2) of A with respect to a different order <2, does
not decide a property of the structure A, but rather a property depending
on the specific encoding of A. This means that we have to restrict to such
algorithms which do not distinguish between different encodings of isomorphic
structures. This semantical requirement is known as order invariance. To put
it differently, an order-invariant algorithm is allowed to use the linear order on
the universe of the encoded input structure, which is only available due to the
encoding, but which is not part of the original structure, but the semantical
condition for the algorithm is that for all possible reorderings of this input
structure the algorithm has to produce the same output.

Unfortunately, the notion of order invariance is, as a semantical property of
algorithms, undecidable. This means that the set of polynomial-time algorithms
which decide properties of structures is not recursive. On the other hand, the
set of formulas of a logic is decidable (this is one of the natural and basic
requirements in the definition of Gurevich [53] for logics). This points to a
different incarnation of this crucial dissimilarity between algorithms and logics.
To put it differently, the question for a logic for polynomial time really asks
whether there is a recursive way to capture the order-invariant polynomial-time
algorithms: more precisely, is there a recursive way to construct a family of
polynomial-time algorithms which are order-invariant and which capture all
polynomial-time properties (or, in other words, is there a recursive enumeration
of all polynomial-time properties [23, 47])?

Fixed-point logics First-order logic plays the central role in classical model
theory which is due to the perfect balance between its expressive power
and the strong metalogical properties (most importantly, compactness and
completeness). On finite structures, however, first-order logic is often too weak
to define interesting classes of structures. In particular, as witnessed by the
theorems of Hanf and Gaifman [33], first-order logic can only speak about local
properties of finite structures and, in particular, it fails to express properties
based on recursive definitions (for example, reachability in graphs).
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This is the reason why in finite model theory, and especially in descriptive
complexity theory, there is a strong focus on extensions of first-order logic (or of
certain of its fragments, like propositional modal logic, or conjunctive queries)
by different kinds of fixed-point operators which are meant to remedy the lack
of expressing recursive definitions. The common feature of such operators is
that they can determine fixed points of definable functions which transform
relations. More precisely, consider a formula ϕ(X, x̄) with a free second-order
variable X of arity k and with a tuple of free variables x̄ of length k. Then
on every structure A, the formula ϕ defines an operator Fϕ, which maps a
relation R ⊆ Ak to the relation Fϕ(R) = {ā ∶ A ⊧ ϕ(R, ā)}, and a fixed point
of the operator Fϕ is just a relation R ⊆ Ak which satisfies Fϕ(R) = R.

Of course, in general, the function Fϕ does not need to have a fixed point,
and even if it has one, then, in most cases, the fixed point will not be unique.
Still, there are several ways to guarantee the existence of a fixed point of Fϕ

with distinguished properties. Probably the most important approach is to
enforce that Fϕ is monotone, that is Fϕ(R) ⊆ Fϕ(S) holds for all R ⊆ S ⊆ Ak.
In this case, it is well-known that, by the Knaster-Tarski Theorem, Fϕ has a
least and a greatest fixed point. Moreover, there is a simple syntactical criterion
for ϕ which guarantees monotonocity of Fϕ: if the relation variable X only
occurs positively in ϕ(X, x̄), then Fϕ is monotone. This allows us to define new
fixed-point operators lfp and gfp (for least and greatest fixed-points) which take
a formula ϕ(X, x̄) (with positive occurrence of X) as input and which express,
in each structure A, the least and greatest fixed-points of Fϕ, respectively. The
extension of first-order logic by the operators lfp (and gfp) is known as least
fixed-point logic (LFP), see [33, 40]. Since many mathematical and structural
properties can be specified in terms of least and greatest fixed-points (e.g.
reachability, bisimulation, or winning regions in games), LFP is a powerful
logic which extends FO by the possibility to express recursive definitions in a
natural, and mathematically quite elegant, way.

Another approach to associate a fixed point with Fϕ is via the corresponding
inflationary operator Gϕ, which is defined as Gϕ(R) = R ∪ Fϕ(R). Indeed,
this inflationary operator Gϕ always has an inductive fixed point which is
constructed by setting X0

∶= Gϕ(∅) and Xα
∶= Gϕ(⋃β<αX

β) for ordinals α > 0.
By definition, the stages Xα form an increasing chain X0 ⊆X1 ⊆ ⋯ ⊆Xα ⊆ ⋯

which reaches a fixed point X∞ =Xα =Xα+1 for some ordinal α. This inductive
fixed point X∞ of Gϕ is called the inflationary fixed point of Fϕ. Observe
that the inflationary fixed point of Fϕ always exists, no matter what kind of
properties the formula ϕ has (in particular, the relation variable X can also
occur negatively in ϕ). Analogously to least fixed-point logic, we can extend
first-order logic by a new fixed-point operator ifp which takes an arbitrary
formula ϕ(X, x̄) as input and which defines the inflationary fixed point of Fϕ.
The resulting logic is known as inflationary fixed-point logic (IFP) [33, 40].

Obviously, the fixed-point mechanisms of LFP and IFP are inherently
different. While least fixed points specify minimal objects which are stable
with respect to certain conditions, inflationary fixed points capture inductive



1.1. A logic for polynomial time 7

definitions and the algorithmic idea of iteration. Surprisingly, it turns out
that LFP and IFP still have the same expressive power, that is LFP = IFP.
One direction of this equivalence is easy to obtain: It follows from a result of
Knaster and Tarski that for monotone operators, the inflationary and the least
fixed-point of Fϕ coincide, thus LFP ⊆ IFP. The other direction is far more
difficult to prove (in particular, for inductive definitions which reach their fixed
points only after infinitely many steps), see [54, 69, 70]. Still, because of this
equivalence it is justified to use LFP and IFP interchangeably. However, to
avoid problems with monotonocity, whenever we speak of fixed-point logic in
this thesis, then we mean inflationary fixed-point logic, if not stated otherwise.
For more background on the numerous incarnations of fixed-point logics, on
their role in finite model theory, on their various applications in verification,
database theory, complexity theory, and so on, and, in particular, on their
strong connections to game theory, we recommend [40, 41].

Let us come back to the question for a logic capturing polynomial time
and to the role of ordered structures. The relevance of fixed-point logics in
this context is strongly highlighted by a seminal result of Immerman and
Vardi. In [61] and [87] they independently proved that on the class of ordered
structures (least) fixed-point logic captures polynomial time. In other words,
the Immerman-Vardi Theorem solves the main open question of descriptive
complexity theory on the class of ordered structures.

The proof consists of two important steps. First, it shows that ordered
structures can be transformed into a canonical string encoding by using a first-
order interpretation. This implies that, over ordered structures, the differences
between logics and algorithms, which we discussed earlier, disappear. Secondly,
it shows that, over strings, it is possible to simulate algorithms (say in the form
of a Turing machine) in LFP. The main argument is that configurations can
be represented as relations (over the string) in such a way that the transition
function is first-order definable and such that the fixed-point mechanism of LFP

can be used to express the reachability of an accepting configuration.
Based on similar arguments one also found natural logics which capture

other important complexity classes, like Logspace or NLogspace (on the
class of ordered structures). However, despite of these nice capturing results,
the assumption of having a complete linear order on the universe imposes
a very strong, and rather atypical, auxiliary structure on the inputs. Thus,
this situation leads to the question of how far these capturing results can be
transferred to other, more natural, classes of finite structures.

Fixed-point logic with counting Unfortunately it turns out that over
general, that means unordered, structures, the fragment of polynomial time
which is captured by LFP is not very robust. On the one hand, LFP can
express many Ptime-complete problems also in the absence of an order, for
instance alternating reachability in game graphs, but on the other hand, LFP

fails to express simple queries which involve counting, for example saying that a
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structure has an even number of elements. This situation motivated Immerman
to propose an extension of LFP by a counting mechanism. He asked whether
the resulting logic, known as fixed-point logic with counting (FPC), suffices to
capture polynomial time on general structures [61, 62]. In other words, is the
order only needed to express counting properties?

It was only a few years later that Immerman himself together with Cai and
Fürer proved that counting is not sufficient to compensate for a linear order on
the universe [21]. By using a clever construction they came up with a query of
graphs which can be decided in polynomial time, but which cannot be defined
in fixed-point logic with counting. Since then, this C(ai)F(ürer)I(mmerman)-
construction has been applied frequently in many different areas and it became
one of the important standard tools in descriptive complexity theory. In this
thesis, the CFI-construction plays an important role as well (see Chapter 4).

Although FPC does not capture polynomial time, this logic still turns out
to be surprisingly powerful and, in particular, it captures a natural and robust
fragment of polynomial time. To illustrate this, we want to mention a few of
the many nice expressivity results and equivalent characterisations which have
been established for FPC during the last two decades. For details, we refer to
the nice survey of Anuj Dawar [25] and to the monograph of Martin Otto [79].

One quite successful approach has been to identify natural classes of
structures on which FPC captures Ptime. Recall that, by the Immerman-Vardi
Theorem, fixed-point logic can express every polynomial-time property in the
presence of a linear order on the input structure. Hence, a promising approach
to express all polynomial-time properties on a certain class of structures in
FPC would be as follows. First, we try to define (in FPC) a linear order on a
given input structure. Then we express, in a second step, every polynomial-time
property on the resulting ordered structure by using the fixed-point mechanism
of FPC. Unfortunately, for almost all interesting classes of structures, this
idea does not take us very far: due to symmetries, we provably cannot define,
in any reasonable logic, a total order on the input structures.

Still, there is a clever way to circumvent this problem. Instead of defining
the linear order directly on the input structure, we can try to define an
isomorphic copy of the input structure over an ordered universe. More precisely,
given a structure A we aim to define (again in FPC, say) a new structure
(B,<) over an ordered universe B such that A ≅ B. If we can define such a
canonical ordered copy of A, then we can use the Immerman-Vardi Theorem
to express every polynomial-time property of A on this ordered copy (B,<).
This fundamental technique is known as the method of definable canonisation
and it has been applied successfully to show that FPC captures polynomial
time on many important and natural classes of structures, for instance, on
trees [66], on all classes of bounded treewidth [51], on planar graphs [45], on
graphs which exclude the complete graph on five vertices as a minor [46],
and on interval graphs [71]. Recently, Martin Grohe was able to strongly
generalise almost all of the known capturing results for FPC by proving
that FPC captures polynomial time on every class of graphs which excludes
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some graph as a minor [48, 49]. These results certainly belong to the most
significant achievements of descriptive complexity theory, as they show that on
numerous important classes of structures, the notion of efficient computability
can be captured purely in terms of an extremely natural logical system. One
central contribution of this thesis is to extend the remarkable list of classes
of structures and corresponding logics which capture polynomial time by a
new pair: Choiceless Polynomial Time captures polynomial time on classes of
structures with Abelian colours (see Section 1.4 and Chapter 6 for details).

Additionally to the aforementioned capturing results, it is further known
that FPC can express important and highly non-trivial algorithmic techniques,
like tractable approximations of the graph isomorphism problem [21, 79] or, by
a recent result of Anderson et. al., also the ellipsoid method for solving linear
programs [5]. To finally justify that FPC also captures a very natural level of
polynomial-time complexity, we want to point to some of the various equivalent
characterisations for its expressive power. Besides the powerful game-theoretic
techniques [21] which have already been applied by Cai, Fürer, and Immerman,
we now have many, partly quite surprising, characterisations, for instance, by
relaxations of linear programs [11, 52] or by families of symmetric circuits [4].
Altogether, because of its expressive power and its robustness, FPC became a
well-established reference for the search of a logic capturing polynomial time.

1.2 Linear equation systems over finite domains

Although fixed-point logic with counting is much more powerful than least
fixed-point logic, the situation we face resembles the one that Immerman
discovered in 1982: We found a logic (in this case FPC) which captures
polynomial-time on certain classes of finite structures, but there is a query (in
this case, the isomorphism problem for CFI-structures) that separates FPC

from polynomial time in the general case. Hence, we could continue the quest
in the same way as Immerman proposed FPC as an extension of LFP: we
could add new logical operators to FPC which express the CFI-query.

However, the catch with this approach is that the isomorphism problem
of Cai, Fürer, Immerman graphs can hardly be called a natural problem of
polynomial-time complexity, since the corresponding graphs arise from a very
specific technical construction. Hence, adding operators for the CFI-query to
fixed-point logic with counting would result in an artificial extension and not
in an interesting new candidate for capturing polynomial time. After all, the
main question is: are there any “important” polynomial-time problems and
general algorithmic techniques which cannot be expressed in fixed-point logic
with counting (or is the CFI-query just a singular phenomenon)?

Unfortunately, it turns out that the answer is positive. In fact, the CFI-
query is an instance of a fairly important and general problem of polynomial-
time complexity. In [10], Atserias, Bulatov, and Dawar proved that the
solvability problem for linear equation systems over any finite Abelian group
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is not definable in fixed-point logic with counting. On the other hand, it is
well-known that the solvability of linear equation systems over Abelian groups
can be decided efficiently, for example, by using (a variant of) the method
of Gaussian elimination. More strikingly, it turned out that the CFI-query
reduces to a linear equation system over the finite field with two elements
F2 [16, 28]. This shows that fixed-point logic with counting fails to express
a significant part of the polynomial-time computable problems, and that the
CFI-query is only one specific example from this class.

The undefinability result of Atserias, Bulatov, and Dawar initiated the study
of the descriptive complexity of problems from linear algebra, in particular
of the solvability problem for linear equation systems over finite algebraic
domains, see [16, 24, 27, 28, 29, 59, 71, 80], which we continue in this thesis.

Succinct encodings of algebraically structured objects Despite the
strong undefinability result of Atserias, Bulatov, and Dawar for linear equation
systems over finite Abelian groups, it turns out that fixed-point logic with
counting can express many important queries from the field of linear algebra.
For example, FPC can define the determinant of matrices, or the inverse
of a non-singular matrix, see [59] for a detailed account of the known FPC-
definability results for queries from linear algebra.

On the other hand, of course, many problems which resemble, or which
generalise, the solvability problem for linear equation systems over finite
Abelian groups are undefinable in fixed-point logic with counting as well.
Besides the various examples from linear algebra [27, 59, 71, 80], this also
holds for the (NP-complete) satisfiability problem for Boolean formulas [10],
but also for many efficiently solvable problems, like for tractable cases of the
constraint satisfaction problem [10, 19], or for problems from computational
group theory [36, 60].

The common approach to solve these algebraic problems algorithmically
is to compute succinct representations of the large algebraic objects. For
example, Gaussian elimination computes a basis for the linear space of entailed
equations in row echelon form, the algorithm of Bulatov and Dalmau for solving
constraint satisfaction problems with a Malt’sev polymorphism constructs
compact representations of solutions sets, and the Schreier-Sims algorithm for
deciding membership in a permutation group constructs a strong generating
set for the given permutation group.

More importantly, such algorithmic ideas often appear as subroutines in
more complex algorithms, most importantly, in procedures to efficiently decide
the (graph) isomorphism problem on certain classes of structures, like on graphs
with bounded degree, bounded colour class size, and so on, see [68]. Indeed, the
two main sources of problems which are known to separate FPC from Ptime

are tractable cases of the graph isomorphism problem and computational
queries from the field of algebra like the ones mentioned above. For instance,
the CFI-construction does not only show that FPC fails to define the solvability
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of linear equation systems, but also that FPC cannot define the isomorphism
problem on graphs with bounded degree and bounded colour class size, whereas
the isomorphism problem is known to be tractable on both classes.

These observations emphasise the shortcoming of FPC to express properties
of large, algebraically structured objects which are given in a compact way.
Thus, if we want to make progress towards a logic capturing polynomial time,
then we have to understand how these algorithmic principles to compute
normal form representations of algebraic objects, which crucially rely on the
order on the input structure, can be captured by natural logical operators
and methods over unordered structures. The solvability problem for linear
equation systems over finite domains is a good starting point to explore this
question and, in this thesis, we pursue investigations in this direction.

1.3 Candidates for capturing polynomial time

At the moment, there are basically three different (types of) logics that have
been proposed as candidates to capture polynomial time. Notably, the un-
derlying ideas for these languages differ significantly, and the relationship
between almost all of the candidates is unsettled. Still, they all strictly extend
fixed-point logic with counting and thus capture a highly non-trivial fragment
of polynomial time. In this thesis, we study the first two (families of) candi-
dates in the light of the question of whether the solvability problem for linear
equation systems over finite domains is definable, and how this can be used to
capture polynomial time on new classes of structures by natural logics.

Operators for algebraic problems The first family of extensions is di-
rectly motivated by the result of Atserias, Bulatov, and Dawar showing that
the solvability of linear equation systems over finite Abelian groups cannot
be defined in fixed-point logic with counting. This leads to the natural idea
of extending FPC by new operators which are capable of expressing this
solvability problem. In particular, since the CFI-query reduces to a linear
equation system over the finite field with two elements, such extensions of
FPC can define the CFI-query (and with it, most queries which are known to
separate FPC from Ptime).

Certainly, there are numerous ways to add such operators to FPC and
we will discuss some approaches and related aspects in this thesis in detail
(see Chapter 3 and Chapter 4). One quite interesting concept, proposed by
Dawar, Grohe, Holm, and Laubner in [28], is the notion of rank operators.
These logical operators can compute the rank of a matrix over a finite field.
Since over any field the solvability problem for linear equation systems can be
reduced to the matrix rank problem, the extension of FPC by rank operators
can express the solvability of linear equation systems over all finite fields (note,
however, that this does not capture linear equation systems over all finite
Abelian groups). Another possibility, which has been studied in [27], is to
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directly add quantifiers for the solvability problem to FPC in the form of
so-called Lindström quantifiers.

Of course, one could also study extensions by more general operators
from computational group theory. By what we know today, a quite universal
approach would be to add operators to FPC which can compute the size of a
definable permutation group (which is succinctly specified by a definable set
of generators). However, we are just starting to explore this huge landscape of
new possible operators from algebra and so, at the moment, it does not make
sense to propose more and more powerful logics without having a reasonable
understanding of the basic ones (obviously, the whole approach of capturing
larger and larger fragments of Ptime by logics only makes sense as long
as we identify natural levels of expressiveness for which we obtain a good
understanding and insightful characterisations).

Choiceless Polynomial Time The reason why it is difficult to capture
algorithms which operate on string encodings of ordered structures by formulas
which are evaluated on abstract, and in particular unordered, structures is
that algorithms can make arbitrary choices. Indeed, an algorithm can fix an
element from any arbitrary set, for example it can choose the element which
is minimal with respect to the given linear order (which is available due to
the encoding of the structure as a string). In particular, the selected element
does not need to have any unique structural property, which distinguishes it
from the other elements in the set. The only semantical requirement is that
the algorithm is order invariant, which means that for the final output the
concrete choices of elements are not relevant.

The ability to make arbitrary choices is used by many algorithms. For
instance, consider the method of Gaussian elimination, which transforms a
given matrix into row echelon form. This procedure heavily relies on making
non-canonical choices, since it has to fix, in every step, a pivot element (and
this element is, in general, not unique). Still, in the end, we obtain, no matter
what the specific choices were, a basis for the space of entailed linear equations
in row echelon form, from which we can easily read off whether or not the given
linear equation system is solvable (and, again, this output does not depend on
the specific choices for the pivot elements during the transformation).

On the other hand, such non-canonical choices are impossible in every logical
formalism which operates directly on unordered relational input structures in an
isomorphism-invariant way. In particular, a logical formula cannot distinguish
between two elements which are related via an automorphism, and thus, it
cannot fix only one of the two elements. This leads to the intuition that a
logic (for polynomial time) is an abstract computation model that operates
directly on relational structures (rather than on string encodings) in such a
way that all computations are choiceless, or, in other words a computation
model which captures the “choiceless fragment” of polynomial time.

In [15], Blass, Gurevich, and Shelah formalised this intuition by introducing
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the model of abstract state machines, today known as BGS-machines. These
machines directly operate on relational input structures, and not on string
encodings. In particular, computations of BGS-machines are choiceless and
they preserve the symmetries of their inputs. To compensate for the lack of
making non-canonical choices, these machines can manipulate higher-order
states which model parallel executions. The rough idea is as follows: although
we cannot fix an arbitrary element to continue our computation, we could
proceed by considering all possible choices in parallel.

Indeed, with unlimited resources, BGS-machines can define every decidable
class of structures, that is BGS-machines are Turing-complete. On the other
hand, if we restrict BGS-machines to polynomial resources, then we obtain
the logic Choiceless Polynomial Time (CPT), and the question of whether
BGS-machines with polynomial resources can express all polynomial-time
properties is much more challenging and, until today, far open. Also the
relation between Choiceless Polynomial Time and the extensions of fixed-
point logic with counting by linear-algebraic operators (see above) is far open,
basically because it is not known whether CPT can define the solvability of
linear equation systems over finite Abelian groups.

What is known is that Choiceless Polynomial Time strictly extends fixed-
point logic with counting [15, 16] and that it can express, due to a very nice
construction of Dawar, Richerby, and Rossman, the Cai, Fürer, Immerman
query [32]. Moreover, today we have various equivalent characterisations of
Choiceless Polynomial Time [17, 42, 84]. This together indicates that CPT

is a quite natural and powerful candidate for capturing polynomial time. We
give the formal definition of Choiceless Polynomial Time in Section 2.4, and
we establish new definability results for CPT in Chapter 5 and in Chapter 6.

Symmetric choices For completeness, we also want to mention fixed-point
logic with specified symmetric choice (SSCFP), a third candidate of a logic
which might capture polynomial time (although we do not study SSCFP in
this thesis). Similarly to Choiceless Polynomial Time, the basic motivation of
SSCFP is to bridge the gap between algorithms, which can make arbitrary,
non-canonical choices, and logics, which can only define symmetric objects.

Surprisingly, the basic ingredient of SSCFP is an inductive mechanism
which explicitly allows choices. More precisely, in every step of the induction
it allows to non-deterministically pick an element from a definable set (the
so-called choice set) and then to continue the induction with the so chosen
element. However, in order to turn SSCFP into a logic (which after all means
that it can not distinguish between symmetric objects), we require that all
pairs of elements in the choice set are related by automorphisms of the current
state. Since it is not clear whether this condition can be decided efficiently,
for SSCFP it is additionally required that a witnessing formula explicitly
specifies a set of automorphisms which relate all pairs of elements from the
choice set, see [30, 38, 82] for details. It is known that SSCFP strictly extends
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fixed-point logic with counting and it is open whether it suffices to express
all polynomial-time properties. Also the relation to the other candidates,
mentioned above, is unsettled so far.

1.4 Contributions

We continue to explore the descriptive complexity of (linear) algebra in the
light of its relevance for the search of a logical characterisation of polynomial
time. In particular, we study the (inter-)definability of solvability problems
(for linear equation systems) over different classes of finite algebraic domains.
One of our main results is that over fields with different prime characteristic,
these solvability problems cannot be reduced to each other (within fixed-point
logic with counting). This solves an open question of Dawar and Holm and
it also separates rank logic, in its original version, from polynomial time.
On the more positive side, we show that the solvability problem for certain
families of linear equation systems can be defined in Choiceless Polynomial
Time. We further apply this definability result to establish a CPT-definable
canonisation procedure for structures with Abelian colours. It turns out that
such classes appear frequently in finite model theory, and, in particular, they
generalise most queries which are based on constructions which resemble the
Cai, Fürer, and Immerman construction. Our capturing result further solves
an open question of Blass, Gurevich, and Shelah: the isomorphism problem
for multipedes is definable in Choiceless Polynomial Time.

Solvability problems over finite algebraic domains In Chapter 3, we
study the (inter-)definability of linear equation systems over (finite) Abelian
groups, rings, and modules. Over these domains, fixed-point logic with counting
fails to express the solvability of linear equation systems, although linear
systems can be solved in polynomial time by using (variants of) Gaussian
elimination. Our aim in Chapter 3 is to identify simple classes of algebraic
domains to which one can reduce, in fixed-point logic, all linear equation
systems over Abelian groups, rings, and modules. The canonical candidates
are the class of all (finite) fields and the classes of all cyclic groups or rings.

Such reductions to simple classes of algebraic domains are desirable, since
they isolate more clearly the essential linear-algebraic properties which cannot
be defined in fixed-point logic with counting and, in particular, allow us
to disregard many sophisticated algebraic structures. Besides that, another
central motivation is that most of the extensions of fixed-point logic with
counting by new linear-algebraic operators, such as rank logic [28] or solvability
logic [27, 43], are defined with operators over such restricted classes of domains.
As a consequence, our investigations are intimately linked to several open
questions about these logics. For instance, we know that rank logic can solve
linear equation system over all finite fields [59], but it is still open whether rank
logic can express the solvability of linear systems also over all Abelian groups,
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or at least over all cyclic groups. A similar question arises for solvability logic
which can express the solvability of linear equation systems over all cyclic
groups, but for which it is open whether it can also solve linear equation
systems over all Abelian groups.

Our results are summarised in Figure 3.3 on page 54. First of all, by
using the structure theory of Abelian groups, we show that linear equation
systems over all ordered Abelian groups, rings, and modules, can be reduced
to equivalent systems over cyclic groups of prime power order (we remark
that only the algebraic domains and not the sets of equations or variables
are assumed to be ordered). Secondly, for the case of linear systems over
unordered Abelian groups, rings, and modules, we obtain a transformation
into equivalent linear systems over local commutative rings (recall that a local
ring is a ring with a unique maximal ideal). In both cases, the reductions
are shown to be definable in fixed-point logic. The immediate consequence
is that every extension of fixed-point logic which can express the solvability
of linear equation systems over local commutative rings can already express
the solvability of linear systems over all Abelian groups, rings, and modules.
Moreover, if the specific local rings allow for a definable order, as it is, for
instance, the case for cyclic rings or finite fields, it already suffices to express
the solvability of linear systems over cyclic groups of prime power order.

Motivated by these insights, we proceed to identify classes of local rings on
which we can define a linear order in fixed-point logic. By using the algebraic
structure theory of local rings, we define a strict hierarchy of local rings and
show that the local rings in every fixed level can be ordered in fixed-point logic.
More precisely, the k-th level in this hierarchy consist of all local rings for which
the unique maximal ideal is generated by at most k elements. Together with
our previous results this shows that, for every fixed k, linear equation systems
over k-generated local rings can be reduced to equivalent linear systems over
cyclic groups in fixed-point logic.

The results from Chapter 3 appeared in [27].

Rank operators and solvability quantifiers In Chapter 4, we study
solvability quantifiers and rank operators over finite fields. Both notions have
been proposed to extend the expressive power of fixed-point logic with counting
by mechanisms to define the solvability of linear equation systems over finite
fields [27, 28, 59, 71, 80]. Although solvability quantifiers and rank operators
answer the same purpose, there are subtle differences between both approaches.
Most importantly, solvability quantifiers are Boolean-valued operators which
express the solvability of linear equation systems over finite fields. In contrast,
rank operators are numerical operators which compute the numerical invariant
of ranks of definable matrices. Specifically, we are interested in the expressive
power of extensions of fixed-point logic (with counting) by solvability quantifiers
(solvability logic) and rank operators (rank logic).

In the first part we study the relationship between solvability logic and
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rank logic. While it is easy to see that rank operators can simulate solvability
quantifiers (the solvability of a linear equation systems reduces to the matrix
rank problem), it is an open question whether a reduction in the other direction
is possible as well (in FPC, say), see [27]. In Section 4.3 we give a first partial
answer to this question: in the absence of counting, solvability quantifiers are
strictly weaker than rank operators (Theorem 4.17). The intuitive explanation
is that rank operators, as numerical operators, can simulate the counting
mechanism, while, in contrast, we have to add counting for the Boolean-valued
solvability quantifiers explicitly. On the other hand, we also obtain evidence
for the equivalence of both kinds of operators in the presence of counting: over
interesting classes of structures, for instance structures of bounded colour class
size, we can show that the extension of FPC by solvability quantifiers over
finite fields has the same expressive power as rank logic.

The second part focuses on the question of uniformity of rank operators
and solvability quantifiers. In the original version of rank logic, the approach
was to take a separate rank operator rkp for every prime p ∈ P which computes
the rank of matrices over prime fields Fp. Later, it was observed that this might
be problematic, since with this setting every formula can only access rank
operators for a constant number of different primes. Hence, it was proposed
to rather use a uniform rank operator rk∗ which takes the prime p as part of
its input and which can uniformly simulate all rank operators rkp [59, 71, 80].
However, it remained open whether a uniform rank operator really leads to
more expressive power. More importantly, a much more basic question of
Dawar and Holm remained open as well: can rank operators over different
prime fields simulate each other? [29, 59]. We are finally able to solve both
questions and show that rank operators and solvability quantifiers over different
prime fields have incomparable expressive power (Theorem 4.19). Furthermore,
the original version of rank logic with separate operators for all primes fails to
capture polynomial time and should be replaced by the new version with a
uniform rank operator (Theorem 4.20).

Besides these new insights into the expressive power of solvability quantifiers
and rank operators, we think that a central contribution of Chapter 4 is our
new proof technique which is based on a combination of symmetry arguments,
basic ideas from group theory and tools from finite model theory (such as a
generalisation of the well-known Cai, Fürer, Immerman construction).

The results from Chapter 4 appeared in [27, 43, 44].

Cyclic linear equation systems In Chapter 5, we introduce cyclic linear
equation systems. The main feature of these linear equation systems is that
they bring a strong auxiliary structure on their set of variables and equations.
Specifically, their set of variables is almost linearly ordered up to classes of
incomparable variables Vi with the property that for all pairs of variables
v,w ∈ Vi the linear system contains an equation of the form v = w + c for a
constant c ∈ Zd which depends on v and w. Thus every class Vi could be
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replaced by a single variable vi ∈ Vi (however, not in a canonical way).
At first glance, it might seem that this strong auxiliary structure makes the

solvability problem for cyclic linear equation systems rather simple. In fact,
cyclic equation systems come close to be ordered linear systems, and we know
that the solvability of ordered linear systems can be expressed in fixed-point
logic (even without counting) by the Immerman-Vardi Theorem. However,
in general, cyclic linear equation systems have exponential-sized symmetry
groups and they are structurally much more complicated than ordered linear
equation systems. In fact, it turns out that cyclic linear equation systems can
express highly non-trivial structural properties. For instance, the isomorphism
problem for Cai, Fürer, Immerman graphs (also in a generalised version for
Abelian groups) can be rephrased as the solvability problem for cyclic linear
equation systems. The immediate consequence is that fixed-point logic with
counting fails to define the solvability of cyclic linear equation systems. Hence,
we have identified a structurally tame, but still powerful, class of linear systems
which cannot be solved in fixed-point logic with counting.

Our main result is that Choiceless Polynomial Time can define the solv-
ability of cyclic linear equation systems (Theorem 5.12). This yields a new
family of queries which witness that Choiceless Polynomial Time can express
general algorithmic techniques which cannot be defined in fixed-point logic
with counting. The strategy of our solvability procedure is to express a variant
of Gaussian elimination which operates on classes of equivalent linear equations
(instead of single equations). We have to use this kind of higher-order version
of Gaussian elimination as it is impossible to canonically choose single repre-
sentatives from the equation classes without breaking symmetries. However,
since these classes of equivalent terms are of exponential size, the crucial step
is to find succinct representations which further allow us to define elementary
operations in Choiceless Polynomial Time. To this end, we introduce the notion
of hyperterms, a generalisation of a very elegant technique of Dawar, Richerby,
and Rossman [32], to succinctly encode the isomorphism types of Cai, Fürer,
Immerman graphs as highly-nested objects in the universe of hereditarily finite
sets. Thus, it comes at no surprise that the procedure from [32] to decide the
Cai, Fürer, Immerman query appears as a special case of our procedure for
deciding the solvability of cyclic linear equation systems.

The results from Chapter 5 appeared in [1].

Canonisation of structures with Abelian colours In Chapter 6, we use
our solvability procedure for cyclic equation systems to show that Choiceless
Polynomial Time captures polynomial time on structures with Abelian colours.
More precisely, we establish a canonisation procedure for structures with
Abelian colours which maps a given input structure A to an isomorphic
structure B over an ordered universe, and we show that this mapping can
be expressed in Choiceless Polynomial Time (Theorem 6.13). It then follows
by the Immerman-Vardi Theorem that every polynomial-time property of
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structures with Abelian colours can be defined in Choiceless Polynomial Time.

A structure with Abelian colours consists of a relational structure A and a
linear preorder ⪯ on its elements. This preorder ⪯ orders the universe A of A
up to sets Ai ⊆ A of ⪯-equivalent elements, which we call the colour classes of A.
Moreover, for every such colour class Ai the structure provides an ordered and
Abelian permutation group Γi which acts transitively on Ai. In other words, a
structure with Abelian colours is an almost linearly ordered structure which
additionally provides for all classes of incomparable elements the action of an
Abelian permutation group which relates all pairs of elements.

Implicitly, structures with Abelian colours have been considered quite
frequently in finite model theory. In particular, most of the lower bounds
for fixed-point logic with counting were obtained via constructions based
on structures with Abelian colours, for instance Cai, Fürer, and Immerman
graphs, multipedes [55], the structures in Hella’s proof of the arity hierarchy
of generalised quantifiers [57], and also Cai, Fürer, Immerman structures over
general Abelian groups [10, 59]. In fact, for the particular case of multipedes,
our canonisation procedure solves an open problem posed by Blass, Gurevich,
and Shelah in [16, Question (5.12)]: the isomorphism problem of multipedes
can be defined in Choiceless Polynomial Time.

The basic idea of our canonisation procedure is to decompose the input
structure into an ordered family of induced substructures which can be canon-
ised easily, and then to inductively construct a complete canonisation by
combining the ordered copies for the small parts. The difficulty is to ensure
that the choices that we make during this construction remain consistent (differ-
ent substructures may have common vertices). To guarantee this, we maintain
a set of valid isomorphisms which map the processed part of the input structure
to the partial canonised version which we obtained so far. The challenge is to
represent these exponential-sized sets of witnessing isomorphisms succinctly, in
a way that allows us to express certain basic operations for the encoded sets in
Choiceless Polynomial Time (such as intersections and a non-emptiness test).

At this point cyclic linear equation systems come into play. We show that
the algebraic structure on sets of isomorphisms between two structures with
Abelian colours allows us to succinctly represent such sets as solution spaces of
families of cyclic linear equation systems. In particular, in this representation
the required operations turn out to be definable in Choiceless Polynomial Time;
for instance, the non-emptiness test corresponds to the solvability procedure
for cyclic linear equation systems from Chapter 5.

Moreover, we establish connections between the notion of Abelian colours
and the well-studied notion of structures with bounded colour class size. For
example, an interesting consequence of our results is that Choiceless Polynomial
Time captures polynomial time on classes of structures with colour class size
two (see Theorem 6.8 and Corollary 6.14).

The results from Chapter 6 appeared in [1].
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Chapter 2

Preliminaries

In this chapter we fix our notation and we recall some basic definitions and
facts. We assume that the reader is familiar with the standard notions, ideas,
and concepts from finite model theory and descriptive complexity theory. In
particular, we only give detailed expositions of the (few) concepts for which we
think that they are less common in the literature, or of which we use slightly
adapted variants in this thesis. For most parts of this background material,
however, we give no details but refer to the many excellent handbooks on finite
model theory and descriptive complexity theory [33, 34, 49, 65, 72, 79]. We
further assume that the reader is familiar with the important (algorithmic)
complexity classes like Ptime,NP,Logspace, and so on, see for example [81].

We denote by N = {0, 1, . . .} the set of natural numbers and by Z the set of
integers. For n ∈ N we denote by [n] ⊆ N the initial segment [n] = {0, . . . , n−1}
of N of length n. Set inclusion is denoted by ⊆ and strict inclusion by ⊂. The
power set of A is denoted by P(A). For a set A and for k ≥ 1, Ak denotes
the set of A-tuples of length k, A≤k = ⋃ℓ≤kA

ℓ denotes the set of A-tuples of
length at most k, and A<ω = ⋃ℓ≥1A

ℓ denotes the the set of A-tuples of arbitrary
(finite) length. For an equivalence relation ≈ on A we write [a]≈ to denote the
equivalence class of an element a ∈ A and A/≈ = {[a] ∶ a ∈ A} for the set of all
equivalence classes. For a binary relation E ⊆ A2 we denote by TC(E) ⊆ A2 its
transitive closure. A (linear) preorder ⪯ on a set A is a reflexive, transitive and
total binary relation. It induces a linear order on the classes of the associated
equivalence relation x ∼ y ∶= (x ⪯ y ∧ y ⪯ x). We write A = C0 ⪯ ⋯ ⪯ Cn−1 for
the decomposition of A into ∼-classes Ci which are ordered by ⪯ as indicated.

In Section 2.1, we fix our notation for relational structures, formulas, and
queries, and we recall the notion of logics which capture complexity classes.
We then define in Section 2.2 different kinds of logical reductions which are
based on the concept of interpretations. In Section 2.3, we recall the extensions
of first-order logic and of fixed-point logic with counting. We further give
a compact definition of the logic Choiceless Polynomial Time in Section 2.4.
Finally, we summarise the basic algebraic notions which we require throughout
this thesis in Section 2.5.

21
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2.1 Descriptive complexity theory

A vocabulary (or signature) is a finite set τ = {R1, . . . ,Rk} of relation symbols
Ri with a given arity ar(Ri) = ri, 1 ≤ i ≤ k. A τ -structure A = (A,RA

1 , . . . ,R
A

k )
consists of a non-empty set A, the universe of A, together with interpretations
RA

i ⊆ A
ri for the relation symbols Ri as ri-ary relations over A. If not stated

otherwise, structures are assumed to be finite. This also holds for algebraic
structures which we consider in this thesis like groups, rings, and so on.

We only consider classes of structures which are closed under isomorphisms.
Let K be a class of structures and let τ be a vocabulary. Then we denote
by K(τ) ⊆ K the subclass of all τ -structures which belong to K. Moreover,
we denote by S the class of all (finite) structures and by S(τ) the class of
all (finite) τ -structures. Often we consider pairs (A, x̄ ↦ ā) consisting of a
τ -structure A ∈ S(τ) and a variable assignment x̄↦ ā where ā ⊆ A, and we let
S(τ, x̄) denote the class of all such pairs.

We assume that the reader is familiar with first-order logic FO, monadic
second order logic MSO, deterministic transitive closure logic DTC, and
inflationary fixed-point logic FP. For a logic L we denote by L(τ) the set of all
L-formulas over the signature τ . For a formula ϕ ∈ L we write ϕ(x1, . . . , xk)
to indicate that every variable which occurs free in ϕ is among x1, . . . , xk.

A k-ary query of τ -structures, for k ≥ 0, is a function Q which maps A ∈ S(τ)
to a k-ary relation Q(A) ⊆ Ak in an isomorphism-invariant way. For m = 0 we
say that Q is a Boolean query. Each formula ϕ(x1, . . . , xk) ∈ L(τ) defines a
k-ary query which maps a τ -structure A ∈ S(τ) to the k-ary relation ϕA on A

which is given as ϕA = {(a1, . . . , ak) ∈ Ak
∶ A ⊧ ϕ(ā)}. For a class K ⊆ S(τ) we

write that K ∈ L if the Boolean query K can be defined by a sentence of L.
Given two logics L1 and L2 we write L1 ≤ L2 if every k-ary query which can
be expressed in L1 can also be expressed in L2.

Let C be an (algorithmic) complexity class, such as Ptime,Logspace,NP,
and so on. Then we say that a logic L captures C on a class of structures K if
for every Boolean query K′ ⊆ K it holds that K′ can be decided in C if, and
only if, K′ can be defined in L on K. We remark that this definition is not
completely precise and we again refer to the standard handbooks on finite
model theory for more details. However, since it is the central motivation of
this thesis, we want to give a precise definition for the main open question of
descriptive complexity theory, that is of whether there exists a logic L which
captures polynomial time.

A logic capturing polynomial time We follow the exposition of Martin
Grohe in [47]. There are four basic requirements that a logic L for Ptime has
to satisfy. First of all, we require that, for every vocabulary τ , the set L(τ) of
τ -sentences is decidable (L1). Moreover, we want that the satisfaction relation
⊧ between L(τ)-sentences and τ -structures is closed under isomorphisms (L2).
Certainly, we would expect that any reasonable logic satisfies (L1) and (L2).
Note, however, that these requirements are not trivial. For instance, the set of
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all polynomial-time algorithms (say in the form of clocked Turing-machines)
which are order-invariant (this corresponds to property (L2)) is not recursive,
that is it satisfies (L2), but it violates (L1).

Of course, the main feature of the logic L is the precise match between the
definability (in L) and the algorithmic tractability in polynomial time. This
means that we have to consider two directions. First of all, for every property
K ⊆ S(τ) of τ -structures which is decidable in polynomial time, we can find a
τ -sentence ϕ ∈ L(τ) which defines the class K, that is every polynomial-time
property is L-definable (C1).

For the other direction, we want that every τ -sentence ϕ ∈ L(τ) defines
a class K = {A ∶ A ⊧ ϕ} ⊆ S(τ) of τ -structures which can be decided in
polynomial time. However, instead of requiring the existence of an equivalent
polynomial-time algorithm only, we want that such an equivalent algorithm can
be constructed effectively (maybe together with a polynomial which witnesses
its running time). This assumption of “effective constructability” is justified by
the application of such a logic L as a database query language (recall the original
question of Chandra and Harel that we discussed in Section 1.1). Moreover, if
we only require the mere existence (but not the effective constructability) of an
equivalent polynomial-time algorithm for each formula, then there actually are
certain artificial “solutions”, that is logics which capture polynomial time, but
from which we can not gain any insights. Hence, we require that there exists
an algorithm which associates with every sentence ϕ ∈ L(τ) a polynomial-time
algorithm Aϕ (and a polynomial pϕ(n) which witnesses the running time of
Aϕ) which decides the class K = {A ∶ A ⊧ ϕ} of τ -structures defined by ϕ, that
is all L-definable properties can be decided in polynomial-time (C2).

We remark that these four natural requirements (L1), (L2), (C1), and (C2)
are satisfied by any of the logics which we consider in this thesis and which we
mentioned as possible candidates in Section 1.3.

Definable canonisation Recall that on the class of ordered structures we
know, by the Immerman-Vardi Theorem [61, 87], that (least) fixed-point logic
captures polynomial time. Often, this theorem can be applied to obtain such
partial capturing results also for classes of unordered structures.

To see this, let us assume that L is a logic which is at least as powerful as
fixed-point logic and which has polynomial-time data complexity (for instance,
L might be one of the logics FPC,FPR, or CPT). Moreover, let K be a class
of structures. Assume further that there is system of L-formulae Φ which
defines for every structure A ∈ K an isomorphic copy Φ(A) = (B,≤) of A over
an ordered domain (the precise form of Φ and the specific ordered domain
may depend on the logic L). In other words, B ≅ A and ≤ is a linear order on
the universe of B. If this is the case, then we can conclude that L captures
Ptime on K, since given any input structure A we can first use Φ to define
the isomorphic copy Φ(A) = (B,≤) of A over an ordered universe, and then
we can apply the Immerman-Vardi Theorem to express every polynomial-time



24 Chapter 2. Preliminaries

property of A by expressing this property on (B,≤).
This method, known as definable canonisation, has been used very suc-

cessfully to identify classes of structures (trees, planar graphs, and so on)
on which (natural) logics, most importantly FPC, capture polynomial time.
This canonisation technique is very well explained in [40], and also in the
forthcoming book of Martin Grohe in which he proves that every class of
graphs which excludes some graph as a minor allows definable canonisation in
fixed-point logic with counting (the recent version of this book can be accessed
at [49]). In Chapter 6 we use the technique of definable canonisation to show
that Choiceless Polynomial Time (see Section 2.4) captures Ptime on classes
of structures with Abelian colours.

2.2 Interpretations and logical reductions

Algorithmic reductions are arguably one of the most successful and fundamental
tools in (algorithmic) complexity theory. In descriptive complexity theory,
their counterpart is given by the notion of logical interpretations, also called
transductions in [49]. Such interpretations can be used to logically reduce one
class of relational structures to another (recall that such classes correspond
to Boolean queries). Depending on the syntactic properties, on the way in
which interpretations are nested and iterated, and on the specific logics which
we choose to define our interpretations, we obtain various kinds of logical
reductions with different expressive power.

Interpretations We start to introduce the important notion of logical inter-
pretations. The idea is to define one structure A inside another structure B.
More specifically, the universe of A is defined by equivalence classes of tuples
of elements from B and the relations of A are defined by logical formulas on
these classes.

Formally, let σ, τ be vocabularies with τ = {S1, . . . , Sℓ} and si = ar(Si),
and let L be a logic. An L-interpretation of S(τ) in S(σ) is a tuple

I(z̄) = (ϕδ(x̄, z̄), ϕ≈(x̄1, x̄2, z̄), ϕ1(x̄1, . . . , x̄s1
, z̄), . . . , ϕℓ(x̄1, . . . , x̄sℓ

, z̄)),
where ϕδ, ϕ≈, ϕ1, . . . , ϕℓ ∈ L(σ), and where x̄, x̄1, . . . are tuples of pairwise
distinct variables of the same length, say d, and where z̄ is a tuple of variables
(again, pairwise distinct from all the aforementioned variables) which subsumes
the remaining free variables of the formulas ϕδ, ϕ≈, ϕ1, . . . , ϕℓ. We say that
I = I(z̄) is a d-dimensional interpretation with parameters z̄. Moreover, we
say that I does not use a congruence relation (or that I is an interpretation
without congruence) if ϕ≈ is trivial, that is if ϕ≈ = (x̄ = ȳ).

Let L(σ → τ, z̄) denote the set of all L-interpretations I(z̄) of S(τ) in S(σ)
with parameters z̄. We write L(σ → τ) to denote the set L(σ → τ,∅), that is
the set of L-interpretations I of S(τ) in S(σ) without parameters.
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To every k-dimensional interpretation I(z̄) ∈ L(σ → τ, z̄) (given as above)
we associate a partial mapping I ∶ S(σ, z̄)→ S(τ) as follows. For (A, z̄ ↦ ā) ∈
S(σ, z̄) we obtain a τ -structure B over the universe B = {b̄ ∈ Ak

∶ A ⊧ ϕδ(b̄, ā)}
by setting

SB

i = {(b̄1, . . . , b̄si
) ∈ B ×⋯×B ∶ A ⊧ ϕi(b̄1, . . . , b̄si

, ā)}
for each Si ∈ τ . Moreover we let E = {(b̄1, b̄2) ∈ Ak

×Ak
∶ A ⊧ ϕ≈(b̄1, b̄2, ā)}.

Now, if E is a congruence relation on B then we let I(A, z̄ ↦ ā) be the structure
B/E , and otherwise, the image I(A, z̄ ↦ ā) is undefined.

Logical reductions and Lindström quantifiers The notion of interpre-
tation provides a method to compare the descriptive complexity of classes of
structures by means of logical reductions. Given two classes KA ⊆ S(σ) and
KB ⊆ S(τ) and a logic L, the idea is to say that, with respect to L-definability,
the class KA is “not harder” than the class KB if we can translate τ -structures
into σ-structures by using L-interpretations in such a way that the membership
problem of KB can be used to define (in L) the membership problem for KA.

Similar to the case of algorithmic reductions there are various ways in
which these membership queries can be combined, nested, or iterated, and of
course, the allowed operations should be linked to the expressive power of the
logic L. In order to formalise the different kinds of logical reductions we first
need to introduce the notion of Lindström quantifiers.

In [73] Lindström introduced a general technique to extend the expressive
power of a logic L in a minimal way such that a certain class K of structures
becomes definable. More precisely, for a class K of τ -structures he defined
a set of associated Lindström quantifiers QK which are capable of defining
membership in K. His approach strongly resembles the concept of oracles used,
for example, in computability theory and algorithmic complexity theory.

Following [26, 27] we introduce these extensions using logical interpretations.
Let L be a logic and let K ⊆ S(τ) be a class of τ -structures with τ = {S1, . . . , Sℓ}.
The Lindström extension L(QK) of L by Lindström quantifiers for the class K
results by extending the syntax of L by the following formula creation rule.

(QK) Let ϕδ, ϕ≈, ϕ1, . . . , ϕℓ be formulas of L(QK) which form an interpretation
I(z̄) = (ϕδ, ϕ≈, ϕ1, . . . , ϕℓ) of S(τ) in S(σ) with parameters z̄. Then
ψ(z̄) = QK I(z̄) is a formula of L(QK) over the signature σ where the
free variables are given by z̄.

The semantics for the new formulas ψ(z̄) = QK I(z̄) is defined as follows.
A pair (A, z̄ ↦ ā) ∈ S(σ, z̄) is a model of ψ(z̄) if B ∶= I(A, z̄ ↦ ā) is defined
and if B ∈ K.

Definition 2.1 (Logical reductions). Let L be a logic and let KA ⊆ S(σ) and
KB ⊆ S(τ) be two classes of structures.



26 Chapter 2. Preliminaries

(a) KA is L-reducible to KB (KA ≤L KB) if KA is definable in L(QKB
).

(b) KA is L-truth-table reducible to KB (KA ≤
tt
L
KB) if KA is definable in

L(QKB
) without using nested applications of the QKB

-quantifier.

(c) KA is L-many-one reducible to KB (KA ≤
m
L
KB) if KA is definable in

L(QKB
) by a sentence of the form ψ = QKB

I where I ∈ L(σ → τ).
Remark 2.2. It holds that KA ≤

m
L
KB ⇒ KA ≤

tt
L
KB ⇒ KA ≤L KB.

We remark that for many important logics L, the relations ≤m
L
,≤tt

L
and ≤L

are transitive. In particular this holds for L ∈ {FO,FP}, see for example [79].
However, this is not always true and does not hold, for example, for the logic
DTC [40].

To indicate that the reduction relation between two classes KA and KB

holds in both directions, we introduce a special notation.

Definition 2.3. We write KA ≡L KB (or KA ≡
m
L
KB or KA ≡

tt
L
KB) if KA ≤L

KB and KB ≤L KA (or if KA ≤
m
L
KB and KB ≤

m
L
KA, or if KA ≤

tt
L
KB and

KB ≤
tt
L
KA, respectively).

We use these reduction concepts to compare the descriptive complexity of
different classes of structures. This is justified by the fact that many important
logics are closed under logical reductions.

Definition 2.4. Let L1,L2 be two logics. We say that L1 is closed under L2-
(many-one, truth-table) reductions if for all classes KA ⊆ S(σ) and KB ⊆ S(τ)
such that KB ∈ L1 and

• KA ≤L2
KB (or KA ≤

m
L2
KB, KA ≤

tt
L2
KB, respectively),

we have that KA ∈ L1. Moreover, we say that L1 is closed under (many-
one, truth-table) reductions if L1 is closed under L1-(many-one, truth-table)
reductions.

In other words, if L can define some class K ∈ L and is closed under (many-
one, truth-table) reductions, then L can also define every class reducible to
K via L-(many-one, truth-table) reductions. We summarise some well-known
examples of logics with and without this property.

Example 2.5 ([40, 79]). FO and FP are closed under logical reductions, but
MSO and DTC are not even closed under FO-many-one reductions.

In this thesis, we also consider logics which are evaluated over extensions
of the input structure by an additional second sort. In particular, we consider
counting logics FOC and FPC, which we introduce in the following Section 2.3,
and we study rank logic FPR and solvability logic FPS which we introduce in
Chapter 4. The formulas of these logics are evaluated over the extension of
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the input structure by a copy of the natural numbers. Moreover, for the logic
Choiceless Polynomial Time CPT, whose definition we recall in the Section 2.4,
we extend input structures by the class of all hereditarily finite sets.

Naturally, for these logics L (i.e. L ∈ {FOC,FPC,FPR,FPS,CPT}) it
makes sense to generalise the notion of L-interpretations and to allow the
definition of structures which are built from equivalence classes of tuples which
also contain these additional elements (this has been formalised for FPC

in [49, 79], for FPR in [59, 71], and for CPT in [42, 84]). However, in this
thesis we only consider reductions for the logics FO,FP, and DTC which are
evaluated directly over the input structure.

2.3 Fixed-point logic with counting

We recall the extensions of first-order logic and of fixed-point logic by counting
terms. The main feature of these logics is that formulas are evaluated over
the two-sorted extension of the input structure by a copy of the arithmetic.
Following [28], we let A

# denote the two-sorted extension of a τ -structure
A = (A,R1, . . . ,Rk) by the arithmetic N = (N,+, ⋅,0,1), that is the two-sorted
structure A

# = (A,R1, . . . ,Rk,N,+, ⋅,0,1) where the universe of the first sort
(also referred to as vertex sort) is A and the universe of the second sort (also
referred to as number sort or counting sort) is N.

As usual for the two-sorted setting we have, for both, the vertex and
the number sort, a collection of typed first-order variables. We agree to
use Latin letters x, y, z, . . . for variables which range over the vertices and
Greek letters ν,µ, . . . for variables ranging over the numbers. Similarly, for
second-order variables R we allow mixed types, that is a relation symbol R
of type (k, ℓ) ∈ N × N stands for a relation R ⊆ Ak

× N
ℓ. Of course, already

first-order logic over such two-sorted extensions is undecidable. In order to
obtain logics whose data complexity is in polynomial time we restrict the
quantification over the number sort by a numeric term t, that is Qν ≤ t.ϕ
where Q ∈ {∃,∀} and where t is a closed term which takes values in the number
sort N. Note that, up to this point, the only closed numeric terms t which
can be formed result by combining the constants 0 and 1 and the addition
and multiplication operation. Similarly, for fixed-point logic FP we bound the
numeric components of fixed-point variables R of type (k, ℓ) in all fixed-point
definitions

[ifpRx̄ν̄ ≤ t̄ . (ϕ(x̄, ν̄))] (x̄, ν̄)
by a tuple of closed numeric terms t̄ = (t1, . . . , tℓ) where each ti bounds the
range of the variable νi in the tuple ν̄.

So far our two-sorted versions of FO and FP are unable to relate the vertex
sort and the number sort. More strikingly, the quantification of variables over
the number sort is restricted to sets of constant size. As a matter of fact,
the two-sorted extensions of FO and FP are expressively equivalent to their
one-sorted counterparts.
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We aim to change this by introducing the notion of counting terms. For a
mixed tuple of variables x̄ν̄, and for a tuple t̄ of closed numeric terms designated
to bound the range of the numeric variables in ν̄ and for a formula ϕ we define
the counting term s = [#x̄ν̄ ≤ t̄ . ϕ] which is a term over the second sort and
whose value sA ∈ N in a structure A corresponds to the number of tuples
(ā, n̄) ∈ Ak

× N
ℓ such that A ⊧ ϕ(ā, n̄) and ni ≤ t

A
i where k = ∣x̄∣ and ℓ = ∣ν̄∣.

Note that, in particular, we obtain a closed numeric (counting) term which
defines the size of the input structure as [#x . (x = x)].

We define first-order logic with counting FOC as the extension of (the
above described two-sorted variant of) FO with counting terms. Similarly, by
adding counting terms to the logic FP we obtain (inflationary) fixed-point
logic with counting FPC.

Infinitary logic with counting We denote by L
k
∞ω the k-variable fragment

of infinitary logic, that is the extension of the k-variable fragment of first-order
logic by infinitary conjunctions and disjunctions. Moreover, we denote by L

ω
∞ω

infinitary logic with finitely many variables, that is L
ω
∞ω = ⋃k≥1 L

k
∞ω. Similarly,

the k-variable fragment of infinitary counting logic arises by extending the
syntax of L

k
∞ω under the formation rule for counting quantifiers ∃≥ix for all

i ≥ 1 (these quantifiers can be simulated by usual first-order quantifiers, but
not if we restrict the number of variables). We denote infinitary counting logic
with finitely many variables by C

ω
∞ω = ⋃k≥1 C

k
∞ω. For a pair of structures

A,B we write A ≡C
k B if no sentence of C

k
∞ω distinguishes between the two

structures.
The importance of C

k
∞ω stems from the fact that FPC ≤ C

ω
∞ω, see for

example [79]. Hence, if we want to prove that some class K is not definable in
FPC, it suffices to find for every k ≥ 1 a pair of structures Ak ∈ K and Bk ∉ K

such that Ak ≡
C
k Bk. Moreover, it is well-known that the equivalence relation

≡C
k has a game-theoretic characterisation by the so-called k-pebble bijection

game, see [21, 79]. We will make use of these facts in Chapter 4 to prove that
fixed-point logic with counting cannot distinguish between pairs of generalised
Cai, Fürer, Immerman structures.

2.4 Choiceless Polynomial Time

Choiceless Polynomial Time (CPT) was introduced by Blass, Gurevich, and
Shelah in [15]. Their motivation came from the study of so-called abstract state
machines (also known as BGS-machines), a model of machines which directly
compute on abstract mathematical structures (and not, like Turing machines,
for example, on encodings of ordered structures as strings). In particular,
abstract state machines do not break symmetries of the input structure, that is
all states during the computation of a BGS-machines respect the symmetries
of the input structures.
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If we assume that BGS-machines have access to unlimited resources, then
they have the same expressive power as Turing machines, that is they can define
precisely the decidable classes of structures. Choiceless Polynomial Time is
the restriction of BGS-machines to polynomial resources (“time” and “space”).
It is open whether Choiceless Polynomial Time captures polynomial time, that
is whether BGS-machines restricted to polynomial resources have the same
expressive power as classical polynomial time algorithms. In fact, the difficulty
of simulating classical polynomial-time algorithms by BGS-machines is that
BGS-machines cannot implement choice functions, that is statements of the
form “pick some element x to continue”, which are used in many polynomial-
time algorithms (e.g. choosing pivot elements in Gaussian elimination).

The idea of Choiceless Polynomial Time is to remedy the lack for definable
choice functions by using higher-order objects which model parallel computa-
tions. The reasoning is as follows: although it is impossible to fix one particular
element x without breaking symmetries, it is possible to consider all choices for
such elements x in parallel. Of course, in the end, the amount of parallelism
has to be restricted in order to maintain polynomial-time data complexity.
Technically, this is achieved by allowing BGS-machines to access, to create
and to manipulate hereditarily finite sets over the input structure and by
polynomially bounding the sizes of such sets during the run of a CPT-program.
This approach leads to a significant difference between Choiceless Polynomial
Time and a classical logic, such as fixed-point logic with counting, since it
allows the creation and manipulation of these higher-order objects that cannot
be described by tuples of any fixed length (and these are the only objects
which can be accessed by a classical logic like FPC, say).

Choiceless Polynomial Time satisfies the requirements of a “logic” which
Gurevich formulated in [53]. Nevertheless, besides the fact that CPT-programs
are evaluated on structures extended by the (infinite) class of hereditarily finite
sets, in its original definition Choiceless Polynomial Time rather reminds of
an abstract programming language than of a natural logic (for example, it
provides control structures, like loops and conditional statements, dynamic
functions, and so on).

In what follows, we present an equivalent definition of Choiceless Polynomial
Time by Rossman [83] which builds on two more common “logical” elements,
first-order logic and iteration, though it maintains the framework of hereditarily
finite sets. Interestingly, by a recent result of Schalthöfer et. al. [42, 84], we
know that Choiceless Polynomial Time can be characterised purely based
on iteration and first-order logic and without using hereditarily finite sets.
Still, the framework of hereditarily finite sets is very convenient to formulate
CPT-procedures. Hence, for this thesis, we decided to stick to the definition of
Rossman and to use hereditarily finite sets. We remark, that there also exists
a further equivalent definition of Choiceless Polynomial Time in terms of a
fixed-point logic extended by a mechanism to create new, set-like, objects [17].
These various different characterisations show that Choiceless Polynomial Time
is a very natural logical formalism.
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The following presentation is strongly based on our definition of Choiceless
Polynomial Time in [1] which, in turn, is an adapted version of the definition
of Rossman [83].

We start to define, for a (relational) vocabulary τ , the extension τHF =

τ ⊎ {∅,Atoms,Pair,Union,Unique,Card} of τ by the set-theoretic function
symbols ∅,Atoms (two constant symbols), Union,Unique,Card (three unary
function symbols) and Pair (a binary function symbol). 1

For a set A we denote by HF(A) the class of hereditarily finite sets over the
atoms A, that is HF(A) is the least set such that A ⊆ HF(A) and such that
x ∈ HF(A) for every x ⊆ HF(A). In other words, HF(A) can be described as

HF(A) = A0 ∪A1 ∪A2 ∪⋯ =⋃
i≥0

Ai,

where A0 ∶= A and Ai+1 ∶= P(⋃0≤j≤iAj). A set x ∈ HF(A) is transitive if for
all z ∈ y ∈ x we have z ∈ x. The transitive closure of x ∈ HF(A) is the least
transitive set TC(x) with x ⊆ TC(x).

For a τ -structure A, its hereditarily finite expansion HF(A) is the following
τHF-structure over the universe HF(A) where relations R ∈ τ are interpreted
as in A and the set theoretic functions in τHF

∖ τ are interpreted as follows:

• ∅
HF(A) = ∅, AtomsHF(A)

= A, and

• PairHF(A)(x, y) = {x, y}, UnionHF(A)(x) = {y ∈ z ∶ z ∈ x}, and

• UniqueHF(A)(x) =
⎧⎪⎪⎨⎪⎪⎩
y, if x = {y}
∅, else,

and CardHF(A)(x) =
⎧⎪⎪⎨⎪⎪⎩
∣x∣, x ∉ A

∅, else.
,

where ∣x∣ is the cardinality of x encoded as a von Neumann ordinal.

A bijection π ∶ A→ A extends to a bijection π′ ∶ HF(A)→HF(A) in a natural
way. If π is an automorphism of A, then π′ is an automorphism of HF(A).
BGS-logic is evaluated over hereditarily finite expansions HF(A) and is defined
using three syntactic kinds: terms, formulas and programs.

• Terms can be built from variables and function names in τHF using the
standard formation rules. For an input structure A, terms take values in
HF(A). Moreover, it is allowed to build comprehension terms: if s(x̄, y)
and t(x̄) are terms, and ϕ(x̄, y) is a formula then r(x̄) = {s(x̄, y) ∶ y ∈
t(x̄) ∶ ϕ(x̄, y)} is a term (in which the variable y is bound). In a structure
A the value rA(ā) of the term r(x̄) under an assignment ā ⊆ HF(A) is
the set rA(ā) = {sA(ā, b) ∶ b ∈ tA(ā) ∶ HF(A) ⊧ ϕ(ā, b)} ∈ HF(A).

• Formulas can be built from terms t1, t2, . . . , tk as t1 = t2 and R(t1, . . . , tk)
(for R ∈ τ), and from other formulas using the Boolean connectives ∧,∨,¬.

1This means that we allow vocabularies which contain function symbols, but only for
defining CPT-programs. In particular, the input structure of a CPT-program is always
relational.
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• Programs are triples Π = (Πstep,Πhalt,Πout) where Πstep(x) is a term, and
Πhalt(x) and Πout(x) are formulas. On an input structure A a program Π

induces a run which is the sequence (xi)i≥0 of states xi ∈ HF(A) defined
inductively as x0 = ∅ and xi+1 = Πstep(xi). Let ρ = ρ(A) ∈ N be minimal
such that A ⊧ Πhalt(xρ) (if no such ρ exists we set ρ = ρ(A) =∞). The
output Π(A) of the run of Π on A is undefined (Π(A) = �) if ρ =∞ and
is defined as the truth value of A ⊧ Πout(xρ) otherwise.

To summarise, a BGS-program transforms a state (an object in HF(A))
into a next state until a halting condition is satisfied, and it produces the
output from the final state. To obtain CPT-programs, that is BGS-program
which only use polynomial resources and which can be simulated by classical
polynomial-time algorithms, we have to put polynomial bounds on the com-
plexity of states and on the length of runs. An appropriate measure for the
complexity of objects from HF(A) is the size of their transitive closure (since
this is the number of elements required to represent them as a graph).

Definition 2.6. A CPT-program is a pair C = (Π, p(n)) consisting of a BGS-
program Π and a polynomial p(n). The output C(A) of C on an input structure
A is defined as C(A) = Π(A) if the following resource bounds are satisfied (and
otherwise we agree to set C(A) = false):

• the length ρ(A) of the run of Π on A is at most p(∣A∣) and

• for each state (xi)i≤ρ(A) in the run of Π on A we have ∣TC(xi)∣ ≤ p(∣A∣).

2.5 Notions from algebra

In this section, we summarise basic notions and results from linear algebra and
from group theory. For more background on group theory we refer to [56] and
for more background on linear algebra (also over commutative rings) we refer
to [18, 77]. Also, to get a good overview about the (non-)definability results of
linear-algebraic problems in fixed-point logic with counting, we refer to the
theses of Bjarki Holm and Bastian Laubner [59, 71] and to the survey of Anuj
Dawar [24]. If not explicitly mentioned otherwise, all algebraic structures are
assumed to be finite.

Group actions For a set V , we denote by Sym(V ) the symmetric group
of permutations on V . As usual, we use the cycle notation (v1 v2⋯vℓ) to
specify permutations in Sym(V ). A group Γ acts on V if there is a group
homomorphism from Γ to Sym(V ) (and we usually identify Γ with the image
under this homomorphism).

Let Γ be a group which acts on V . For v ∈ V we write Γ(v) = {γ(v) ∶ γ ∈ Γ}
to denote the orbit of v under the action of Γ. The set of Γ-orbits {Γ(v) ∶ v ∈ V }
yields a partition of V . We say that Γ acts transitively on V if Γ(v) = V for
some (or equivalently all) v ∈ V . The action of Γ on V is regular if for all pairs
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of elements v,w ∈ V there is precisely one group element γ such that γ(v) = w.
In particular, if Γ is an Abelian group which acts transitively on V , then the
action of Γ on V is regular (we make use of this fact frequently). Moreover,
the stabiliser group Stab(v) = StabΓ(v) of an element v ∈ V is the subgroup of
Γ consisting of all elements γ ∈ Γ which stabilise v, that is γ(v) = v. We also
make use of the orbit stabiliser theorem which says that ∣Γ∣ = ∣Stab(v)∣ ⋅ ∣Γ(v)∣.
In particular, the size of the orbit of an element v divides the order of Γ. In
general, we read group operations from right to left and we use the notation
σγ as a shorthand for σγσ−1 whenever this makes sense (hence σ(τγ) = στγ).
Likewise, we let σΓ = {σγ ∶ γ ∈ Γ} and σΓ = {σγ ∶ γ ∈ Γ}. For a set x ⊆ V
we denote the point-wise stabiliser of x in Γ by FixΓ(x) = Fix(x) ≤ Γ, that is
Fix(x) = {γ ∈ Γ ∶ γ(a) = a for all a ∈ x}.

For a τ -structure A we let Aut(A) ≤ Sym(A) denote the automorphism
group of A. In this thesis, Aut(A) often is Abelian. A structure is rigid if
Aut(A) consists of the identity only. Recall that every (finite) Abelian group
is the inner direct sum of cyclic groups of prime power order. Let Γ be a
group. The exponent of Γ is the least common multiple of the orders of group
elements of Γ. In particular, if Γ is an Abelian group, then the exponent of Γ

is max{∣γ∣ ∶ γ ∈ Γ}. For a group Γ and for an element γ ∈ Γ we denote by ⟨γ⟩
the cyclic subgroup of Γ which is generated by γ. Moreover, we denote the
order of the group element γ ∈ Γ, that is the size of the group ⟨γ⟩, by ∣γ∣.

Computing a decomposition of an Abelian group As we already re-
called above, every finite Abelian group Γ can be decomposed into a direct
(inner) sum of cyclic groups, that is Γ = ⟨δ0⟩⊕⋯⊕ ⟨δk−1⟩ for group elements
δi ∈ Γ which have prime power order. In this thesis, we sometimes make
use of the fact that such a decomposition {δ0, . . . , δk−1} can be computed in
polynomial time if the group Γ is given explicitly by its multiplication table.
In particular, if Γ is an ordered Abelian group, then, by the Immerman-Vardi
Theorem, such a group decomposition can also be defined in fixed-point logic.

First of all, we can assume that Γ is a p-group with exponent d = pℓ for
a prime p ∈ P and ℓ ≥ 1. Then Γ is Zd-module. Secondly, we can easily find
a generating set E = {e0, . . . , er−1} for Γ. However, the elements in E might
not be linearly independent, that is it might be the case that for certain
z0, . . . , zr−1 ∈ Zd we have z0 ⋅ e0 + ⋯ + zr−1 ⋅ er−1 = 0 although zi ⋅ ei ≠ 0 for
at least one i ∈ [r]. In other words, if we let ϕ ∶ Z

r
d → Γ be the group

homomorphism which maps a linear combination (z0, . . . , zr−1) ∈ Zr
d to the

group element z0 ⋅ e0 + ⋯ + zr−1 ⋅ er−1 ∈ Γ, then it might be the case that for
some (z0, . . . , zr−1) ∈ ker(ϕ) we have zi ⋅ ei ≠ 0 for at least one i ∈ [r]. Hence,
the set E does not define a decomposition of Γ as a direct sum.

Our next step is to compute a matrix M ∈ Z
[r]×[s]
d

, for a certain s ≥ 1,
such that im(M) = ker(ϕ). In other words, we want to obtain a generating
set for ker(ϕ) (the set of columns of the matrix M). To obtain such a set it
suffices to take for every i ≤ r and every z ∈ Zd a linear combination of the
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form (y⃗, z, 0⃗) ∈ ker(ϕ) for y⃗ ∈ Zi
d (if there exists one). It is easy to see that

the number of these combinations is polynomially bounded and, furthermore,
if there exists a linear combination of this form, then one can find one in
polynomial time as well.

Secondly, we compute invertible matrices S ∈ Z[r]×[r]
d

and T ∈ Z[s]×[s]
d

such

that N ∶= S ⋅M ⋅ T ∈ Z
[r]×[s]
d

is in Smith normal form. This can easily be done
in polynomial time since Zd is a finite principal ideal ring (a chain ring) and,
hence, divisibility is a linear preorder in Zd. It holds that im(N) = ker(ϕ○S−1)
and that im(ϕ) = im(ϕ ○ S−1) = Γ.

Let fi ∈ Z
r
d denote the i-th identity vector, that is fi = (0, . . . ,0,1,0, . . . ,0)

with 1 in component i. Moreover, let xi ∶= ϕ ○ S
−1(fi). Then {x0, . . . , xr−1} is

a generating set for Γ, since {f0, . . . , fr−1} generates Z
r
d and im(ϕ ○ S−1) = Γ.

Finally, we claim that the (non-zero) elements in X yield a decomposition of Γ

into a direct sum. To see this, assume that for some (z0, . . . , zr−1) ∈ Zr
d we have

z0 ⋅ x0 +⋯+ zr−1 ⋅ xr−1 = 0. Then z0 ⋅ f0 +⋯+ zr−1 ⋅ fr−1 ∈ ker(ϕ ○ S−1) = im(N).
Since N is in Smith normal form, it follows that zi ⋅ fi ∈ ker(ϕ ○ S−1) for all
i ∈ [r]. Hence zi ⋅ xi = 0 for all i ∈ [r] which proves our claim.

Linear algebra Let I, J and X be non-empty sets. An I × J-matrix over
X is a matrix M with entries in X whose rows are indexed by elements in
I and whose columns are indexed by elements in J , that is M ∶ I × J → X.
Similarly, an I-vector v⃗ over X is a mapping v⃗ ∶ I →X. A square matrix is an
I × I-matrix. 2 We denote the set of all I × J-matrices over X by XI×J and
the set of all I-vectors over X by XI .

If Φ ∶ X → Y is a mapping and M is an I × J-matrix over X, then we
write Φ(M) ∈ Y I×J to denote the I × J-matrix over Y which results from M

by applying Φ to every entry of M , that is Φ(M)(i, j) = Φ(M(i, j)). Similarly,
if c⃗ ∈ XI denotes an I-vector over X then we write Φ(c⃗) ∈ Y I to denote the
I-vector over Y defined as Φ(c⃗)(i) = Φ(c⃗(i)).

Usually, the index sets I and J come without any intrinsic structure. To
stress this fact, we sometimes speak of unordered matrices. In contrast, we
also consider matrices over ordered index sets, that is ordered m × n-matrices
for the case where I = [m] and J = [n] are ordered sets of size m and n

respectively. Addition and multiplication of (unordered) matrices is defined as
usual. Moreover, for an I × J-matrix M we write MT to denote the transpose
of M , that is the J × I-matrix defined as MT (i, j) =M(j, i).

For m ≥ 1 we denote by Zm = Z/mZ the ring (or, depending on the context,
the Abelian group) of residues modulo m. We denote the finite prime field
with p ∈ P elements by Fp and the finite field with pk elements by Fpk for k ≥ 2.

We assume that each ring R = (R,+, ⋅) has a multiplicative identity 1 ∈ R.
A unit r ∈ R is an element which has a multiplicative inverse, that is there
exists an element r−1 ∈ R such that r ⋅ r−1 = r−1

⋅ r = 1. The set of units in R

is denoted by R∗ and it forms a multiplicative group. For example, in every

2This is different from saying that a square matrix is an I × J-matrix with ∣I ∣ = ∣J ∣.
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ring Zd each generator of the additive group is a unit. We say that two ring
elements r, s ∈ R are orthogonal if r ⋅ s = 0. An element r ∈ R is idempotent if
r2 = r. If rn = 0 for some n ≥ 1, then we say that r is nilpotent, and we call the
minimal n ≥ 1 such that rn = 0 the nilpotency index of the ring element r.

Let R be a commutative ring. We say that R is the inner direct sum of
ideals m1, . . . ,mk ⊴ R, and we write R = m1⊕⋯⊕mk, if every element r ∈ R has
a unique representation as r = r1+r2+⋯+rk for elements ri ∈ mi and if all pairs
of elements ri ∈ mi and rj ∈ mj , for i ≠ j, are orthogonal. The characteristic
of R is the exponent of its additive group (R,+), or equivalently, it is defined
as min{n ≥ 1 ∶ 0 = 1 + 1 +⋯+ 1 (n-times)}. A local ring is a commutative ring
with a unique maximal ideal (see Lemma 3.17 in Section 3.3 for equivalent
characterisations). A chain ring is a local ring in which every ideal is principal,
that is generated by a single element. For example, all rings Zd where d is a
prime-power are chain rings. For a local ring R with maximal ideal m we often
consider the associated residue field R/m.

For a set I and a finite field F, we denote the general linear group of
invertible I × I-matrices over F by GLI(F). Let R be a commutative ring.
An Abelian group G together with an operation ⋅ ∶ R ×G → G (called scalar
multiplication) is an R-module if

(i) 1 ⋅ g = g for all g ∈ G and for the multiplicative identity 1 ∈ R,

(ii) and if for all g, h ∈ G and r, s ∈ R we have

(r + s) ⋅ g = r ⋅ g + s ⋅ g and r ⋅ (g + h) = r ⋅ g + r ⋅ h,

(iii) and if for all g ∈ G and r, s ∈ R we have

r ⋅ (s ⋅ g) = (r ⋅ s) ⋅ g.

We remark that modules can also be defined over non-commutative rings R.
In this case one has to distinguish between the notion of a left R-module and
a right R-module. In the latter case, the scalar multiplication is a mapping of
the form G ×R → G and the axioms have to be adapted accordingly. In this
thesis, we only consider modules over commutative rings R in which case the
notions are equivalent.

As an important example, consider an Abelian group G and let d be the
maximal order of elements in G, that is the exponent of G. Then G is an
Zd-module by defining the scalar multiplication for g ∈ G and z ∈ Zd as

z ⋅ g ∶=

⎧⎪⎪⎨⎪⎪⎩
0, if z = 0,

g + (z − 1) ⋅ g, if z > 0.



Chapter 3

Linear equation systems over

groups, rings, and modules

In this chapter, we study the (inter-)definability of linear equation systems over
finite Abelian groups, rings, and modules. More precisely, we are interested
in the following aspect: how does the algebraic structure, which is given on
the set of coefficients and on the set of values for variables, influence the
descriptive complexity of the associated solvability problem? Our investigations
are motivated by the work of Atserias, Bulatov, and Dawar [10] who showed
that over every (non-trivial) Abelian group the solvability problem (for linear
equation systems) cannot be defined in fixed-point logic with counting. On
the other hand, it is well-known that the solvability problem over Abelian
groups can be decided by a polynomial-time algorithm which is based on
Gaussian elimination, see for example [39]. Thus, the solvability problem over
finite algebraic domains is a natural query which separates FPC from Ptime

and which nicely indicates that fundamental algorithmic techniques, such
as mechanisms to manipulate succinct representations of large algebraically
structured sets, cannot be expressed in fixed-point logic with counting. We
remark that similar (though much more sophisticated) algorithmic techniques
are frequently used not only to solve linear equation systems, but also to
efficiently decide the isomorphism problem on certain graph classes, see for
example [12, 37, 75] and Chapter 6.

This situation naturally leads to the development of new logics which
extend fixed-point logic with counting by mechanisms to express the solvability
of linear equation systems over (certain classes of) Abelian groups. The most
important logic in this context is rank logic FPR which was introduced by
Dawar, Grohe, Holm, and Laubner in [28]. We will give the precise definition
of rank logic in Section 4.1, so let us only briefly mention the main ingredients
at this point. For every prime p ∈ P the logic FPR extends FPC by a new rank
operator rkp which can be used to determine the matrix rank of a definable
matrix over the prime field Fp. Since the solvability problem over Fp can be
reduced to the matrix rank problem over Fp (recall that M ⋅ x⃗ = c⃗ is solvable if,

35
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and only if, rk(M) = rk(M ∣ c⃗)), we can define in FPR the solvability problem
over every finite prime field Fp (and, moreover, it was shown by Holm in [59]
that this holds for every finite field). Let us briefly mention that we will see,
in Section 4.4, that the “right” way to define FPR is by using a uniform
rank operator rk which gets the prime p ∈ P as an additional part of its input
(instead of having a separate rank operator for every prime p ∈ P). Still, even
for the revised version FPR

∗ of rank logic, it is not clear whether it can express
the solvability problem over all (finite) Abelian groups. The problem is that
not all such groups appear as additive groups of finite fields. For instance, it
is not clear how to define the solvability of linear equation systems over Z4

in rank logic. This raises the question whether the way in which rank logic
extends fixed-point logic with counting (namely, by adding operators which
compute the numerical invariant of matrix rank over finite fields) is general
enough to obtain a robust extension of FPC which can express the important
algorithmic principles which underlie the efficient procedures, such as Gaussian
elimination, to decide the solvability of linear equation systems over Abelian
groups. To approach this question systematically we set out to investigate the
logical inter-definability of linear equation systems

• over Abelian groups (linear systems where the coefficients belong to the
set {0,1} and where the variables range over an Abelian group G),

• over (not necessarily commutative) rings (where both, the coefficients
and the variables, range over a ring R),

• and over modules (where the coefficients belong to some commutative
ring R, and where the variables range over an Abelian group G, and such
that we have an R-scalar multiplication defined on G).

The kind of questions we study are as follows. Is it possible to reduce the
solvability problem over rings and modules to Abelian (or even to cyclic)
groups? Or, more generally, are there other simple classes C of algebraic
domains such that all solvability problems (over groups, rings and modules)
can be reduced to solvability problems over domains from C (for instance in
fixed-point logic)? If this is the case, then it makes sense to say that the class
C is complete for the solvability problem with respect to FP-reductions.

Throughout this chapter we consider the solvability problem in the uniform
setting, that is the algebraic domains for coefficients and variable assignments,
such as groups, rings, and modules, are given explicitly as part of our input (in
contrast to the setting where these domains are implicitly fixed from outside).
It turns out that we can answer the above questions completely if we make
the further assumption that the algebraic domains (but, of course, neither the
set of variables, nor the set of equations) are linearly ordered. More precisely,
we show that in this case all solvability problems can be reduced (via an FP-
reduction) to solvability problems over cyclic groups, see Theorem 3.12. Since
cyclic groups appear as basic building blocks inside all algebraic structures we



3.1. Solvability problems as relational structures 37

consider here, this reduction identifies a natural and simple class of algebraic
domains which is complete for the solvability problem (under FP-reductions).
For the unordered case, however, our reduction to cyclic group fails. Still, we
can obtain partial answers to our questions from above. First of all, we can
show that, in the unordered setting, the class of commutative rings and the
class of modules are both complete in the above described sense with respect
to DTC-reductions. Secondly, having the nice picture for ordered domains
in mind, we apply the structure theory of finite commutative rings to obtain
a stratification of such rings along a strict hierarchy (L(k))k≥0 with levels
L(k) for k ≥ 0 (more precisely, the k-th level in this hierarchy consists of all
k-generated local rings, see Definition 3.30). We then show that, for every fixed
level k ≥ 0 of this hierarchy, we can find an FP-formula, using k parameters,
which defines a linear order on all rings from level L(k). Combined with our
previous results, this implies that for every fixed k ≥ 0, we can reduce the
solvability problem over commutative rings, whose local components belong
to L(k), to the solvability problem over cyclic groups. We remark that the
hierarchy (L(k))k≥0 is quite rich: the first level L(1) already contains all finite
fields and all cyclic rings Zd where d is a prime-power.

The whole chapter is strongly based on [27]. In Section 3.1, we give precise
definitions of the solvability problems over the classes of algebraic domains we
consider. In particular, we fix our encoding of these problems as relational
structures, see Figure 3.2 on page 42 for an overview of the defined solvability
problems. In Section 3.2, we then establish the logical reductions between the
solvability problems over Abelian groups, rings, and modules. For the case of
ordered domains we show that cyclic groups are complete for the solvability
problem, and for the unordered case we identify modules and commutative
rings as complete classes, see Figure 3.3 on page 54 for an overview of the
established reductions. Finally, in Section 3.3 we apply the algebraic structure
theory of finite commutative rings to show that the solvability problem over
commutative rings can be reduced, in first-order logic, to solvability problems
over local rings. We then define a hierarchy (L(k))k≥0 on the class of local
rings and show that for every fixed k ≥ 0 the rings in level L(k) can be linearly
ordered in fixed-point logic. Combined with our results from Section 3.2, we
obtain an FP-reduction for the solvability problem over rings from L(k) to
solvability problems over cyclic groups, for every fixed k ≥ 0.

3.1 Solvability problems as relational structures

An instance of the solvability problem (for linear equation systems) is specified
by an algebraic domain (such as a field, a ring, a group, or a module) and a
set of linear equations over this domain. The question is whether there is a
variable assignment which simultaneously satisfies all given linear equations.
However, there are some subtle issues with this general definition which have
to be discussed in more detail. First, depending on the specific type of domain,
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the notion of a “linear equation” has to be described further. This is because, if
we want to build linear equations, then we need two basic algebraic operations:
scalar multiplication, between coefficients and variables to define atomic linear
terms, and addition, to form sums of linear terms. Of course, these two
operations are not defined in Abelian groups (where only addition is defined
on the group elements). Secondly, since we want to study linear equation
systems also over non-commutative rings, we have to take care of the order of
multiplication. Thirdly, since we are interested in logical reductions, we have
to represent solvability problems as classes of relational structures.

We follow the common approach and use matrices and vectors to encode
systems of linear equations. Hence, we start to explain how we represent
matrices and vectors by relational structures (see also Section 2.5). Let
M ⊆ A3 be a ternary relation on the set A. We say that M is (a representation
of) an I × J-matrix over X (or with entries in X) if M is the graph of a
mapping I × J → X (which in turn is an I × J-matrix over X). In this case
we identify the relation M with this matrix. Similarly, we say that a binary
relation c⃗ ⊆ A2 is an I-vector over X if c⃗ is the graph of a mapping I → X.
Again, we identify c⃗ with this vector. As mentioned before, we consider linear
equation systems over Abelian groups, modules, and rings which we encode
as τ -structures over appropriate signatures τ (see Figure 3.1). In general, we
use the notation Ls(τ) ⊆ S(τ) to denote the class of all τ -structures which
represent linear equation systems.

Before we turn to the precise definitions, let us briefly remark that all
solvability problems which we consider can be decided in polynomial time,
see for example [8, 9, 39]. This also explains why we consider linear equation
systems only over Abelian groups: in fact, it is known that over every non-
Abelian group, the solvability problem is NP-complete, see [39]. We further
remark that from our FP-reductions to cyclic groups (Theorem 3.12), we
implicitly obtain an (algorithmic) polynomial-time reduction which transforms
solvability problems over all considered domains into solvability problems over
cyclic groups of prime-power order. Since we can very easily compute, for
instance, the Smith normal form of matrices over such cyclic groups or rings
(all pairs of elements are comparable with respect to divisibility), this yields
an efficient algorithm to uniformly decide all considered solvability problems.
Furthermore, it is even known that linear equation system over the integers
can be solved efficiently (and this generalises linear equation systems over finite
cyclic groups, as we consider them here), see for example [67].

Solvability problems over Abelian groups A linear equation system
over an Abelian group G is specified by a pair (M, c⃗) consisting of an I × J-
matrix M over {0,1}, the coefficient matrix, and of an I-vector c⃗ over G, the
constants vector. Let x⃗ = (xj)j∈J be a J-vector of variables xj which range
over the group G for j ∈ J . The linear equation system, which is defined by
the pair (M, c⃗), is determined via the matrix equation M ⋅ x⃗ = c⃗. Here, scalar
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Linear equation systems over... Corresponding vocabulary

(Abelian) groups τles-g ∶= {G,+,M, c⃗}
modules τles-m ∶= {G,R,+, ⋅,M, c⃗}
ordered modules τ⩽

les-m
∶= τles-m ⊎ {⩽}

rings τles-r ∶= {R,+, ⋅,Mℓ,Mr, c⃗}
ordered rings τ⩽

les-r
∶= τles-m ⊎ {⩽}

Figure 3.1: Vocabularies for encoding linear equation systems

multiplication by constants in {0, 1} is defined in the obvious way, and addition
is just group addition in G. A vector b⃗ ∈ GJ which satisfies M ⋅ b⃗ = c⃗ is called a
solution of the system, and the system is solvable if it has a solution.

We encode linear equation systems over groups as structures of vocabulary
τles-g ∶= {G,M, c⃗} ⊎ τgroup, where τgroup ∶= {+} denotes the language of groups,
where G is a unary relation symbol (identifying the elements of the group),
where M is a ternary relation symbol (representing the coefficient matrix) and
where c⃗ is a binary relation symbol (representing the constants vector).

We let Ls(τles-g) denote the class of all τles-g-structures which encode a
linear equation system over a group, that is the class of all τles-g-structures
A = (A,G,+,M, c⃗ ) such that (G,+) is an (Abelian) group, M an I × J-matrix
over {0,1} and c⃗ is an I-vector over G.

Solvability problems over modules Linear equation systems over mod-
ules are given by a pair (M, c⃗) consisting of an I × J-matrix M over a commu-
tative ring R, the coefficient matrix, and of an I-vector c⃗ over an R-module G,
the constants vector. Let x⃗ = (xj)j∈J be a J-vector of variables xj ranging
over the module G. Then the matrix equation M ⋅ x⃗ = c⃗ determines the linear
equation system represented by (M, c⃗), where scalar multiplication and addi-
tion correspond to the respective operations of the R-module G. Similarly as
before, solutions are J-vectors b⃗ ∈ GJ which satisfy M ⋅ b⃗ = c⃗.

Linear equation systems over modules are encoded as structures over the
vocabulary τles-m ∶= {M, c⃗} ⊎ τmodule where τmodule ∶= {G,R,+, ⋅} denotes the
language of modules. Here, G is a unary relation symbol (to identify the
additive group of the module), R is a unary relation symbol (to identify the
ring elements), M is a ternary relation symbol (to represent the coefficient
matrix) and c⃗ is a binary relation symbol (to represent the constants vector).

Let Ls(τles-m) denote the class of τles-m-structures which encode linear
equation systems over a module, that is the class of all τles-m-structures A =

(A,G,R,+, ⋅,M, c⃗ ) where G∩R = ∅, (R,+, ⋅) is a commutative ring, (G,R,+, ⋅)
is an R-module, M is an I × J-matrix over R, and c⃗ is an I-vector over G.

Furthermore, we consider linear equation systems over ordered modules in
which case the input structure contains a linear order on the ring elements
R and on the elements of the module G (but neither on the index set of
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equations I, nor on the index set of variables J). Note that this linear order
can be arbitrary and does not need to respect the algebraic operations of
the module in any way. Linear equation systems over ordered modules are
represented as structures over the extended vocabulary τ⩽

les-m
∶= τles-m ⊎ {⩽}

and the class Ls(τ⩽
les-m
) contains all τ⩽

les-m
-structures A = (A′,⩽) such that

A
′ = (A,G,R,+, ⋅,M, c⃗ ) ∈ Ls(τles-m) and such that ⩽ is a linear order on G and

on R.

Solvability problems over rings Finally, we consider linear equation sys-
tems over (not necessarily commutative) rings R given as triples (Mℓ,Mr, c⃗).
Here Mℓ is an I × J-matrix over R, the left coefficient matrix, Mr is an J × I-
matrix over R, the right coefficient matrix, and c⃗ is an I-vector over R, the
constants vector. Let x⃗ = (xj)j∈J be a J-vector of variables xj ranging over the
ring R. Then the matrix equation Mℓ ⋅ x⃗ + (x⃗ ⋅Mr)T = c⃗ determines the linear
equation system represented by (Mℓ,Mr, c⃗) which is solvable if there exists a
solution vector b⃗ ∈ RJ satisfying Mℓ ⋅ b⃗ + (b⃗ ⋅Mr)T = c⃗. 1

A small remark about the case of non-commutative rings is in place. At
first glance, it might seem that our definition does not capture linear terms of
the form a ⋅ x ⋅ b for a, b ∈ R and a variable x ranging over R. However, recall
that we assume that every ring R contains a multiplicative identity. Hence, we
can easily replace each linear term a ⋅x ⋅b by the linear term y ⋅b and additionally
add an auxiliary linear term y = a ⋅ x. Hence, up to a simple (quantifier-free)
transformation, every linear equation system over a (non-commutative) ring R
can be represented in the above form.

Linear equation systems over rings are encoded as structures of vocabulary
τles-r ∶= {R,Mℓ,Mr, c⃗}⊎τring, where τring ∶= {+, ⋅} denotes the language of rings,
R is a unary relation symbol (to identify ring elements), Mℓ and Mr are ternary
relation symbols (to represent the left and right coefficient matrix, respectively)
and c⃗ is a binary relation symbol (to represent the constants vector).

We denote by Ls(τles-r) the class of all τles-r-structures which encode linear
equation systems over a ring, that is the class of all τles-r-structures A =

(A,R,+, ⋅,Mℓ,Mr, c⃗ ) such that (R,+, ⋅) is a ring, Mℓ is an I ×J-matrix over R,
Mr is a J × I-matrix over R and c⃗ is an I-vector over R.

Similar to the case of modules, we also consider linear equation systems
over ordered rings. We represent such systems as τ⩽

les-r
-structures where τ⩽

les-r
∶=

τles-r ⊎ {⩽}. Correspondingly, Ls(τ⩽
les-r
) contains all τ⩽

les-r
-structures A = (A′,⩽)

such that A
′ = (A,R,+, ⋅,Mℓ,Mr, c⃗ ) ∈ Ls(τles-r) and such that ⩽ is a linear

order on R.

1Note that, formally, it would be more accurate to write x⃗T
⋅Mr instead of x⃗⋅Mr. However,

in this thesis, we do not distinguish between column and row vectors: In fact, we only defined
vectors which are indexed over a single set. In particular, in all situations it will be clear how
multiplication of vectors and matrices is defined, and we continue to stick to this relaxed
notation for the sake of better readability.
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Remark 3.1. The introduced classes for representing linear equation systems
Ls(τles-g), Ls(τles-m), Ls(τ⩽

les-m
), Ls(τles-r) and Ls(τ⩽

les-r
) are FO-definable.

We fixed our encoding of linear equation systems over Abelian groups, rings,
and modules as relational structures. For τ ∈ {τles-g, τles-m, τ

⩽

les-m
, τles-r, τ

⩽

les-r
}

we let SLs(τ) ⊆ Ls(τ) denote the subclass of (representations of) linear equa-
tion systems in Ls(τ) which are solvable, that is the solvability problems
over Abelian groups, (ordered) modules, and (ordered) rings. We further
consider variations of these solvability problems which arise by putting addi-
tional assumptions on the structure of the algebraic domains. The following
definition specifies all solvability problem which we consider in this chapter.
We summarise the introduced classes of solvability problems in Figure 3.2.

Definition 3.2. We define the following classes of solvability problems.

• Solvability problem over (Abelian) groups: SlvG = SLs(τles-g)
• Solvability problem over cyclic groups:

SlvCG = {(A,G,+,M, c⃗ ) ∈ SLs(τles-g) ∶ G is cyclic}

• Solvability problem over modules: SlvM = SLs(τles-m)
• Solvability problem over ordered modules: SlvM⩽ = SLs(τ⩽

les-m
)

• Solvability problem over rings: SlvR = SLs(τles-r)
• Solvability problem over ordered rings: SlvR⩽ = SLs(τ⩽

les-r
)

• Solvability problem over commutative rings:

SlvCR = {(A,R,+, ⋅,Mℓ,Mr, c⃗ ) ∈ SLs(τles-r) ∶ R is commutative}

• Solvability problem over ordered commutative rings:

SlvCR⩽ = {(A,R,+, ⋅,⩽,Mℓ,Mr, c⃗ ) ∈ SLs(τ⩽les-r) ∶ R is commutative}

• Solvability problem over local rings:

SlvLR = {(A,R,+, ⋅,Mℓ,Mr, c⃗ ) ∈ SLs(τles-r) ∶ R is local}

• Solvability problem over k-generated local rings (see Definition 3.30).

SlvLRk = {(A,R,+, ⋅,Mℓ,Mr, c⃗ ) ∈ SlvLR ∶ R is k-generated}
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Solvability problem over...

Abelian groups SlvG

cyclic groups SlvCG

(ordered) modules SlvM(⩽)

(ordered) rings SlvR(⩽)

(ordered) commutative rings SlvCR(⩽)

local rings SlvLR

k-generated local rings SlvLRk

Figure 3.2: Solvability problems over groups, rings, and modules

3.2 Reductions between groups, rings, and

modules

In the previous section we defined solvability problems over different classes
of algebraic domains. In this section, we study to what extent the algebraic
properties of the underlying domain influence the descriptive complexity of the
corresponding solvability problem. More specifically, we ask whether the various
solvability problems can be reduced to each other via logical transformations.

Our results can be summarised as follows. Up to DTC-reductions, the
solvability problems over modules, over commutative rings and over non-
commutative rings are equivalent. Moreover, the solvability problem over
Abelian groups reduces, again via a DTC-transformation, to any of these
problems. In the case of ordered modules and rings we establish a reduction
in the other direction. More precisely, we show that solvability problems over
ordered modules and rings can be reduced, in fixed-point logic, to solvability
problems over cyclic groups of prime-power order. Note that cyclic groups are
the simplest domains we consider here, and that they appear as basic building
blocks inside Abelian groups, rings, and modules. A detailed overview of the
reductions can be found in Figure 3.3.

We start to show that, in Abelian groups, various relations based on the
order of elements can be defined in DTC. In fact, we often use similar ideas
throughout this section, so the proof of the next lemma also serves as an
illustration for the following constructions.

Lemma 3.3. The following relations are DTC-definable in Abelian groups G.

(a) ∣x∣ ≤ ∣y∣ = {(x, y) ∈ G2
∶ ∣x∣ ≤ ∣y∣}

(b) maxord(x) = {x ∈ G ∶ ∣x∣ =max{∣g∣ ∶ g ∈ G}}
(c) x ∈ ⟨y⟩ = {(x, y) ∈ G2

∶ x ∈ ⟨y⟩}
(d) x ≤z y = {(x, y) ∈ ⟨z⟩2 ∶ x = k ⋅ z, y = ℓ ⋅ z,0 ≤ k ≤ ℓ < ∣z∣}
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Proof. Consider the (parameterised) graph G(z1, z2) = (V,E(z1, z2)) on the
vertex set V = G ×G given by the first-order definable edge relation

E(z1, z2) = {((g1, g2), (g1 + z1, g2 + z2)) ∶ g1, g2 ≠ 0}.
Since E(z1, z2) is deterministic, we can define TC(E(z1, z2)) in DTC. Then
the relation ∣x∣ ≤ ∣y∣ can be expressed as

∣x∣ ≤ ∣y∣ = ∃h((x, y), (0, h)) ∈ TC(E(x, y)).
Moreover, with this preparation we can set maxord(x) = ∀y(∣y∣ ≤ ∣x∣) and
x ∈ ⟨y⟩ = ((y, y), (x,x)) ∈ TC(E(y, y)).

Similarly, to define the linear order x ≤z y on the cyclic group ⟨z⟩ generated
by z we use reachability in the deterministic graph G = (V,E) on the vertex
set V = ⟨z⟩ with the edge relation E = {(g, g + z) ∈ ⟨z⟩2 ∶ g + z ≠ 0}. It suffices
to set x ≤z y = (x = y) ∨ (x, y) ∈ TC(E).

3.2.1 Translations from groups to modules

We start by translating the solvability problem over Abelian groups to the
solvability problem over modules. To this end, let us recall the main difference
between linear equation systems over Abelian groups and over modules. Over
a group G, each atomic linear term t is either of the form t = x for a variable x,
or of the form t = g for a constant g ∈ G. Over an R-module G, we additionally
have atomic linear terms t of the form t = r ⋅ x for ring elements r ∈ R and
variables x (recall that we assume that every ring R contains a multiplicative
identity 1, which allows us to build the linear terms t = 1 ⋅ x = x). Hence, to
reduce the solvability problem over Abelian groups to the solvability problem
over modules, the crucial step is to transform the group G into an R-module
for an appropriate commutative ring R.

Theorem 3.4. SlvCG ≤tt
DTC

SlvM⩽ and SlvG ≤m
DTC

SlvM.

To establish Theorem 3.4 we make use of the fact that every Abelian
group G can be extended to a Zd-module where d = max{∣g∣ ∶ g ∈ G} is the
exponent of the group G. Hence, the only difficulty is to construct the ring Zd

and the corresponding scalar multiplication on G via a DTC-interpretation.
As a preparation, also with regard to our later reductions, we prove something
slightly more general here. We show that every Abelian group G can be
extended, via a DTC-interpretation, to a certain commutative ring Zd ⊛G. It
will turn out that from this ring Zd ⊛G it is very easy to extract the extension
of G to a Zd-module.

For the general construction, let R be a commutative ring and let G be
an R-module. We define the commutative ring R ⊛G = (R ×G,+, ⋅) on the
set R ×G by defining the ring addition as the component-wise addition on
R×G, and by defining the ring multiplication as (r, g) ⋅(s, h) = (r ⋅s, r ⋅h+s ⋅g)
for r, s ∈ R and g, h ∈ G. It is straightforward to verify, using the axioms of
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R-modules, that R⊛G forms a commutative ring where the identity element of
addition is (0, 0) and the identity element of multiplication is (1, 0). Moreover,
R × {0} is a subring of R ⊛ G, {0} × G is an ideal of R ⊛ G, and from our
construction it follows that there is a one-to-one correspondence between the
ring multiplication of elements (r,0) and (0, g) and the scalar multiplication
of the R-module G. In this sense, the ring R ⊛G contains the R-module G.
Let us introduce some notation to state these observations more formally.

Lemma 3.5. Let Φ ∶ G → R ⊛G be defined as g ↦ (0, g) for g ∈ G and let
Ψ ∶ R → R⊛G be defined as r ↦ (r,0) for r ∈ R.

(a) Φ is a group embedding, Φ(G) ⊴ R⊛G and Ψ is a ring embedding.

(b) For all r ∈ R and g ∈ G we have Φ(r ⋅ g) = Ψ(r) ⋅Φ(g). More generally,
for an I × J-matrix M over R and an J-vector b⃗ over G we have

Ψ(M) ⋅Φ(b⃗) = Φ(M ⋅ b⃗).

(c) For all g, h ∈ G we have Φ(g) ⋅Φ(h) = 0 ∈ R⊛G.

(d) Every element x ∈ R ⊛ G can uniquely be written as x = xR + xG for
xR ∈ Ψ(R) and xG ∈ Φ(G). Indeed, the additive group of R⊛G trivially
decomposes into the additive groups (R,+) and (G,+).

It will be a central step in many of our reductions to construct a commu-
tative ring of the form R⊛G. For these cases we use Φ and Ψ to denote the
embeddings of the underlying group G and the underlying ring R, respectively,
as defined in the previous lemma.

In the present case we have R = Zd and our task is to construct the
commutative ring Zd ⊛G via a DTC-interpretation. Of course this requires,
in particular, to construct objects to represent the elements of the ring Zd.
Clearly, there is a canonical way to do this: every group element g ∈ G of
maximal order ∣g∣ = d defines a cyclic subgroup ⟨g⟩ ≤ G which is isomorphic to
the additive group of Zd. Thus we can use ⟨g⟩ for the domain of Zd.

However, in general, there is no unique element of maximal order. Hence,
we have to combine subgroups ⟨g⟩ and ⟨h⟩ for different elements g, h ∈ G
with ∣g∣ = ∣h∣ = d to obtain a single group which is isomorphic to Zd. Let
XG = {(g, h) ∈ G2

∶ ∣g∣ = d, h ∈ ⟨g⟩}, that is XG is the collection of all cyclic
subgroups ⟨g⟩ ≤ G of maximal order. By Lemma 3.3, the set XG is DTC-
definable in G. We consider the following equivalence relation ≈ on XG:

(g1, h1) ≈ (g2, h2) ∶⇐⇒ h1 = k ⋅ g1 and h2 = k ⋅ g2 for some 0 ≤ k < d.

By using similar arguments as in the proof of Lemma 3.3 it follows that the
equivalence relation ≈ on XG is DTC-definable in G. We observe that each
equivalence class can be identified with an element 0 ≤ k < d. Hence, the idea
is to use the set XG/ ≈ as the domain for the ring Zd.
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More specifically, to represent the elements of Zd × G we use tuples
(g1, g2, h) ∈ XG × G and lift the equivalence relation ≈ on XG to XG × G

by setting (g1, g2, h) ≈ (g′1, g′2, h′) if (g1, g2) ≈ (g′1, g′2) and h = h′. Then the set
(XG ×G)/ ≈ can be identified with the set Zd ×G and it can be constructed
via a DTC-interpretation. It remains to define the appropriate ring addition
and ring multiplication on this set to turn it into the ring Zd ⊛G.

The crucial observation is that for a fixed g ∈ G, with ∣g∣ = d, we obtain a set
of representatives for (XG×G)/ ≈ as {(g, h1, h2) ∈XG×G} ∼ ⟨g⟩×G. Of course,
every relation on these sets of representatives uniquely induces a relation on
(XG ×G)/ ≈. Hence, it suffices to express in DTC the ring addition and ring
multiplication on such sets of representatives in a way that the operations
induced on (XG ×G)/ ≈ do not depend on the specific parameters g ∈ G.

Recall that, by Lemma 3.3 (d), we can define in DTC the linear order
≤g= {(k ⋅ g, ℓ ⋅ g) ∶ 0 ≤ k ≤ ℓ < d} on ⟨g⟩. Let h ∈ G be a different parameter
with ∣h∣ = d and let ≤h be the corresponding linear order on ⟨h⟩. Then we
have (g, g1) ≈ (h,h1) for (g, g1), (h,h1) ∈ XG if, and only if, the position of
g1 in ≤g coincides with the position of h1 in ≤h. Hence, these linear orders
induce ≈-canonical orderings on XG/ ≈, and can hence be used to canonically
define the ring operations on (XG × G)/ ≈. Since DTC can express every
Logspace-computable function on ordered structures, it follows that the ring
addition on ⟨g⟩×G can be defined in DTC. Finally, for the ring multiplication
we can use similar arguments as in the proof of Lemma 3.3.

Lemma 3.6. There exists a DTC-interpretation I which translates τgroup-
structures into τring-structures such that for every group G = (G,+) the structure
I(G) is the ring Zd ⊛G where d =max{∣g∣ ∶ g ∈ G} is the exponent of G.

By an inspection of our construction, it further follows that the embedding
Φ ∶ G→ Zd⊛G of the group G into Zd⊛G can be defined in DTC as well. The
same is true for the ring R = Zd (which we construct via the interpretation)
and the embedding Ψ ∶ Zd → Zd ⊛G of R into Zd ⊛G.

Furthermore, our interpretation crucially makes use of the definable congru-
ence relation in order to represent the elements of the ring Zd as equivalence
classes of cyclic subgroups of maximal order. It is easy to see that a similar
translation cannot be achieved without using this congruence relation. On the
other hand, if the interpretation can use a parameter g (to fix a group element
g ∈ G of maximal order d = ∣g∣), then we can identify the elements of Zd with
the elements of ⟨g⟩, and a trivial congruence relation indeed suffices.

Moreover, if we want to define the commutative ring R⊛G starting from
a given R-module G (which means that, in contrast to the previous case, we
do not have to construct the ring elements of R in the first place), then this
is trivial, since the elements of R ⊛G are just tuples in R ×G, and the ring
operations of R⊛G can immediately be be defined from the group addition
and the scalar multiplication in the R-module G.
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Lemma 3.7. There exists an FO-interpretation I which translates τmodule-
structures into τring-structures, such that for every module M = (A,G,R,+, ⋅)
the structure I(M) is the ring R⊛G.

Of course, also for this case, the embedding Φ ∶ G→ R⊛G of the group G
into the ring R⊛G and the embedding Ψ ∶ R → R⊛G of the ring R into R⊛G
are definable as well.

Let us come back to our proof of Theorem 3.4. Our original aim was to
construct in DTC, given an Abelian group G with exponent d, the extension
of G to a Zd-module. Since we proved that we can obtain the ring Zd ⊛G via
a DTC-interpretation, this now follows immediately, since the ring Zd ⊛G

already “contains” the extension of G to a Zd-module, as we saw above.

Lemma 3.8. There exists a DTC-interpretation I which translates τgroup-
structures into τmodule-structures such that, for every group G = (G,+), the
structure I(G) is the extension of G to a Zd-module where d =max{∣g∣ ∶ g ∈ G}.
Proof of Theorem 3.4. Let us start with the reduction SlvG ≤m

DTC
SlvM.

Given a (representation of) a linear equation system (A,G,+,M, c⃗) ∈ Ls(τles-g)
over a group (G,+), we first use Lemma 3.8 to extend (G,+) via a DTC-
interpretation to a Zd-module (G,Zd,+, ⋅). We then lift the I×J-matrix M over
{0,1} to an I × J-matrix M∗ over Zd where we naturally identify the element
1 with the multiplicative identity of the ring Zd. Moreover, the I-vector c⃗ over
the group G naturally translates into an I-vector c⃗∗ = Φ(c⃗) over the Zd-module
G. Obviously, the linear equation system M ⋅ x⃗ = c⃗ over the group (G,+) and
the linear equation system M∗ ⋅ x⃗∗ = c⃗∗ over the module (Zd,G,+, ⋅), where
x⃗ is a J-vector of variables ranging over G and x⃗∗ is a J-vector of variables
ranging over Φ(G), are equivalent.

For the reduction SlvCG ≤tt
DTC

SlvM⩽ we additionally have to construct
a linear order on the interpreted module (Zd,G,+, ⋅). By Lemma 3.3 (d),
we can define a linear order on Zd, so it suffices to construct an order on G.
Since (G,+) is a cyclic group, we can again use Lemma 3.3 (d) to obtain
a DTC-definable linear order where we use a generator g ∈ G of G, that is
⟨g⟩ = G, as parameter. Thus, together with the construction from above,
we obtain a DTC-interpretation I(z), with parameter z, which translates
a linear equation system A = (A,G,+,M, c⃗) ∈ Ls(τles-g) with a cyclic group
(G,+) for every g ∈ G with ⟨g⟩ = G into an equivalent linear equation system
I(A, z ↦ g) ∈ Ls(τ⩽

les-m
) over an ordered module. Hence, if we let Q denote

the Lindström-quantifier associated with the class SlvM⩽, then

ϕ = (∃z ∈ G) (∀x.x ∈ ⟨z⟩ ∧Q(I(z)))
is a sentence of DTC(Q) which defines SlvCG.

3.2.2 Translations between modules and rings

We proceed to study the relationship between the solvability problems over
modules and rings. To start, let us briefly discuss the case of commutative rings.
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It is easy to see that a reduction of the solvability problem from (ordered)
commutative rings to (ordered) modules is trivial. This is because every
commutative ring R also is an R-module. For the other direction, we can apply
the FO-definable transformation of an R-module G into the commutative ring
R⊛G, see Lemma 3.7.

Theorem 3.9. SlvM ≡m
FO

SlvCR and SlvM⩽ ≡
m
FO

SlvCR⩽.

Proof. We first establish the reduction SlvM ≤m
FO

SlvCR. To this end, let
(A,G,R,+, ⋅,M, c⃗) ∈ Ls(τles-m) be a (representation of) a linear equation system
over an R-module G. We use Lemma 3.7 to translate the R-module G into the
ring R⊛G and we lift the I ×J-matrix over R to an I ×J-matrix MΨ = Ψ(M)
over Ψ(R) via Ψ and the I-vector c⃗ over G to an I-vector c⃗Φ = Φ(c⃗) over Φ(G)
via Φ. These transformation can be defined in FO.

The linear equation system MΨ ⋅ x⃗ = c⃗Φ over R⊛G, where x⃗ is a J-vector
of variables over R⊛G, is equivalent to the linear equation system M ⋅ x⃗ = c⃗

over the R-module G where the variables of the J-vector x⃗ range over G. To
see this, assume that the system M ⋅ x⃗ = c⃗ over the R-module G has a solution
b⃗ ∈ GJ . From M ⋅ b⃗ = c⃗ we conclude that Φ(M ⋅ b⃗) = Φ(c⃗). By Lemma 3.5, we
have Φ(M ⋅ b⃗) = Ψ(M) ⋅Φ(b⃗) = Φ(c⃗) which means that b⃗Φ ∶= Φ(b⃗) ∈ Φ(G)J is a
solution of the system MΨ ⋅ x⃗ = c⃗Φ

For the other direction, let b⃗ ∈ (R ⊛ G)J be such that MΨ ⋅ b⃗ = c⃗Φ. By
Lemma 3.5, we can write the solution vector b⃗ as b⃗ = b⃗Ψ + b⃗Φ for two unique
J-vectors b⃗Ψ ∈ Ψ(R)J and b⃗Φ ∈ Φ(G)J . Then we have

MΨ ⋅ (b⃗Ψ + b⃗Φ) =MΨ ⋅ b⃗Ψ +MΨ ⋅ b⃗Φ = c⃗Φ.

Since c⃗Φ ∈ Φ(G)I , we conclude that MΨ ⋅ b⃗Ψ = 0⃗ which means that also b⃗Φ is a
solution of the system MΨ ⋅ x⃗ = c⃗Φ.

We claim that b⃗∗ ∶= Φ−1(b⃗Φ) is a solution of the linear system M ⋅ x⃗ = c⃗

over the R-module G. Since we have Ψ(M) ⋅Φ(b⃗∗) = Φ(c⃗), we can again use
Lemma 3.5 to conclude that Φ(M ⋅ b⃗∗) = Φ(c⃗) which means that M ⋅ b⃗∗ = c⃗.

Finally, to establish the remaining reduction SlvM⩽ ≤
m
FO

SlvCR⩽, we only
need to observe that if we start with an ordered R-module G, then we obtain
a linear order on R⊛G by using the lexicographical ordering on R ×G.

We turn our attention to the solvability problem over general, that is not
necessarily commutative, rings. Of course, for the reduction from modules to
rings we can proceed as before. However, for the other direction we need to
modify our arguments from above to take care of the non-commutative ring
multiplication. For example, the linear terms r ⋅x and x ⋅ r for coefficients r ∈ R
and a variable x are, in general, not equivalent.

To understand the main idea of the reduction, it is helpful to think of
the solvability problem in the following way. We know that a linear equation
system M ⋅ x⃗ = c⃗ over a commutative ring R is solvable if, and only if, the
constants vector c⃗ can be expressed as a linear combination of the columns of



48 Chapter 3. Linear equation systems over groups, rings, and modules

the coefficient matrix M . Now assume that we modify the coefficient matrix M
by replacing each column d⃗ by all of its multiples r ⋅ d⃗ for ring elements r ∈ R.
Then the linear equation system is solvable if, and only if, the constants
vector c⃗ can be expressed as the sum over a subset of columns of the modified
coefficient matrix M ′. Hence, we have reduced the search for an arbitrary linear
combination of columns to the search for a linear combination of columns of a
simple form, that is to a combination for which all coefficients are zero or one.
Using this trick together with our techniques from Lemma 3.6 to transform
Abelian groups into modules we can prove the following result.

Theorem 3.10. SlvM ≡m
DTC

SlvR and SlvM⩽ ≡
m
DTC

SlvR⩽.

Proof. The interesting case is the reduction SlvR ≤m
DTC

SlvM. Recall that
an instance of SlvR is of the form A = (A,R,+, ⋅,Mℓ,Mr, c⃗ ) ∈ Ls(τles-r) where
(R,+, ⋅) is a (not necessarily commutative) ring, where Mℓ is an I × J-matrix
over R, where Mr is a J × I matrix over R and where c⃗ is an I-vector over R.
The represented linear equation system is Mℓ ⋅x⃗+(x⃗⋅Mr)T = c⃗ where x⃗ = (xj)j∈J
is a J-vector of variables ranging over R.

Since the additive group (R,+) of the ring R is Abelian, we can use
Lemma 3.6 to construct in DTC the ring Zd ⊛R where d =max{∣r∣ ∶ r ∈ R} is
the exponent of the group (R,+). Recall that Zd ⊛R is a commutative ring
and that every commutative ring is a module over itself.

From Lemma 3.5 we know that the group (R,+) embeds into Zd⊛R via the
definable mapping Φ ∶ R → Zd ⊛R. We introduce for each variable xj a set of
new variables {xr

j ∶ r ∈ R} which range over Zd ⊛R and we let x⃗∗ = (xr
j)j∈J,r∈R

be the J∗ ∶= (J ×R)-vector consisting of these new variables. Moreover, we let
M be the I × J∗-matrix over Zd ⊛R which is defined for i ∈ I and (j, r) ∈ J∗ as

M(i, j, r) ∶= Φ(Mℓ(i, j) ⋅ r + r ⋅Mr(j, i)).
Thus, the column with index (j, r) of the matrix M is the sum of the j-th
column of the matrix Mℓ multiplied by r from the right and the j-th row of the
matrix Mr multiplied by r from the left lifted to the ring Zd⊛R. We claim that
the linear system M ⋅ x⃗∗ = Φ(c⃗) over the commutative ring Zd ⊛R is equivalent
to the linear equation system Mℓ ⋅x⃗+(x⃗ ⋅Mr)T = c⃗ over the ring R. Indeed, if we
can prove this, then the theorem follows, because Lemma 3.6 guarantees that
the system M ⋅ x⃗∗ = Φ(c⃗) can be constructed by using a DTC-interpretation.

For the first direction, let b⃗ ∈ RJ be a such that Mℓ ⋅ b⃗ + (b⃗ ⋅Mr)T = c⃗. We
define the J∗-vector b⃗∗ over Zd for (j, r) ∈ J∗ as

b⃗∗(j, r) =
⎧⎪⎪⎨⎪⎪⎩
(1,0), if b⃗(j) = r
(0,0), otherwise.

We claim that b⃗∗ is a solution of the linear equation system M ⋅ x⃗∗ = Φ(c⃗).
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Indeed for i ∈ I we have

(M ⋅ b⃗∗)(i) = ∑
(j,r)∈J∗

M(i, j, r) ⋅ b⃗∗(j, r) = ∑
b⃗(j)=r

M(i, j, r)

= ∑
b⃗(j)=r

Φ(Mℓ(i, j) ⋅ r + r ⋅Mr(i, j))

= Φ( ∑
b⃗(j)=r

Mℓ(i, j) ⋅ r + r ⋅Mr(i, j))

= Φ((Mℓ ⋅ b⃗ + (b⃗ ⋅Mr)T )(i)) = Φ(c⃗(i)) = Φ(c⃗)(i).
For the other direction, let b⃗ ∈ (Zd ×R)J∗ be a solution of the linear system

M ⋅ x⃗∗ = Φ(c⃗) over Zd ⊛R. We use Lemma 3.5 to decompose b⃗ = b⃗Ψ + b⃗Φ into
two J∗-vectors b⃗Ψ ∈ Ψ(Zd)J∗ and b⃗Φ ∈ Φ(R)J∗ . Since M is an I × J∗-matrix
over Φ(R), we have M ⋅ b⃗Φ = 0⃗. Hence, also b⃗Ψ is a solution of the linear system.

We use b⃗Ψ to construct a vector b⃗∗ ∈ RJ which is a solution of the system
Mℓ ⋅ x⃗ + (x⃗ ⋅Mr)T = c⃗. Specifically we set for j ∈ J :

b⃗∗(j) = Φ−1(∑
r∈R

b⃗Ψ(j, r) ⋅Φ(r)).
Claim: For all r, s ∈ R and z ∈ Ψ(Zd) we have

Φ(r ⋅Φ−1(Φ(s) ⋅ z)) = Φ(r ⋅ s) ⋅ z = z ⋅Φ(r ⋅ s) = Φ(Φ−1(Φ(r) ⋅ z) ⋅ s).

Proof of claim: Since z ∈ Ψ(Zd), we can equivalently write the term t ⋅ z as
t+t+⋯+t (z-times) for every t ∈ Φ(R). This immediately yields the claim. ⊣

With this preparation we have for i ∈ I that Φ(Mℓ ⋅ b∗ + (b∗ ⋅Mr)T )(i) =
Φ(∑

j∈J

Mℓ(i, j) ⋅Φ−1(∑
r∈R

b⃗Ψ(j, r) ⋅Φ(r)) +Φ−1(∑
r∈R

b⃗Ψ(j, r) ⋅Φ(r)) ⋅Mr(j, i))

= ∑
(j,r)∈J∗

Φ(Mℓ(i, j) ⋅Φ−1(b⃗Ψ(j, r) ⋅Φ(r)) +Φ−1(b⃗Ψ(j, r) ⋅Φ(r)) ⋅Mr(j, i))

= ∑
(j,r)∈J∗

Φ(Mℓ(i, j) ⋅ r + r ⋅Mr(j, i)) ⋅ bΨ(j, r)

= ∑
(j,r)∈J∗

M(i, j, r) ⋅ b⃗Ψ(j, r) = Φ(c⃗)(i).

This shows that Mℓ ⋅ b∗ + (b∗ ⋅Mr)T = c⃗ and thus completes our first reduction.
Finally, we observe that if we start from an ordered ring R, then also the

ring Zd ⊛R can easily be extended by a linear order. Indeed we can take the
lexicographical order on Zd ×R. This shows that SlvR⩽ ≤

m
DTC

SlvM⩽.

A closer inspection of our reduction SlvR ≤m
DTC

SlvM (see the proof of
Theorem 3.10) reveals that we have also established a DTC-reduction which
translates from (not necessarily commutative) rings to commutative rings.

Theorem 3.11. SlvR ≡m
DTC

SlvCR and SlvR⩽ ≡
m
DTC

SlvCR⩽.
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From ordered modules to cyclic groups We saw that, up to DTC-
reductions, the solvability problems over modules, rings, and commutative
rings are equivalent. Moreover, we presented a reduction from the solvability
problem over Abelian groups to the solvability problem over modules. To
complete the picture, we had to reduce the solvability problem over modules
to the solvability problems over Abelian groups. However, we can only give a
reduction for the special case of ordered modules. Actually, for this particular
case, we obtain a much stronger reduction, not only to Abelian groups, but
even to cyclic groups.

The reason why we need an ordering on the module is that, for our proof, we
have to decompose the additive group of the module into cyclic subgroups. In
general, such a decomposition is not unique and, due to symmetries, provably
not definable in a logic. Thus, it remains an interesting open question whether
a logical reduction, from modules to Abelian groups, can also be achieved by
using a different approach (for example, canonisation techniques).

Theorem 3.12. SlvM⩽ ≤FP SlvCG.

The proof of this theorem consists of three parts. First of all, we translate a
linear equation system over an R-module G into an equivalent linear equation
system over the commutative ring Zd ⊛ G where d is the exponent of G.
Moreover, we show that the resulting system has a solution over Zd ⊛G if, and
only if, it has a solution over Ψ(Zd) ≤ Zd ⊛G. For this step we use the same
idea as in the proof of Theorem 3.10, that is we replace each column d⃗ of the
coefficient matrix by the set of columns {d⃗ ⋅ g ∶ g ∈ G}.

As a second step, we use the linear order on the group G to fix a set of
generators g1, . . . , gk. This allows us to identify each group element with an
element in ⟨g1⟩⊕⋯⊕ ⟨gk⟩ ≤ Zd ⊕⋯⊕Zd.

Finally, we transform the resulting linear equation system over Zd ⊛G into
an equivalent linear equation over Zd where we use the decomposition of G
into cyclic subgroups together with the fact that solutions of the modified
system can always be found over Zd.

Lemma 3.13. There is a DTC-interpretation I which translates a linear
equation system A = (A,G,R,+, ⋅,⩽,M, c⃗) ∈ Ls(τ⩽

les-m
) over an ordered R-

module G into an equivalent linear equation system I(A) ∈ Ls(τ⩽
les-r
) over the

ordered commutative ring Zd⊛G, where d denotes the exponent of the group G.
Moreover, the coefficient matrix and the constants vector of I(A) have entries
in Φ(G), and, in particular, the system I(A) is solvable if, and only if, it has
a solution over Ψ(Zd).
Proof. Let A = (A,G,R,+, ⋅,⩽,M, c⃗) ∈ Ls(τ⩽

les-m
) be (a representation of) a

linear equation system over the R-module G where M is an I × J-matrix over
the commutative ring R, c⃗ is an I-vector over G, and where the encoded linear
equation system is M ⋅ x⃗ = c⃗ for a J-vector x⃗ = (xj)j∈J of variables xj that
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range over G. For J∗ ∶= J ×G we let M∗ be the following I × J∗-matrix over
Φ(G) ≤ Zd ⊛G:

M∗(i, j, g) ∶= Φ(M(i, j) ⋅ g) for i ∈ I, (j, g) ∈ J∗.
We claim that the linear equation system M∗ ⋅ x⃗∗ = Φ(c⃗) over the ring Zd ⊛G

is solvable if, and only if, the system M ⋅ x⃗ = c⃗ has a solution b⃗ ∈ GJ . Moreover,
we claim that whenever the system M∗ ⋅ x⃗∗ = Φ(c⃗) is solvable, then we can find
a solution b⃗∗ ∈ Ψ(Zd)J∗ . For the one direction, let b⃗ ∈ GJ be such that M ⋅ b⃗ = c⃗.
For

b⃗∗(j, g) ∶=
⎧⎪⎪⎨⎪⎪⎩
(1,0), if b⃗(j) = g
(0,0), else,

we have b⃗∗ ∈ Ψ(Zd)J∗ and

M∗ ⋅ b⃗∗ = (∑
j∈J

∑
g∈G

Φ(M(i, j) ⋅ g) ⋅ b⃗∗(j, g))
i∈I
= (∑

j∈J

Φ(M(i, j) ⋅ b⃗(j)))
i∈I

= Φ(∑
j∈J

M(i, j) ⋅ b⃗(j))
i∈I
= Φ(c⃗).

For the other direction, let b⃗∗ ∈ (Zd × G)J∗ be a solution of the linear
system M∗ ⋅ x⃗∗ = Φ(c⃗). By Lemma 3.5 we can write b⃗ = b⃗Ψ + b⃗Φ for two unique
J∗-vectors b⃗Ψ ∈ Ψ(Zd)J∗ and b⃗Φ ∈ Φ(G)J∗ . Since all entries of M∗ are in Φ(G)
and since Φ(g) ⋅Φ(h) = 0 for all g, h ∈ G, we have M∗ ⋅ b⃗Φ = 0⃗ which means that
also b⃗Ψ is a solution of the linear system. This in turn proves our second claim.

To construct a solution b⃗ ∈ GJ of the linear system M ⋅ x⃗ = c⃗ we set for j ∈ J

b⃗(j) = Φ−1(∑
g∈G

Φ(g) ⋅ b⃗Ψ(j, g)).

This completes our proof, since for all i ∈ I we have

Φ(M ⋅ b⃗)(i) = Φ(∑
j∈J

M(i, j) ⋅Φ−1(∑
g∈G

Φ(g) ⋅ b⃗Ψ(j, g)))

=∑
j∈J

∑
g∈G

Φ(M(i, j) ⋅Φ−1(Φ(g) ⋅ b⃗Ψ(j, g)))

= ∑
(j,g)∈J∗

Φ(M(i, j) ⋅ g) ⋅ b⃗Ψ(j, g) = Φ(c⃗)(i).

Finally, the linear order on G suffices to construct a linear order on Zd⊛G.

In order to prove Theorem 3.12, we describe an FP-reduction which shows
that SlvM⩽ ≤FP SlvCG. By Lemma 3.13 it suffices to treat the case of a
linear equation system M ⋅x⃗ = c⃗ over the ring Zd⊛G where M is an I×J-matrix
over Φ(G) and where c⃗ is an I-vector over Φ(G). Moreover, we know that the
system is solvable if, and only if, there exists a solution vector b⃗ ∈ Ψ(Zd)J . As
before, d denotes the exponent of the group G.
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The next step is to use the linear order on Φ(G) to fix a generating set
{g1, . . . , gk} ⊆ Φ(G) of the (Abelian) group (Φ(G),+) such that the group
(Φ(G),+) decomposes as (Φ(G),+) ≅ ⟨g1⟩⊕⋯⊕ ⟨gk⟩. Recall from Section 2.5
that this step can be expressed in fixed-point logic. We let ℓi denote the order
of gi in (Φ(G),+). Note that ℓi ∣ d for all 1 ≤ i ≤ k. For notational convenience
we set ei ∶= d/ℓi. We identify the cyclic group ⟨gi⟩ ≤ Φ(G) with Zℓi

. More
specifically, we use the group isomorphism Zℓi

→ eiZd, z ↦ ei ⋅z (for 0 ≤ z < ℓi−1)
to see that the groups ⟨gi⟩ ≤ Φ(G) can homomorphically be embedded into Zd.
Altogether, we obtain a group isomorphism Λ ∶ Φ(G) ∼Ð→ Λ(G) ∶= (e1Zd)⊕⋯⊕

(ekZd) which represents every h ∈ Φ(G) as Λ(h) = (h1, . . . , hk) where hi ∈ eiZd.
We write Λi(h) for the projection onto the i-th component, i.e. Λi(h) = hi.
Considering hi as an element of Λ(G), we have Λ(h) = ∑k

i=1 Λi(h) for h ∈ Φ(G).
Clearly, due to the linear order on Φ(G), the decomposition of (Φ(G),+)

into its cyclic components ⟨gi⟩, the groups eiZd, and the isomorphism Λ together
with the projections Λi can easily be constructed via an FP-interpretation.
The exponent of the group Λ(G) is d, so we can consider the natural extension
of Λ(G) to a (right) Zd-module. As it turns out, the isomorphism Λ respects
the multiplication by elements from Zd in the following sense.

Claim: For g ∈ Φ(G) and z ∈ Zd we have Λ(g ⋅Ψ(z)) = Λ(g) ⋅ z. Moreover, we
have Λ(g) ⋅ z = ∑k

i=1 Λi(g) ⋅ z.
Proof of claim: For the first claim just use that g ⋅ Ψ(z) = g + ⋯ + g and
Λ(g) ⋅ z = Λ(g) +⋯+Λ(g) (where x +⋯+ x abbreviates the z-fold sum of the
element x). The second claim follows analogously by using distributivity. ⊣

By the above claim, the linear equation system M ⋅ x⃗ = c⃗ has a solution
b⃗ ∈ Ψ(Zd)J if, and only if, there is a J-vector b⃗∗ ∈ ZJ

d such that Λ(M) ⋅ b⃗∗ = Λ(c⃗).
We write Λ(M) = ∑k

i=1 Λi(M) and Λ(c⃗) = ∑k
i=1 Λi(c⃗). Then Λ(M) ⋅ b⃗∗ = Λ(c⃗)

is equivalent to Λi(M) ⋅ b⃗∗ = Λi(c⃗) for all 1 ≤ i ≤ k. Note that Λi(M) is an
I × J-matrix over Zd and Λi(c⃗) is an I-vector over Zd.

We proceed to combine the linear equation systems Λi(M) ⋅ x⃗∗ = Λi(c⃗)
for 1 ≤ i ≤ k over Zd into a single linear system over Zd. To this end, we
set I∗ ∶= {1, . . . , k} × I and we define an I∗ × J-coefficient matrix M∗ and an
I∗-vector c⃗∗ over Zd as follows

M∗(ℓ, i, j) ∶= Λℓ(M(i, j)) and c⃗∗(ℓ, i) = Λℓ(c⃗(i)), for (ℓ, i) ∈ I∗, j ∈ J.
Then for every J-vector b⃗∗ over Zd we have M∗ ⋅ b⃗∗ = c⃗∗ if, and only if,
Λi(M) ⋅ b⃗∗ = Λi(c⃗) for all 1 ≤ i ≤ k. Again, it is clear that M∗ and c⃗∗ can easily
be constructed via an FP-interpretation.

So far, we have translated the given linear equation system over an ordered
R-module G into an equivalent linear equation system over the ring Zd, where
d is the exponent of G. To finally obtain an equivalent linear equation system
over the cyclic group Zd, the crucial step is to transform linear terms z ⋅ x into
equivalent sets of linear terms which only use the element 1 ∈ Zd as coefficients.
The following lemma shows that this is possible and thus it completes our
proof of Theorem 3.12.
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Lemma 3.14. There is a DTC-interpretation I which translates a linear
equation system A ∈ Ls(τles-r) over a ring Zd into an equivalent linear equation
system I(A) ∈ Ls(τles-g) over the cyclic group Zd.

Proof. Let M ⋅ x⃗ = c⃗ be a linear equation over the ring Zd where M is an
I × J-matrix and c⃗ is an I-vector over Zd. Note that by Lemma 3.3 we can
define the natural linear order on Zd in DTC.

The idea to obtain an equivalent linear system over the group Zd is very
simple. We just need to rewrite linear terms z ⋅ x for constants z ∈ Zd and
variables x as z ⋅ x = x+⋯+ x (z-times). Technically, this requires to introduce
d copies {xz

∶ z ∈ Zd} of each variable x together with the constraints xz1 = xz2

for all z1, z2 ∈ Zd. Then we can substitute each term z ⋅x by the term ∑z1<z x
z1

and we obtain an equivalent linear equation system over the extended set of
variables {xz

j ∶ (j, z) ∈ J∗} where J∗ ∶= J ×Zd.
However, we still face a problem. When we write the constraints xz1 = xz2

for z1, z2 ∈ Zd as linear equations xz1 −xz2 = 0 they still contain −1 as coefficient.
To overcome this obstacle we introduce for every variable xz

j its dual variable xz
j

together with the equations xz
j +x

z
j = 0. Then, the linear equations xz1 −xz2 = 0

can equivalently be expressed as xz1 + xz2 = 0.

Formally, we let I+ ∶= I⊎(J×Zd×Zd)⊎(J×Zd) and J+ ∶= J∗×{1,−1} and we
define an I+ × J+-coefficient matrix M+ over {0,1} and an I+-constants vector
c⃗+ over Zd which encode three different types of equations. Here, a variable
indexed by (j, z, ℓ) ∈ J+ corresponds to xz

j if ℓ = 1 and to its dual version xz
j

if ℓ = −1. Equations indexed by elements i ∈ I correspond to equations of
the original linear equation system where we substitute linear terms z ⋅ x by
∑z1<z x

z1 . Moreover, equations indexed by elements (j, z1, z2) ∈ J × Zd × Zd

correspond to the constraints xz1

j + xz2

j = 0, and finally, equations indexed by
elements (j, z) ∈ J ×Zd correspond to the constraints xz

j + x
z
j = 0. Specifically,

we set for (j, z, ℓ) ∈ J+,

M+(i, (j, z, ℓ)) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, ℓ = 1, z <M(i, j)
0, else,

M+((j, z1, z2), (j, z, ℓ)) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, z = z1, ℓ = 1

1, z = z2, ℓ = −1

0, else,

M+((j, z), (j, z, ℓ)) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1, ℓ = 1

1, ℓ = −1

0, else.

Accordingly, the constants vector c⃗+ over Zd is defined as c⃗+(i) = c⃗(i) for i ∈ I
and c⃗+(j, z1, z2) = c⃗+(j, z) = 0 for all other components (j, z1, z2), (j, z) ∈ I+. In
this way we obtain an equivalent linear equation system M+ ⋅ x⃗ = c⃗+ over the
group Zd. Clearly, the described transformations can easily be defined using a
DTC-interpretation, since an order on the ring Zd is DTC-definable.
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Figure 3.3: Logical reductions between the solvability problems over groups,
rings, and modules

3.3 Definable structure theory of finite

commutative rings

In Section 3.2 we saw that the solvability problems over cyclic groups and
ordered modules, or rings, are, up to FP-reductions, equivalent. In other words,
if we restrict ourselves to the case of solvability problems over ordered algebraic
domains, then every logic L which can express SlvCG, and which is closed
under FP-reductions, can already express all considered solvability problems.

While the step from Abelian groups to modules, or to commutative rings,
also works in the absence of a linear order, for the other direction, we crucially
made use of an order to fix a generating set for the underlying additive group.
However, our reduction can obviously be applied also for such unordered
commutative rings for which can define a linear order on the ring elements.
We thus set out to systematically study in this section on which classes of
commutative rings we can obtain definable orderings. Let us first formulate
this question more precisely.
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Definition 3.15. Let K ⊆ S(τring) be a class of commutative rings. We say that
K allows L-orderings if there is an L-formula ϕ(x1, . . . , xk, y, z) ∈ L(τring) such
that for every commutative ring A = (R,+, ⋅) ∈ K the relation ϕA(r1, . . . , rk) is
a linear order on R for some choice of ring elements r1, . . . , rk ∈ R.

Due to symmetries, it is easy to see that the class of all commutative
rings does not allow FP-orderings. As a simple example, consider the family
of commutative rings Z

n
2 for n ≥ 1. Then for every possible number k ≥ 1

of parameters there is an n ≥ k such that (Zn
2 , r1, . . . , rk) has non-trivial

automorphisms for every choice of r1, . . . , rk ∈ Z
n
2 . In other words, the class of

commutative rings K = {Zn
2 ∶ n ≥ 1} does not allow L-definable orderings for

any reasonable logic L.
What makes this example further interesting is that we can still reduce

linear equation systems over rings from K to equivalent linear equation systems
over cyclic groups (actually to systems over Z2) without using any linear
order at all. Let us go through this reduction, as we think, that many of
the following algebraic ideas, in particular the notion of local rings and the
first-order definable projection onto local summands (see below), can well be
illustrated by considering the rings Z

n
2 . Hence, we let R = Zn

2 , and we denote,
for 1 ≤ i ≤ n, by ei = (0, . . . , 0, 1, 0, . . . , 0) ∈ Zn

2 the ring element which has zeros
in every component, except for the i-th one. Then the following holds:

• e2
i = ei, and ei ⋅ ej = 0 for i ≠ j, and

• 1 = e1 + e2 +⋯+ en, and ei ⋅R ≅ Z2.

Let M ⋅ x⃗ = c⃗ be a linear equation system over R. Then we claim that this
system is solvable if, and only if, for all 1 ≤ i ≤ n, the linear equation systems
ei ⋅M ⋅ x⃗ = ei ⋅ c⃗ over ei ⋅ R ≅ Z2 are solvable. To see this, we write x⃗ as
x⃗ = ∑ ei ⋅ x⃗ = e1x⃗ + ⋯ + enx⃗, and, analogously, we write M as M = ∑ ei ⋅M

and c⃗ as c⃗ = ∑ ei ⋅ c⃗ (this is possible, since 1 = e1 + ⋯ + en). Then, the linear
equation system can be written as (∑ ei ⋅M) ⋅(∑ ei ⋅ x⃗) = ∑ eic⃗. Moreover, since
ei ⋅ ej = 0 for all i ≠ j, and since, e2

i = ei, we can also write this equation as
∑ ei ⋅M ⋅ x⃗ = ∑ eic⃗. In particular, by multiplying this equation by ei, we obtain,
again by using that ei ⋅ ej = 0 for i ≠ j, the linear system ei ⋅M ⋅ x⃗ = ei ⋅ c⃗ over
Z2 from above. Hence, indeed, the solvability of these linear equation systems
over Z2 is a necessary and sufficient condition for the solvability of the original
system M ⋅ x⃗ = c⃗ over R.

What have we learnt from this example? First, we cannot hope to obtain
definable orderings on the class of all commutative rings. Secondly, for reducing
linear equation systems to cyclic groups, this may not be necessary at all, since,
in some cases, such linear systems can be reduced to an equivalent family of
linear systems over simpler rings which can be ordered very easily. In other
words, the hope might be that we can obtain definable orderings on these
“basic building” blocks of commutative ring. To pursue this target, we will
look at the algebraic structure theory of (finite) commutative rings.
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Before, let us also give two examples of classes of commutative rings which
do allow FP-orderings. First of all, this obviously holds for the class of all
residue rings Zd, since such rings have a cyclic additive group. The following
example might be a bit more surprising, but is based on the same argument.

Remark 3.16. The class of all fields allows DTC-orderings.

Proof. It suffices to recall from algebra that the multiplicative group of every
(finite) field is cyclic [56]. Then the result follows from Lemma 3.3.

We now set out to systematically identify classes of commutative rings
with FP-orderings. From our previous observations it follows that for each
such class of rings K, every logic L which extends FP and which can express
SlvCG can also express the solvability problem over rings from K. In other
words, the solvability problem over rings from K is, up to FP-reductions, at
most as difficult as the solvability problem SlvCG over cyclic groups.

Remark 3.16 relies on the fact that fields are simple commutative rings.
This raises the question of whether there is some kind of algebraic measure for
the complexity of commutative rings which is helpful to identify classes that
allow FP-orderings. Fortunately, the algebraic structure of commutative rings
is well characterised, and we can apply the available algebraic theory to study
our question about the FP-definability of linear orderings. Since many of the
following algebraic characterisations only hold for finite commutative rings, we
remind the reader of our implicit agreement that all structures, including all
algebraic structures, such as rings, are finite, if not explicitly stated otherwise.

Let us briefly sketch our next steps. First, we establish a first-order
reduction which translates (many) problems from the field of linear algebra
over commutative rings (for instance, the solvability problem) to corresponding
problems over local rings. In particular, this means that, for our applications, it
suffices to study the question of FP-orderings on classes of local rings. Secondly,
we consider the class of chain rings, and prove that they allow FP-orderings.
Thirdly, we generalise our techniques further to arrive at our main result in
this section: for every fixed k ≥ 1, the class of local rings for which the maximal
ideal is generated by at most k elements (so called k-generated local rings, see
Definition 3.30), allows FP-orderings.

We start to review some basic structure theory of commutative rings.
Recall that a commutative ring R is local if it contains a unique maximal ideal
m ⊴ R. Let us summarise some equivalent characterisations to obtain a better
understanding for this notion.

Lemma 3.17. A commutative ring R is local if, and only if, one of the
following equivalent conditions is satisfied.

(i) R ∖R∗ is an ideal in R.

(ii) The elements 0 and 1 are the only non-trivial idempotent elements, that
is if x2 = x for x ∈ R then x ∈ {0,1}.
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Proof. If R ∖R∗ is an ideal, then it has to be the unique maximal ideal, since
each proper ideal i is contained in R ∖R∗. For the other direction, assume
that there exists a unique maximal ideal m ⊂ R ∖R∗. Then we fix a non-unit
r ∈ R ∖ (R∗ ∪ m) and consider a maximal ideal i ⊇ r ⋅ R. Since m ≠ i this
contradicts the uniqueness of the ideal m.

For the second characterisation, assume that the ring R is local but contains
a non-trivial idempotent element x ∈ R, i.e. x ⋅ (1 − x) = 0 but x ∉ {0,1}. Then
also (1 − x) ∉ {0,1} and (1 − x)2 = (1 − x) is another non-trivial idempotent
element. Moreover, x and (1 − x) are both non-units: if x were a unit, then
the equation x ⋅ (1 − x) = 0 would imply 1 − x = 0 which means that x = 1, a
contradiction. Similarly, if (1 − x) were a unit, then we had x = 0, again a
contradiction. In particular, this means that x, (1 − x) ∈ m where m = R ∖R∗

denotes the maximal ideal of R. But then x + (1 − x) = 1 ∈ m which is a
contradiction to m being a proper ideal. For the other direction, if R only
contains trivial idempotents, then we claim that every non-unit in R is nilpotent.
To see this, note that, since R is finite, we can find for every element x ∈ R an
integer ℓ ≥ 1 such that xℓ

⋅ xℓ = xℓ. If x is a non-unit then clearly xℓ ≠ 1 which
means that xℓ = 0 as claimed. We conclude that x is a non-unit if, and only if,
x is nilpotent. Hence, if x and y are non-units, then we can find ℓ ≥ 1 such
that xℓ = yℓ = 0 which also means that (x + y)2ℓ = 0. Hence, the set R ∖R∗

forms an ideal in R.

Local rings play the central role in the structure theory of (finite) commu-
tative rings. The reason is that one can decompose each commutative ring R
into a sum of local rings. Moreover, these local rings can be chosen as ideals
generated by certain minimal idempotent elements, and this decomposition
is, up to a permutation of the summands, unique (cf. [14]). As we show next,
this decomposition is also definable in first-order logic.

Lemma 3.18. Let R be a commutative ring and let E ⊆ R be a set of idempo-
tent elements which are pairwise orthogonal and for which ∑e∈E e = 1. Then
R =⊕e∈E eR.

Proof. Since 1 ∈⊕e∈E eR we have R ⊆⊕e∈E eR. Moreover, let ∑e∈E ere = 0 for
some ere ∈ eR. Since e2 = e and ef = 0 for different e, f ∈ E, it follows that
e(∑e∈E ere) = ere, which in turn shows that ere = 0 for all e ∈ E. Hence, all
ring elements have a unique representation as elements in ⊕e∈E eR. Moreover,
we have (∑e∈E ree) ⋅ (∑e∈E see) = ∑e∈E(rese)e and (∑e∈E ree) + (∑e∈E see) =
∑e∈E(re + se)e for all rese ∈ R which proves our claim.

We say that an idempotent element e ∈ R, e ≠ 0, is minimal if it cannot
be written as the sum e = f0 + f1 of two orthogonal idempotent elements
f0, f1 ≠ 0. For example, by Lemma 3.17, the element 1 is minimal if, and only
if, R is local. As we show next, each idempotent element, which is different
from 0, can be expressed as a sum of minimal idempotent elements which
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are pairwise orthogonal. Moreover, there is a strong connection between the
minimal idempotent elements of the ring R and its local subrings.

Lemma 3.19. Let e ∈ R, e ≠ 0, be an idempotent element.

(a) The ring eR is local if, and only if, e is minimal.

(b) The element e can be written as e = f1 +⋯+ fk for idempotent elements
fi which are pairwise orthogonal and minimal.

Proof. The identity element of multiplication in eR is e. Assume that eR is
local and that e = f0 + f1 for two non-zero idempotent elements f0 and f1

which are orthogonal. Then efi = fi for i = 0, 1. Since eR is local, we conclude
that fi ∈ {0, e} for i = 0,1. Hence, fi = e for both i = 0,1 and thus e = 0, a
contradiction.

For the other direction, assume that eR is not local. By Lemma 3.17 we can
find an idempotent element er ∈ eR different from 0 and e. Then also (e − er)
is idempotent and different from 0 which proves our claim as e = er + (e − er).

For the second part, assume that e is not minimal. By definition we can
find two non-zero idempotent orthogonal elements f0, f1 such that e = f0 + f1.
Then fie = fi for i = 0, 1 because of the orthogonality of f0 and f1. In particular,
fi ∈ eR for i = 0,1. We also have fiR ⊂ eR since otherwise we had e = fir for
some r ∈ R which would imply f1−i = ef1−i = 0. If the elements f0 or f1 are
not minimal, then we can continue the process with these elements. Note that
if r, s, t ∈ R are idempotent elements such that rs = 0 and (r + s)t = 0, then
the elements r, s and t are pairwise orthogonal. Since the ring R is finite, the
condition fiR ⊂ eR guarantees that the recursion eventually stops.

For a commutative ring R we define its base as the set B(R) ⊆ R consisting
of the minimal, non-zero, idempotent elements of the ring R. By Lemma 3.17
we have B(R) = {1} if, and only if, the ring R is local. From the definition it
follows that the base B(R) is first-order definable. We are prepared to state
the central structure theorem for commutative rings.

Theorem 3.20 (see e.g. [14]). Let R be a (finite) commutative ring. Then
R =⊕e∈B(R) eR is a decomposition of R into local rings.

Proof. Assume that R is not local. For convenience, we set E ∶= B(R). By
Lemma 3.18 and Lemma 3.19 (a) it suffices to show that ∑e∈E e = 1 and e ⋅f = 0

for all e, f ∈ E with e ≠ f . First of all, if e ⋅ f ≠ 0 for e, f ∈ E with e ≠ f , then
e = ef + (e − ef) were a decomposition of e into orthogonal idempotents. We
know that ef ≠ 0, so by the minimality of e we have e = ef . However, we also
have the decomposition f = ef + (f − ef) of f into the orthogonal idempotents
ef and f −ef . Again by minimality of f we conclude that f = ef which implies
that e = f , a contradiction.

Moreover, Lemma 3.19 (b) shows that for some E′ ⊆ E we have 1 = ∑e∈E′ e.
Assume that E′ ⊂ E. Then we can choose f ∈ E ∖E′. By orthogonality we
have f = f ⋅ 1 = f ⋅ (∑e∈E′ e) = 0, a contradiction.
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Next, we use Theorem 3.20 to reduce a wide range of linear-algebraic
problems over commutative rings to local rings. In particular, our reduction
can be applied for the solvability problem SlvCR over commutative rings.
The crucial step is to observe that not only the ring base B(R), but also the
canonical isomorphism π ∶ R →⊕e∈B(R) eR can be defined in first-order logic.

Lemma 3.21. There is an FO(τring)-formula ψ(x, y, z) such that for all
commutative rings R, all e ∈ B(R) and all elements r, re ∈ R, we have R ⊧
ψ(e, r, re) if, and only if, re is the projection of r onto the local summand eR.

Proof. To see this, we observe that r = ∑e∈B(R) er. Hence, we can simply set
ψ(x, y, z) = (z = x ⋅ y).
The canonical isomorphism R →⊕e∈B(R) eR can be extended component-wise
to a mapping RI×J →⊕e∈B(R)(eR)I×J which decomposes every I × J-matrix
M over the ring R into a set {eM ∶ e ∈ B(R)} of I × J-matrices eM over
eR in such a way that M = ∑e∈B(R) eM . Similarly, every I-vector v⃗ over
R can be decomposed into a set {ev⃗ ∶ e ∈ B(R)} of I-vectors over eR with
v⃗ = ∑e∈B(R) ev⃗. Moreover, this decomposition can be expressed in first-order
logic by Lemma 3.21.

According to the ring decomposition R = ∑e∈B(R) eR of R into the local
summands eR, we can identify the addition and multiplication on R with
the component-wise operations induced on the summands eR. In particular,
this shows that arithmetic over R can be reduced to arithmetic over the local
summands eR. Let us illustrate this by the following two examples.

First, let M be an I × J-matrix over R and let c⃗ be an I-vector over R
which together determine the linear equation system M ⋅ x⃗ = c⃗. We claim that
the linear equation system M ⋅ x⃗ = c⃗ over R is solvable if, and only if, for every
e ∈ B(R) the linear equation system (eM) ⋅ x⃗ = ec⃗ over the local ring eR is
solvable. Indeed, for b⃗ ∈ RJ we have

M ⋅ b⃗ = ( ∑
e∈B(R)

eM) ⋅ ( ∑
e∈B(R)

eb⃗) = ∑
e∈B(R)

(eM) ⋅ (eb⃗) = ∑
e∈B(R)

e(M ⋅ b⃗).

Hence, we have M ⋅ b⃗ = c⃗ if, and only if, (eM) ⋅ (eb⃗) = ec⃗ for all e ∈ B(R), which
yields our claim.

Secondly, we discuss the problem of matrix multiplication. To this end, let
M be an I × J-matrix over R and let N be a J ×K-matrix over R. Again, to
obtain the I ×K-matrix M ⋅N over R, it suffices to determine the products of
all pairs of matrices eM and eN for e ∈ B(R), since

M ⋅N = ( ∑
e∈B(R)

eM) ⋅ ( ∑
e∈B(R)

eN) = ∑
e∈B(R)

(eM) ⋅ (eN) = ∑
e∈B(R)

e(M ⋅N).

Hence, for both queries, that is for the solvability of linear equation systems
and for matrix multiplication, we obtain first-order truth table reductions
which transform instances over commutative rings into an equivalent family of
instances over local rings. In particular, we have:
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Theorem 3.22. SlvCR ≡tt
FO

SlvLR.

By using similar arguments, it follows that many other linear-algebraic
problems over commutative rings can be reduced, via first-order truth table
reductions, to equivalent problems over local rings. This includes, for example,
defining the characteristic polynomial of a square matrix, or the inverse of
a non-singular square matrix. As a consequence, it suffices to study the
descriptive complexity of these problems over local commutative rings. In fact,
in [27] we show that the characteristic polynomial of a square matrix over a
Galois ring (which is a certain kind of local ring) can be defined in FPC, and
for the case of ordered local rings, we prove that the inverse of a non-singular
square matrix can be defined in FPC. By the above reduction, this can be
lifted to all commutative rings whose local summands are Galois rings and
ordered local rings, respectively.

Recall that we set out to identify classes of commutative rings which allow
FP-orderings (cf. Definition 3.15). Such classes K of commutative rings are of
special interest, since the solvability problem over K reduces, via FP-reductions,
to the solvability problem over cyclic groups. We saw already that the class of
all commutative rings does not allow FP-orderings. However, by Theorem 3.22,
we can restrict ourselves to classes of local rings, so we might hope that the
class of all local rings allows FP-orderings. Unfortunately, it turns out that
this is not the case.

To see this, we again construct a family of local rings with rich automor-
phism groups. Specifically, for n ≥ 0 we consider the infinite commutative
ring Tn = Z2[X1, . . . ,Xn] together with the ideal in ⊴ Tn which is generated by
{XiXj ∶ 1 ≤ i, j ≤ n}. Then the family of finite commutative rings

Rn ∶= Tn/in (E 3.1)

has the desired properties.

Lemma 3.23. For all n ≥ 0, Rn is a local ring and Aut(Rn) ≅GLn(Z2).
Proof. Let R = Rn. The elements of R can be represented as α +∑n

i=1 βiXi

with α,βi ∈ {0,1}. To see that R is local, we let m ⊴ R be the ideal generated
by the elements {X1, . . . ,Xn} ⊆ R, i.e. m = {β1X1 +⋯+βnXn ∶ βi ∈ {0, 1}}. We
claim that m is the unique maximal ideal of the ring R. Indeed, every element
s ∈ R ∖m is of the form s = 1 +∑n

i=1 βiXi for suitable βi ∈ {0, 1}. But then it is
easy to verify that s2 = 1 which means that s ∈ R∗.

Moreover, we can identify the ideal m with the group Z
n
2 which means that

there is a one-to-one correspondence between GLn(Z2) and the set of (group)
automorphisms of m. Hence, Aut(m) ≅ GLn(Z2). We extend each of these
group automorphisms π ∈ GLn(Z2) to a ring automorphism of R by setting
π(α +∑n

i=1 βiXi) ∶= α + π(∑n
i=1 βiXi). It is straightforward to verify that this

gives rise to a ring automorphism of R.

Theorem 3.24. The class of all local rings does not allow FP-orderings.
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Proof. Assume that k ≥ 1 is the number of parameters of an FP-formula which
defines a linear order on the class of local rings. We consider the local ring Rk+2.
By Lemma 3.23 we know that for every choice of parameters r1, . . . , rk ∈ Rk+2

there is a non-trivial automorphism π ∈ Aut(R) which pointwise fixes the
elements ri. This, however, contradicts the fact that linearly ordered (finite)
structures are rigid.

Hence, to identify classes K of local rings which allow an FP-ordering, we
have to bound the complexity of local rings which are contained in K. But
what are “complicated” local rings? Ideally, we want that an appropriate
complexity measure reflects our observations that the class of all fields and the
class of all cyclic rings Zd are simple. Of course, one can design such a measure
in various ways. Here, we choose to define the complexity of a local ring via
the size of a minimal set of generators for the maximal ideal of the ring.

To motivate this approach, let us first focus on the class of chain rings.
Recall that a chain ring is a local ring in which every ideal is principal, that is
generated by a single element. Thus, with respect to our complexity measure,
chain rings are as simple as possible. Note, however, that the class of chain
rings is quite rich as it includes, for example, the class of all fields and the class
of all cyclic rings Zd (where d is a prime power). As we show next, the class of
chain rings indeed allows an FP-ordering. Our argument relies on a particular
normal form for the ring elements in chain rings. The crucial ingredient for
this normal form is the notion of the Teichmüller coordinate set.

Definition 3.25. Let R be a local ring with maximal ideal m and let F = R/m
be its residue field. The Teichmüller coordinate set Γ(R) is defined as Γ(R) ∶=
{r ∈ R ∶ rq = r} where q ∶= ∣F∣ is the size of the residue field.

It is easy to see that Γ(R) ∖ {0} forms a multiplicative subgroup of the
group of units of R. More importantly, Γ(R) yields a system of representatives
for the residue field F = R/m.

Lemma 3.26. Let R be a local ring and let a, b ∈ Γ(R), a ≠ b. Then (a−b) ∈ R∗.
Proof. Assume that a−b ∉ R∗. Since R is local, we know that a−b is contained
in the maximal ideal m ⊴ R which is the set of all non-units of R. Let a− b = x
for x ∈ m. For q = ∣F∣ being the size of the residue field F = R/m we have aq = a

and thus (b + x)q = b + x. Moreover, since bq = b it holds that

b + x = (b + x)q = bq
+

q

∑
i=1

(q
i
)xibq−i

= b + x ⋅ (
q

∑
i=1

(q
i
)xi−1bq−i).

Since q ∈ m and x ∈ m we have that y ∶= ∑q
i=1 (qi)xi−1bq−i ∈ m. We obtain

x = xy for y ∈ m. But this means x(1 − y) = 0 and since (1 − y) ∈ R∗, as in a
local ring the sum of a unit and a non-unit is a unit, this means x = 0.

Lemma 3.27. Let R be a local ring with maximal ideal m. Then every r ∈ R
can be written as r = a + s for a ∈ Γ(R) and s ∈ m.
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Proof. Let u ∈ R∗ be such that u +m generates the multiplicative group of the
residue field F = R/m. If we denote by q = ∣F∣ the size of F, then the size of the
multiplicative group of F is q − 1. Consequently we have (u +m)q−1 = (1 +m).

Next, we write q = pℓ for a prime p and ℓ ≥ 1. Since R is local, the set 1+m

forms a multiplicative group of order pk = ∣m∣ for k ≥ 0. Let uq−1 = 1 + x for
x ∈ m. Then (1 + x)pk

= 1 which means that vq−1 = 1 where v ∶= upk

. Note that
v ∈ Γ(R). Since pk and q−1 are co-prime, we conclude that also v+m generates
the multiplicative group of F. This finishes our proof, because Γ(R) ∖ {0}
forms a multiplicative group and every r+m for r ∈ R∗ can be written as vn

+m

for appropriate n ≥ 0.

The two preceding lemmas allow us to establish the following key property
of the Teichmüller coordinate set.

Lemma 3.28. Let R be a local ring with maximal ideal m and residue field
F = R/m. Then the mapping Γ(R)→ F, a↦ a +m is a bijection.

Proof. The mapping is injective, because otherwise, there exists a, b ∈ Γ(R)
with a ≠ b and a+m = b+m. Hence, (a− b) ∈ m which contradicts Lemma 3.26.
Moreover, the mapping is onto by Lemma 3.27.

We are prepared to show

Theorem 3.29. The class of all chain rings allows FP-orderings.

Proof. Let R be a chain ring with maximal ideal m. We fix a generator x ∈ m
for the ideal m, that is xR = m. The generator x will be a parameter of the FP-
formula which defines a linear order on the class of chain rings. The Teichmüller
coordinate set Γ(R), the residue field F = R/m and the bijection Γ(R)→ F are
FP-definable. Moreover, by fixing a generator for the multiplicative group of
F we obtain an FP-definable linear order on F and thus on Γ(R).

Let n ≥ 0 denote the nilpotency index of x. We claim that every ring
element r ∈ R can uniquely be expressed as

r =
n−1

∑
i=0

ai ⋅ x
i, for appropriate ai ∈ Γ(R). (⋆)

To show the existence of such an expression, we define for ℓ = 0, . . . , n the ideal
iℓ = x

ℓR, i.e. the ideal generated by xℓ. By definition we have

R = i0 ⊵ m = i1 ⊵ i2 ⊵ ⋯ ⊵ in−1 ⊵ in = {0}.
We show by induction on ℓ (starting with ℓ = n) that every element in iℓ

can be expressed in the form

r =
n−1

∑
i=ℓ

ai ⋅ x
i, for appropriate ai ∈ Γ(R).
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Let r = xℓ
⋅ s ∈ iℓ. If s ∈ m, then x ∣ s which means that r ∈ iℓ+1 and the

claim follows from the induction hypothesis. Otherwise, we have s ∈ R∗. By
Lemma 3.27 we can find a unique element a ∈ Γ(R) such that s = a + t for an
appropriate non-unit t ∈ m. Since x ∣ t we know from the induction hypothesis
that xℓ

⋅ t can be written as ∑n−1
i=ℓ+1 bi ⋅ x

i, hence r = a ⋅ xℓ
+∑n−1

i=ℓ+1 bi ⋅ x
i.

It remains to prove the uniqueness of such an expression. Assume, for
the sake of contradiction, that ∑n−1

i=0 ai ⋅ x
i = ∑n−1

i=0 bi ⋅ x
i for distinct tuples

ā, b̄ ∈ Γ(R)n. Let us choose the minimal j = 0, . . . , n−1 such that aj ≠ bj . Then
∑n−1

i=j (ai − bi) ⋅ xi = 0, aj − bj ≠ 0 which means that

xj
⋅ ( n−1

∑
i=j

(ai − bi) ⋅ xi−j) = 0.

By Lemma 3.26 we know that (aj − bj) ∈ R∗ which in turn implies that
(∑n−1

i=j (ai − bi) ⋅xi−j) ∈ R∗. This, however, yields xj = 0 which is a contradiction
to the choice of n.

We can easily turn the inductive argument from above into an FP-definable
recursive procedure to translate ring elements r ∈ R into their normal form (⋆).
Thus we can associate, in an FP-definable way, to each element r ∈ R with
r = ∑n−1

i=0 ai ⋅ x
i the tuple of elements ā ∈ Γ(R)n. Finally, since we have given

an FP-definable linear order on Γ(R), we obtain an FP-definable linear order
on R by using the lexicographical order on Γ(R)n.

Let us discuss the connection between the preceding theorem and our
earlier observation that the class of all local rings does not allow FP-orderings.
Recall that for the proof of Theorem 3.24 we constructed a family of local
rings Rn (cf. (E 3.1)) with sufficiently rich automorphism groups. In contrast,
the automorphism groups of chain rings are structurally much simpler. In fact,
a necessary condition for a class K of local rings to allow FP-orderings is that
there exists a constant k ≥ 0, such that for every ring R ∈ K we can find at most
k parameters r1, . . . , rk ∈ R, such that there is no non-trivial automorphism of
(R, r1, . . . , rk). Specifically, for the case of chain rings we have k = 2: as our
proof of Theorem 3.29 shows, in every chain ring R we can find two elements
(namely, a generator for the maximal ideal m and a generator for Γ(R)), such
that there is no non-trivial automorphism of R which fixes both elements.
Furthermore, we observe that we can always order the Teichmüller coordinate
set Γ(R) by fixing a single generator (this was not a specific property of chain
rings). Thus, in general, when we want to bound the structural complexity
of R, then we rather have to control the complexity of the maximal ideal m.
This now naturally leads to the following definition.

Definition 3.30. Let R be a local ring with maximal ideal m and let k ≥ 0.
We say that the ring R is k-generated if there exists elements r1, . . . , rk ∈ R

such that m = r1R +⋯+ rkR.

Lemma 3.31. Let Rn be the local ring defined in (E 3.1) on page 60. Then
Rn is n-generated but not (n − 1)-generated.
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Proof. Clearly, the maximal ideal m of the ring Rn is generated by X1, . . . ,Xn.
Assume that m were generated by a set of ring elements r1, . . . , rn−1 ∈ m. It
follows that riR = {0, ri} which means that ∣r1R + ⋯ + rn−1R∣ ≤ 2n−1. This,
however, yields a contradiction because ∣m∣ = 2n.

We conclude that (Rn)n≥0 is a family of local rings of strictly increasing
complexity (with respect to the size of minimal generating sets for the maximal
ideal). In particular, if we let LRk denote the class of k-generated local rings,
then we obtain the following stratification of the class of local rings:

LR0 ⊂ LR1 ⊂ ⋯ ⊂ LRk ⊂ ⋯.

We already saw that LR0, which is the class of all fields, and LR1, which
is the class of all chain rings, allow FP-orderings. In fact this holds for every
fixed level of this hierarchy.

Theorem 3.32. For every k ≥ 0, the class LRk of k-generated local rings
allows FP-orderings.

Proof. We generalise the ideas that we used in the proof of Theorem 3.29. Let
R be a k-generated local ring with maximal ideal m. We fix a set x1, . . . , xk ∈ m

of generators of m, i.e. m = x1R + ⋯ + xkR. These elements will be used as
parameters for the FP-formula which defines the linear order on R. Moreover,
we again fix a generator for Γ(R) ≅ R/m so that we obtain an FP-definable
linear order on Γ(R).

The main step is to prove the existence of a certain normal form for the
elements of R in terms of the generators x1, . . . , xk and Γ(R). Let ni denote
the nilpotency index of the element xi. First of all, we claim that every ring
element r ∈ R can be expressed in the form

r = ∑
(i1,...,ik)≤(n1−1,...,nk−1)

ai1⋯ik
xi1

1 ⋯x
ik

k
, with ai1⋯ik

∈ Γ(R). (⋆)

Here, ≤ denotes the lexicographical order on [n1]×⋯× [nk]. To see that every
ring element r ∈ R can be written in this form, let us consider the following
recursive procedure:

• If r ∈ R∗, then for a unique a ∈ Γ(R) we have r ∈ a+m, so r = a+ (x1r1 +

⋯+ xkrk) for some r1, . . . , rk ∈ R and we continue with r1, . . . , rk.

• Else r ∈ m, and r = x1r1 +⋯ + xkrk for some r1, . . . , rk ∈ R; we continue
the process with r1, . . . , rk.

Since xi1

1 ⋯x
ik

k
= 0 if iℓ ≥ nℓ for some 1 ≤ ℓ ≤ k, this process is guaranteed to

stop. Hence, we can express every element r ∈ R as a sum of elements of
the form axi1

1 ⋯x
ik

k
for a ∈ Γ(R) and (i1, . . . , ik) ∈ [n1] × ⋯ × [nk]. Moreover,

we observe that for all pairs a, b ∈ Γ(R) it either holds that a + b ∈ Γ(R) or
there exist elements c ∈ Γ(R), r ∈ m, r ≠ 0 such that axi1

1 ⋯x
ik

k
+ bxi1

1 ⋯x
ik

k
=
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cxi1

1 ⋯x
ik

k
+ rxi1

1 ⋯x
ik

k
. Hence, we can combine Γ(R)-multiples for the same

monomial xi1

1 ⋯x
ik

k
and obtain a new Γ(R)-multiple of xi1

1 ⋯x
ik

k
together with a

remainder which is a strict multiple of xi1

1 ⋯x
ik

k
. By repeating these two steps,

and by again using that xi1

1 ⋯x
ik

k
= 0 if iℓ ≥ nℓ for some 1 ≤ ℓ ≤ k, we finally

obtain an expression of r ∈ R in the form (⋆).
Note, however, that the described procedure neither yields a polynomial-

time algorithm nor do we obtain a unique expression, as for instance, the choice
of elements r1, . . . , rk ∈ R (in both recursion steps) need not to be unique. Still,
knowing only the existence of an expression of this kind, we can proceed as
follows. For any sequence of exponents (ℓ1, . . . , ℓk) ≤ (n1 − 1, . . . , nk − 1) we
define the ideal R[ℓ1, . . . , ℓk] ⊴ R as the set of all elements having an expression
of the form (⋆) where ai1⋯ik

= 0 for all (i1, . . . , ik) ≤ (ℓ1, . . . , ℓk). Using the
same arguments as above, it is straightforward to verify that R[ℓ1, . . . , ℓk]
indeed forms an ideal. Note that m = R[0, . . . ,0].

It is clear that we can define the ideal R[ℓ1, . . . , ℓk] in FP. Now we can
use the following FP-definable procedure to obtain a unique expression of the
form (⋆) for r ∈ R:

• Choose the minimal (i1, . . . , ik) ≤ (n1, . . . , nk) such that r = axi1

1 ⋯x
ik

k
+ s

for a (minimal) a ∈ Γ(R) and s ∈ R[i1, . . . , ik]. Continue with s.

Finally, as in the case of chain rings, the lexicographical ordering induced by
the lexicographical ordering on [n1]×⋯× [nk] and the ordering on Γ(R) yields
an FP-definable order on R.

As a direct consequence we obtain the main theorem of this section: for
every fixed k ≥ 0 the solvability problem over LRk, denoted by SlvLRk, reduces
via an FP-reduction to the solvability problem over ordered commutative rings.

Theorem 3.33. For every fixed k ≥ 0 we have SlvLRk ≤
tt
FP

SlvCR⩽.

3.4 Discussion

We studied the inter-definability of solvability problems over various classes of
(finite) Abelian groups, rings, and modules. Our main result is that whenever
the algebraic domains possess a built-in order, then linear equation systems
can be reduced to equivalent systems over cyclic groups of prime-power order
in fixed-point logic. Moreover, we identified rich classes of commutative rings
for which the same reduction can be applied, since we can obtain FP-definable
orderings on their local components.

The two immediate open problems are as follows. First of all, it remains
unclear whether a reduction to cyclic groups can also be achieved in the absence
of a linear order on the algebraic domain. In fact, we strongly made use of the
linear order to fix a generating set of the group (which is, in general, a highly
non-canonical object with large orbit). One way to circumvent this problem
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might be to consider a canonisation of the Abelian group. In fact, it is easy
to canonise Abelian groups in fixed-point logic with counting, but of course,
this does not help, since we also need some kind of definable correspondence
between the canonised group and the coefficients of the given linear equation
system. However, if we have a full correspondence between the group and its
canonical copy, then we already have a definable linear order on the group and
we are back at the beginning. Still, maybe the linear equation system provides
enough structure on the group to obtain a “partial” correspondence which
suffices to split the system and the group into an equivalent family of linear
equation systems over cyclic groups (similarly as for the case of commutative
rings where we projected the systems onto the local components of the ring).

Secondly, we have not answered our question from the beginning, that is
whether rank logic is able to express the solvability problem over all Abelian
groups. For ordered Abelian groups we saw that this question can be reduced
to the case of linear equation systems over cyclic groups of prime-power order.
The difficulty is that, although cyclic groups are very simple, they can only be
embedded into finite fields if they have prime order. For instance, can rank
logic define the solvability of linear equation systems over Z4? If not, then
we had a separation of rank logic (even of the revised version FPR

∗ with a
uniform rank operator, see Chapter 4) from polynomial time. On the other
hand, if FPR

∗ can define the solvability problem over all Abelian groups, then
this would open the door to study the definability of more general problems
from computational algebra, such as (Abelian) permutation group membership
problems, or the solvability of linear equation systems over the integers. So in
each case, an answer would be extremely interesting.

Furthermore, we think that it would be interesting to study the above
questions for certain special cases. For example, consider the class of all
structures A = (G,+,M) such that (G,+) is an Abelian group, such that
M ⊆ G, and such that the sum over the elements in M is the neutral element of
the group (G,+), that is such that ∑m∈M m = 0. Of course this class is just a
very simple instance of the solvability problem over Abelian groups. However,
already for this special case the (non-)definability in fixed-point logic with
(counting, rank) is open. We think that understanding this particular case
seems to be helpful if we want to make progress for the general case. Recently,
we studied this problem in the context a Master’s thesis. We obtained no
definite answer, but we have some interesting preliminary results. For example,
the problem turns out to be definable in solvability logic (where we require
solvability operators for linear equation systems over cyclic rings Zd). However,
at the moment we think that this class may already be definable in fixed-point
logic with counting.

Finally, we want to study solvability problems over infinite algebraic do-
mains. While, in this thesis, we studied linear equation systems only over finite
groups, rings, and modules, it would also be interesting to study the descriptive
complexity of linear equation systems, for example, over the integers. Surpris-
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ingly, it turns out that the solvability problem over the rationals is definable in
fixed-point logic with counting [28]. Moreover, there are very tight connections
between the solvability of certain families of linear programs and the power of
fixed-point logic with counting to distinguish between pairs of non-isomorphic
graphs [11, 52]. On the other hand, it immediately follows from the results
of Atserias, Bulatov, and Dawar [10] that the solvability of linear equation
systems over the integers cannot be defined in FPC, see also [80]. It is also
open whether the solvability problem over the integers can be defined in rank
logic (this might also depend on the representation of the coefficients). In
particular, the solvability problem over the integers uniformly generalises the
solvability problems over all finite rings Zn.

Another approach would be to study the solvability problem over non-
Abelian groups. We already mentioned that the solvability problem over every
non-Abelian group is known to be NP-complete (see [39]), but it would be
very interesting to prove a separation from, say rank logic, without using any
complexity theoretic assumptions.





Chapter 4

Linear-algebraic operators

over finite fields

In this chapter, we study solvability logic and rank logic. The main idea of
both logics is to extend fixed-point logic with counting by new mechanisms to
express the solvability of linear equation systems over finite fields. Recall that
Atserias, Bulatov, and Dawar [10] showed that the solvability of linear equation
systems over (finite) Abelian groups cannot be defined in fixed-point logic
with counting. Moreover, most of the known examples which separate FPC

from Ptime, like (variants of) the CFI-construction or the construction of
multipedes, reduce to solving linear equation systems over finite fields. Hence,
it is natural to study extensions of FPC by mechanisms which can express
such solvability problems, see [28, 59, 71, 80]. Solvability logic and rank logic
implement two different (though similar) ways of doing this.

Rank logic FPR was introduced in [28]. Very roughly, the idea is to identify
a definable binary relation ϕA ⊆ A ×A with the adjacency matrix

MA

ϕ ∶ A ×A→ {0,1}, (a, b)↦
⎧⎪⎪⎨⎪⎪⎩

1, if (a, b) ∈ ϕA

0, if (a, b) ∉ ϕA,

and to extend FPC by a new rank operator rkp, for every prime p ∈ P, which
can be used to form a rank term [rkp ϕ] whose value is the matrix rank of
MA

ϕ over the prime field Fp (for the precise definition we refer to Section 4.1).
Rank operators have quite surprising expressive power. For example, they
can define the transitive closure of symmetric relations, they can count the
number of paths in DAGs modulo p, and they can express the solvability of
linear equation systems over finite fields (recall that a linear equation system
M ⋅ x⃗ = c⃗ is solvable if, and only if, rk(M) = rk(M ∣ c⃗)) [28]. Furthermore,
rank operators can be used to define the isomorphism problem on various
classes of structures on which the Weisfeiler-Lehman method (and thus fixed-
point logic with counting) fails, for example classes of Cai, Fürer, Immerman
graphs [21, 28] and multipedes [55, 59], see also [1].

69
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Solvability logic FPS was proposed in [27, 80] as a different, though
conceptually similar, extension of FPC by solvability quantifiers slvp which
express the solvability of linear equation systems over prime fields Fp (see
Section 4.1 for the precise definition). It is clear that FPS can be embedded
into FPR (as rank operators can solve linear equation systems), but it is open
whether solvability logic is a strict fragment of rank logic.

We mentioned before that most of the known examples which separate FPC

from Ptime can be reduced to linear equation systems over finite fields. This
immediately shows that both logics, FPS and FPR, are more powerful than
FPC. On the other hand, almost nothing was known about the limitations of
their expressive power. For instance, it was open whether rank logic suffices to
capture polynomial time, whether rank operators (or solvability quantifiers)
can simulate fixed-point inductions [28], and also whether FPR (or even FPS)
can define the solvability of linear equation systems over all Abelian groups [27]
(which was the driving question in Chapter 3).

Another intriguing question was whether rank operators over different
prime fields can simulate each other. In other words: is it possible to reduce
(in FPC, say) the solvability problem (or even the matrix rank problem) over
the prime field Fp to the prime field Fq (where p, q are distinct)? In order to
answer this question, Dawar and Holm [29, 59] developed a powerful toolkit of
so-called partition games and they proved that one variant (so-called matrix-
equivalence games) precisely characterises the expressive power of infinitary
logic with matrix rank quantifiers. By using these games, Holm [59] gave a
partial answer to the above question: if we restrict to operators of arity one,
then rank operators over different prime fields have incomparable expressive
power. In this chapter, we use a different approach, which is based on symmetry
arguments, to extend this result to general rank operators (Theorem 4.19).

An important consequence of our separation result for rank operators is that
rank logic, as proposed in [28], fails to capture polynomial time (Theorem 4.20).
In the original definition of rank logic (and solvability logic) one considers
a distinct operator rkp (or slvp) for every prime p ∈ P. This is problematic,
since each formula can consequently access operators for a constant number
of different primes only. We exploit this deficiency to prove that the uniform
version of the matrix rank (and of the solvability) problem over Fp, where
p ∈ P is part of the input, cannot be expressed in FPR (nor in FPS). More
specifically, we construct, for every prime q ∈ P, a class of structures Kq on
which FPC fails to capture polynomial time, and on which rank operators
(and thus solvability quantifiers) over every prime field Fp, p ≠ q, can already
be simulated in FPC. On the other hand, rank operators (or solvability
quantifiers) over Fq suffice to canonise structures in Kq.

In particular, this shows that the revised versions of solvability logic FPS
∗

and of rank logic FPR
∗ with uniform solvability quantifiers and rank operators,

which take p ∈ P as part of their input, are strictly more powerful than the
original versions of solvability logic and rank logic.
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Our second main result concerns the relationship of FPS and FPR. Recall
that it is open whether solvability logic is a strict fragment of rank logic, that is
whether solvability quantifiers can be used to compute, within FPC, the rank
of definable matrices. We give a partial answer to this question and show that
in the absence of counting, rank operators are more powerful than solvability
quantifiers (Theorem 4.17). To obtain this result, we use that rank operators
(which are numeric operators) can simulate counting terms, but that this does
not hold for solvability quantifiers (which are Boolean-valued operators).

Moreover, we study the extensions FOSp and FORp of first-order logic
by solvability quantifiers and rank operators over Fp and we obtain a strong
normal form for FOSp: a single application of a solvability quantifier suffices
to obtain the full expressive power of FOSp (Theorem 4.9). In particular
this shows that a single solvability quantifier can simulate arbitrary blocks of
first-order quantifiers (which comes at the price of increasing the arity of the
solvability quantifier).

In this chapter, a common idea in many of our proofs is to exploit symme-
tries of definable linear equation systems. To illustrate this, let M ⋅ x⃗ = c⃗ be
a linear equation system over Fp where M is a coefficient matrix and c⃗ is a
vector of constants. Moreover, let Γ be a group which acts on the index sets
of M and c⃗ and which stabilises M and c⃗, that is for all Π ∈ Γ (written as a
permutation matrix) we have Π ⋅M ⋅Π−1 =M and Π ⋅ c⃗ = c⃗. For our applications,
Γ will always be the automorphism group of a structure A, and M and c⃗ are
relations which are defined in A by formulas of some logic L. Now assume
that the system M ⋅ x⃗ = c⃗ is solvable, and let b⃗ denote a solution. Then, for all
Π ∈ Γ, the vector Π ⋅ b⃗ is also a solution of the system since

M ⋅ (Π ⋅ b⃗) = (M ⋅Π) ⋅ b⃗ = Π ⋅ (M ⋅ b⃗) = Π ⋅ c⃗ = c⃗.

Hence, the solution space of the linear equation system M ⋅ x⃗ = c⃗ is closed
under the action of Γ. Such observations will allow us to transform a given
linear equation system into a considerably simpler linear system which still is
equivalent to the original one.

The whole chapter is strongly based on [27, 43, 44]. In Section 4.1, we
define the extensions of first-order logic (with counting) and of fixed-point
logic (with counting) by solvability quantifiers and rank operators. We also
demonstrate that it suffices to consider such operators over prime fields. In
Section 4.2, we study the extension FOSp of first-order logic by solvability
quantifiers over Fp. Our main result is a strong normal form: every formula of
FOSp is equivalent to a formula with a single solvability quantifier. We then
set out to study, in Section 4.3, the relationship between solvability quantifiers
and rank operators. We prove that in the absence of counting, rank operators
are more expressive than solvability quantifiers. Finally, we prove in Section 4.4
that solvability quantifiers and rank operators over different prime fields are
incomparable. An important consequence is that rank logic, as defined in [28],
does not capture polynomial time.
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4.1 Solvability quantifiers and rank operators

In this section, we extend first-order logic (with and without counting) and
fixed-point logic with counting by rank operators and solvability quantifiers.
To this end, recall from Section 2.3 our setting of two-sorted structures A

#,
which we obtained by adding to a usual (one-sorted) structure A a disjoint
copy of (N,+, ⋅). This second, numerical sort is used as a domain for counting
terms (within FOC and FPC) and we reuse this setting here to define rank
operators (as the matrix rank is a numerical invariant as well). In this context,
also recall our convention that for all two-sorted logics which are evaluated over
structures A

# (such as FOC, FPC, and also the versions of rank logic which
we define below), quantification over the number sort has to be bounded by
numeric terms in order to guarantee that the range of quantifiers is polynomially
bounded. This technical condition is necessary in order to obtain logics that
have polynomial-time data complexity.

Rank operators Let Θ(x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) be a numeric term where t̄ and s̄

are tuples of closed numeric terms which bound the range of the numeric
variables in the tuples ν̄ and µ̄, respectively. Given a structure A, we define
N
≤t̄
∶= {n̄ ∈ N∣ν̄∣ ∶ ni ≤ t

A
i }. The set N

≤s̄ ⊂ N
∣µ̄∣ is defined analogously. The

term Θ defines in the structure A for I ∶= A∣x̄∣ × N
≤t̄ and J ∶= A∣ȳ∣ × N

≤s̄ the
I × J-matrix MΘ with values in N that is given as MΘ(ān̄, b̄m̄) ∶= ΘA(ān̄, b̄m̄).

The matrix rank operators compute the rank of the matrix MΘ over a
prime field Fp for p ∈ P. First, as in [28], we define, for every prime p, a
matrix rank operator rkp which allows us to construct a new numeric rank
term [rkp (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) .Θ] whose value in the structure A is the rank of the
matrix (MΘ mod p) over Fp. Secondly, we consider a uniform rank operator
rk which takes the prime p as an additional input. Formally, with this rank
operator rk we can construct a rank term [rk (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄, π ≤ r) .Θ] where π
is an additional free numeric variable whose range is bounded by some closed
numeric term r. Given a structure A and an assignment π ↦ p for some
prime p ≤ rA, the value of this rank term is the matrix rank of (MΘ mod p)
considered as a matrix over Fp. The rank operator rk is a unification for the
family of rank operators (rkp)p∈P and was first introduced in [59, 71, 80].

We define, for every set of primes Ω ⊆ P, the extension FORΩ of FOC and
the extension FPRΩ of FPC by matrix rank operators rkp with p ∈ Ω. For
convenience, we set FOR = FORP and FPR = FPRP. Similarly, we denote
by FPR

∗ the extension of FPC by the uniform rank operator rk. We remark
that rank operators can directly simulate counting terms. For example,

[#x .ϕ(x)] = [rkp (x, y) . (x = y ∧ϕ(x))].
Hence, we could equivalently define the rank logics FORΩ,FPRΩ and FPR

∗

as the extensions of (the two-sorted variants of) FO and FP, respectively.
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Solvability quantifier The expressive power of rank logic significantly goes
beyond that of fixed-point logic with counting. However, most of the known
examples which separate FPR and FPC are obtained by reducing the respec-
tive queries to solvability problems of linear equation systems over finite fields.
This is why we find it natural to study analogous extensions of FO, FP, FOC

and FPC by quantifiers which can directly express the solvability of linear
equation systems. The most important advantage of this approach is that
solvability quantifiers are much easier to analyse. This is basically because
linear equation systems are compatible with linear-algebraic transformations
while matrix rank is not. For example, in general there is no connection
between the matrix rank of a family of matrices and the matrix rank of their
sum. On the other hand, the solution space of a linear equation system cer-
tainly has a nice linear-algebraic structure. This is also the reason why in
Section 4.4, where we show that rank operators over different prime fields have
incomparable expressive power, we first reduce rank operators to solvability
quantifiers and then apply our arguments in the framework of solvability logics.
A second important advantage of solvability quantifiers is that they can easily
be generalised to other classes of algebraic domains, such as rings, for example,
for which no appropriate notion of matrix rank exists, see [27] and Chapter 3
and our discussion in Section 4.5.

Let Ω ⊆ P be a set of primes. We want to introduce the extension FOSΩ of
first-order logic FO and the extension FPSΩ of FPC by solvability quantifiers
slvp for p ∈ Ω. Note that, besides of the presence of the fixed-point operators,
the tremendous difference between the logics FOSΩ and FPSΩ is that FOSΩ is
a one-sorted logic while FPSΩ has counting terms and thus a second numerical
counting sort. Moreover, this also distinguishes the logic FOSΩ (which, again,
is a one-sorted logic) from the extension FORΩ of first-order by matrix rank
operators (which can access a second counting sort). Indeed, we exploit this
significant mismatch between both logics in Section 4.3 to show that in the
absence of counting, rank operators are strictly more expressive than solvability
quantifiers. Let us start by introducing the logic FOSΩ.

Definition 4.1. Let Ω ⊆ P. The logic FOSΩ extends the syntax of first-
order logic FO by the following rule. If ϕ(x̄, ȳ, z̄) ∈ FOSΩ, then also ψ(z̄) =
(slvp x̄, ȳ)ϕ(x̄, ȳ, z̄) is an FOSΩ-formula for p ∈ Ω.

To specify the semantics of the formula ψ(z̄), we let k = ∣x̄∣ and ℓ = ∣ȳ∣.
A pair (A, z̄ ↦ c̄) with c̄ ∈ A∣z∣ defines an I × J-matrix Mϕ over {0,1} ⊆ Fp

where I = Ak and J = Aℓ and where Mϕ(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄).
Moreover, let ✶ be the I-identity vector over Fp, i.e. ✶(ā) = 1 for all ā ∈ I.
Then Mϕ and ✶ determine the linear equation system Mϕ ⋅ x⃗ = ✶ over Fp. Now
we let A ⊧ ψ(c̄) if, and only if, Mϕ ⋅ x⃗ = ✶ is solvable.

We continue to introduce the solvability logic FPSΩ which similarly extends
the syntax of fixed-point logic with counting by a new formula creation rule
for all solvability quantifiers slvp, p ∈ Ω.
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Definition 4.2. Let Ω ⊆ P. The logic FPSΩ extends the syntax of fixed-point
logic with counting FPC by the following rule. Let ϕ(x̄ν̄, ȳµ̄, z̄) ∈ FPSΩ and
let t̄ and s̄ be tuples of closed numeric terms with ∣t̄ ∣ = ∣ν̄∣ and ∣s̄ ∣ = ∣µ̄∣. Then
ψ(z̄) = (slvp x̄ν̄ ≤ s̄, ȳµ̄ ≤ t̄)ϕ(x̄ν̄, ȳµ̄, z̄) is a formula of FPSΩ.

The semantics of the formula ψ(z̄) is defined analogously as for FOSΩ with
the difference that for FPSΩ we also allow to define coefficient matrices whose
index sets range over the number sort (similar as for the case of rank logic).
Of course, we again have to (polynomially) bound such index sets to obtain
matrices of polynomial size.

Formally, let k = ∣x̄∣ and ℓ = ∣ȳ∣. To a pair (A, z̄ ↦ c̄) ∈ S(σ, z̄) we associate
the I × J-matrix Mϕ over {0, 1} ⊆ Fp where I = Ak

×N
≤s̄ and J = Aℓ

×N
≤t̄ and

where for ā ∈ I and b̄ ∈ J we have Mϕ(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄).
Let ✶ be the I-identity vector over Fp, i.e. ✶(ā) = 1 for all ā ∈ I. Then Mϕ and
✶ determine the linear equation system Mϕ ⋅ x⃗ = ✶ over Fp where x⃗ = (xj)j∈J is
a J-vector of variables xj which range over Fp. Finally, A ⊧ ψ(c̄) if, and only
if, Mϕ ⋅ x⃗ = ✶ is solvable.

A comment is in place regarding the definition of FOSΩ and FPSΩ. In fact,
at first glance, the solvability quantifiers slvp seem to impose serious restrictions
on the syntactic form of definable linear equation systems. More precisely, they
require that every equation in the system is of the form ∑j∈J aj ⋅ xj = 1, where
all coefficients aj are from the set {0,1} ⊆ Fp. However, we will see in the
following section that this is no restriction at all, since every definable linear
equation system can be transformed into this kind of syntactic normal form
via a quantifier-free first-order reduction (see Theorem 4.3 in Section 4.2).

Analogously to the definition of FPR
∗ we also consider a uniform solvability

quantifier slv which takes the prime p as an additional input and which can
simulate all solvability quantifiers slvp for p ∈ P. Let FPS

∗ denote the extension
of FPC by this uniform version of a solvability quantifier. Then the following
inclusions easily follow from the definitions and the fact that rank operators
can be used to define the solvability problem for linear equation systems.

FORΩ ≤ FPRΩ ≤ FPR ≤ FPR
∗
≤ Ptime

≤ ≤ ≤ ≤

FOSΩ ≤ FPSΩ ≤ FPS ≤ FPS
∗

≤

FPC

Finally, we remark that, analogously to [28], we defined rank operators and
solvability quantifiers over prime fields only. Of course, the definition can easily
be generalised to cover all finite fields, i.e. also finite fields of prime-power
order. However, at least in the presence of fixed-points, such more general
operators do not lead to more powerful logics (in particular, the same is true in
the non-uniform setting where we consider separate operators for all primes).
Indeed, Holm proved in [59] that solvability quantifiers over a finite field Fq of
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prime-power order q = pk can be simulated by solvability quantifiers over Fp.
Although the same holds for rank operators, we are not aware of any reference
which explicitly establishes such a reduction. In what follows, we thus briefly
sketch how one could proceed for the case of rank operators.

To explain how one can simulate rank operators over Fq, where q = pk, by
rank operators over Fp, let M be an I × J-matrix over Fq. We know from
algebra that Fq is an Fp-vector space and we fix a basis B = (ζ1, . . . , ζk) (this
can be done logically, since finite fields can be ordered by fixing a generator of
the multiplicative group, see also Remark 3.16). Then every element f ∈ Fq

can be represented as a k-vector over Fp with respect to the basis B, that is f
can be written as f = ∑k

i=1 a
f
i ⋅ ζi for a unique k-tuple of elements āf ∈ Fk

p. In
this way we obtain an Fp-vector space isomorphism

ϕ ∶ Fq → F
k
p, f ↦ āf .

Moreover, ϕ can be extended in the natural way to an isomorphism of the
Fp-vector spaces F

I
q and (Fk

p)I .
Note that the rank of the matrix M is, by definition, the dimension of

the Fq-vector space ⟨V ⟩ generated by V = {v⃗j ∶ j ∈ J} where v⃗j denotes the
j-th column of M . Let us consider the following Fp-vector space ⟨W ⟩ that is
generated by W = {ϕ(ζi ⋅ v⃗j) ∶ j ∈ J, i = 1, . . . , k} ≤ (Fk

p)I . We claim that if dV is
the dimension of ⟨V ⟩ (which is an Fq-vector space) and if dW is the dimension
of ⟨W ⟩ (which is an Fp-vector space), then it holds that

dW = k ⋅ dV .

If this is true, then it is clear how we can reduce the matrix rank problem
over Fq to Fp, since the isomorphism ϕ, and hence the set W , obviously are
definable in fixed-point logic.

To verify this claim, we let X ⊆ {v⃗j ∶ j ∈ J} be a basis of the Fq-vector
space ⟨V ⟩. Then we show that Y = {ϕ(ζi ⋅ v⃗) ∶ v⃗ ∈ X, i = 1, . . . , k} ≤ (Fk

p)I is a
basis of the Fp-vector space ⟨W ⟩. Note that ∣Y ∣ = k ⋅ ∣X ∣, so this would imply
our claim from above. To see that Y is a generating set, we show that we can
write each ϕ(ζi ⋅ v⃗j) ∈W as a linear combination of elements in Y . Since X is
a basis of ⟨V ⟩ we can find coefficients av⃗ ∈ Fq for v⃗ ∈X such that

ζi ⋅ v⃗j = ∑
v⃗∈X

av⃗ ⋅ v⃗.

Moreover, since B = (ζ1, . . . , ζk) is a basis of the Fp-vector space Fq we can
write each such av⃗ as av⃗ = ∑k

ℓ=1 a
ℓ
v⃗ ⋅ ζℓ for aℓ

v⃗ ∈ Fp. Hence, we have that

ζi ⋅ v⃗j = ∑
v⃗∈X

k

∑
ℓ=1

aℓ
v⃗ ⋅ ζℓ ⋅ v⃗, and thus

ϕ(ζi ⋅ v⃗j) = ∑
v⃗∈X

k

∑
ℓ=1

aℓ
v⃗ ⋅ ϕ(ζℓ ⋅ v⃗).

Similarly one can show that the elements in Y are linearly independent.
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4.2 First-order extensions by solvability quantifiers

In this section, we study the extensions FOSp of first-order logic by solvability
quantifiers over prime fields Fp. Recall that the quantifiers slvp require that
linear equation systems are given in a particular syntactic normal form (see
Definition 4.1 and the subsequent definition of their semantics). Our first aim
in this section is to justify these technical conditions: indeed, every definable
linear equation systems can be transformed into an equivalent system which
has this particular syntactic form via quantifier-free interpretations. With this
preparation we can then prove our second main result of this section: every
FOSp-formula can equivalently be written as a formula which uses only a single
solvability quantifier which is applied to a quantifier-free definition of a linear
equation system (Theorem 4.9). First of all, this normal form theorem shows
that solvability quantifiers are very powerful and that they can, in particular,
simulate arbitrary first-order formulas within a single quantifier. Secondly,
this normal form for FOSp will be convenient later in this chapter when we
separate the logics FOSp from the analogous extensions FORp by matrix rank
operators, see Section 4.1.

Recall that for an FOSp-formula ψ(z̄) = (slvp x̄, ȳ)ϕ(x̄, ȳ, z̄) we have A ⊧

ψ(c̄) if, and only if, the linear equation system Mϕ ⋅ x⃗ = ✶ over Fp is solvable,
where the coefficient matrix Mϕ over {0,1} ⊆ Fp is determined by setting
Mϕ(ā, b̄) = 1 if, and only if, A ⊧ ϕ(ā, b̄, c̄). We already mentioned that the
syntactic requirements for linear equation systems seem to be quite restrictive.
Specifically, the coefficient matrix has to be a matrix over {0, 1} and the vector
of constants is fixed from outside. Moreover, the solvability quantifier does
not provide a mechanism to interpret a linear equation system by merging
elements via a definable congruence relation. Our first step is to show that
this is not a serious restriction at all.

In fact, using the machinery of Lindström quantifiers (cf. Section 2.2), the
direct way to extend FO by operators for the solvability problem would be as fol-
lows. For every prime p, we define τles(Fp) = {M1, . . . ,Mp−1, c⃗1, . . . , c⃗p−1} for bi-
nary relation symbols Mi and unary relation symbols c⃗i. We say that a τles(Fp)-
structure A = (A,M1, . . . ,Mp−1, c⃗1, . . . , c⃗p−1) encodes a linear equation system
over Fp if M1, . . . ,Mp−1 represent I × J-matrices over {0,1} and c⃗1, . . . , c⃗p−1

represent I-vectors over {0,1} (for suitable sets I, J ⊆ A). In this case the
encoded linear equation system is given as M ⋅ x⃗ = c⃗ where M = ∑p−1

f=1
f ⋅Mf and

c⃗ = ∑p−1

f=1
f ⋅ c⃗f and where x⃗ is a J-vector of variables ranging over Fp. Following

our convention from Section 3.1, we let SLs(τles(Fp)) ⊆ S(τles(Fp)) denote
the class of τles(Fp)-structures which encode solvable linear equation systems
over the prime field Fp. If we let Qp denote the Lindström quantifier (see
Section 2.2) associated with the class SLs(τles(Fp)), then the logic FO(Qp) is
the natural candidate for an extension of first-order logic by operators for the
solvability problem over Fp. However, it turns out that this logic has precisely
the same expressive power as FOSp.
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Theorem 4.3. For all primes p we have FOSp = FO(Qp).
Proof. It is clear that FOSp ≤ FO(Qp). For the other direction, we set τ ∶=
τles(Fp) and let ϕδ(x̄, z̄), ϕ≈(x̄, ȳ, z̄), ϕMi

(x̄, ȳ, z̄), ϕc⃗i
(x̄, ȳ, z̄) for 1 ≤ i ≤ p−1 be

FO(Qp)-formulas that define an interpretation I(z̄) = (ϕδ, ϕ≈, ϕM1
, . . . , ϕc⃗p−1

)
of S(τ) in S(σ) with parameters z̄. Then our task is to translate the formula
ψ(z̄) = Qp I(z̄) of FO(Qq) into an equivalent formula of FOSp.

First of all we show that, without loss of generality, we can assume that
ϕ≈ = (x̄ = ȳ). The intuitive reason is that the duplication of equations and
variables does not influence the solvability of a linear equation system. To
turn this idea into a formal argument, let (A, z̄ ↦ ā) ∈ S(σ, z̄) and consider
the interpreted linear equation system B ∶= I(A, z̄ ↦ ā) represented as a
τ -structure. Then B = Ak/ ≈ where k = ∣x̄∣ and where ≈ denotes the congruence
defined by ϕ≈ in (A, z̄ ↦ ā). Let M ⋅ x⃗ = c⃗ be the represented linear equation
system over Fp where M is an I × J-matrix and where c⃗ is an I-vector over Fp.
We have that I, J ⊆ B.

Let I∗ be the interpretation which arises from I by replacing ϕ≈ by the
equality relation x̄ = ȳ. We claim that C ∶= I∗(A, z̄ ↦ ā) encodes a linear
equation system over Fp which is solvable if, and only if, the system M ⋅ x⃗ = c⃗ is
solvable. To see this, let Ĩ = ⋃ I ⊆ Ak and J̃ = ⋃J ⊆ Ak. By definition and since
≈ is a congruence relation it follows that C represents a linear equation system
N ⋅ x⃗∗ = d⃗ over Fp with an Ĩ × J̃-coefficient matrix N and an Ĩ-constants vector
d⃗ such that for all i ∈ Ĩ , j ∈ J̃ we have N(i, j) =M([i]≈, [j]≈) and d⃗(i) = c⃗([i]≈).
Now, solutions of the linear equation systems M ⋅ x⃗ = c⃗ and N ⋅ x⃗∗ = d⃗ translate
as follows. Let b⃗ be a J-vector over Fp with M ⋅ b⃗ = c⃗. For each [j] ∈ J we fix
an element [j]∗ ∈ [j]. Then we define b⃗∗ as the J̃-vector given as

b⃗∗(j) =
⎧⎪⎪⎨⎪⎪⎩
b⃗([j]), if j = [j]∗
0, else.

It easily follows that N ⋅ b⃗∗ = d⃗. For the other direction, let b⃗∗ be a J̃-vector
with N ⋅ b⃗∗ = d⃗. We define a J-vector b⃗ by setting b⃗([j]) = ∑j∈[j] b⃗∗(j). Again
it is straightforward to verify that M ⋅ b⃗ = c⃗.

Hence, from now on we assume that the congruence formula ϕ≈ in the
interpretation I is trivial. To complete our proof we construct a quantifier-free
first-order interpretation J (with trivial domain and congruence formulas)
which transforms (an encoding of) a linear equation system over Fp (as a
τles(Fp)-structure) into an equivalent linear equation system over Fp in the
syntactic form required for the slvp-quantifier of the logic FOSp. More precisely,
we describe J as the composition of two quantifier-free first-order transfor-
mations: the first one maps a linear equation system M ⋅ x⃗ = c⃗ over Fp to an
equivalent system M∗ ⋅ x⃗ = ✶ over Fp where ✶ denotes the identity vector (of
the appropriate dimension). The second interpretation then transforms the
linear system M∗ ⋅ x⃗ = ✶ into an equivalent system N ⋅ x⃗ = ✶ over Fp, where N∗
is a matrix with entries in {0,1}.
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For the first transformation, suppose that M is an I × J matrix and c⃗ is
an I-vector over Fp. We define a new linear equation system which contains,
besides the variables x⃗ = (xj)j∈J , a fresh variable vi for every index i ∈ I

and a new variable wf for every field element f = 0, . . . , p − 1. Then for
every element f = 0, . . . , p − 1, we add the equation (1 − f)w1 +wf = 1. It is
easy to see that this subsystem of equations has a unique solution given by
wf = f for all f = 0, . . . , p − 1. Then we can simply replace every equation
∑j∈J M(i, j) ⋅ xj = c⃗(i) by the following two equations vi +∑j∈J M(i, j) ⋅ xj = 1

and vi +wc⃗(i) = 1.
For the second transformation, we first replace each variable x by (p − 1)-

many copies x1, . . . , xp−1 and add the equations xe = xf for e, f = 1, . . . , p − 1.
We then replace each atomic linear term f ⋅ x by the linear term ∑1≤e≤f xe to
obtain an equivalent linear equation system in which only the field element 1

occurs as a coefficient. However, in order to establish our original claim we
also have to express the auxiliary equations xe = xf in the correct syntactic
form. To achieve this, we introduce a new variable x−f for each xf , and we add
the equation xf + x

−

f +w1 = 1. Finally, we rewrite xf = xe as xf + x
−

e +w1 = 1.
The resulting system is equivalent and has the desired syntactic form.

Since the field Fp is fixed, one can see that the described transformations
can be formalised by quantifier-free first-order reductions.

Let us summarise some interesting facts about the logic FOSp (see also
[80]). First of all, it follows from [28] that for every prime p, the logic FOSp

can express the symmetric transitive closure of definable relations. Hence,
FOSp subsumes the logic STC and can express every Logspace-computable
property of ordered structures. Secondly, it also follows from [28] that FOS2

can distinguish between the odd and even version of a CFI-graph, which means
that FOS2 cannot be a fragment of FPC. More generally, by adapting the
CFI-construction for other prime fields one can show that FOSp /≤ FPC for
arbitrary primes p (see e.g. [59]). In fact, a proof for this can also be extracted
from our proof of Theorem 4.21. In particular this shows that STC < FOSp

for all primes p.
On the domain of ordered structures, the expressive power of FOSp can be

characterised in terms of a natural complexity class: in [20], Buntrock et. al.
introduced the logarithmic space modulo counting classes MODkL for integers
k ≥ 2. Analogously to the case of modulo counting classes for polynomial
time, the idea is to say that a problem is in MODkL if there exists a non-
deterministic logspace Turing machine which verifies its inputs by producing a
number of accepting paths which is not congruent 0 mod k. For the formal
definition we refer the reader to [20]. It turns out that, at least for primes p, the
class MODpL is closed under many natural operations, including all Boolean
operations and even logspace Turing reductions [20, 58]. Furthermore, many
problems from linear algebra over Fp are complete for MODpL. In particular
this is true for the solvability problem of linear equation systems over Fp and
for computing the matrix rank over Fp [20].
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Building on these insights, Dawar et. al. [28] were able to show that for all
primes p, the logic FORp captures MODpL on the class of ordered structures.
As we already noted in [80], their proof shows that the same correspondence
holds for the logic FOSp.

Theorem 4.4 ([28],[80]). On the class of ordered structures we have

FOSp = FORp =MODpL.

Despite this characterisation over the class of ordered structures, so far
the situation over general structures remained open. It easily follows that
FOSp ≤ FORp ≤ FPR, but, it has been open whether one, or even both, of
these inclusions are strict. In the following section we are going to settle one
of these questions and prove that for every prime p we have

FOSp < FORp.

More specifically, we will see that the inclusion FOSp < FORp holds over
the class of sets S(∅). Our plan for the remainder of this section is to obtain a
strong normal form for the logic FOSp: every FOSp-formula is equivalent to an
FOSp-formula with at most one application of a slvp-quantifier. In particular,
a single slvp-quantifier can express arbitrary blocks of first-order quantifiers and
all Boolean operations (which comes at the price of increasing the dimension
of the slvp-quantifier). Let us stress the fact that we obtain this normal form
over the class of all finite structures. In Section 4.3 we are going to use this
normal form to separate the logics FOSp and FORp over the class of sets.

To obtain the normal form, we inductively translate FOSp-formula into
equivalent formulas of the desired form. Here, the simple cases are the inductive
steps for conjunction and universal quantification.

Lemma 4.5. Let α,β ∈ FO be two quantifier-free formulas and let ϕ =
(slvp x̄1, x̄2)α(x̄1, x̄2, z̄) ∈ FOSp and ψ = (slvp x̄1, x̄2)β(x̄1, x̄2, z̄) ∈ FOSp. Then
there exists a formula ϑ(z̄) = (slvp ȳ1, ȳ2)γ(ȳ1, ȳ2, z̄) ∈ FOSp for a quantifier-free
formula γ ∈ FO such that ϑ ≡ ϕ ∧ ψ.

Proof. The idea is to combine the two linear equation systems into one system
by using two independent copies of the variable sets. The only technical
difficulty is that, as we are not allowed to use congruences, we have to introduce
many duplicates of the variables (which we preferably would merge via a
congruence). However, this does not influence the solvability of the resulting
linear equation system and thus the translation is sound. Let ȳ1 = v1v2x̄1 and
ȳ2 = w1w2x̄2 for new variables v1, v2,w1,w2. We set

γ = (v1 = v2 ∧w1 = w2 ∧ α(x̄1, x̄2, z̄)) ∨ (v1 ≠ v2 ∧w1 ≠ w2 ∧ β(x̄1, x̄2, z̄)).
Then it is easy to verify that ϑ ∶= (slvp ȳ1, ȳ2)γ(ȳ1, ȳ2, z̄) ≡ ϕ ∧ ψ.
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Lemma 4.6. Let α(x̄1, x̄2, y, z̄) ∈ FO be a quantifier-free formula and let
ϕ(z̄) = ∀y (slvp x̄1, x̄2)α(x̄1, x̄2, y, z̄). Then there exists a formula ϑ(z̄) =
(slvp ȳ1, ȳ2)γ(ȳ1, ȳ2, z̄) ∈ FOSp for a quantifier-free γ ∈ FO such that ϑ ≡ ϕ.

Proof. We use the same idea as in the proof of Lemma 4.5 and construct a
new linear equation system which contains, for every possible value of the
parameter y, an independent linear subsystem which corresponds to the system
represented by α(x̄1, x̄2, y, z̄). Let ȳ1 = yx̄1 and ȳ2 = vx̄2 for a new variable v.
Then it suffices to set γ ∶= (y = v) ∧ α(x̄1, x̄2, y, z̄).

For the case of negation we make use of the following fact from linear
algebra. Consider a linear equation system in the form M ⋅ x⃗ = c⃗ for an
I × J-coefficient matrix M over Fp and an I-constants vector c⃗ over Fp. Then
this linear equation system is not solvable if, and only if, the linear equation
(M ∣ c⃗)T ⋅ x⃗ = (0, . . . , 0, 1) is solvable, that is if the row space of the augmented
coefficient matrix (M ∣ c⃗) contains the vector (0, . . . , 0, 1). In this way one can
translate the non-solvability of a linear equation system into the solvability
of another linear equation system. Moreover, the translation between these
two linear equation systems is very simple and can easily be realised via a
quantifier-free first-order interpretation. Finally, with our construction from
the proof of Theorem 4.3 we can bring the resulting linear system back to the
normal form which is required for the slvp-quantifier. Hence, we obtain:

Lemma 4.7. Let α(x̄1, x̄2, z̄) ∈ FO be a quantifier-free formula. Then there ex-
ists a formula ϑ(z̄) = (slvp ȳ1, ȳ2)γ(ȳ1, ȳ2, z̄) ∈ FOSp where γ ∈ FO is quantifier-
free such that ϑ ≡ ¬[(slvp x̄1, x̄2)α(x̄1, x̄2, z̄)].
Corollary 4.8. Every FO-formula ϕ ∈ FO is equivalent to a formula ϑ =

(slvp ȳ1, ȳ2)γ(ȳ1, ȳ2) ∈ FOSp where γ is quantifier-free.

It remains to treat the case of nested solvability quantifiers. To this end,
we fix an FOSp(τ)-formula

ϑ(z̄) = (slvp x̄1, x̄2)[(slvp ȳ1, ȳ2)α(x̄1, x̄2, ȳ1, ȳ2, z̄)],
where α is quantifier-free and we show how the nested application of the
solvability quantifiers can be be reduced to a single solvability operator. To
illustrate the semantics of ϑ let us fix (A, z̄ → ā) ∈ S(τ, z̄). Let k1 = ∣x̄1∣,
k2 = ∣x̄2∣, ℓ1 = ∣ȳ1∣ and ℓ2 = ∣ȳ2∣. Then A ⊧ ϑ(ā) if the outer linear equation
system M ⋅ v⃗ = ✶ is solvable where M is the Ak1 ×Ak2-coefficient matrix over
{0,1} whose entries M(b̄, c̄) are determined by the solvability of the inner
linear equation system Nb̄,c̄ ⋅ w⃗ = ✶. In this context, Nb̄,c̄ denotes the Aℓ1 ×Aℓ2-
coefficient matrix whose entries Nb̄,c̄(d̄, ē) ∈ {0, 1} are determined by the truth
value of A ⊧ α(b̄, c̄, d̄, ē, ā). For convenience, let us write I = Ak1 and J = Ak2

to denote the index sets of the equations and of the variables of the outer
linear equation system, respectively. The situation is illustrated in Figure 4.1.
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M(b̄, c̄)
b̄ ∈ I = Ak1

c̄ ∈ J = Ak2

determined by
the solvability

of inner system
Nb̄,c̄ ⋅ w⃗ = ✶

coefficient matrix
M of the outer

linear equation
system M ⋅ v⃗ = ✶

Nb̄,c̄(d̄, ē)
d̄ ∈ Aℓ1

ē ∈ Aℓ2

coefficient matrix
Nb̄,c̄ of the inner

linear equation
system Nb̄,c̄ ⋅ w⃗ = ✶

determined by
A ⊧ α(b̄, c̄, d̄, ē, ā)

Figure 4.1: Illustration of the nesting of solvability quantifiers in ϑ(z̄)

We proceed to explain how we can express the solvability of the “nested” linear
equation system M ⋅ v⃗ = ✶ by the solvability of a “flat” linear equation system
M∗

⋅ v⃗∗ = ✶. The i-th equation of M ⋅ v⃗ = ✶ is given as

∑
j∈J

M(i, j) ⋅ vj = 1.

The interesting part is how to handle the coefficients M(i, j) which are deter-
mined by the solvability of the inner linear equation system Ni,j ⋅ w⃗ = ✶. First
of all, to construct the new linear equation system M∗

⋅ v⃗∗ = ✶ we start by
introducing, for every pair of indices (i, j) ∈ I×J , a new variable vi,j and simply
replace the i-th equation ∑j∈J M(i, j) ⋅vj = 1 by the equation ∑j∈J vi,j = 1. The
intuition behind that is that the variable vi,j should represent the value of the
term M(i, j) ⋅ vj . However, the constraint “vi,j =M(i, j) ⋅ vj” is a non-linear
constraint and the crucial step is to extend the new system M∗

⋅ v⃗∗ = ✶ by a
set of linear equations which express this condition.

To overcome this problem we construct new linear subsystems which ensure
that for all i, i∗ ∈ I and j ∈ J it holds that:

if vi,j ≠ 0, then M(i, j) = 1; and (E 4.1)

if vi,j ≠ vi∗,j , then {M(i, j),M(i∗, j)} = {0,1}. (E 4.2)

The conditions (E 4.1) and (E 4.2) together ensure that the equations
vi,j =M(i, j) ⋅ vj can be used to translate solutions between the nested linear
equation system M ⋅ v⃗ = ✶ and the new linear equation system M∗

⋅ v⃗∗ = ✶. The
question remains how we can express these conditions by subsystems of linear
equations.
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To express the constraints (E 4.1) we proceed as follows. For each (i, j) ∈
I × J we take the inner linear equation system Ni,j ⋅ w⃗ = ✶ and add it as
an independent linear subsystem in M∗

⋅ v⃗∗ = ✶ in which we additionally
add to the left-hand side of each equation the term (vi,j + 1). Now, if in a
solution of M∗

⋅ v⃗∗ = ✶ the variable vi,j is evaluated to 0, then the subsystem
corresponding to Ni,j ⋅ w⃗ = ✶ has the trivial solution (since the constant term
of every equation is 1). However, if a non-zero value is assigned to vi,j , then
this value is a unit in Fp and a solution for M∗

⋅ v⃗∗ = ✶ necessarily contains
a solution of the inner linear equation system Ni,j ⋅ w⃗ = ✶; that is, we have
M(i, j) = 1.

We similarly express the constraints (E 4.2). For indices i, i∗ ∈ I and j ∈ J

the condition on the right-hand side of (E 4.2) is a Boolean combination of
solvability (and non-solvability) queries for the inner linear equation systems
Ni,j ⋅ w⃗ = ✶ and Ni∗,j ⋅ w⃗ = ✶. By Corollary 4.8 this Boolean combination
can be expressed by the solvability of a single linear equation system (which
is definable by a quantifier-free formula). Hence, we can embed this linear
equation system as an independent subsystem in M∗

⋅ v⃗∗ = ✶ where we add to
each of its equations the term (1 + vi,j − vi∗,j). With the same reasoning as
above we conclude that this imposes the constraint (E 4.2).

Finally, it is easy to check that the translation from M ⋅ v⃗ = ✶ to M∗
⋅ v⃗∗ = ✶

can be realised by a quantifier-free first-order interpretation. This concludes
the inductive step for the nesting of solvability quantifiers and we obtain our
first main result of this chapter.

Theorem 4.9. Every formula ϑ(z̄) ∈ FOSp is equivalent to an FOSp-formula
of the form (slvp x̄1, x̄2)α(x̄1, x̄2, z̄) where α(x̄1, x̄2, z̄) is quantifier-free.

4.3 Solvability quantifiers vs. matrix rank

operators

In the last section we studied the extensions FOSp of first-order logic by
solvability quantifiers slvp over Fp and we discussed the strong connections
between FOSp and the extension FORp of first-order logic by rank operators
rkp over Fp. In particular, we mentioned that many of the known queries which
can be expressed with the help of rank operators can already be expressed
using solvability quantifiers. More strikingly, on the class of ordered structures
both logics are known to have the same expressive power (see Theorem 4.4).
This raises the question whether, in general, it holds that FOSp = FORp,
that is whether rank operators can be simulated by solvability quantifiers
via first-order reductions. In this section, we show that this is not the case.
Specifically, we prove that over the class of sets there exists a query K ⊆ S(∅)
which can be expressed in FORp but not in FOSp, that is

FOSp < FORp.
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In fact, this result is not very surprising. In contrast to FORp, the
logic FOSp does not have access to a counting sort and thus has to express
properties over S(∅) in pure unordered sets (which have a maximal amount of
symmetries). However, it is not obvious how one can turn this intuition into
a formal argument. In fact, the logic FOSp has non-trivial expressive power
over sets. For instance, FOSp can count the size of sets modulo p [80], and
consequently, modulo pk for every fixed k (observe that n ≡ 0 mod pk if, and
only if, n ≡ 0 mod p and (n

p
) ≡ 0 mod pk−1). In contrast, fixed-point logic FP,

for example, collapses to first-order logic over sets.

The main idea of our proof is to exploit symmetries of definable linear
equation systems to considerably reduce the size of an input linear equation
system via an FORp-definable transformation. For the remainder of this
proof, let us fix a quantifier-free formula α(x1, . . . , xk, y1, . . . , yℓ) ∈ FO(∅) and
a prime p. According to the semantics of FOSp, the formula α defines in an
input structure A = ([n]) of size n the [n]k × [n]ℓ-coefficient matrix Mn whose
entries are given, for ā ∈ [n]k, b̄ ∈ [n]ℓ, as

Mn(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, if A ⊧ α(ā, b̄)
0, otherwise.

Then A ⊧ (slvp x̄1, x̄2)α(x̄1, x̄2) if the linear equation system Mn ⋅ x⃗ = ✶ over Fp

is solvable. For convenience we set In = [n]k and Jn = [n]ℓ.
Let Γ = Γn = Sym([n]). Then the group Γ acts on In and Jn in the natural

way. Moreover, Γ acts on the set of all In × Jn-matrices as follows. To every
π ∈ Γn we can associate the In × In-permutation matrix ΠI which is defined as

ΠI(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, π(ā) = b̄
0, otherwise.

Then Γ acts on the set of In × Jn-matrices by left multiplication with In × In-
permutation matrices. Similarly, we let ΠJ denote the Jn × Jn-permutation
matrix defined as

ΠJ(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, π(ā) = b̄
0, otherwise.

Then, analogously, Γ acts on the set of In ×Jn-matrices by right multiplication
with the associated Jn × Jn-permutation matrices. Specifically, for all π ∈ Γ

we have (ΠI ⋅Mn)(ā, b̄) = Mn(π(ā), b̄) and (Mn ⋅ Π
−1
J )(ā, b̄) = Mn(ā, π(b̄)).

Since Mn is defined by a first-order formula over the empty signature, we
conclude that (ΠI ⋅Mn ⋅ Π

−1
J )(ā, b̄) = Mn(π(ā), π(b̄)) = Mn(ā, b̄) and thus

ΠI ⋅Mn ⋅Π
−1
J =Mn, which can equivalently be written as

ΠI ⋅Mn =Mn ⋅ΠJ .

This identity will play a central role in our proof. For what follows, let us
fix another prime q which is distinct from p and a subgroup ∆ ≤ Γ which is
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a q-group, i.e. ∣∆∣ = qm for some m ≥ 0. The overall strategy is to use the ∆-
symmetries of the matrix Mn to strongly reduce the size of the linear equation
system Mn ⋅ x⃗ = ✶. More precisely, we claim that for M∗

n ∶= ∑π∈∆ ΠI ⋅Mn the
linear equation system Mn ⋅ x⃗ = ✶ is solvable if, and only if, M∗

n ⋅ x⃗ = ✶ is
solvable. First of all we note that for all π ∈∆ we have:

• ΠI ⋅M
∗

n = ∑λ∈∆ ΠI ⋅ΛI ⋅Mn = ∑π∈∆ ΠI ⋅Mn =M
∗

n

• M∗

n ⋅ΠJ = ∑λ∈∆ ΛI ⋅Mn ⋅ΠJ = ∑λ∈∆ ΛI ⋅ΠI ⋅Mn =M
∗

n .

To verify our original claim, assume that M∗

n ⋅ b⃗ = ✶. Then we have

✶ =M∗

n ⋅ b⃗ = (∑
π∈∆

ΠI ⋅Mn) ⋅ b⃗ = (∑
π∈∆

Mn ⋅ΠJ) ⋅ b⃗ =Mn ⋅ ∑
π∈∆

(ΠJ ⋅ b⃗).

For the other direction, let Mn ⋅ b⃗ = ✶. Then ∑π∈∆ ΠI ⋅Mn ⋅ b⃗ = ∣∆∣ ⋅ ✶, hence
(1/∣∆∣) ⋅ b⃗ is a solution of the linear equation system M∗

n ⋅ x⃗ = ✶. Note that for
this direction we require that q and p are co-prime as we have to divide by ∣∆∣.

Since M∗

n satisfies ΠI ⋅M
∗

n =M
∗

n ⋅ΠJ =M
∗

n for all π ∈∆ we have

M∗

n(ā, b̄) =M∗

n(π(ā), b̄) =M∗

n(ā, π(b̄))
for all ā ∈ In, b̄ ∈ Jn and π ∈ ∆. In other words, the entries of the In × Jn-
matrix M∗

n are constant on the ∆-orbits of In and Jn which means that we
can independently change the indices of rows and columns (within ∆-orbits)
without affecting the entry of M∗

n . More specifically, if we let I∆
n and J∆

n denote
the sets of ∆-orbits on In and Jn, respectively, then M∗

n can be identified with
the matrix (M∗

n/∆) which is defined as

(M∗

n/∆) ∶ I∆
n × J∆

n → Fp, ([ā], [b̄])↦M∗

n(ā, b̄).
Note that, depending on the size of the group ∆, the sets I∆

n and J∆
n can be

noticeably smaller than the index sets In and Jn. Hence our strategy is to
choose ∆ as large as possible to obtain a more compact linear equation system
M∗

n ⋅ x⃗ = ✶ which is equivalent to the given one.

4.3.1 Constructing large groups

Recall that the maximal q-subgroups ∆ ≤ Γ are the q-Sylow groups of Γ. It is
well-known that for the case where Γ = Sym([n]) these groups can be obtained
via an inductive construction which we explain here for the special case of n
being a power of q (the general case can be handled similarly, see e.g. [56]).
Hence from now on, let us assume that n = qr for some r ≥ 1.

First of all, we determine the size of q-Sylow groups of Γ. A simple induction
shows that the maximal t ≥ 1 such that qt divides n! = (qr)! is given by

t = qr−1
+ qr−2

+⋯+ q + 1 =
qr
− 1

q − 1
.
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In fact, we can write (qr)! as (qr)! = 1⋯(1 ⋅ q)⋯(2 ⋅ q)⋯(qr−1
⋅ q). Hence

t = t∗ + q
r−1 where t∗ is maximal such that qt∗ divides (qr−1)!.

In particular, if we denote for n = qr a q-Sylow of Sym([n]) by ∆r, then
our argument from above shows that ∣∆1∣ = q and that

∣∆r+1∣ = ∣∆r ∣q ⋅ q.
This equation already points to the algebraic structure of ∆r. In fact, it

turns out that ∆r+1 is the wreath product of ∆r and the cyclic group Zq. Since
∆1 = Zq it follows that ∆r is the r-fold wreath product of the cyclic group Zq.
We omit the formal definition of wreath products and directly illustrate this
concept for the case of the q-Sylow groups of Γ = Sym([n]) = Sym([qr]).

More specifically, we proceed to give a construction for the group Γ from
which we can read off certain algebraic properties which are important for our
proofs later in this section. To this end, we inductively construct, for r ≥ 1,
a q-Sylow subgroup ∆r ≤ Sym([qr]) together with a family of trees T x

i for
i = 0, . . . , r and x ∈ [qr−i] such that the following properties hold.

(I) T x
i is a complete q-ary tree of height i whose leaves are labelled with

elements from [n]. More precisely, the labels of the leaves of T x
i form

the set Px
i = {x ⋅ qi, x ⋅ qi

+ 1, . . . , (x+ 1) ⋅ qi
− 1} (note that Px

i is the x-th
block of the natural partition of [n] into parts of size qi).

(II) For all i ≤ r, the group ∆r transitively acts on the set {T x
i ∶ x ∈ [qr−i]} by

applying permutations δ ∈∆r to the labels of the leaves of the tress T x
i .

Moreover, for each i ≤ r, the subgroup of ∆r which point-wise stabilises
the trees T x

i is a normal subgroup of ∆r.

(III) We have ∆1 ≤∆2 ≤ ⋯ ≤∆r where ∆i acts on the set of labels P0
i of the

tree T 0
i . More generally, for every block Px

i , the group ∆r contains a
subgroup ∆

i,x
r ≤∆r which point-wise fixes the elements of all blocks Py

i

for y ≠ x and whose action on Px
i corresponds to the action of ∆i on P0

i .

The inductive construction of the trees T x
i is depicted in Figure 4.2. To

understand this construction, it is quite useful to think of elements y ∈ [n] as
being represented in their q-adic encoding, i.e. y = y0 + y1 ⋅ q +⋯ + yr−1 ⋅ q

r−1.
Then we have that y ∈ P0

r = [n] and

• y ∈ P
yr−1

r−1

• y ∈ P
yr−2+yr−1⋅q
r−2

• . . .

• y ∈ P
y0+⋯+yr−1⋅q

r−1

0 = P
y
0 .
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Hence, the q-adic encoding of the element y describes the unique path in the
tree T 0

r from its root to the leaf T y
0 . We observe that the trees T x

i clearly
satisfy the properties which we stated in (I).

For the inductive construction of the q-Sylow groups ∆r, we first fix ∆1 as
the cyclic group generated by the natural cyclic shift γ = (0 1⋯ q − 1) on the
set P0

1 = {0, . . . , q − 1}.

i = 0 ∶ T 0
0 : 0 ⋯ T x

0 : x ⋯ T
qr
−1

0 : qr
− 1

i > 0 ∶ T 0
i :

T 0
i−1

⋯

T
q−1

i−1

⋯ T x
i :

T
xq

i−1

⋯

T
(x+1)q−1

i−1

⋯ T
qr−i
−1

i :

T
qr−i+1

−q
i−1

⋯

T
qr−i+1

−1
i−1

Figure 4.2: Inductive definition of the trees T x
i

We proceed with the inductive step r ↦ r + 1. The set [qr+1] splits into q
blocks P0

r , . . . ,P
q−1
r , each of size qr. The group ∆r acts on P0

r and point-wise
fixes the elements from the blocks Px

r with x ≠ 0. Let γ ∈ Sym([n]) for n = qr+1

be the following permutation which shifts the segments P0
r , . . . ,P

q−1
r in a cycle

of length q by composing the natural shifts on the sets of residues modulo qr:

γ = (0⋯ (q − 1)qr)(1⋯1 + (q − 1)qr)⋯(qr
− 1⋯ qr

− 1 + (q − 1)qr).
Hence for all a ∈ [n] we have γ(a) = (a + qr) mod qr+1. We set ∆0

r = ∆r

and, more generally, ∆x
r = (γx)∆r(γx)−1 for x = 0, . . . , q − 1 to obtain q copies

of ∆r which independently act on the segments Px
r for 0 ≤ x ≤ q − 1. Finally,

we define ∆r+1 as the semi-direct product of (∆0
r ×⋯ ×∆

q−1
r ) and the cyclic

group ⟨γ⟩ of size q. This means that the group elements of ∆r+1 are elements
in the set (∆0

r ×⋯×∆
q−1
r × ⟨γ⟩) and that the group operation is given by

(δ1, . . . , δq−1, α) ⋅ (ǫ1, . . . , ǫq−1, β) = ((δ1, . . . , δq−1) ⋅ α(ǫ1, . . . , ǫq−1)α−1, α ⋅ β).
Since ∣∆r+1∣ = ∣∆r ∣q ⋅ q we conclude that ∆r+1 indeed is a q-Sylow subgroup.

From our construction it immediately follows that ∆r+1 satisfies the proper-
ties stated in (III). To see that ∆r+1 also satisfies the properties stated in (II),
we start by showing that, for i ≤ r, ∆r+1 transitively acts on {T x

i ∶ x ∈ [qr+1−i]}.
If we split the set [qr+1−i] into q blocks P0

r−i, . . . ,P
q−1
r−i of size qr−i, then we

know from the induction hypothesis that ∆0
r transitively acts on the set of

trees {T x
i ∶ x ∈ P0

r−i} = {T x
i ∶ x ∈ [qr−i]}. Moreover, it is easy to verify that

for all x ∈ [qr+1−i] we have γ(T x
i ) = T z

i where z = x + qr−i mod qr+1−i. Hence
(γy){T x

i ∶ x ∈ P0
r−i} = {T x

i ∶ x ∈ P
y
r−i} for all 0 ≤ y ≤ q − 1 which means that ∆

y
r

transitively acts on {T x
i ∶ x ∈ P

y
r−i} and thus (II) holds.
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The crucial step is to understand the action of ∆r on the sets In = [n]k
and Jn = [n]ℓ (for the case where n = qr). In fact, our next aim is to develop a
complete invariant for the ∆r-orbits on these index sets. Recall that the sets
of ∆r-orbits on In and Jn provide index sets for the succinct linear equation
system M∗

n ⋅ x⃗ = ✶. To define this invariant, the main idea is to describe the
position of a tuple ā ∈ In (or ā ∈ Jn, respectively) in the tree T ∶= T 0

r .
Let us first define the signature sgn(a, b) of a pair (a, b) ∈ [n] × [n] as the

tuple (i, z) ∈ [r + 1] × [q] such that the lowest common ancestor of a, b in T
is the root of a tree T x

i and such that a is located in a subtree T xq+ya

i−1 for
ya ∈ [q] and b is located in the subtree T xq+yb

i−1 where yb = ya + z mod q. For
the special case where i = 0 we have a = b and agree to set z = 0. With this
preparation we define the signature sgn(ā) of a tuple ā = (a1, . . . , aℓ) ∈ Jn as the
list σ ∈ ([r + 1] × [q])ℓ(ℓ−1)/2 consisting of the individual signatures sgn(ai, aj)
for all pairs ai, aj with 1 ≤ i < j ≤ ℓ. The signature of tuples in In is defined
analogously.

Lemma 4.10. Let ā ∈ Jn. Then sgn(ā) = sgn(πā) for all π ∈∆r.

Proof. This easily follows from the constructions of ∆r and the trees T x
i .

Lemma 4.11. Let ā, b̄ ∈ Jn. If sgn(ā) = sgn(b̄), then b̄ ∈∆r(ā).
Proof. We proceed by induction on the maximal position 0 ≤ i ≤ ℓ such that
aj = bj for all j = 1, . . . , i. The case i = ℓ is clear, so assume that i < ℓ.
Let ā = (a1, . . . , ai, ai+1, . . . , aℓ) and b̄ = (a1, . . . , ai, bi+1, . . . , bℓ). We show that
there exists a permutation δ ∈ ∆r which pointwise fixes a1, . . . , ai and such
that δ(ai+1) = bi+1. Then the claim follows from Lemma 4.10 together with
the induction hypothesis. For i = 0 this is easy, because ∆r acts transitively on
[n]. If i > 0, we choose aw ∈ {a1, . . . , ai} such that sgn(aw, ai+1) = (c, d) and
such that c is minimal with this property. Obviously we have c > 0. By the
choice of aw the lowest common ancestor of aw and ai+1 is the root of a tree
T x

c . Moreover, aw is located in a subtree T xq+y
c−1 for some 0 ≤ y ≤ q − 1 and ai+1

is located in the subtree T xq+z
c−1 where z = y + d mod q. Since sgn(ā) = sgn(b̄),

also bi+1 occurs as the label of a leaf in the subtree T xq+z
c−1 . By the minimality

assumption on c we know that non of the elements {a1, . . . , ai} occurs in the
tree T xq+z

c−1 . Hence, by the properties of the group ∆r stated in (III), we can
find an element δ ∈ ∆r which point-wise fixes all elements outside the block
P

xq+z
c−1 (in particular, the elements a1, . . . , ai) and which moves ai+1 to bi+1.

4.3.2 Defining sizes of orbits in first-order logic with counting

Following our definition from above, the signature sgn(ā) of an element ā ∈ Jn

is a tuple of length ℓ(ℓ − 1)/2 whose entries are pairs (i, z) ∈ [r + 1] × [q]. We
denote the set of all possible sequences of this form by Sℓ

n = ([r+1]×[q])ℓ(ℓ−1)/2.
Of course, not every tuple in σ ∈ Sℓ

n can be realised as the signature sgn(ā) = σ
of an element ā ∈ Jn. Analogously, we define the set Sk

n = ([r + 1] × [q])k(k−1)/2

to capture all possible signatures of elements in In.
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Since the coefficient matrix M∗

n of the equivalent linear equation system
M∗

n ⋅ x⃗ = ✶ can be defined as a matrix whose index sets are the collections of
∆r-orbits on In and Jn, we can use the notion of signatures to describe M∗

n as
an (Sk

n × S
ℓ
n)-matrix. This brings us closer to our goal, since the index sets Sk

n

and Sℓ
n of the matrix M∗

n are much smaller than the index sets In and Jn of
the coefficient matrix Mn of the original linear equation system. However, it
still might be the case that the succinctness of the matrix M∗

n does not help,
because it is not possible to obtain its entries within FORp.

We show that this is not the case. More precisely we show that we can
define the matrix M∗

n in FOC in a structure of size r (where we assume that
r ≥ q). Therefore, the main technical step is to show that FOC can count
(modulo p) the number of realisations of a potential signature σ ∈ Sk

n.

First of all, we need some further notation. A complete equality type
in k + ℓ variables is a consistent set τ(x1, . . . , xk, xk+1, . . . , xk+ℓ) of literals
xi = xj , xi ≠ xj which contains, for every pair i < j, either the atom xi = xj or
the literal xi ≠ xj . Note that each quantifier-free formula α ∈ FO(∅) can be
expressed as a Boolean combination of complete equality types.

In the following main technical lemma we show that in the structure
A = ([r]) we can count (modulo p) the number of realisations of a (potential)
signature σ ∈ Sℓ

n in a subtree T x
i in FOC. More generally, this is possible if

we additionally fix some entries of the tuples which should realise σ in T x
i .

For this we need another prerequisite: as we want to work with elements
from the set [n] = [qr] in a structure of size r, we have to agree on some
sort of succinct representation. Of course the natural choice is to represent
numbers x ∈ [n] in the structure A via their q-adic encoding: a binary relation
R ⊆ [r]2 which corresponds to a function R ∶ [r]→ [q] represents the number
x(R) ∈ [n] = ∑r−1

i=0 R(i) ⋅ qi. Note that this encoding requires a given linear
order on the set [r] (which is not available in the structure A). However, as
we are working with FOC, we can just use the number sort on which a linear
order is given. Hence in the following, whenever we specify FOC-formulas
or FOC-terms with free variables or with free relation symbols which should
represent numbers, then we implicitly assume that these variables are numeric
variables and that the relation symbols are evaluated over the number sort.
The same holds for signatures σ ∈ Sℓ

n which we specify in FOC-formulas by a
list of pairs (hi, di) of numeric variables of length (ℓ

2
).

Before we state our main technical lemma it is helpful to recall that our
inductive construction of the trees T x

i fits very well with the q-adic encoding
of numbers x ∈ [n]. Again, let x ∈ [n] be given by its q-adic encoding as
x = (x0, . . . , xr−1) ∈ [q]r, i.e. x = ∑r−1

i=0 xi ⋅ q
i. Then the i-th node on the unique

path from the root in the tree T = T 0
r to the leaf T x

0 is the root of the tree T y
r−i

where y = xr−i+xr−i+1q+⋯+xr−1q
i−1. In other words, the q-adic encoding of x

precisely describes the path in the tree T from the root to the leaf labelled with
x where at level (r − i) the i last entries xr−i, . . . , xr−1 in the q-adic encoding
of x are determined (i.e. x is a member of the block Py

r−i).
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Lemma 4.12. For all ℓ ≥ 1 and 0 ≤ s ≤ ℓ there exist

(a) a term Θ(i, h1, d1, . . . , ht, dt) ∈ FOC({Rx,R1, . . . ,Rs}), and

(b) formulas ϕe(y, z, i, h1, d1, . . . , ht, dt) ∈ FOC({Rx,R1, . . . ,Rs}) for e =

s + 1, . . . , ℓ,

where t = (ℓ
2
), such that for all r ≥ q, all i ≤ r, all σ = ((h1, d1), . . . , (ht, dt)) ∈ Sℓ

n

where n = qr, all x ∈ [qr−i] and all a1, . . . , as ∈ P
x
i the following holds: Let

A = ([r]) and let Rx,R1, . . . ,Rs be numerical relations such that Rx represents
the (q-adic encoding of the) element x ∈ [qr−i] and such that each Ri represents
the (q-adic encoding of the) element ai. Then it holds that

(i) the value ΘA(q, i, h1, d1, . . . , ht, dt) of the term Θ in A is ∣Z ∣ mod p where

Z = {(as+1, . . . , aℓ) ∈ (Px
i )ℓ−s

∶ sgn(a1, . . . , as, as+1, . . . , aℓ) = σ}.

(ii) if Z ≠ ∅, then the formulas (ϕe)s<e≤ℓ define the q-adic representation of
witnessing elements as+1, . . . , aℓ ∈ P

x
i , i.e. such that (as+1, . . . , aℓ) ∈ Z.

Proof. First of all, by our previous observations it is easy to see that the
condition aj ∈ P

x
i for j = 1, . . . , s can be defined in FOC. More generally, we

can use the q-adic encoding of the elements aj to determine sgn(a1, . . . , as) in
FOC. Hence, for the remainder of the proof we assume that sgn(a1, . . . , as) is
consistent with σ and that aj ∈ P

x
i for j = 1, . . . , s.

We proceed by induction on ℓ. For ℓ = 1 it suffices to show that FOC can
compute (n mod p) where n = qr in the structure A. To see this, recall that p
and q are co-prime and thus we can use Lagrange’s theorem to conclude that
qr ≡ qr′ mod p if r′ ≡ r mod (p − 1). Since p is a constant, the claim follows.

Let ℓ ≥ 2. We distinguish between the following two cases. If s = 0, then
we can partition the set of realisations ā of σ according to first entry a1 into
∣Px

i ∣ parts of equal size. It suffices to determine the size of each of these blocks,
since we can determine ∣Px

i ∣ mod p in FOC similarly as above.
Without loss of generality let us assume that a1 = x ⋅ q

i. Since we have
access to the q-adic encoding of x, it is easy to see that we can define the q-adic
encoding of xqi in FOC. This gives us the formula ϕ1. Next, we partition
the set of indices {2, . . . , ℓ} into classes according to the equivalence relation
j1 ≈ j2 which is determined by σ(1, j1) = σ(1, j2). Let the resulting classes be
Y1, . . . , Yv and let σ(1, y) = (hw, dw) for all y ∈ Yw and w = 1, . . . , v.

We observe that there exists a tuple ā with a1 = x ⋅ q
i which realises σ in

the tree T x
i (that is Z ≠ ∅) if, and only if, the following conditions are satisfied:

• for all w = 1, . . . , v we have hw ≤ i, and

• for every Yw = {yw
1 , . . . , y

w
ℓw
} there is a tuple āw of length ℓw which realises

σ (restricted to the indices from Yw) in the subtree T xqi−hw+1
+dw

hw−1
, and
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• for all pairs y1 ∈ Yw1
and y2 ∈ Yw2

with w1 ≠ w2 we have that

σ(y1, y2) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(hw1
, dw2

− dw1
mod q), if hw1

= hw2

(hw2
, dw2
) if hw1

< hw2

(hw1
, dw1
) if hw2

< hw1
.

Since ℓ is a constant, the number of possible partitions of {2, . . . , ℓ} is
bounded by a constant as well. It is easy to see that for every possible such
partition we can check the first and third condition in FOC. To verify the
second condition in FOC, we use the induction hypothesis. There are two
aspects which have to be discussed with more precision. First of all, we have
to handle one particular case separately: indeed, if hw = 1 for all w = 1, . . . , v,
then we cannot use the induction hypothesis since all elements (including a1)
have to be chosen in the same subtree of height one. However, in this case
there is only one realisation (if the third condition is satisfied) so this does not
cause any problems. The other difficulty is that we have to define the q-adic
encoding of the value zw = xq

i−hw+1
+ dw in FOC. We already noted above

that the q-adic representation of xqi−hw+1 can be defined in FOC and since
0 ≤ dw < q we can also define the q-adic encoding of z in FOC.

In fact, the induction hypothesis also provides us with a term which
counts modulo p the number of possible realisations of σ in the subtrees T zw

hw−1

restricted to the indices in Yw together with formulas ϕe which define witnessing
elements. Finally, since the overall number of possible realisations of σ in T x

i

is the product of the realisations restricted to the components Yw, the claim
follows for the case where s = 0.

For the general case let ℓ ≥ s > 0 and let a1, . . . , as ∈ P
x
i be the components

of the tuple ā that are already fixed. Recall that we can assume without loss
of generality that sgn(a1, . . . , as) is consistent with σ and that all elements
a1, . . . , as are located in the subtree T x

i . Since we have fixed the element a1,
we can proceed as above except for two small changes. First of all, when
applying the induction hypothesis we have to respect the remaining fixed
elements a2, . . . , as. Moreover, when we form the partitions of {2, . . . , ℓ} into
parts Y1, . . . , Yv as above then we have to adapt the position of elements
corresponding to the index set Yw since the element a1 is not necessarily
contained in the tree T xqi−hw+1

hw+1
. However, since we can access the q-adic

representation of a1, we can define in FOC the element 0 ≤ da < q such that a1

is located in the subtree T xqi−hw+1
+da

hw+1
. The remaining steps can be performed

as above. This finishes our proof.

Lemma 4.13. Let τ(x1, . . . , xk, y1, . . . , yℓ) ∈ FO(∅) be a complete equality
type (in k + ℓ variables). Then there is an FOC-term Θτ(z̄x, z̄y) such that for
all r ≥ q, all σā ∈ S

k
n and σb̄ ∈ S

ℓ
n, where n = qr, the value ΘA

τ (σā, σb̄) of Θ in
A = ([r]) is

ΘA

τ (σā, σb̄) = ∣{b̄ ∈ Jn ∶ sgn(b̄) = σb̄, ([n]) ⊧ τ(ā, b̄)}∣ mod p
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for some (or, equivalently, all) ā ∈ In with sgn(ā) = σā.

Proof. By Lemma 4.12 we can first check in FOC that σā and σb̄ can be realised
(otherwise the answer is trivial). Moreover, if τ (restricted to x1, . . . , xk) is
not consistent with σā or if τ (restricted to y1, . . . , yℓ) contradicts σb̄, then the
answer is trivial as well.

In all other cases, Lemma 4.12 provides FOC-formulas which define in
the structure A the q-adic encoding of elements a1, . . . , ak ∈ [n] such that
sgn(ā) = σā. Moreover, if τ contains a literal xi = yj , then we can fix the entry
bj as well. Hence, let us assume without loss of generality that τ contains the
literals xi ≠ yj for all 1 ≤ i ≤ k and 1 ≤ j ≤ ℓ.

For Y ⊆ {1, . . . , ℓ} and a partial assignment ǫ ∶ {1, . . . , ℓ} → {a1, . . . , ak}
with dom(ǫ) ∩ Y = ∅ we define the set

Bǫ
Y = {b̄ ∈ Jn ∶ sgn(b̄) = σb̄, for i ∈ dom(ǫ) ∶ bi = ǫ(i), for i ∈ Y ∶ bi ≠ a1, . . . , ak}.

With this notation our overall aim is to determine (∣B∅Y ∣ mod p) for Y = [ℓ]
in FOC. The first observation is that by Lemma 4.12 we can determine
(∣Bǫ
∅
∣ mod p) for all partial assignments ǫ in FOC. The second observation is

that we can construct the values (∣Bǫ
Y ∣ mod p) by induction on ∣Y ∣ as follows.

For Y ⊆ {1, . . . , ℓ} and a partial assignment ǫ (with dom(ǫ) ∩ Y = ∅) we have
for all j ∈ Y that

∣Bǫ
Y ∣ = ∣Bǫ

Y ∖{j}∣ − ∑
a∈{a1,...,ak}

∣Bǫ∪{j↦a}
Y ∖{j}

∣.

In this way we recursively obtain the value (∣B∅Y ∣ mod p) for Y = [ℓ]. Since ℓ
is a constant, the recursion depth is bounded by a constant as well and the
procedure can be formalised in FOC.

Lemma 4.14. There exists an FOC-term Θ(µ̄, ν̄) which defines for all r ≥ q
in the structure A = ([r]) the matrix M∗

n where n = qr.

Proof. Recall that we can view M∗

n as an (Sk
n×S

ℓ
n)-matrix over Fp. To represent

the index sets Sk
n and Sℓ

n we let µ̄ and ν̄ be tuples of numeric variables of
lengths ∣µ̄∣ = (k

2
) and ∣ν̄∣ = (ℓ

2
), respectively.

The entry M∗

n(σā, σb̄) of M∗

n for σā ∈ S
k
n and σb̄ ∈ S

ℓ
n is given as

M∗

n(σā, σb̄) = ∣{b̄ ∈ Jn ∶ sgn(b̄) = σb̄,Mn(ā, b̄) = 1}∣ ⋅ ∣Stab(b̄)∣ mod p,

for some (or, equivalently, all) ā ∈ In, b̄ ∈ Jn with sgn(ā) = σā and sgn(b̄) = σb̄.
The entry Mn(ā, b̄), in turn, is determined by the quantifier-free formula
α(x̄1, x̄2) ∈ FO(∅). Lemma 4.13 shows that we can determine the value of the
left-hand side of the above equation for the case where α is a complete equality
type. For the general case, we write α as the union of complete equality types
and combine the constant number of intermediate results. Moreover, we can
determine ∣Stab(b̄)∣ by Lemma 4.12 (which shows that the size of the orbit of
b̄ is definable) and by the orbit-stabiliser theorem.
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Definition 4.15. Let K ⊆ S(∅) be a class of sets. The q-power Kq ⊆ S(∅) of
K consists of all sets A = ([qr]) such that B = ([r]) ∈ K.

Theorem 4.16. Let K ⊆ S(∅) be a class of sets. If Kq is definable in FOSp,
then K is definable in FORp.

Proof. If Kq is definable in FOSp, then by Theorem 4.9 we find a formula
ϕ = (slvp x̄1, x̄2)α(x̄1, x̄2) ∈ FOSp that defines Kq where α is quantifier-free.

By using the above construction and Lemma 4.14, we conclude that the
linear equation system Mn ⋅ x⃗ = ✶ defined by α in an input structure A = ([n])
of size n = qr can be transformed into the equivalent system M∗

n ⋅ x⃗ = ✶ which
is FOC-definable in B = ([r]). Let ϕ∗ ∈ FORp be a formula which expresses
the solvability of the linear system M∗

n ⋅ x⃗ = ✶ in a structure B = ([r]).
Then B ⊧ ϕ∗ if, and only if, A ⊧ ϕ since the linear equation systems

Mn ⋅ x⃗ = ✶ and M∗

n ⋅ x⃗ = ✶ are equivalent.

Theorem 4.17. For all primes p we have FOSp < FORp (even over S(∅)).
Proof. Suppose for the sake of a contradiction that FOSp = FORp. As above
we fix some prime q ≠ p. Let K ⊆ S(∅) be a class of sets such that K ∉ FORp,
but such that (Kq)q ∈ FORp. Such a class K is well-known to exist. In fact,
it follows from the space-hierarchy theorem, see e.g. [81], that there exists a
language L ⊆ {1n

∶ n ∈ N} such that L ∈ Space(2cn) and L ∉ Pspace. But
then for an appropriate prime q we have that L′ = {qqn

∶ 1n ∈ L} ∈ Logspace.
Since, over sets, we have Logspace ≤ FORp ≤ Ptime ≤ Pspace, this shows
that we can choose K = {([n]) ∶ 1n ∈ L}.

Now, since we assumed that FOSp = FORp we have (Kq)q ∈ FOSp and
by Theorem 4.16 this means that Kq ∈ FORp. Again, since FORp = FOSp,
we have Kq ∈ FOSp. A second application of Theorem 4.16 yields K ∈ FORp,
which contradicts our assumptions.

Let us remark that the same proof also works for the extension of fixed-point
logic by solvability quantifiers (but still in the absence of counting). The simple
reason is that, in the absence of counting, fixed-point operators do not increase
the expressive power of first-order logic over the empty signature, since all
definable relations consist of constantly many basic building blocks (and thus
we can evaluate fixed points already in first-order logic). In other words, if we
denote by FPS

−

p the extension of fixed-point logic by solvability quantifiers
slvp over Fp (without counting), then we have FOSp = FPS

−

p over S(∅).
Theorem 4.18. For all primes p, we have FPS

−

p < FORp over S(∅).
Finally, another interesting consequence is that there exists an FPC-

definable query over S(∅) which cannot be defined in FPSp. This immediately
follows from our proof of Theorem 4.16, since the solvability of the linear
equation system M∗

n ⋅ x⃗ = ✶ matrix can also be expressed in FPC (we interpret
the coefficient matrix M∗

n over the second ordered sort). Note that, in contrast,
we have no proof which shows that FPC cannot be embedded into FORp.
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4.4 Separation results over different prime fields

In this section we separate solvability quantifiers and rank operators over
different prime fields. This solves an open question by Dawar and Holm
who asked whether for distinct primes p, q ∈ P we have that FPRp ≠ FPRq,
[29, 59, 71]. In [59], Holm was able to prove this separation for the special case
where rank operators are restricted to dimension one. In this section we settle
the general case and show that the expressive power of FPRΩ and FPRΩ′ is
different for all distinct sets of primes Ω,Ω′ ⊆ P. An important consequence of
our result is that rank logic (in the way it was defined in [28]) does not suffice
to capture polynomial time. Let us state these two results explicitly.

Theorem 4.19. Let Ω and Ω′ be two sets of primes such that Ω ≠ Ω′. Then
FPSΩ ≠ FPSΩ′ and FPRΩ ≠ FPRΩ′.

Theorem 4.20. Rank logic fails to capture polynomial time, that is

FPR < FPR
∗
≤ Ptime.

Recall from Section 4.1 that FPR
∗ is the extension of FPC by a uniform

rank operator rk which can express the matrix rank problem uniformly over
prime fields Fp (which means that p is part of the input of the operator). More
precisely, we show that this uniform rank operator cannot be expressed in
FPR. The intuitive reason is that having separate rank operators rkp for every
prime p ∈ P does not suffice to simultaneously define the matrix rank over all
prime fields Fp by a single formula. This idea is made precise in the following
main result from which we can directly infer the two theorems from above.

Theorem 4.21. For every prime q there is a class of structures Kq such that

(a) FPSΩ = FPC on Kq for every set of primes Ω with q ∉ Ω,

(b) FPRΩ = FPSΩ on Kq for all sets of primes Ω,

(c) FPC < Ptime on Kq, and

(d) FPSq = Ptime on Kq.

Proof of Theorem 4.19. Let Ω and Ω′ be two distinct sets of primes. Without
loss of generality let us assume that there exists a prime q ∈ Ω ∖Ω′. Then by
Theorem 4.21 there exists a class Kq on which FPSΩ = FPRΩ = Ptime and
on which FPSΩ′ = FPRΩ′ = FPC < Ptime.

Proof of Theorem 4.20. Assume that FPR = Ptime. Then, in particular,
FPR = FPR

∗ and there exists a formula ϕ ∈ FPR which can uniformly
determine the rank of matrices over prime fields, i.e. which can express the
uniform rank operator rk. As a matter of fact we have ϕ ∈ FPRΩ for some
finite set of primes Ω. By using ϕ we can uniformly express the matrix rank



94 Chapter 4. Linear-algebraic operators over finite fields

over each prime field Fp in FPRΩ. In other words, we have FPS ≤ FPR ≤

FPR
∗
≤ FPRΩ.

Now let q ∈ P ∖Ω. By Theorem 4.21 there exists a class of structures Kq

on which FPRΩ = FPC < Ptime. However, the class Kq can be chosen such
that Ptime = FPSq ≤ FPRΩ on Kq by Theorem 4.21 (d) and we obtain the
desired contradiction.

The proof of Theorem 4.20 reveals the already mentioned deficiency in the
definition of FPR: each formula can only access rkp-operators for a finite set
of primes Ω ⊆ P. This suggests to generalise the notion of rank operators and
to specify the prime p as a part of their input. This uniform version of rank
operators has previously been proposed, for example, in [59, 71, 80].

The remainder of this section is devoted to the proof of Theorem 4.21. We
fix a prime q and proceed as follows. In a first step, we identify properties of
classes of structures Kq which guarantee that the relations claimed in (a), (b),
(c) and (d) hold. In a second step, we proceed to show that we can obtain a
class of structures Kq that satisfies all of these sufficient criteria. This together
then proves our theorem.

4.4.1 Reducing rank operators to solvability quantifiers

We start by establishing sufficient criteria for the most relevant part of Theo-
rem 4.21, which is the relation claimed in (a). Assume that we have a class of
structures Kq = K with the following properties.

(I) The groups ∆A ∶= Aut(A) of structures A ∈ K are Abelian q-groups.

(II) The orbits of ℓ-tuples in structures A ∈ K can be ordered in FPC.

Formally, for each ℓ ≥ 1 there is a formula ϕ⪯(x1, . . . , xℓ, y1, . . . , yℓ) ∈ FPC

such that for every structure A ∈ K, the formula ϕ⪯(x̄, ȳ) defines in A a
linear preorder ⪯ on Aℓ with the property that two ℓ-tuples ā, b̄ ∈ Aℓ are
⪯-equivalent if, and only if, they are in the same ∆A-orbit.

Lemma 4.22. If K satisfies (I) and (II), then FPSΩ = FPC on K for all sets
of primes Ω with q ∉ Ω.

The proof of this lemma is by induction on the structure of FPSΩ-formulas.
Obviously, the only interesting step is the translation of a solvability formula

ψ(z̄) = (slvp x̄ν̄ ≤ s̄, ȳµ̄ ≤ t̄)ϕ(x̄ν̄, ȳµ̄, z̄)
into an FPC-formula ϑ(z̄) which is equivalent to ψ(z̄) on the class K. Let
∣x̄∣ = ∣ȳ∣ = ℓ, ∣ν̄∣ = ∣µ̄∣ = λ and ∣z̄∣ = k. To explain our main argument, we fix a
structure A ∈ K and a k-tuple of parameters c̄ ∈ (A ⊎N)k which is compatible
with the type of the variable tuple z̄. According to the semantics of the
solvability quantifier, the formula ϕ defines in (A, z̄ ↦ c̄) an I × J-matrix
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M = MA
c̄ with entries in {0,1} ⊆ Fp where I = IAc̄ ∶= Aℓ

× N
≤s̄ ⊆ Aℓ

× N
λ and

J = JA
c̄ ∶= Aℓ

×N
≤t̄ ⊆ Aℓ

×N
λ that is defined for ā ∈ I and b̄ ∈ J as

M(ā, b̄) =
⎧⎪⎪⎨⎪⎪⎩

1, if A ⊧ ϕ(ā, b̄, c̄)
0, else.

By definition we have A ⊧ ψ(c̄) if, and only if, the linear equation system
M ⋅ x⃗ = ✶ over Fp is solvable. Similar to our approach in Section 4.3, the key
idea is to use the symmetries of the structure A to translate the linear equation
system M ⋅ x⃗ = ✶ into an equivalent linear system which is simpler in the sense
that its solvability can be defined in the logic FPC. The reader should observe
that each automorphism π ∈∆A = Aut(A) naturally induces an automorphism
of the two-sorted extension A

# which point-wise fixes every number n ∈ N. In
particular we have Aut(A) = Aut(A#).

We set Γ = ΓA
c̄ ∶= Fix(c1, . . . , ck) ≤ ∆ = ∆A. In other words, we have that

Γ = Aut(A, c̄). The group Γ acts on I and J in the natural way. We identify
each automorphism π ∈ Γ with the corresponding I × I-permutation matrix ΠI

and the corresponding J × J-permutation matrix ΠJ in the same way as we
did in Section 4.3. Again for every π ∈ Γ we have ΠI ⋅M =M ⋅ΠJ , which leads
to the following important observation.

Lemma 4.23. If M ⋅ x⃗ = ✶ is solvable, then the system has a Γ-symmetric
solution, that is a solution b⃗ ∈ FJ

p such that ΠJ ⋅ b⃗ = b⃗ for all π ∈ Γ.

Proof. If M ⋅ b⃗ = ✶, then also ΠI ⋅ (M ⋅ b⃗) = ✶ and thus M ⋅ (ΠJ ⋅ b⃗) = ✶ for all
π ∈ Γ. This shows that Γ acts on the solution space of the linear equation
system. Since K satisfies property (I) we know that Γ is a q-group for a prime
q ≠ p. Thus each Γ-orbit has size qr for some r ≥ 0. On the other hand, the
number of solutions is a power of p. We conclude that there is at least one
Γ-orbit of size one which proves our claim.

Let b⃗ ∈ FJ
p be a Γ-symmetric solution. Then the entries of the solution b⃗ on

Γ-orbits are constant: for j ∈ J and π ∈ Γ we have b⃗(π(j)) = (ΠJ ⋅ b⃗)(j) = b⃗(j).
We proceed to use the property (II) and show that there exists an FPC-formula
ϕ⪯(x̄, ȳ) which defines for all A ∈ K and c̄ ∈ (A⊎N)k as above a linear preorder
⪯ on Aℓ which identifies Γ-orbits. Note that, in general, Γ = Aut(A, c̄) is a
strict subgroup of ∆ = Aut(A). Thus we can not directly apply (II). However,
the Γ-orbits on Aℓ correspond to the ∆-orbits on Ak′+ℓ where the first k′ entries
are fixed to the elements in {c1, . . . , ck} ∩A.

The linear preorder ⪯ naturally extends to a preorder on the sets I and J

with the same properties. Let us write J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jv−1 to denote the
decomposition of J into Γ-orbits Jj which are ordered by ⪯ as indicated and
where v ≥ 1 denotes the number different Γ-orbits. Moreover, for j ∈ [v] we let
ej denote the identity vector on the j-th orbit Jj , that is the J-vector which is
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defined for i ∈ J as

ej(i) ∶=
⎧⎪⎪⎨⎪⎪⎩

1, if i ∈ Jj

0, else.

Let E denote the J × [v]-matrix whose j-th column is the vector ej . It
follows that a Γ-symmetric solution b⃗ can be written as E ⋅ b⃗∗ = b⃗ for a unique
[v]-vector b⃗∗. Together with Lemma 4.23 this shows the following.

Lemma 4.24. The linear equation system M ⋅ x⃗ = ✶ is solvable if, and only if,
the linear equation system (M ⋅E) ⋅ x⃗∗ = ✶ is solvable.

Finally, we observe that the coefficient matrixM∗ ∶= (M ⋅E) of the equivalent
linear equation system M∗ ⋅ x⃗∗ = ✶ can easily be obtained in FPC and that it is
a matrix over the ordered set of column indices [v]. It is a simple observation
that such linear equation systems can be solved in FPC: the linear order on
the column set induces (together with some fixed order on Fp) a lexicographical
ordering on the set of rows which is, up to duplicates of rows, a linear order on
this set. Thus, in general, if we have a linear order on one of the index sets of
the coefficient matrix, this suffices to obtain an equivalent matrix where both
index sets are ordered, see also [80]. This finishes our proof of Lemma 4.22.

We proceed to show that the conditions (I) and (II) also guarantee that
rank operators can be reduced to solvability quantifiers over the class K. In
fact, for this translation we only require the somewhat weaker assumption
that we can define in FPC on ℓ-tuples in structures A ∈ K a linear preorder in
which every class can be totally ordered in FPC by fixing a constant number
of parameters. The precise technical requirements will become clear from the
proof of the following lemma.

Lemma 4.25. If K satisfies (I) and (II), then FPRΩ = FPSΩ on K for all
sets of primes Ω ⊆ P.

Proof. We translate FPRΩ-formulas into formulas of FPSΩ which are equiva-
lent on K. The interesting case is the transformation of rank terms

Υ(z̄) = [rkp (x̄ν̄ ≤ t̄, ȳµ̄ ≤ s̄) .Θ(x̄ν̄, ȳµ̄, z̄)].
Let ∣x̄∣ = ∣ȳ∣ = ℓ, ∣ν̄∣ = ∣µ̄∣ = λ and ∣z̄∣ = k. Let A ∈ K and let c̄ be a k-

tuple of parameters c̄ ∈ (A ⊎ N)k which is compatible with the type of the
variable tuple z̄. The term Θ defines in (A, z̄ ↦ c̄) for IA = I ∶= A∣x̄∣ ×N

≤t̄ and
JA = J ∶= A∣ȳ∣ ×N

≤s̄ the I × J-matrix M over Zp which is defined as

M(ān̄, b̄m̄) ∶= ΘA(ān̄, b̄m̄, c̄) mod p.

According to the semantics of matrix rank operators, the value ΥA(c̄) ∈ N
is the rank of the matrix M . We proceed to show that we can determine the
matrix rank of M by a recursive application of solvability queries. To this end
we make the following key observation.
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Claim: There exist FPC-formulas ϕ⪯(ȳ1µ̄1, ȳ2µ̄2), ψ≤(v̄, ȳ1µ̄1, ȳ2µ̄2) such that
for every structure A ∈ K

(a) ϕA
⪯

is a linear preorder ⪯ on JA, and such that

(b) for every ⪯-class [j] ⊆ JA there exists a parameter tuple d̄ ∈ A∣v̄∣ such
that ψA

≤
(d̄) is a linear order ≤ on [j].

Proof of claim: First of all, we let ϕ⪯ be an FPC-formula which defines in every
structure A ∈ K a linear preorder ⪯ on JA such that ⪯-classes correspond to ∆A-
orbits. Such a formula exists by our assumption that K satisfies property (II).
Analogously, we choose an FPC-formula ϑ⪯ which defines in every structure
A ∈ K a linear preorder ⪯∗ on JA

× JA that induces a linear order on the
∆A-orbits.

Now let [j] ⊆ JA be a ⪯-class for some A ∈ K. By property (I) we know
that ∆A is an Abelian group. Thus, each automorphism π ∈ ∆A which fixes
one element in the ∆A-orbit [j] point-wise fixes every element in the class [j].
We conclude that the restriction of ⪯∗ to elements in {j} × [j] corresponds to
a linear order on [j] for each j ∈ [j]. In this way we obtain an FPC-formula
ψ≤ with the desired properties. ⊣

We are now prepared to describe the recursive procedure which allows us to
determine the rank of the matrix M in FPSΩ. To this end we fix formulas ϕ⪯
and ψ≤ with the above properties. Moreover, let ⪯ denote the linear preorder
defined by ϕ⪯ on J and let J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jr−1. We use the formula ψ≤ to
obtain on each class Ji a family of definable linear orderings (which depend
on the choice of different parameters). For j ∈ J we denote by m⃗j ∈ F

I
q the

j-th column of the matrix M . Then the rank of M is the dimension of the
Fp-vector space which is generated by the set of columns {m⃗j ∶ j ∈ J} of the
matrix M .

The important step is to recursively obtain, for i ∈ [r], the dimension di ∈ N

of the Fp-vector space generated by

Vi ∶= {m⃗j ∶ j ∈ J0 ∪ J1 ∪⋯∪ Ji}.
First, we use ψ≤ to fix a linear order on Ji (the following steps are independent
of the specific linear order and can thus be performed in parallel for each such
order). Using this linear order on Ji we can identify in FPSΩ a maximal set
W ⊆ {m⃗j ∶ j ∈ Ji} of linearly independent columns such that ⟨Vi−1⟩∩ ⟨W ⟩ = {0⃗}.
Indeed, if ⟨Vi−1⟩ ∩ ⟨W ⟩ = {0⃗}, then for m⃗ ∈ {m⃗j ∶ j ∈ Ji}, m⃗ ∉ ⟨W ⟩ we have
that ⟨Vi−1⟩ ∩ ⟨W ∪ {m⃗}⟩ = {0⃗} if, and only if, m⃗ ∉ ⟨Vi−1 ∪W ⟩. Observe that
the conditions m⃗ ∉ ⟨W ⟩ and m⃗ ∉ ⟨Vi−1 ∪W ⟩ correspond to the solvability of a
linear equation system over Fp. We claim that di = di−1 + ∣W ∣. Indeed, by the
maximality of W and since ⟨Vi⟩∩ ⟨W ⟩ = {0⃗} it follows that ⟨Vi⟩ = ⟨Vi−1⟩⊕ ⟨W ⟩.
Moreover, W consists of linearly independent columns and is a basis for ⟨W ⟩.

Since the recursion described above can easily be implemented in FPSΩ,
we conclude that the rank dr−1 of the matrix M can be determined in FPSΩ

which completes our proof.
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We now focus on parts (c) and (d) of Theorem 4.21 and establish sufficient
criteria which guarantee that FPC fails to capture Ptime on K while FPSq

can express every polynomial-time decidable property of K-structures.

(III) There exists an FPSq-definable canonisation procedure on K.

(IV) For every k ≥ 1 there exists a pair of structures A ∈ K and B ∈ K such
that A /≅B and A ≡C

k B.

Lemma 4.26. If K satisfies (III), (IV), then FPC < FPSq = Ptime on K.

Proof. It is clear that by property (III) we have FPSq = Ptime on K. Moreover,
if we had FPC = Ptime on K then, by the embedding of FPC into C

ω
∞ω and

the fact that K-structures can be canonised in polynomial time, there exists
a fixed k ≥ 1 such that C

k
∞ω can identify each structure in K which, in turn,

contradicts property (IV).

4.4.2 A generalised Cai, Fürer, Immerman construction

It remains to construct a class of structures K which satisfies (I) - (IV). Our
approach is a generalisation of the well-known construction of Cai, Fürer,
and Immerman [21] for cyclic groups other than F2. To illustrate the main
differences, let us briefly recall the idea of the original construction. Starting
with an undirected and connected graph G = (V,E), we first take two copies
e0, e1 of every edge e ∈ E for the universe of the associated CFI-graph. For
every vertex v ∈ V we let vE ⊆ E denote the set of edges which are incident
with v. The crucial idea of the CFI-construction is to consider, for every vertex
v ∈ V , one of the following two constraints to restrict the symmetries of the
resulting CFI-graph: either the set of all sets {eρ(e) ∶ e ∈ vE} with ρ ∶ vE → F2

and ∑e∈vE ρ(e) = 0 is stabilised (an even node) or the dual set of all sets
{eρ(e) ∶ e ∈ vE} with ρ ∶ vE → F2 and ∑e∈vE ρ(e) = 1 is stabilised (an odd node).
This restricts the symmetries of the resulting CFI-graphs (which are obtained
by twisting the atoms e0, e1 for edges e ∈ E) in a very clever way.

The constraints for even and odd nodes are encoded by simple graph
gadgets. Although it seems that for the same undirected graph G we obtain
exponentially many different CFI-graphs (for each v ∈ V we can choose one out
of two possible constraints), there really are, up to isomorphism, only two such
graphs which are determined by the parity of the number of odd nodes. The
reason is that if we twist two copies e0, e1 of an edge e, then we can move the
resulting twist along a path (in the connected graph G) to iteratively balance
out pairs of odd nodes.

In order to generalise this construction to Fq we take for every edge e ∈ E
a directed cycle of length q over q copies e0, e1, . . . , eq−1 of the edge e. We
then add similar constraints for sets of incident edges as above, but instead of
having only two different kinds of such constraints, we have one for each of
the possible field elements 0,1, . . . , q − 1 ∈ Fq. Now, instead of twisting pairs
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of edges, we consider cyclic shifts on the edge classes e0, e1, . . . , eq−1. Again,
these shifts can be propagated along paths in the original graph G and, with
a reasoning analogous to the original approach, it turns out that there are,
up to isomorphism, only q different types of generalised CFI-graphs over Fq.
We remark that the same kind of construction has been used, for example,
in [59, 86].

Formally, we start with an (undirected), connected and ordered graph
G = (V,≤,E). We set τ ∶= {⪯,C, I,R} for binary relation symbols C, I and R.
We define, for every q ∈ P, and for every sequence of gadget values d⃗ = (dv)v∈V ∈
[q]V , a τ -structure CFIq(G, d⃗) which we call a CFI-structure over G. For the
following construction we implicitly assume that arithmetic is modulo q so that
we can drop the operator “mod q” in statements of the form x = y mod q and
x + y mod q for the sake of better readability. For what follows, let E(v) ⊆ E
denote the set of directed edges starting in v. Since G is an undirected graph,
this means that for an undirected edge {v,w} of G we have (v,w) ∈ E(v) and
(w, v) ∈ E(w). The construction is illustrated in Figure 4.3.

• The universe of CFIq(G, d⃗) consists of edge nodes and equation nodes.

– The set of edge nodes Ê is defined as Ê ∶= ⋃e∈E ê where for every
directed edge e ∈ E we let the edge class ê = {e0, e1, . . . , eq−1} consist
of q distinct copies of e. In particular, for every edge e = (v,w) ∈ E
and its reversed edge e−1

∶= f = (w, v) ∈ E the sets ê and f̂ are
disjoint. We say that the two such edges e and f (or the associated
edge classes ê and f̂) are related.

– The set of equation nodes V̂ is defined as V̂ ∶= ⋃v∈V v̂
d⃗(v) where for

every vertex v ∈ V and d ∈ [q] the equation class v̂d consist of all
functions ρ ∶ E(v)→ [q] which satisfy ∑ρ ∶= ∑e∈E(v) ρ(e) = d.

• The linear preorder ⪯ orders the edge classes according to the lexico-
graphical order induced by ≤ on E. More precisely, we let ê ⪯ f̂ whenever
e ≤ f . Similarly, ⪯ orders the equation classes according to the order of
≤ on V , that is v̂ ⪯ ŵ if v ≤ w. Moreover, we let ê ⪯ v̂ for edge classes ê
and equation classes v̂.

• The cycle relation C contains a directed cycle of length q on each of the
edge classes ê for e ∈ E, that is C = {(ei, ei+1) ∶ i ∈ [q], e ∈ E}.

• The inverse relation I connects two related edge classes by pairing
additive inverses. More precisely, let e = (v,w) ∈ E and f = (w, v) ∈ E.
Then I contains all edges (ex, fy) with x + y = 0 for x, y ∈ [q].

• The gadget relation R is defined as R ∶= ⋃v∈V R
d⃗(v)
v where for v ∈ V and

d ∈ [q] the relation Rd
v is given as

Rd
v ∶= {(ρ, eρ(e)) ∶ ρ ∈ v̂d, e ∈ E(v)}.
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Figure 4.3: CFI-construction for the v-gadget where q = 3 and d⃗(v) = 0

At first glance our construction associates to every graph G (with the above
properties) and to each sequence of gadget values d⃗ ∈ [q]V a different structure
CFIq(G, d⃗). However, for each such graph G there really are, up to isomorphism,
only q different CFI-structures CFIq(G, d⃗). In fact, the value ∑ d⃗ ∶= ∑v∈V d⃗(v)
completely determines the isomorphism class of a CFI-structure over G.

To obtain this characterisation, we analyse the automorphism groups of
CFI-structures and, more generally, the set of isomorphisms between two
structures A = CFIq(G, d⃗1) and B = CFIq(G, d⃗2). For such structures we know
that the set Ê of edge nodes, the linear preorder ⪯ on Ê, the cycle relation
C and the inverse relation I do not depend on the sequence of gadget values.
This means that each possible isomorphism π which maps A to B induces an
automorphism of the common substructure C ∶= (Ê, (⪯ ↾ Ê),C, I) which only
depends on G but not on d⃗ ∈ [q]V . Thus

(Iso(A,B) ↾ Ê) ⊆ Γ ∶= Aut(C) ≤ Sym(Ê).
Let π ∈ Γ. The linear preorder ⪯ on Ê and the cycle relation C enforce

that π is the composition of cyclic shifts on the individual edge classes ê, that
is π ∈ ∏e∈E⟨( e0e1⋯eq−1 )⟩ ≤ Sym(Ê). It is convenient to identify the group
∏e∈E⟨( e0e1⋯eq−1 )⟩ with the vector space F

E
q in the obvious way.

In addition, the inverse relation I enforces that cyclic shifts for pairs of
related edge classes are inverse to each other in the following sense: Let
e = (v,w) ∈ E and f = (w, v) ∈ E be a pair of related edges. Assume that
we have a permutation π ∈ FE

q such that π(e) = x and π(f) = y. We have
(e0, f0) ∈ I. Hence, if π is supposed to be an automorphism of C, then we have
π(I) = I and thus (ex, ey) ∈ I which means that x + y = 0.
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In conclusion, it follows that Γ ≤ FE
q is the subgroup of FE

q which contains
all E-vectors π ∈ FE

q with the property that π(e)+π(f) = 0 for pairs of related
edges e, f ∈ E. Again we remind the reader that Γ only depends on G but not
on d⃗ ∈ [q]V . If we want to stress this dependence, then we sometimes write
Γ(G) but usually we omit G if the graph is clear from the context.

Now, given a CFI-structure A = CFIq(G, d⃗), we define for each vertex v ∈ V
the v-gadget as the set gadget(v) ∶= v̂d(v)

⊎⋃e∈E(v) ê.

Lemma 4.27. Let A = CFIq(G, d⃗) and let π ∈ Γ. Then there is precisely one
extension π̂ of π to Ê ⊎ V̂ such that π̂(A) is a CFI-structure over G.

Proof. Let ρ ∈ v̂ = v̂d⃗(v) for some v ∈ V . We show that under the assumption
that π̂(A) is a CFI-structure over G the action of π on Ê determines π̂(ρ).

We have that (ρ, eρ(e)) ∈ R for all e ∈ E(v). Hence for a potential isomor-
phism π̂ we must have that (π̂(ρ), π(eρ(e))) ∈ R′ (for some gadget relation R′

of a CFI-structure over G). Since we have π(eρ(e)) = eρ(e)+π(e), it follows by the
definition of CFI-structures that the function π̂(ρ) ∶ E(v)→ [q] is determined
as (π̂(ρ))(e) = ρ(e) + π(e) which in turn only depends on the action of π on
the edge classes ê for e ∈ E(v).

The preceding lemma shows that we can identify the set Iso(A,B) with
a subset of Γ. More specifically, the set Aut(A) turns out to be a subgroup
of Γ of which Iso(A,B) is a coset in Γ. Specifically, we saw that every π ∈ Γ

can uniquely be identified with an isomorphism of CFI-structures over G by
setting π(ρ) = ρ + π for ρ ∈ v̂d . As a consequence, this means that π(v̂d) = v̂d∗

where d∗ = d +∑e∈E(v) π(e) and that

π(Rd
v) = {(ρ + π, eρ(e)+π(e)) ∶ (ρ, eρ(e)) ∈ Rd

v} = Rd∗
v .

In particular, π stabilises the relation Rd
v if, and only if, ∑e∈E(v) π(e) = 0.

Lemma 4.28. Γ acts on {CFIq(G, d⃗) ∶ d⃗ ∈ [q]V }. For π ∈ Γ we have

π(CFIq(G, d⃗)) = CFIq(G, d⃗∗) where d⃗∗(v) = (d⃗(v) + ∑
e∈E(v)

π(e)).

Lemma 4.29. Let d⃗, d⃗∗ ∈ [q]V be two sequences of gadget values. Then
CFIq(G, d⃗) ≅ CFIq(G, d⃗∗) if, and only if, ∑ d⃗ = ∑ d⃗∗.

Proof. For the one direction, let π ∈ Γ such that π(CFIq(G, d⃗)) = CFIq(G, d⃗∗).
By Lemma 4.28 this means that d⃗∗(v) = (d⃗(v) +∑e∈E(v) π(e)) for v ∈ V . Thus

∑v∈V d⃗∗(v) = ∑v∈V d⃗(v)+∑v∈V ∑e∈E(v) π(e) = ∑v∈V d⃗(v)+∑e∈E π(e). Since for
all pairs of related edges e, f ∈ E we have π(e) + π(f) = 0, the claim follows.

For the other direction we proceed by induction on the number i of vertices
v ∈ V such that d⃗(v) ≠ d⃗∗(v). If no such vertex exists, then the claim is trivial.
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Otherwise, because of our assumption, there exist at least two such vertices
v,w ∈ V , v ≠ w. Since G is connected we find a simple path

p̄ ∶ v = v0
E
Ð→ v1

E
Ð→ v2

E
Ð→ ⋯

E
Ð→ vm = w

from v to w of length m ≥ 1. Consider the following E-vector π ∈ FE
q which is

defined for z ∶= d⃗∗(v) − d⃗(v) as

π(e) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z, if e = (vi, vi+1),0 ≤ i <m
−z, if e = (vi+1, vi),0 ≤ i <m
0, else.

By the definition of π it follows that π ∈ Γ. Let π(CFIq(G, d⃗)) = CFIq(G, d⃗+).
We claim that the number of v ∈ V such that d⃗+(v) ≠ d⃗∗(v) is at most i − 1.
From Lemma 4.28 we know that d⃗+(v) = d⃗(v) +∑e∈E(v) π(e). For v ∈ V it
follows that

• if v ∉ {v0, . . . , vm}, then d⃗+(v) = d⃗(v), and

• if v = v0, then d⃗+(v) = d⃗(v) + z = d⃗∗(v), and

• if v = vj for 1 ≤ j <m, then

d⃗+(v) = d⃗(v) + π(vj , vj−1) + π(vj , vj+1) = d⃗(v) − z + z = d⃗(v), and

• if v = vm, then d⃗+(v) = d⃗(v) − z.
Thus the claim follows from the induction hypothesis.

The kind of isomorphism that we constructed in the proof of Lemma 4.29
plays an important role later on. Thus, for a simple path p̄ from v0 to vm

(m ≥ 1)

p̄ ∶ v = v0
E
Ð→ v1

E
Ð→ v2

E
Ð→ ⋯

E
Ð→ vm = w,

and for z ∈ Fq, we denote this isomorphism by π[p̄, z] ∈ Γ. In other words, if
we let σz[e] ∈ Γ for e ∈ E and z ∈ Fq denote the E-vector which is defined as

σz[e](f) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z, if f = e,

−z, if f = e−1,

0, else,

then π[p̄, z] = σz[(v0, v1)] + σz[(v1, v2)] +⋯ + σz[(vm−1, vm)]. Intuitively, the
isomorphism π[p̄, z] allows us to simultaneously increase the gadget value at
v0 by z and to decrease the gadget value at vm by z while the induced twists
are moved along the path p̄ through the gadget relations of the vertices vj ,
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1 ≤ j <m, whose gadget value does not change. A very important special case
arises when p̄ is a simple cycle of length m ≥ 3

p̄ ∶ v = v0
E
Ð→ v1

E
Ð→ v2

E
Ð→ ⋯

E
Ð→ vm = v.

Then for all values z ∈ Fq the isomorphism π[p̄, z] ∈ Γ is an automorphism of
CFI-structures over G. We are going to use these automorphisms to show that
it is possible to define in FPC an ordering on the orbits of ℓ-tuples as required
by property (II). It turns out that it suffices to ensure that the graph G is
sufficiently connected.

Recall that a graph G is k-connected, for k ≥ 1, if G contains more than k

vertices and if G stays connected when we remove any set of at most k vertices.
The connectivity con(G) of a graph G is the maximal k ≥ 1 such that G is
k-connected. Moreover, the connectivity con(G) of a class G of graphs is the
function con(G) ∶ N→ N defined by

n↦ min
G∈G,∣G∣=n

con(G).

We proceed to define the class K: Let G be a class of undirected, ordered
graphs such that con(G) ∈ ω(1). Then we set

K = Kq ∶= {CFIq(G, d⃗) ∶ G = (V,≤,E) ∈ G, d⃗ ∈ [q]V }.

4.4.3 Orbits in generalised Cai, Fürer, Immerman structures

We proceed to show that K satisfies the required properties (I) - (IV). First of
all, we saw that the automorphism group of each CFI-structure is an Fq-vector
space, so property (I) clearly holds for the class K.

The proof that K satisfies property (II) is more involved. Let us fix the
length ℓ ≥ 1 of tuples on which we want to define a linear preorder which
identifies ∆A-orbits. By the choice of K it suffices to consider CFI-structures
A = CFIq(G, d⃗) over graphs G = (V,≤,E) with con(G) > (ℓ + 2), since almost
all structures in K satisfy this condition. As above let Γ ≤ FE

q denote the group
that acts on the set of CFI-structures over G and let A ∶= (V̂ ⊎ Ê) denote the
universe of the CFI-structure A.

Definition 4.30. Let λ ≤ ℓ and let ā ∈ Aλ.

(i) Let v ∈ V . We say that the vertex v is marked (given the parameters ā)

if for some x ∈ {a1, . . . , aλ} we have x ∈ v̂ (= v̂d⃗(v)).
(ii) Let e = (v,w) ∈ E. We say that the edge e is marked (given the parame-

ters ā) if one of the vertices v or w is marked or if for some x ∈ {a1, . . . , aλ}
we have that x ∈ ê ∪ f̂ where f = (w, v) ∈ E is the edge related with e.

Lemma 4.31. Let λ ≤ ℓ and let ā ∈ Aλ.
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(a) If v ∈ V is marked, then the v-gadget can be identified in C
ℓ+2
∞ω (using

the parameters ā), that is for every c ∈ gadget(v) there exists a formula
ϑ(x̄, y) ∈ C

ℓ+2
∞ω such that ϑA(ā) = {c}.

(b) If an edge e ∈ E is marked, then the edge classes ê and f̂ for f = e−1 are
identified in C

ℓ+2
∞ω (given the parameters ā), that is for every c ∈ ê ⊎ f̂

there exists a formula ϑ(x̄, y) ∈ C
ℓ+2
∞ω such that ϑA(ā) = {c}.

Proof. First of all, it is straightforward (even without using the parameters)
to fix the ⪯-class of any element c ∈ A in C

ℓ+2
∞ω. Secondly, observe that if an

element ρ ∈ v̂ is fixed, then we can fix an element in each of the edge classes
ê for e ∈ E(v) since ρ is R-connected to precisely one vertex in each of these
classes. Moreover, if we have fixed an element x ∈ ê in some edge class ê,
then we can simply use the cycle relation C to identify each element c ∈ ê via
its C-distance to a in C

ℓ+2
∞ω. Finally, the inverse relation I yields a definable

bijection between related edge classes.

Lemma 4.32. Let λ ≤ ℓ, ā ∈ Aλ and let v ∈ V be a vertex that is not marked.
Then for all edges e, e′ ∈ E(v), e ≠ e′, which are not marked there exists
π ∈ Fix(ā) ∶= Aut(A, ā) such that π(e) = −π(e′) ≠ 0 and such that π(f) = 0 for
all f ∈ E(v) ∖ {e, e′}.
Proof. Let e = (v,w) and e′ = (v,w′) as above. Then the vertices w and w′

are not marked.
Consider the graph G′ that results from G by removing the vertex v and

each marked vertex y ∈ V . Let V ′ ⊆ V denote the vertex set and E′ ⊆ E the
edge relation of the graph G′. Moreover, let M ∶= {a1, . . . , aλ} ∩ (⋃e∈E ê). We
observe that ∣V ∣ − ∣V ′∣ ≤ λ − ∣M ∣ + 1.

For every x ∈ M there is an edge f ∈ E such that x ∈ f̂ . For each such
edge f that is also contained in the subgraph G′ we delete one of its endpoints
but neither the vertex w nor the vertex w′ and denote the resulting subgraph
by G′′ with vertex set V ′′ ⊆ V ′ and edge relation E′′ ⊆ E′. It still might
be the case that there is a parameter x ∈ M such that x ∈ f̂ for f ∈ E′′.
However, then we know that f connects w′ and w. Since we removed at most
(∣V ∣ − ∣V ∣′) + ∣M ∣ ≤ λ + 1 ≤ (ℓ + 1) vertices from the graph G to obtain G′′ and
since con(G) > (ℓ+ 2), we know that there is a simple path of length m ≥ 2 (i.e.
the path does not consist of a single edge between w and w′) which connects
w and w′ in G′′:

p̄ ∶ w
E′′

Ð→ v1
E′′

Ð→ v2
E′′

Ð→ ⋯
E′′

Ð→ vm−1
E′′

Ð→ w′.

We extend the path p̄ to a simple cycle p̄c in G from v to v by using the
edges (v,w), (v,w′) ∈ E:

p̄c ∶ v
E
Ð→ w

E
Ð→ v1

E
Ð→ v2

E
Ð→ ⋯

E
Ð→ vm−1

E
Ð→ w′

E
Ð→ v.

Let 0 ≠ z ∈ [q]. We claim that π ∶= π[p̄c, z] satisfies the desired properties.
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By the definition of π it holds that π(e) = z = −π(e′). Let x ∈ {a1, . . . , aλ}.
Then we have x ∉ ⋃m−1

i=1 v̂i ∪ ŵ ∪ ŵ′ ∪ v̂, since none of the vertices v, w and w′

is marked and since we removed any other marked vertex y ∈ V from G.
Moreover, for f ∈ {(v,w), (w, v), (v,w′), (w′, v)} we have that x ∉ f̂ by our

assumption that e, e′ are not marked. Also for f ∈ {(w, v1), (w′, vm−1)} we
have x ∉ f̂ , since otherwise we had removed the vertices v1 and vm−1 from G′.
Finally, for f ∈ ⋃m−2

i=1 {(vi, vi+1), (vi+1, vi)} we have x ∉ f̂ , since otherwise we
had removed one of the endpoints of each such edge f from G′. Hence π(x) = x.
Finally, since v ∉ V ′′ we also have that π(f) = f for all f ∉ E(v) ∖ {e, e′}.
Lemma 4.33. Let λ ≤ ℓ and let ā, b̄ ∈ Aλ. Then (A, ā) ≡C

ℓ+2 (A, b̄) if, and only
if, there exists π ∈ Aut(A) such that π(ā) = b̄.
Proof. We proceed by induction on the maximal position 1 ≤ i ≤ λ up to which
the tuples ā and b̄ agree, that is such that for 1 ≤ j < i we have aj = bj and such
that ai ≠ bi. Let a ∶= ai and b ∶= bi. Then we have to show that there exists
an automorphism π ∈ Fix(a1⋯ai−1) = Aut(A, a1, . . . , ai−1) such that π(a) = b.
Since ā and b̄ have the same C

ℓ+2
∞ω-type we know that a and b belong to the

same ⪯-class. We choose v ∈ V such that a, b ∈gadget(v).
In what follows, whenever we speak of marked vertices or marked edges

then we implicitly refer to a marking with respect to the already fixed part of
parameters {a1, . . . , ai−1}.

Without loss of generality we may assume that the v-gadget is not marked
by an element x ∈ {a1, . . . , ai−1}, because otherwise, by Lemma 4.31, every
element in gadget(v) can uniquely be identified in C

ℓ+2
∞ω. We distinguish

between the two cases where a and b are equation nodes and where a and b

are edge nodes.
For the first case let a, b ∈ v̂. There exists a unique π ∈ FE(v)

q such that
π(a) = b and such that ∑e∈E(v) π(e) = 0. Moreover, this vector π can easily be
defined in C

ℓ+2
∞ω given the elements a and b. Now assume that one of the edges

e = (v,w) ∈ E(v) is marked, but that π(e) ≠ 0. Since the edge e is marked,
every element in ê can uniquely be identified in C

ℓ+2
∞ω by Lemma 4.31. However,

since a and b are R-connected to different elements in ê (as π(e) ≠ 0), this
contradicts the fact that ā and b̄ have the same C

ℓ+2
∞ω-type. Thus, for every edge

e ∈ E(v) we either have that π(e) = 0 or that e is not marked. By induction on
the number of edges e ∈ E(v) with π(e) ≠ 0 we show that π can be extended
to an automorphism in Fix(a1, . . . , ai−1). Thus let us fix e ∈ E(v) such that
π(e) ≠ 0. Since we have that ∑f∈E(v) π(f) = 0, there has to be another edge
e′ ∈ E(v) with π(e′) ≠ 0. We apply Lemma 4.32 to obtain an automorphism
σ ∈ Fix(a1, . . . , ai−1) such that σ(e) = π(e), σ(e′) = −π(e) and σ(f) = 0 for
all f ∈ E(v). Now consider (π − σ) ∈ FE(v)

q . By the induction hypothesis we
can extend this vector to an automorphism π∗ ∈ Fix(a1, . . . , ai−1). But then
(π∗ + σ) ∈ Fix(a1, . . . , ai−1) is an extension of π.

For the second case assume that a, b ∈ ê for some edge e ∈ E(v). As above
we conclude that the edge e is not marked. Since con(G) > (ℓ+2), the minimal
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degree of each vertex in G is at least (ℓ + 4). Since the vertex v is not marked
there has to be another edge e′ ∈ E(v), e ≠ e′, which is not marked. Thus we
can apply Lemma 4.32 to obtain an automorphism π ∈ Fix(a1, . . . , ai−1) such
that π(a) = b and π(f) = 0 for all f ∈ E(v) ∖ {e, e′}.

It is well-known that the sets of C
ℓ+2
∞ω-equivalent tuples can be linearly

ordered in FPC, see for example [79]. Hence, it follows from our previous
lemma that the class K satisfies property (II).

Lemma 4.34. The class K satisfies the properties (I) and (II).

Let us now turn our attention to property (IV). In the next lemma we are
going to show that for each k ≥ 1 and each sufficiently connected graph G ∈ G,
the logic C

k
∞ω cannot distinguish between any pair of CFI-structures over G

(although there exist non-isomorphic CFI-structures over G).

Lemma 4.35. Let k ≥ 1 and let G = (V,≤,E) ∈ G be such that con(G) > k.
Then for all d⃗, d⃗∗ ∈ [q]V it holds that

CFIq(G, d⃗) ≡C
k CFIq(G, d⃗∗).

Thus, the class K satisfies property (IV).

Proof. Let A = CFIq(G, d⃗) and let B = CFIq(G, d⃗∗). Without loss of generality
we assume that A /≅B. We show that Duplicator wins the k-pebble bijection
game played on A and B. Let za ∶= ∑v∈V d⃗(v), let zb ∶= ∑v∈V d⃗∗(v) and let
z ∶= zb − za. As above, for e = (v,w) ∈ E and y ∈ [q] we let σy[e] ∈ Γ = Γ(G)
denote the isomorphism which shifts the edge class ê by y, the edge class f̂ for
f = (w, v) by −y and which stabilises all remaining classes, that is

σy[e](f) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

z, if f = (v,w),
−z, if f = (w, v),
0, else.

Given a position (A, a1, . . . , aℓ,B, b1, . . . , bℓ) in the k-pebble bijection game,
we say that a pair (v, π) with v ∈ V and π ∈ Γ(G) is good if:

• the v-gadget is not marked (by the pebbled elements a1, . . . , aℓ in A or,
equivalently, by the pebbled elements b1, . . . , bℓ in B),

• π(ai) = bi for 1 ≤ i ≤ ℓ,

• π(A ∖ v̂) =B ∖ v̂, and

• (σz[e] + π)(A ↾gadget(v)) =B ↾gadget(v) for all e ∈ E(v).
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Intuitively this means that π is almost an isomorphism between A and B

except for the gadget associated to vertex v. Of course π itself does not induce
a bijection between the universes of the two CFI-structures (as otherwise
A ≅B). However, for each e ∈ E(v) we can associate a bijection π̂e ∶ A→ B to
π which is defined as

π̂e(x) =
⎧⎪⎪⎨⎪⎪⎩
π(x), if x ∉ v̂,

(σz[e] + π)(x), if x ∈ v̂.

In what follows we show that Duplicator can play in such a way that
after each round such a good pair (v, π) exists. Obviously, if Duplicator can
maintain this invariant this suffices for her to win the game.

Indeed we can find such a good pair (v, π) by Lemma 4.29 for the initial
position (A,B) of the game. Let us now consider one round of the game which
starts from a position (A, a1, . . . , aℓ,B, b1, . . . , bℓ) for which a good pair (v, π)
exists. First, Spoiler chooses a pair i ≤ k of pebbles which he removes from
the game board (if the corresponding pebbles are placed at all). Duplicator
then answers Spoiler’s challenge by providing a bijection π̂e for some edge
e ∈ E(v) which is not marked. Note that such an edge e exists since con(G) > k
and thus each vertex has degree at least k + 2. Spoiler picks a new pair
(a, π̂e(a)) ∈ A × B of π̂e-related elements on which he places the i-th pair
of pebbles. By the properties of π it immediately follows that the resulting
mapping ā[i ↦ a] ↦ b̄[i ↦ b] is a partial isomorphism. However, it might
happen that Spoiler placed the i-th pair of pebbles on equation nodes v̂ in
the gadget associated to vertex v. In this case the pair (v, π) is not good any
longer. So assume that Spoiler pebbled a new pair of elements (a, πe(a)) ∈ v̂× v̂.
Since the edge e = (v,w) was not marked we know that the w-gadget is not
marked. Thus it is easy to see that the pair (w,σz[e] + π) is good.

To complete our proof we establish an FPSq-definable canonisation pro-
cedure on the class K. The idea is as follows: given a CFI-structure A =

CFIq(G, d⃗) over a graph G and a value z ∈ [q] we construct a linear equation
system over Fq which is solvable if, and only if, ∑ d⃗ = z. This linear equation
system is FO-definable in the structure A, which shows that FPSq can de-
termine the isomorphism class of a CFI-structure over G. Since the graph G
is ordered, it is easy to construct an ordered representative from each of the
isomorphism classes of CFI-structures over G, which concludes our argument.

More specifically, let G = (V,≤,E) ∈ G, let A = CFIq(G, d⃗) ∈ K and let
z ∈ Fq. For our linear equation system we identify each element ei ∈ Ê and
each vertex v ∈ V with a variable over Fq, that is we let V ∶= Ê ⊎ V be the set
of variables. The equations of the linear equation system are given as follows:
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ei+1 = ei + 1 for all ei ∈ Ê (E 4.1)

ei = −f−i for related edges e, f ∈ E (E 4.2)

v = ∑
e∈E(v)

eρ(e) for all v ∈ V, ρ ∈ v̂ (E 4.3)

z = ∑
v∈V

v. (E 4.4)

It is easy to see that this system is FO-definable in A. First of all, the
equation (E 4.4) can be defined as a sum over the ordered set V . Moreover,
we can express the equations of type (E 4.1) and (E 4.2) by using the cycle
and inverse relation, respectively. Finally, the equations of type (E 4.3) can be
expressed by using the gadget relation R.

Lemma 4.36. The system defined above is solvable if, and only if, ∑ d⃗ = z.

Proof. If ∑ d⃗ = z, then it is easy to verify that we obtain a solution σ⃗ ∈ FVq
of the linear system by setting σ⃗(ei) = i and σ⃗(v) = d⃗(v). For the other
direction, we show that a solution σ⃗ ∈ FVq of this system defines an isomorphism
π between A and B = CFIq(G, d⃗+) where d⃗+(v) ∶= σ⃗(v). As a preparation, we
let δ(e) ∶= σ⃗(ei) − i for e ∈ E and some ei ∈ ê. Since σ⃗ is a solution, δ ∈ FE

q is
well-defined. Now we obtain the isomorphism π for ei ∈ Ê and ρ ∈ V̂ by setting

π(ei)↦ eσ(ei)

π(ρ)↦ ρ + δ.

Using the equations (E 4.1) and (E 4.2) one easily verifies that π respects the
cycle relation C and the inverse relation I. Moreover, let (ρ, eρ(e)) ∈ R. Then

π(eρ(e)) = eσ⃗(eρ(e))
and σ⃗(eρ(e)) = ρ(e) + δ(e).

Thus, π also respects R. Finally, by the equations of type (E 4.3), for all v ∈ V
and ρ ∈ v̂ we have that

∑ρ + δ = ∑
e∈E(v)

σ⃗(eρ(e)) = σ⃗(v).

This shows that σ⃗(v) = d+(v) and that ∑ d⃗+ = ∑v∈V σ⃗(v) = z because of
equation (E 4.4).

Lemma 4.37. The class K satisfies property (III).

This finishes our proof of Theorem 4.19.
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4.5 Discussion

We have shown that the expressive power of rank operators and solvability
quantifiers over different prime fields is incomparable. The important conse-
quence is that the version of rank logic FPR with a distinct rank operator rkp

for every prime p ∈ P fails to capture polynomial time. In particular, we saw
that the revised version of rank logic FPR

∗ with a uniform rank operator is
strictly more powerful. We remark that the problem of having non-uniform
operators has been noted earlier in [59, 80, 71], but there was no proof showing
that uniform operators lead to more expressive power. Moreover, we separated
rank operators and solvability quantifiers in the absence of counting.

Of course, the immediate question is whether the extension FPR
∗ of FPC

by the uniform rank operator rk suffices to capture polynomial time. We do
not believe that this is the case. A natural candidate to separate FPR

∗ from
Ptime is the solvability problem for linear equation systems over (finite) rings
and Abelian groups, see Chapter 3. While the solvability of linear equation
systems can efficiently be decided also over (finite) Abelian groups and rings,
it is not clear whether rank operators over (finite) fields suffice to do so. In
particular, can FPR

∗ define the solvability of linear equation systems over
Z4? In fact, a much simpler instance of this question is open as well: can
FPR

∗ distinguish between different CFI-structures over Z4? In some sense it
seems hard to simulate counting modulo 4 by counting modulo p for p ∈ P, but
on the other hand, it may be possible to reduce the natural linear equation
system for CFI-structures over Z4 to several linear equation systems over Z2.
For instance, it is obvious that FPR

∗ can distinguish between such pairs of
CFI-structures which differ by a unit in Z4 (just consider the associated linear
equation system modulo two).

Matrix rank over rings If it turns out that FPR
∗ cannot define the

solvability of linear equation systems over finite rings, then the natural idea
would be to generalise rank operators to (finite, commutative) rings. This,
however, is a non-trivial task.

First of all, there are different ways to define the matrix rank over (finite)
commutative rings, which turn out to be non-equivalent (while all these different
notions are equivalent over fields). In algebra, the most common approach to
define the matrix rank over commutative rings is to consider, for a matrix M
over a commutative ring R, the t-th determinantal ideal It(M) of M , which is
the ideal generated by all t × t-minors of M . Then the rank of M is defined
as the maximal t such that It(M) is different from (0) (or, for the similar
notion of McCoy rank one puts the stronger requirement that It(M) is not
annihilated by any ring element except for 0), see [18, 77]. While many of the
natural properties of matrix rank over fields also hold for this notion of matrix
rank over commutative rings, there are two problems when we want to apply
this notion in our setting. First of all, it is not clear whether this variant of
matrix rank over rings can be computed in polynomial time (at least we are
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not aware of any algorithm to do so). Moreover, even if it can be computed in
polynomial time, then it is not clear whether it helps to decide the solvability
of linear equation systems. At least, the simple criterion rk(M) = rk(M ∣ c⃗) can
not be used to characterise solvable linear equation systems M ⋅ x⃗ = c⃗.

Let us very briefly comment on two ideas to overcome these problems.
First, assume we generalise the notion of matrix rank to commutative rings
in a different way, namely by just copying its standard definition over fields.
Thus, we define the rank of a matrix M over a commutative ring R as the
size of a maximal set of linearly independent columns (we remark that, in
general, we then have rk(M) ≠ rk(MT )). For this variant of matrix rank we
can actually prove that it can be computed in polynomial time. The question
is as follows: does this notion of matrix rank help to solve linear equation
systems over rings? In this case we could consider another revision of rank
logic by rank operators which compute this variant of matrix rank over rings.
Our preliminary results, though, rather point into the direction of saying that
this variant of matrix rank can already be expressed in rank logic FPR

∗.
Another way to circumvent the difficulties with the notion of matrix rank

over commutative rings is to restrict ourselves to simple commutative rings,
where simple, for example, means chain rings (local rings in which every ideal
is principal, see Section 3.2.2). Over chain rings it is indeed possible to define
a notion of matrix rank which can be computed in polynomial time and which
suffices to solve linear equation systems. However, it is again not clear whether
this notion suffices to express the solvability of linear equation system over all
finite rings (or Abelian groups), see [27] for details.

Queries from algebra Rank logic is a very powerful extension of FPC

which can express the solvability of linear equations systems over all finite
fields. This query is not only important as such, but it also occurs as a basic
subroutine in many polynomial-time algorithms. Still, in the last two chapters
we saw that there are many subtle issues with the precise technical definition
of rank logic like the (non-)uniformity of operators or the seemingly strong
dependence on the kind of underlying algebraic domain.

More strikingly, there are a lot of similar (though more general) algorithmic
problems from the field of algebra for which we do not know whether they
can be expressed in rank logic. For instance, can rank logic express the
solvability of linear equation systems over the integers or can rank logic define
the membership problem for permutation groups (see the following paragraph).
In some sense, if with rank operators we had really identified an adequate
logical mechanisms to express the general algorithmic principles to manipulate
succinct representations of algebraically structured objects, then one would
expect that rank logic can actually define these problems.

As one of the interesting candidates, let us briefly discuss the permutation
group membership problem. In its very general form, it asks whether given an
(unordered) set of permutations π1, . . . , πk ∈ Sym(Ω) over an (unordered) set
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Ω, and given a test permutation σ ∈ Sym(Ω), does it hold that σ is contained
in the permutation group Γ = ⟨π1, . . . , πk⟩ ≤ Sym(Ω) which is generated by
π1, . . . , πk? It is far from being obvious that this problem can be decided in
polynomial-time (observe that the generated permutation group can be of
exponential size), see [36, 60, 85]. The crucial step for deciding whether “σ ∈ Γ”
holds is to compute a strong generating set for Γ (which is a generating set
with a certain normal form). By using this strong generating set it is then
easy to check whether σ can be written as a product of (strong) generators.
This normal form, and actually the whole approach, resembles the method of
Gaussian elimination, and thus, deciding the permutation group membership
problem can naturally be seen as a generalisation of the solvability problem
for linear equation systems. In fact, one can easily reduce the solvability
problem for linear equation systems over all finite Abelian groups to the
permutation group membership problem. So the obvious question is: can rank
logic express membership in permutation groups? As a first step, it makes
sense to study this question in the relaxed version for Abelian permutation
groups, see [78]. In particular, we remark that the algorithmic ideas for solving
the permutation group membership problem are central ingredients for the
known graph canonisation algorithms for classes of graphs with bounded colour
class size and bounded degree. Hence, if we make progress in understanding
the logical mechanisms that are required to express the permutation group
membership problem, then this might also lead to a natural logic for polynomial
time on these classes of graphs.

Solvability quantifiers vs. rank operators In the absence of counting
we proved that rank operators are strictly more powerful than solvability
quantifiers. However, the relationship between solvability logic FPS and
rank logic FPR (as extensions of fixed-point logic with counting) remains
unclear. We only know, by our proof of Lemma 4.25, that on every class of
structures of bounded colour class size the two logics have the same expressive
power. However, over general structures our reduction fails. One way to
attack this problem might be to combine our algebraic approach with the
game-theoretic toolkit proposed by Dawar and Holm in [29]. In particular,
we are interested in a variant of their partition games for infinitary logics
with solvability quantifiers. Might it be the case that in such games we can
determine the winner in polynomial time (this is open for the variant for rank
operators)? As a first step, it would also be interesting to see whether a
reduction of rank operators to solvability quantifiers can be obtained in a logic
which is more powerful than FPC, like for example Choiceless Polynomial
Time, see Section 2.4.

Moreover, separating solvability quantifiers from weaker linear-algebraic
operators (in the absence of counting) would be very insightful. For instance,
it is clear that with matrix rank operators one can easily check whether two
matrices have the same rank (that means one can define the matrix equivalence



112 Chapter 4. Linear-algebraic operators over finite fields

problem). Moreover, if we are able to check whether two matrices have the
same rank, then we can also decide the solvability of linear equation systems
(again recall that M ⋅ x⃗ = c⃗ is solvable if, and only if, rk(M) = rk(M ∣ c⃗)). So
the obvious question is: what happens if we take first-order logic and extend
it by quantifiers for the matrix equivalence problem? Is the resulting logic
strictly stronger than FOS?

Another question is motivated by our normal form theorem for FOSp

(Theorem 4.9). One crucial step was to show that nested solvability quantifiers
can be reduced to a single solvability quantifier. It would be very interesting to
prove, or disprove, that this also holds for solvability quantifiers over general
cyclic rings Zd, d ≥ 2. In fact, there might be interesting connections with the
closure properties of the complexity class MODkL for integers k ≥ 2 which are
not primes.

The power of rank operators There are also more positive directions to
explore. For example, it is still open whether rank logic (in its revised version)
can express the isomorphism problem on classes of graphs with bounded colour
class size, see Chapter 6. More strikingly, until today we do not know whether
rank operators can simulate fixed-point inductions, that is we do not know
whether FOR is a strict fragment of FPR (although there are strong reasons
to believe that this is the case). In this context it is also interesting to study
the power of the matrix-equivalence games proposed by Dawar and Holm in
[29] which characterise the expressive power of infinitary logic with matrix
rank operators (until today, we do not know whether the winner in such games
can be determined in polynomial time). Also, we aim to study the definability
of more general problems from the field of algebra in rank logic, such as the
permutation group membership problem, or certain tractable instances of
the constraint satisfaction problem [19]. There are also nice recent results
which explore the power of certain algebraic proof systems [13]. Relating such
algebraic proof systems to rank logic may provide new insights about the
expressive power of rank operators.



Chapter 5

Cyclic linear equation systems

A cyclic linear equation system (or CES for short) is a linear equation system
over a finite ring Zd, where d is a prime-power, with a strong auxiliary structure:
the set of variables V is almost totally ordered up to classes Vi in which all pairs
of variables linearly depend on each other, and this dependence is explicitly
specified by a set Ci of linear equations on Vi (which we call cyclic constraints).
More precisely, the value of each variable v ∈ Vi is determined by the value
of any other variable w ∈ Vi from the same class, that is for all pairs of
variables v,w ∈ Vi the cyclic constraint Ci contains a linear equation of the
form v −w = zvw for a constant zvw ∈ Zd. Thus, in principle, every class Vi can
be resolved by picking an arbitrary variable from the class and by replacing all
remaining variables by the equivalent linear terms which are specified through
the cyclic constraints. The resulting system would have a totally ordered set of
variables, and the solvability of such linear systems is definable in fixed-point
logic with counting.

However, fixing an arbitrary variable from each class simultaneously is not
possible in a logic, since formulas have to respect the symmetries of the input
structure. Indeed, in spite of the strong auxiliary structure, a cyclic linear
equation system can possess a large automorphism group. In particular, it
turns out that the isomorphism problem for Cai, Fürer, Immerman graphs
can be rephrased as a cyclic linear equation systems over Z2 [28] and, as a
consequence, the solvability problem for CESs cannot be defined in fixed-point
logic with counting. Thus, CESs form a class of structurally quite simple
linear equation systems which are powerful enough to separate fixed-point
logic with counting from polynomial time. Moreover, they have several natural
applications, most importantly, for deciding the isomorphism problem for
structures which resemble the CFI-graphs. Incidentally, we used cyclic linear
equation systems in our proof of Lemma 4.37 in Chapter 4 to decide the
isomorphism problem of generalised CFI-structures.

In this chapter we show that the solvability problem for cyclic linear equa-
tion systems can be expressed in Choiceless Polynomial Time (Theorem 5.12).
Hence, there is a polynomial-time procedure to decide the consistency of cyclic
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linear equation systems which avoids arbitrary choices, but which cannot be
formulated in fixed-point logic with counting. This yields an interesting family
of polynomial-time queries which separate CPT from FPC.

Besides that, our result is a first step towards the significant open question
of whether Choiceless Polynomial Time can express the solvability of general
linear equation systems over all finite Abelian groups (recall that this query
cannot be expressed in FPC). This question is of particular importance, since
an answer would, most probably, clarify the relationship between Choiceless
Polynomial Time and rank logic. Maybe, the matrix rank over finite fields can
be defined in Choiceless Polynomial Time? Also, in the light of our studies
in Chapter 3 and Chapter 4, another scenario seems possible: maybe, rank
logic can not define the solvability of cyclic linear equation systems over all
rings Zd where d is a prime power? In this case, our result would provide a
CPT-definable query which cannot be defined in FPR (which would show
that CPT cannot be embedded into FPR).

Furthermore, the definability result in this chapter is the key to show that
Choiceless Polynomial Time can express all polynomial-time properties of
structures with Abelian colours (see Chapter 6). The main observation there is
that cyclic linear equation systems can be used to succinctly represent large
sets of isomorphisms between structures with Abelian colours.

The whole chapter is strongly based on [1]. In Section 5.1, we start by
introducing the notion of cyclic linear equation systems. We then obtain
a simple normal form for CESs and we show that it is first-order definable.
In Section 5.2, we establish the central notion of hyperterms and we uncover
strong connections between their syntactic structure (as hereditarily finite sets),
their symmetries, and their semantics. We also show that basic operations on
the domain of hyperterms, like “addition” and “scalar multiplication”, can be
expressed in Choiceless Polynomial Time. In Section 5.3, we then obtain a
CPT-program which translates cyclic linear equation systems into equivalent
and ordered systems of hyperequations. By adapting the method of Gaussian
elimination to finite rings and by applying our knowledge about hyperterms we
can finally show that the solvability of such ordered systems of hyperequations
can be defined in Choiceless Polynomial Time.

5.1 A definable normal form

In this section we introduce the notion of cyclic linear equation systems and
we establish a simple first-order definable normal form. The crucial feature
of cyclic linear equation systems is that the set of variables is almost linearly
ordered up to classes in which all pairs of variables directly depend on each
other. Formally, cyclic equation systems contain a linear preorder ⪯ on their
set of variables with the additional requirement that all pairs of ⪯-equivalent
variables differ by a constant only, and this constant is specified by the equations
of the linear system (in a consistent way). Let us give the precise definition.
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Definition 5.1. A cyclic linear equation system (or CES, for short) is a
structure (A,⪯) ∈ S(τles-r ⊎ {⪯}) such that A ∈ Ls(τles-r) (cf. Section 3.1)
encodes a linear equation system M ⋅ x⃗ = c⃗ over a ring Zd, where M is an
I × J-coefficient matrix over Zd, and where c⃗ is an I-vector of constants over
Zd, with the following properties:

• d is a prime power, that is d = pℓ for some prime p ∈ P and ℓ ≥ 1,

• ⪯ is a linear preorder on J , that is J = J0 ⪯ J1 ⪯ ⋯ ⪯ Jn−1, and

• for every pair of ⪯-equivalent variables xj , xj′ , for j, j′ ∈ Ji, the linear
equation system contains an equation xj − xj′ = z for some z ∈ Zd.

In this chapter we show that the solvability problem for cyclic linear
equation systems can be defined in Choiceless Polynomial Time. Since CPT-
programs manipulate hereditarily finite sets, it is convenient, for the sake of a
concise presentation, to adapt our matrix encoding of linear equation systems
to a presentation which is based on hereditarily finite sets.

To this end, let us denote by V = {xj ∶ j ∈ J} the set of variables of a linear
equation system M ⋅ x⃗ = c⃗ over Zd as above. Then an atomic linear term is
either a constant z ∈ Zd or an object z ⋅ v for z ∈ Zd and v ∈ V . Moreover, a
linear term is a set of atomic linear terms, and a linear equation is a pair (t, z)
where t is a linear term and where z ∈ Zd. We usually write a linear equation
e = (t, z) in the more convenient way as e ∶ t = z. Finally, a linear equation
system is a set of linear equations.

Let α ∶ V → Zd be an assignment of the variables V to values in Zd. Then
the value t[α] ∈ Zd of an atomic linear term t = z ⋅ v under α is t[α] = z ⋅ α(v)
(for t = z with z ∈ Zd we set t[α] = z). Moreover, the value t[α] ∈ Zd of a
non-atomic linear term t with respect to α is t[α] = ∑s∈t s[α]. An assignment
α ∶ V → Zd satisfies a linear equation e = (t, z), denoted as α ⊧ e, if t[α] = z. A
linear equation system S is solvable (or consistent) if there is an assignment
α ∶ V → Zd (a solution) which satisfies all linear equations in S (for such an
assignment α we also write α ⊧ S).

With this notation, a cyclic linear equation system over Zd can be identified
with a triple (V,S,⪯), where V is the set of variables as above, and where

• ⪯ is a linear preorder on the variables V = V0 ⪯ ⋯ ⪯ Vn−1, and

• the set of linear equations S contains for every block Vi a cyclic constraint
Ci ⊆ S that is a consistent and maximal set of equations of the form
v −w = z for v,w ∈ Vi and z ∈ Zd.

Let Ci be a cyclic constraint for the variable block Vi. We write L(Ci) = Li

to denote the set of assignments α ∶ Vi → Zd which satisfy Ci. Since Ci ⊆ S,
every solution of the given CES is contained in the space

L ∶= L0 ×⋯×Ln−1 ⊆ Z
V0

d
×⋯×Z

Vn−1

d
.
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In other words, if we denote by L(S) ≤ ZV
d the solution space of the given CES,

then we have L(S) ⊆ L.

Our next aim is to obtain a normal form for cyclic linear equation systems.
Although, a priori, there is no bound on the size of the classes Vi, we show in
Lemma 5.3 that, by the presence of the cyclic constraints Ci, we can assume
that ∣Vi∣ = d for all i ∈ [n]. Moreover, we want this to be a true equality, that
is we do not want that two different variables v,w ∈ Vi can take the same value
in an assignment α ∈ Li. In other words, we do not want that v −w = 0 ∈ Ci if
v ≠ w (because then we could replace v,w by a single variable).

To this end, we establish a first-order interpretation which transforms
a cyclic linear equation system into a system which has this property and,
moreover, we achieve this transformation in such a way that a (definable)
one-to-one correspondence between the sets of solutions can be maintained.
As a first preparation we state a simple observation.

Lemma 5.2. Let α,β ∈ Li. If α(v) = β(v) for some v ∈ Vi, then α = β. In
particular, the solution spaces Li are of size d, that is ∣Li∣ = d.

Proof. Let v ∈ Vi. Then for every w ∈ Vi there is a unique zw ∈ Zd such that
w − v = zw ∈ Ci. Hence, if for α ∈ Li we have α(v) = z, then it follows that
α(w) = z + zw. Moreover, by the consistency of Ci, we have for w′ ∈ Vi that
w′−w = zw′ −zw ∈ Ci. Altogether, this shows that for α ∶ Vi → Zd with α(v) = z
we have α ∈ L(Ci) if, and only if, α(w) = z + zw for w ∈ Vi.

Lemma 5.3. There is a first-order interpretation which transforms a cyclic
linear equation system (V,S,⪯) over Zd, where V = V0 ⪯ ⋯ ⪯ Vn−1 (with
associated cyclic constraints Ci), into an equivalent cyclic linear equation
system (V ′, S′,⪯′) over Zd such that

• V ′ = V ′0 ⪯
′
⋯ ⪯′ V ′n−1 and ∣V ′i ∣ = d for all i ∈ [n] (with associated cyclic

constraints C′i), and such that for all i ∈ [n] and v,w ∈ V ′i , v ≠ w, we
have v −w = 0 ∉ L(C′i), and such that

• the interpretation provides bijections ϕi ∶ L(Ci) ↦ L(C′i) such that ϕ =
(ϕ0, . . . , ϕn−1) is a bijection between L(S) and L(S′).

Proof. We start by defining the new classes of variables V ′i . Let V ∗i denote
the set of all (pairwise distinct) objects of the form v + z for variables v ∈ Vi

and constants z ∈ Zd. Then we have ∣V ∗i ∣ = ∣Vi∣ ⋅ d. Next, we consider the
following equivalence relation ≈ on V ∗i : we set v + z ≈ w + z′ if, and only if,
v − w = z′ − z ∈ Ci. It is straightforward to verify that the consistency and
maximality of Ci implies that ≈ is an equivalence relation on V ∗i . With this
preparation we set V ′i ∶= (V ∗i / ≈).

We next define a cyclic constraint C′i on the set V ′i which contains for every
pair [v+z], [w+z′] ∈ V ′i the constraint [v+z]− [w+z′] = c+z −z′ where c ∈ Zd

is such that Ci contains the constraint v −w = c. Again it is straightforward to
show that C′i is well-defined.
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We proceed to define the mappings ϕi ∶ L(Ci)→ L(C′i). For α ∈ L(Ci) we
let β = ϕi(α) ∈ L(C′i) be given as β([v + z]) ∶= α(v)+ z. Then β is well-defined,
β ⊧ C′i and β([v + 0]) = α(v). Moreover, assume that ϕi(α) = ϕi(β). Then we
have that α = β since for all v ∈ Vi it holds that

α(v) = ϕi(α)([v + 0]) = ϕi(β)([v + 0]) = β(v).
Since ∣L(Ci)∣ = ∣L(C′i)∣ = d by Lemma 5.2, we conclude that ϕi indeed defines
a bijection between L(Ci) and L(C′i). Moreover, since ϕi(α)([v + 0]) = α(v)
for all v ∈ Vi and α ∈ Li we easily obtain an equivalent cyclic linear equation
system over V ′ ∶= V ′0 ⪯ ⋯ ⪯ V

′

n−1 by substituting each occurrence of a variable
v ∈ Vi in the original linear equation system by the corresponding ≈-equivalence
class [v + 0] ∈ V ′, and by replacing each cyclic constraints Ci by C′i for i ∈ [n].

It remains to show that ∣V ′i ∣ = d. To this end, we choose an arbitrary
variable v ∈ Vi and claim that V ′i = {[v + z] ∶ z ∈ Zd}. In fact, if we can show
this, then our original claim follows, since for each v ∈ Vi and z, z′ ∈ Zd with
z ≠ z′ we have that [v + z] ≠ [v + z′]. Thus let w ∈ Vi and y ∈ Zd. Then
there exists a unique c ∈ Zd such that w − v = c ∈ Ci. But then we have
[w + y] = [v + c + y] which finishes our argument.

It is easy to see that the transformations described above can be expressed
via a first-order interpretation.

We remark that the linear equation systems over Zq (q ∈ P) which we
defined in the proof of Lemma 4.37 to characterise the isomorphism class of
CFI-structures over Zq are actually cyclic linear equation systems. Since FPC

fails to capture Ptime on Kq (Theorem 4.21) we obtain the following result:
in spite of the strong structural properties, the solvability problem for cyclic
linear equation systems is not definable in FPC, see also [59, Chapter 7].

Corollary 5.4. The solvability problem for cyclic linear equation systems
(even over prime fields) cannot be defined in fixed-point logic with counting.

5.2 Classes of equivalent linear terms

In this section we introduce hyperterms which are succinct encodings of large
classes of equivalent linear terms. In particular, we discover strong connec-
tions between their syntactic structure, their symmetries, and their semantics.
Hyperterms will play the central role in our CPT-procedure for solving cyclic
linear equation systems in the next section, and thus we show, as a prepara-
tion, that certain basic operations for hyperterms, such as addition and scalar
multiplication, can be defined in Choiceless Polynomial Time.

For what follows, let us fix a cyclic linear equation system (V,S,⪯) over
the ring Zd, where d = pk for p ∈ P and k ≥ 1, in the representation from the
previous section. By Lemma 5.3 we can assume that V = V0 ⪯ ⋯ ⪯ Vn−1 with
associated cyclic constraints Ci and such that ∣Vi∣ = d for i ∈ [n] and for all
v,w ∈ Vi, v ≠ w we have that v −w = z ∈ Ci for certain constants z ∈ Zd ∖ {0}.
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For z ∈ Zd and v ∈ Vi we denote by v+z ∈ Vi the (unique) variable such that
Ci contains the constraint v+z

− v = z (note that by our assumptions such a
variable always exists). For convenience, we set v+ ∶= v+1. With this notation
we observe that the constraint Ci defines a directed cycle on Vi of length d

via the edge relation Ei = {(v, v+) ∶ v ∈ Vi}. This justifies to call Ci a cyclic
constraint.

Assume that we fix a variable v ∈ Vi. Then we obtain an ordered represen-
tation of Vi as Vi = v = v

+0 ≤ v+1 ≤ v+2 ≤ ⋯ ≤ v+(d−1), that is, we can order each
class Vi by means of a single parameter. As a consequence, a complete order on
the set of variables V can be obtained by the parallel choice of a variable v ∈ Vi

for each of the classes Vi, i ∈ [n]. Of course, as we explained earlier, fixing such
variables v ∈ Vi, for i ∈ [n], simultaneously is not possible in any reasonable
logic, since this would require to take into account all symmetric choices whose
number is, in general, exponential in the size of the input structure.

The crucial idea of hyperterms is to avoid this exponential blow up by
identifying “equivalent” choices and by succinctly encoding the corresponding
equivalence classes as higher-order objects in the universe of hereditarily finite
sets HF(V ) over the variables V . To illustrate this, let us consider a small
example. First of all, let us fix three distinct blocks Va, Vb, Vc ∈ {Vi ∶ i ∈ [n]} of
variables where a < b < c and let us choose variables va = v

+0
a ∈ Va, vb = v

+0
b ∈ Vb

and vc = v
+0
c ∈ Vc. Now consider the linear term t = va + vb + vc. In the

presence of the cyclic constraints Ca,Cb and Cc (associated with Va, Vb and
Vc, respectively) we conclude that this term is equivalent, for instance, to the
linear term t′ = v+1

a + v+1
b + v

+(d−2)
c . Indeed, by using the cyclic constraints

Ca,Cb,Cc, which imply that v+1
a − va = 1, v+1

b − vb = 1 and v
+(d−2)
c − vc = d − 2,

we have that

t′ − t = (v+1
a − va) + (v+1

b − vb) + (v+(d−2)
c − vc) = 1 + 1 + (d − 2) = 0.

For an illustration see Figure 5.1.

v+0

a v+1

a
⋯

v
+(d−1)
a v+0

b v+1

b
⋯

v
+(d−1)
b v+0

c v+1

c
⋯

v
+(d−1)
b

⪯ ⪯

va vb vc+ +t =

v+1
a v+1

b v
+(d−2)
c

+ +t′ =

+(v+1

a − va = 1) +(v+1

b − vb = 1) +(v
+(d−2)
c − vc = d − 2)

Figure 5.1: Equivalence of linear terms in the presence of cyclic constraints

Of course, besides t′, there exist other terms which are equivalent to t as
well (again, with respect to the cyclic constraints Ca,Cb,Cc). To capture the
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set of all such equivalent terms systematically, we let πi∶+ ∈ Sym(Vi), for i ∈ [n],
denote the natural d-cycle on Vi with respect to the successor relation (v, v+),
that is

πi∶+
∶= ( v v+1 v+2

⋯v+(d−1) ) for some v ∈ Vi.

Moreover, for z ∈ Zd, we denote by πi∶+z the z-th power of πi∶+ and we let
Γi ≤ Sym(Vi) denote the subgroup of cyclic shifts on Vi, that is Γi ∶= ⟨πi∶+⟩.
We identify Γi with Zd in the obvious way and we set

Γ ∶= Γ0 × Γ1 ×⋯× Γn−1 = Z
n
d .

In other words, the group Γ is generated by the set {πi∶+
∶ i ∈ [n]}, and every

element π ∈ Γ can be written as an [n]-vector over Zd or, in the notation from
above, as

π =
n−1

∑
i=0

πi∶+zi where π(i) = zi ∈ Zd.

By definition, the group Γ acts on the set of variables V . We consider the
natural extension of this action to the class of hereditarily finite sets HF(V ).
In particular, Γ acts on the set of linear terms over the variables V .

We now come back to our example from above. Let ∆ ≤ Γ denote the
subgroup of Γ which consists of all vectors π ∈ Γ = Zn

d such that π(a) + π(b) +
π(c) = 0 ∈ Zd (recall that a, b, c ∈ [n] are the indices of the three variable blocks
Va, Vb, Vc which occur in the linear term t = va + vb + vc). Then the ∆-orbit
∆(t) of the linear term t contains the term t′. Indeed, for every π ∈ ∆ such
that π(a) = 1, π(b) = 1 and π(c) = d − 2 we have π(t) = t′. Moreover, one can
verify, analogously as above, that every linear term in ∆(t) is equivalent to t
(of course, again with respect to the cyclic constraints Ca,Cb,Cc).

As it turns out, we can establish a more general connection from this
observation. Consider for an arbitrary linear term t the linear term π(t) for
some π ∈ Γ. Then we claim that the term s ∶= π(t) − t can be reduced, using
the cyclic constraints Ci, to a constant. To verify this, it suffices to observe
that whenever t contains an atomic linear subterm z ⋅ v for v ∈ Vi and z ∈ Zd,
then π(t) contains the atomic subterm z ⋅ π(v). Since π(v) − v = y ∈ Ci for
some y ∈ Zd, we have that z ⋅ π(v) − z ⋅ v = z ⋅ y ∈ Zd, which proves our claim.

From this argument we can extract the following general result: the Γ-orbit
of a linear term t can be partitioned into at most d different classes of equivalent
linear terms (again, assuming the presence of the cyclic constraints Ci, i ∈ [n]).
Moreover, since the automorphism group of the cyclic linear equation system
is a subgroup of Γ, these equivalence classes are objects which can, in principle,
be manipulated by a CPT-program (in particular, their number is bounded
by d). The only problem is that the size of such equivalence classes, in an
explicit representation, is exponential in the number of variables which occur
in the linear term t. The idea of hyperterms is to succinctly encode these
equivalence classes as highly nested objects in the universe of hereditarily finite
sets HF(V ) over the variables V .
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5.2.1 The notion of hyperterms

The notion of hyperterms is strongly inspired by the very clever CPT-procedure
of Dawar, Richerby, and Rossman for deciding the isomorphism problem of
CFI-graphs [32] . Given a cyclic linear equation system (V,S,⪯) as above, the
class of associated hyperterms is defined via an inductive construction. During
this construction we ensure that hyperterms have the following properties.

(S) For every hyperterm T and each z ∈ Zd there is a z-shifted hyperterm T+z.
Moreover, for z1, z2 ∈ Zd we have T+(z1+z2) = (T+z1)+z2 .

(V) Given an assignment α ∈ L, each hyperterm T has a value T [α] ∈ Zd.
Moreover, for z ∈ Zd, we have T+z[α] − T [α] = z.

(C) In a hyperterm T , the blocks Vi, i ∈ [n], appear with coefficients ci(T ) ∈ Zd.
The coefficients are invariant under z-shifts, i.e. ci(T ) = ci(T+z) for z ∈ Zd.

(L) For each hyperterm T there are variables vi ∈ Vi, i ∈ [n], and a constant
z ∈ Zd such that T is equivalent to the linear term t ∶= ∑n−1

i=0 ci(T ) ⋅ vi + z,
that is for all α ∈ L we have t[α] = T [α].

We proceed to give the inductive definition of hyperterms.

Atomic hyperterms For z ∈ Zd, T ∶= z is a hyperterm. We set T+y
∶= (z + y)

for y ∈ Zd and let ci(T ) = 0 for i ∈ [n]. For α ∈ L we set T [α] ∶= z.
For v ∈ Vi, T ∶= v is a hyperterm where T+y

∶= v+y for y ∈ Zd. We set
cj(T ) = 1 if j = i and cj(T ) = 0 otherwise. Finally, we let T [α] ∶= α(v).

Addition of hyperterms Let Q,R be hyperterms and let z ∈ Zd. Then T =

Q⊕zR ∶= {⟨Q+z1 ,R+z2⟩ ∶ z1+z2 = z} is a hyperterm. The shifted hyperterms
T+y are given as T+y

∶= Q⊕z+y R for y ∈ Zd. We set ci(T ) ∶= ci(Q) + ci(R)
for i ∈ [n] and T [α] ∶= Q[α] +R[α] + z for α ∈ L.

For convenience we often write ⊕ instead of ⊕0.

Scalar multiplication Let Q be a hyperterm and let z ∈ Zd, z ≠ 0. Then we
define the hyperterm T = z ⊙Q ∶= Q ⊕⋯ ⊕Q which results by applying
the ⊕-operation z-times to Q (where we implicitly agree on an application
from left to right). The definitions of T+y, ci(T ) and T [α] follow from the
definition of ⊕.

With the inductive definition it is easy to verify that hyperterms satisfy the
properties (S), (V), (C) and (L). The only non-trivial part is to check that the
properties (V) and (C) hold for hyperterms formed by scalar multiplication.
However, from the following Lemma 5.5, in which we summarise some simple
observations that we use later on, one can directly infer that this is the case.

We remark that the operation ⊕ is not associative. Thus whenever we form
a sum T0 ⊕ T1 ⊕⋯⊕ Tm−1 of hyperterms Ti, then we implicitly agree that the
application of ⊕ is from left to right.
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Lemma 5.5. Let Q,R be hyperterms and let z ∈ Zd be a constant.

(a) For all y1, y2, y ∈ Zd such that y1 + y2 + y = z we have

(Q⊕R)+z
= Q⊕z R = Q

+y1 ⊕y R
+y2 .

(b) For hyperterms T0, . . . , Tm−1 and values y0, . . . , ym−1 ∈ Zd we have

T
+y0

0 ⊕ T
+y1

1 ⊕⋯⊕ T
+ym−1

m−1 = (T0 ⊕ T1 ⊕⋯⊕ Tm−1)+y0+y1+⋯+ym−1 .

Now let z ≠ 0 and T = z ⊙Q.

(c) If z ≠ 1, then for all y, y1, y2 ∈ Zd with (z − 1) ⋅ y1 + y2 = y we have

T+y
= ((z − 1)⊙Q+y1)⊕Q+y2 .

(d) Let y ∈ Zd. Then T+y⋅z = z ⊙Q+y.

(e) For α ∈ L we have T [α] = z ⋅Q[α].
(f) For i ∈ [n] we have ci(T ) = z ⋅ ci(Q).

Proof. To prove (a) it suffices to recall the definition of the ⊕z-operation:

Q⊕z R = {⟨Q+x1 ,R+x2⟩ ∶ x1 + x2 = z}
= {⟨Q+y1+x1 ,R+y2+x2⟩ ∶ x1 + y1 + x2 + y2 = z}
= {⟨(Q+y1)+x1 , (R+y2)+x2⟩ ∶ x1 + x2 = y} = Q+y1 ⊕y R

+y2 .

To prove (b) we proceed by induction on m ≥ 2. The case m = 2 already
follows from (a), so let us assume that m > 2. Then we have that

T
+y0

0 ⊕ T
+y1

1 ⊕⋯⊕ T
+ym−1

m−1 = (T+y0

0 ⊕ T
+y1

1 ⊕⋯⊕ T
+ym−2

m−2 )⊕ T ym−1

m−1

(IH) = (T0 ⊕ T1 ⊕⋯⊕ Tm−2)+y0+y1+⋯+ym−2 ⊕ T
+ym−1

m−1

(a) = (T0 ⊕ T1 ⊕⋯⊕ Tm−1)+y0+y1+⋯+ym−1 .

To prove (c) we proceed by induction on 1 < z ≤ d − 1. The claim follows
from the above for the case z = 2, so assume that z > 2. We observe that
T = ((z − 1)⊙Q)⊕Q and thus T+y = ((z − 1)⊙Q)⊕y Q. By (a) this means
that T+y = ((z − 1) ⊙Q)+(y−y2) ⊕Q+y2 . Note that y − y2 = (z − 1) ⋅ y1. Since
z − 1 ≥ 2, we can use the induction hypothesis to see that

((z − 1)⊙Q)+(z−1)⋅y1 = ((z − 2)⊙Q+y1)⊕Q+y1 = (z − 1)⊙Q+y1 .

Now (d) directly follows from (c), since T+y⋅z = ((z − 1)⊙Q+y)⊕Q+y = z⊙Q+y.
For the remaining claims we also proceed by induction on 1 ≤ z ≤ d − 1

where the cases for z = 1 are trivial. Thus let us assume that 1 < z < d. Then
T = ((z − 1) ⊙Q) ⊕Q. Hence T [α] = ((z − 1) ⊙Q)[α] +Q[α] = z ⋅Q[α] by
the induction hypothesis. The same reasoning shows the connection for the
coefficients ci(T ).
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Our next aim is to uncover a very strong connection between the action
of Γ on the class of hyperterms, on the class of assignments L, and on the
class of linear terms. More specifically, it turns out that the Γ-orbit Γ(T )
of a hyperterm T is a subset of the set of shifted hyperterms {T+z

∶ z ∈ Zd}.
Moreover, by property (L), we can associate to every hyperterm T a set of
equivalent linear terms L(T ), and we show in Lemma 5.8 that the action of Γ

on Γ(T ) ⊆ {T+z
∶ z ∈ Zd} is in a one-to-one correspondence to the action of Γ

on Γ(L(T )). Hence, a hyperterm T indeed is a succinct representation of the
class of equivalent linear terms L(T ).
Remark 5.6. The group Γ acts transitively on L: for π ∈ Γ and α ∈ L we
define π(α) ∈ L as the assignment given by

π(α)(v) ∶= α(π(v)).
Definition 5.7. For α ∈ L, i ∈ [n], and z ∈ Zd we let αi∶+z ∈ L denote
the semantical z-shift of block Vi for the assignment α which is defined as
αi∶+z(v) ∶= α(v)+ z for v ∈ Vi and αi∶+z(v) = α(v) for v ∉ Vi. In other words, we
let αi∶+z = πi∶+z(α).

The following lemma characterises the Γ-symmetries of hyperterms and
makes the strong connection between their syntax and semantics precise.

Lemma 5.8. Let T be a hyperterm and let ci = ci(T ) ∈ Zd be the coefficient
of variable block Vi in T for i ∈ [n].

(a) For i ∈ [n], z ∈ Zd we have πi∶+z(T ) = T+ci⋅z. In particular if ci = 0, then
πi∶+z(T ) = T .

(b) For all π ∈ Γ, for all hyperterms Q,R, and for all constants y, z ∈ Zd,
z ≠ 0, we have π(Q⊕y R) = π(Q)⊕y π(R) and π(z ⊙Q) = z ⊙ π(Q).

(c) For α ∈ L we have T [αi∶+z] = πi∶+z(T )[α] for i ∈ [n], z ∈ Zd. It follows
that T [π(α)] = π(T )[α] for all π ∈ Γ.

(d) The group Γ acts on {T+y
∶ y ∈ Zd}. Moreover, π ∈ Γ pointwise stabilises

a hyperterm T+y if, and only if, ∑n−1
i=0 π(i) ⋅ ci = 0.

Proof. We first simultaneously prove (a), (b) and (c) by an induction on the
structure of hyperterms. Note that in order to prove (c) it suffices to show that
T [αi∶+z] = T [α] + ci ⋅ z when we assume that (a) holds. The cases for atomic
hyperterms are trivial.

• Addition of hyperterms. Let Q,R be hyperterms and let T = Q ⊕y R for
y ∈ Zd. Then ci = qi + ri where qi = ci(Q) and ri = ci(R). Moreover,

πi∶+z(T ) = πi∶+z({⟨Q+y1 ,R+y2⟩ ∶ y1 + y2 = y})
(IH) = {⟨Q+y1+z⋅qi ,R+y2+z⋅ri⟩ ∶ y1 + y2 = y}
= Q+z⋅qi ⊕y R

+z⋅ri

(Lemma 5.5 (a)) = Q⊕y+z⋅ci
R = T+z⋅ci .
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In particular this shows that πi∶+z(Q⊕y R) = πi∶+z(Q)⊕y π
i∶+z(R). More-

over, we have T [αi∶+z] = Q[αi∶+z] +R[αi∶+z] + y. Thus by the induction
hypothesis we have T [αi∶+z] = Q[α] + z ⋅ qi +R[α] + z ⋅ ri + y = T [α] + z ⋅ ci.

• Scalar multiplication. Let T = y ⊙Q for y ∈ Zd and a hyperterm Q. Then,
by Lemma 5.5 (f), we have ci = y ⋅ qi where qi = ci(Q). We proceed by
induction on 1 ≤ y < d. If y = 1, then the claim follows from the induction
hypothesis for Q. For y > 1, let T = (y − 1)⊙Q⊕Q. From the above and
from the induction hypothesis we know that

πi∶+z(T ) = πi∶+z((y − 1)⊙Q⊕Q)
(IH) = ((y − 1)⊙ πi∶+z(Q))⊕ πi∶+z(Q) = y ⊙ πi∶+z(Q)
(IH) = y ⊙Q+qi⋅z

(Lemma 5.5 (d)) = T+z⋅ci .

In particular we have πi∶+z(y⊙Q) = y⊙πi∶+z(Q) and by Lemma 5.5 (e) we
have that T [αi∶+z] = y ⋅Q[αi∶+z] and T [α] = y ⋅Q[α]. Thus by the induction
hypothesis we have T [αi∶+z] = y ⋅(Q[α]+qi ⋅z) = y ⋅Q[α]+ci ⋅z = T [α]+ci ⋅z.

Finally, (d) follows from (a), since Γ is generated by the elements πi∶+z.

5.2.2 Hyperterms in Choiceless Polynomial Time

We now turn our attention to the manipulation of hyperterms in Choiceless
Polynomial Time. It is obvious that atomic hyperterms can be defined in CPT.
In the following lemma we show that also the basic operations of addition and
scalar multiplication can be realised by a CPT-program in such a way that the
number of newly created hereditarily finite sets is bounded by a polynomial
in d. This shows that the iterated application of the {⊕,⊙}-operations to
hyperterms only polynomially increases the size of the resulting hyperterms
(seen as objects in HF(V )) with respect to d and the number of such operations.
This insight will play an important role in Section 5.3 where we consider a
variant of Gaussian elimination applied to hyperterms.

Lemma 5.9. There are CPT-programs Π⊕ and Π⊙ and a polynomial p ∶ N→ N

such that, given a cyclic linear equation (V,S,⪯) over Zd, and hyperterms Q,R,

• Π⊕ constructs the hyperterms T = Q⊕R and T+z for z ∈ Zd, and

• Π⊙ constructs the hyperterms T = y ⊙Q and T+z for y, z ∈ Zd, y ≠ 0.

Moreover, these hyperterms T are created by activating at most p(d) new
objects from HF(V ), that is TC(T ) ⊆ ⋃z∈Zd

TC(Q+z) ∪TC(R+z) ∪N where
N ⊆ TC(T ) and ∣N ∣ ≤ p(d).
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Proof. We first consider the case T = Q⊕R (the case T+z = Q⊕zR is analogous).
By definition we have T = {⟨Q+z1 ,R+z2⟩ ∶ z1 + z2 = 0}. Clearly this object can
be created within CPT by using comprehension terms. Moreover, we have

TC(T ) ⊆ ⋃
z∈Zd

TC(Q+z) ∪TC(R+z) ∪ {Q+z1 ,R+z2 , ⟨Q+z1 ,R+z2⟩ ∶ z1 + z2 = 0}.

Hence, it suffices to choose the polynomial p such that p(d) ≥ 3 ⋅ d.
We proceed with the case T = y ⊙Q for y ∈ Zd. Since the ⊙-operation is

defined recursively via the ⊕-operation it is clear from the above that there
exists a CPT-program which constructs the hyperterm T . To show that the
number of new objects that have to be created is bounded by a polynomial in
d, we proceed by induction on 0 < y < d. More precisely we show that for the
hyperterm Sy ∶= y ⊙Q we have

⋃
z∈Zd

TC(S+z
y ) ⊆ ⋃

z∈Zd

TC(Q+z) ∪Ny

where Ny ⊆ ⋃z∈Zd
TC(S+z

y ) and ∣Ny ∣ ≤ y ⋅ 3 ⋅ d2. If we can show this, then it
suffices to choose p ≥ 3 ⋅ d3 to obtain our original claim.

The case y = 1 is trivial and the case y = 2 follows from the above. Thus
let y > 2. Then for all T+x = Sy−1 ⊕x Q for x ∈ Zd we have

TC(T+x) ⊆ ⋃
z∈Zd

TC(S+z
y−1)∪TC(Q+z)∪ {S+z1

y−1,Q
+z2 , ⟨S+z1

y−1,Q
+z2⟩ ∶ z1 + z2 = x}.

By the induction hypothesis we can find Ny−1 ⊆ ⋃z∈Zd
TC(S+z

y−1) such that
∣Ny−1∣ ≤ (y − 1) ⋅ 3 ⋅ d2 and such that

⋃
x∈Zd

TC(T+x) ⊆ ⋃
z∈Zd

TC(Q+z) ∪Ny−1 ∪ {S+z1

y−1,Q
+z2 , ⟨S+z1 ,Q+z2⟩ ∶ z1, z2 ∈ Zd}.

Since for Ny ∶= Ny−1 ∪ {S+z1

y−1,Q
+z2 , ⟨S+z1 ,Q+z2⟩ ∶ z1, z2 ∈ Zd} we have ∣Ny ∣ ≤

(y − 1) ⋅ 3 ⋅ d2
+ 3 ⋅ d2 = y ⋅ 3 ⋅ d2, the claim follows.

Besides addition and scalar multiplication, another very important basic
operation is the evaluation of a hyperterm T with respect to an assignment
α ∈ L. On the other hand, during the run of a CPT-program we will, in general,
never be in a situation where we have access to a complete assignment α ∈ L.
The reason is that Γ acts transitively on L. Since the automorphism group of
the given cyclic linear equation system is a (not necessarily strict) subgroup
of Γ, and since the size of L is exponential in the number of variables, it is
not possible to identify a single assignment α in the run of a CPT-program,
since this would require to activate the whole orbit of α (which, as we have
just explained, can be the complete solution set L). Still, there is one very
important special case in which the evaluation of T [α] makes sense although
we cannot access α ∈ L explicitly.

Definition 5.10. A hyperterm T is constant if ci(T ) = 0 for all i ∈ [n].
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Let us explain more precisely in which sense a hyperterm T with ci(T ) = 0,
for all i ∈ [n], is “constant”. To this end, let α,β ∈ L and let π ∈ Γ such that
π(α) = β. By Lemma 5.8 (d) we have that π(T ) = T since ci(T ) = 0 for all
i ∈ [n] and, moreover, by Lemma 5.8 (c) we know that

T [β] = T [π(α)] = π(T )[α] = T [α].
Thus the hyperterm T actually has a constant value cT = T [α] for all assign-
ments α ∈ L. It turns out that this value can be defined in CPT.

Lemma 5.11. There is a CPT-program which defines, given a cyclic linear
equation system (V,S,⪯) over Zd as above, and a constant hyperterm T , the
value cT ∈ Zd of T .

Proof. We describe a CPT-program which proceeds in two stages: first, it
syntactically substitutes every occurrence of a variable v ∈ V in the hyperterm
T by its value α(v) ∈ Zd for some assignment α ∈ L. Secondly, it takes the
resulting hyperterm T ′ ∈ HF(Zd) and extracts from it the value cT = T [α] ∈ Zd

of the hyperterm T . Since T [α] is independent of the specific assignment α ∈ L,
this approach is sound.

However, we already explained above that we cannot fix an assignment
α ∈ L, and thus the question remains how we can express the first step in
Choiceless Polynomial Time. The key idea is to exploit the high degree of
symmetry of the hyperterm T . In fact, since ci = ci(T ) = 0 for all i ∈ [n],
we know by Lemma 5.8 that π(T ) = T for all π ∈ Γ. Hence, the result of
syntactically replacing every occurrence of a variable v ∈ V in T by α(v) gives
the same hyperterm as when we substitute every v ∈ V by π(α)(v) for any
α ∈ L. Formally we have

T [v ↦ α(v)] = π−1(T )[v ↦ π(α)(v)] = T [v ↦ π(α)(v)].
Hence, if we would make the substitution v ↦ α(v) in parallel for all α ∈ L,
then we would obtain a single hyperterm T ′ ∈ HF(Zd) whose value coincides
with the value cT of T .

Still, the set L is too large to make this substitution in parallel for all α ∈ L.
Instead we use the decomposition L = L(C0)×⋯×L(Cn−1) of L into the small
parts of valid assignments L(Ci) for block Vi and then proceed inductively:
for i ∈ [n] let Ti denote the hyperterm which results by substituting in T every
occurrence of a variable v ∈ (V0 ⊎⋯ ⊎ Vi) by α(v) for α ∈ L(C0) ×⋯ × L(Ci).
Then Ti+1 can easily be constructed from Ti in CPT by substituting all v ∈ Vi+1

by α(v) for α ∈ L(Ci+1) in parallel. With the same reasoning as above it follows
that the resulting hyperterm Ti+1 is independent of the specific assignment
α ∈ L(Ci+1). We let T ′ ∶= Tn−1 ∈ HF(Zd). While it is clear that the value of
T ′ coincides with the value cT of T , in contrast to T , the hyperterm T ′ does
not contain any variables from V as atoms. For such hyperterms we can easily
determine their value in CPT.
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Claim: There is a CPT-definable mapping ρ ∶ HF(Zd) → Zd which maps a
hyperterm R ∈ HF(Zd) to its value ρ(R) = cR ∈ Zd.
Proof of claim: If R is a constant, the claim is trivial. Otherwise, R is built from
the constants in Zd and the ⊕-operation (since also the scalar multiplication
is a shorthand for an iterated application of ⊕). This means that R must
contain a subhyperterm of the form z1 ⊕ z2 = {⟨z1 + y1, z2 + y2⟩ ∶ y1 + y2 = 0}.
By substituting every such subhyperterm in R by its value (z1 + z2) ∈ Zd we
can iteratively reduce R to a constant c in Zd which coincides with its value.
Of course the number of such substitutions is bounded by the size of R and
introduces at most ∣R∣ many new objects for each iteration which shows that ρ
can be defined in CPT. ⊣

Finally, by combining the routines to transform T into T ′ and to evaluate T ′,
we obtain a CPT-program which defines the value of T .

5.3 Solving ordered systems of hyperequations

In this section we obtain our main result of this chapter.

Theorem 5.12. The solvability problem for cyclic linear equation systems is
definable in Choiceless Polynomial Time.

Let us briefly sketch our proof plan. First of all, we show that we can
transform the equations of a given cyclic linear equation system into equivalent
hyperequations. Such hyperequations differ from usual linear equations by the
simple fact that they are formed from hyperterms instead of usual linear terms.
Formally, a hyperequation is a pair T = z consisting of a hyperterm T and a
constant z ∈ Zd. Thus, in view of our results from Section 5.2, a hyperequation
is a succinct representation of a set of equivalent linear equations. Since we
defined for each α ∈ L and each hyperterm T a value T [α] ∈ Zd, the notion of
solvability (with respect to L-assignments) transfers to hyperequations and
systems of hyperequations. Moreover, we will show that we can translate the
linear equations of a cyclic linear equation system in such a way that we obtain
a linear order on the set of resulting hyperequations. Secondly, we use the
CPT-definability of basic operations on hyperterms, that is of addition, scalar
multiplication, and the evaluation of constant hyperterms, to express in CPT

a variant of Gaussian elimination to decide the solvability problem for ordered
systems of hyperequations.

We remark that whenever we speak of equivalent linear terms or equations,
then this equivalence is relativised to assignments in L as formalised in the
following definition.

Definition 5.13. Two linear terms s, t are equivalent (s ≡ t) if s(α) = t(α) for
all α ∈ L. Two linear equations (s = zs), (t = zt) are equivalent if s − t ≡ zs − zt.

Our next aim is to establish a CPT-definable preorder ⪯ on the set of
linear equations S in such a way that classes Si of ⪯-equivalent equations are
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equivalent. As explained above we will, in a further step, transform each such
class Si into a single hyperequations Ti = zi. As a matter of fact, the preorder
⪯ on S induces a linear order on the set of hyperequations {Ti = zi}. In this
way we can reduce the solvability problem of a cyclic linear equation system
to the solvability problem of an ordered system of hyperequations.

The crucial step of the transformation Si ↦ (Ti = zi) is to translate linear
terms t into equivalent hyperterms Tt in such a way that equivalent linear
terms t, s are mapped to the same hyperterm Ts = Tt. To guarantee this, we
have to establish a certain normal form for linear terms. While, in general, a
linear term t may contain more than one variable from each of the blocks Vi,
it is easy to see that every such linear term t can be rewritten as a linear term
t′ of the form

t′ = (n−1

∑
i=0

zi ⋅ vi) + y for zi, y ∈ Zd, vi ∈ Vi.

The reason is that every variable in Vi can be expressed by a linear term in
any other variable from Vi due to the cyclic constraint Ci. More formally, for
every pair v,w ∈ Vi we can find z ∈ Zd such that v ≡ w + z. In particular this
shows the following.

Lemma 5.14. Let t = zt ⋅ vt and s = zs ⋅ vs be two atomic linear terms with
vt, vs ∈ Vi and zs, zt ∈ Zd. If t ≡ s, then zt = zs.

Proof. Let vt ≡ vs + y for y ∈ Zd. If t ≡ s, then zt ⋅ (vs + y) ≡ zs ⋅ vs, and hence
the linear term (zt − zs) ⋅ vs is equivalent to a constant. This, in turn, is only
possible if zt = zs, since otherwise (zt − zs) ⋅ 1 ≠ (zt − zs) ⋅ 0.

Before we proceed, a small remark is in place. As we explained earlier, we
aim to translate linear equations t = z into equivalent hyperequations T = z.
For this step, we can assume that, without loss of generality, the linear term t

does not contain any constant linear terms, because such constants y ∈ t could
clearly be combined with z. In particular, for the equivalent representation as
t′ = (∑n−1

i=0 zi ⋅ vi)+ y for zi, y ∈ Zd, vi ∈ Vi, from above we can assume that y = 0.
For what follows, we agree on this implicit assumption.

In general, each linear term t can be decomposed into an ordered sequence
of linear subterms t∗i ⊆ t over the variable blocks Vi. Formally, let t∗i denote
the linear subterm t∗i ∶= {z ⋅ v ∈ t ∶ v ∈ Vi, z ∈ Zd}. Then t = ⊎i∈[n] t∗i. By the
reason explained above, we can assume that each of the subterms t∗i only
contains a single variable from the block Vi (but this variable is not uniquely
determined).

Lemma 5.15. There is a CPT-program Π such that, given a CES as above
and a linear term t in which only variables from the block Vi occur, the program
Π outputs a constant y ∈ Zd, a coefficient z ∈ Zd and a set of variables W ⊆ Vi

such that every linear term z ⋅ v + y for v ∈W is equivalent to t.
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Proof. Let v ∈ Vi. For each w ∈ Vi we find a constant zw ∈ Zd such that
w ≡ v + zw. We replace each variable w ∈ Vi in the given term t by the
equivalent term v + zw and simplify the resulting expression afterwards. In this
way we obtain for every v ∈ Vi an atomic linear term zv ⋅ v + yv for yv, zv ∈ Zd,
such that t ≡ zv ⋅ v + yv.

Assume for v,w ∈ Vi we have that yv = yw. Then zv ⋅ v ≡ zw ⋅ w. By
Lemma 5.14 we have zv = zw. We fix the minimal y ∈ Zd and the corresponding
z ∈ Zd such that (y, z) = (yv, zv) for some v ∈ Vi and set W ∶= {v ∈ Vi ∶ (yv, zv) =
(y, z)}. Then y, z and W satisfy the claim.

We are prepared to specify the CPT-definable preorder ⪯ on the set S of
linear equations. By Lemma 5.15 we can construct in CPT for a given linear
term t and each i ∈ [n] a unique pair σi = (yi, zi) ∈ Zd×Zd such that t∗i ≡ zi ⋅v+yi

for suitable v ∈ Vi. We define the signature sgn(t) = (σi)i∈[n] ∈ (Zd ×Zd)n of a
linear term t as the sequence consisting of these pairs σi = (yi, zi). In this way
we obtain a CPT-definable preorder ⪯ on S which is given by

(t, z) ⪯ (s, z′) if, and only if, sgn(t) < sgn(s) or (sgn(t) = sgn(s) and z ≤ z′).
As usual, we write S = S0 ⪯ ⋯ ⪯ Sm−1 and we say that Si is the i-th block

of ⪯-equivalent equations. Let (t, z), (s, z) ∈ Si. We claim that either we have
t ≡ s or that the given cyclic linear equation system is inconsistent. To see this,
first note that the linear equation t − s = 0 is a consequence of the two linear
equations t = z and s = z.

Of course this does not immediately imply that t ≡ s. In fact it still might
be the case that for some α ∈ L we have t[α] = s[α], but that for some β ∈ L
it holds that t[β] ≠ s[β]. However, since sgn(t) = sgn(s) it easily follows that
the linear term t − s is equivalent to a constant in Zd. Hence, from now on we
can assume that for each pair of linear equations (s, z), (t, z) ∈ Si the linear
terms s and t are equivalent.

5.3.1 From linear equations to hyperequations

Our next aim is to establish the CPT-definable mapping t↦ Tt which translates
linear terms t into equivalent hyperterms Tt with the property that equivalent
linear terms s, t with sgn(s) = sgn(t) are mapped to the same hyperterm
Ts = Tt. As a first preparation, let us consider the important special case of
atomic linear terms.

Lemma 5.16. Let s = z ⋅ v and t = z ⋅ w be equivalent linear terms with
z ∈ Zd, z ≠ 0 and v,w ∈ Vi. Then z ⊙w = z ⊙ v.

Proof. Let v−w ≡ y ∈ Zd. Then z ⋅y = 0 and z⊙w+y = z⊙v. By Lemma 5.5 (d)
we conclude that z ⊙ v = z ⊙w+y = (z ⊙w)+z⋅y = z ⊙w.

The preceding lemma allows us to specify the CPT-definable translation t↦ Tt:
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• Translating subterms t∗i ↦ Ti. Let i ∈ [n]. To translate the subterm t∗i into
an equivalent hyperterm Ti we first apply Lemma 5.15 to define constants
yi, zi ∈ Zd and a set Wi ⊆ Vi such that t∗i ≡ zi ⋅ w + yi for all w ∈ Wi. If
zi = 0, then we just set Ti ∶= yi.

Otherwise, we observe that for two different w,w′ ∈Wi we have zi⋅w ≡ zi⋅w
′.

By Lemma 5.16 we conclude that zi ⊙ w = zi ⊙ w
′. Thus we can set

Ti ∶= (zi ⊙ w)+yi for some (any) w ∈ Vi to obtain a single hyperterm Ti

which is equivalent to t∗i.

• Combining the partial hyperterms. We obtain Tt as Tt ∶= T1 ⊕⋯⊕ Tn.

First of all, by the definition of hyperterms and their semantics it is
obvious that Tt is equivalent to t in the sense that for all α ∈ L we have
Tt[α] = t[α]. Moreover, from our previous results it is clear that the above
described translation t ↦ Tt is definable in Choiceless Polynomial Time. In
the next lemma we prove that it also has the desired property of merging
equivalent linear terms into a single hyperterm.

Lemma 5.17. Let s, t be two linear terms with sgn(s) = sgn(t). Then t−s ≡ δ
for some δ ∈ Zd and we have Tt = T

+δ
s . In particular, if s ≡ t, then Tt = Ts.

Proof. Let sgn(s) = sgn(t) = ((y0, z0), . . . , (yn−1, zn−1)). Then for i ∈ [n] we
have that t∗i ≡ zi ⋅wt + yi and s∗i ≡ zi ⋅ws + yi for appropriate sets W t

i ,W
s
i ⊆ Vi

and wt ∈W
t
i , ws ∈W

s
i . This shows that t∗i − s∗i ≡ zi ⋅ ci =∶ δi for an appropriate

ci ∈ Zd with wt −ws ≡ ci. Hence t − s ≡ ∑i∈[n] δi =∶ δ.

Claim: If t∗i ↦ Ti and s∗i ↦ Si, then Ti = S
+δi

i .
Proof of claim: First of all, if zi = 0, then δi = 0 and Ti = Si = S

+δi

i . Otherwise
we have that Ti = (zi⊙wt)+yi and Si = (zi⊙ws)+yi for all wt ∈W

t
i and ws ∈W

s
i .

Thus we can conclude by Lemma 5.5 (d) that Ti = (zi⊙wt)+yi = (zi⊙w
+ci
s )+yi =

(zi ⊙ws)+δi+yi = S+δi

i . ⊣

Finally, by the above claim we can conclude that

Tt = T0 ⊕⋯⊕ Tn−1

= S+δ0

0 ⊕⋯⊕ S+δn−1

n−1

Lemma 5.5 (b) = (S0 ⊕⋯⊕ Sn−1)+δ0+⋯+δn−1

= T+δ
s .

Lemma 5.17 shows that we can use the CPT-definable translation t↦ Tt

to map each block Si of equivalent linear equations into a single hyperequation
Ti = z for i ∈ [m]. Moreover, the linear order on the blocks Si induces a linear
order on the set of hyperequations S∗ ∶= {Ti = zi ∶ i ∈ [m]}. Altogether, we have
shown that there exists a CPT-program which translates each cyclic linear
equation system into an equivalent and ordered system of hyperequations. We
proceed to prove that we can express the solvability of such ordered systems
of hyperequations in Choiceless Polynomial Time.
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5.3.2 Gaussian elimination for systems of hyperequations

To express the solvability problem for ordered systems of hyperequations in
Choiceless Polynomial Time, we use a slightly adapted variant of Gaussian
elimination. Besides the fact that we are dealing with hyperequations, the
modifications are necessary since we are working with linear equation systems
over a finite ring Zd (instead of a finite field).

As a first preparation we note that the elementary transformations which
are necessary to implement Gaussian elimination can also be applied to systems
of hyperequations by using the operations ⊕ and ⊙ on the class of hyperterms.

Definition 5.18. Let S∗ be a system of m hyperequations as above. Moreover,
let i, j ∈ [m], i ≠ j and let (T, z), (T ′, z′) ∈ S∗ denote the i-th and j-th
hyperequation in S∗, respectively, and let y ∈ Zd ∖ {0}. Then we set

S∗[i↦ i + y ⋅ j] ∶= (S∗ ∖ {(T, z)}) ∪ {(T ⊕ (y ⊙ T ′), z + y ⋅ z′)}.
To put it in words, the preceding definition formalises what it means to

apply the basic operation of “row addition” on the level of hyperequations: we
replace in S∗ the i-th hyperequation by its ⊕-sum with a ⊙-scalar multiple
of the j-th hyperequation. The following lemma states that this operation
preserves the set of solutions.

Lemma 5.19. For every i, j ∈ [m], i ≠ j and every y ∈ Zd ∖ {0} the system
S∗[i ↦ i + y ⋅ j] is equivalent to S∗, that is α ∈ L is a solution of S∗ if, and
only if, it is a solution of S∗[i↦ i + y ⋅ j].
Proof. This follows by the semantics of hyperterms and Lemma 5.5 (e).

Of course, we can also change the order of hyperequations in S∗ without
affecting the set of solutions, and we identify this operation of permuting
hyperequations with the elementary transformation of “row permutations”.
For π ∈ Sym([m]) we let S∗[i ↦ π(i)] denote the result of permuting the
hyperequations in S∗ according to π. Essentially, these two basic kinds of
transformations, that is “row additions” and “row permutations”, suffice to
carry out the method of Gaussian elimination.

To make this connection more precise, we associate to the ordered system
of hyperequations S∗ = {Ti = zi ∶ i ∈ [m]} the corresponding m × n-coefficient
matrix M[S∗] ∶ [m] × [n]→ Zd which is defined as

M[S∗](i, j) ∶= cj(Ti).
Then M[S∗] is a matrix over the two ordered index sets [m] and [n].

Now, permuting the rows of M[S∗] corresponds to permuting the hyper-
equations in S∗: for π ∈ Sym([m]) we have that Π ⋅M[S∗] =M[S∗[i↦ π(i)]]
where Π denotes the [m] × [m]-permutation matrix associated to π. Similarly,
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if we denote for i, j ∈ [m], i ≠ j and y ∈ Zd ∖ {0} the elementary operation of
adding the y-multiple of row j to row i by X[i↦ i + y ⋅ j] ∈ Z[m]×[m]

d
, then

X[i↦ i + y ⋅ j] ⋅M[S∗] =M[S∗[i↦ i + y ⋅ j]].
We can use this one-to-one correspondence between the application of

elementary operations to M[S∗] and S∗ to bring the system S∗ into a particular
kind of normal form. Specifically, we say that the coefficient matrix M[S∗] is
in Hermite normal form if there exists a permutation matrix P ∈ {0,1}[n]×[n]
such that

M[S∗] ⋅ P =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a0,0 ⋯ ⋯ ⋯ a0,(n−1)

0 ⋱ ⋮ ⋯ ⋮

0 0 a(k−1),(k−1) ⋯ a(k−1),(n−1)

0 0 0 ⋯ 0

⋮ ⋮ ⋮ ⋮ ⋮

0 0 0 ⋯ 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where a0,0 ∣ a1,1 ∣ ⋯ ∣ a(k−1),(k−1) and such that for all i ∈ [k] and j ∈ [n] it
holds that ai,i ∣ ai,j . Accordingly, we say that S∗ is in Hermite normal form, if
M[S∗] is so.

An important structural property of the ring Zd is that divisibility is a
total preorder (which is not longer true if d is composed of distinct primes).
By using this property one can transform any [m] × [n]-matrix M over Zd via
a polynomial number of elementary row operations (that is of row additions
and row permutations) into an equivalent matrix in Hermite normal form.
We remark that this property precisely characterises those commutative rings
which are local, cf. Lemma 3.17, and in fact, the following lemma holds for
every local ring.

Lemma 5.20. There is a polynomial time algorithm which transforms a given
[m]×[n]-matrix M over Zd into an equivalent matrix in Hermite normal form.

Proof. We can implement such an algorithm by using the following recursive
procedure: in the remaining [k] × [ℓ]-matrix N , for k ≤m and ℓ ≤ n, we first
select an entry r =M ′(i, j) ∈ Zd which is minimal with respect to divisibility
in Zd. As a first step, we apply the appropriate row and column transpositions
to obtain an equivalent k × ℓ-matrix N ′ which has this entry r in its upper left
corner, i.e. N ′(0,0) = r.

As a second step, we use the first row of N ′ with the element r in its
first position to eliminate all other entries in the first column. After this
transformation, the element r still divides every entry in the resulting matrix,
since all of its entries are linear combinations of entries of N ′. We recursively
proceed in this way with the [k − 1]× [ℓ− 1]-submatrix that results by deleting
the first row and column from N ′.
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Since the coefficient matrix M[S∗] is a matrix over two ordered index sets,
we can express the algorithm from the preceding lemma in CPT. Moreover,
since we established a one-to-one correspondence between the application
of elementary transformations to M[S∗] and to S∗ we can also apply these
transformation on the level of hyperequations. In particular, we make use of
Lemma 5.9 to see that a polynomial number of elementary transformations
of hyperequations can be expressed by a CPT-program since the size of the
resulting hyperterms is polynomially bounded. Altogether, this shows that a
given system of (ordered) hyperequations S∗ can be transformed by a CPT-
program into an equivalent system of hyperequations in Hermite normal form.

To complete our proof of Theorem 5.12, it remains to show that Choiceless
Polynomial Time can express the solvability of systems of hyperequations in
Hermite normal form. For convenience, we say that a hyperequation T = z

is atomic if the hyperterm T is constant, cf. Definition 5.10. Recall that in
this case the hyperterm T has a constant value cT = T [α] for all α ∈ L which
means that either every α ∈ L satisfies the hyperequation T = z (if cT = z) or
the hyperequation has no solution in L. With this notation, we characterise
the solvability of systems of hyperequations in Hermite normal form as follows.

Lemma 5.21. Let S∗ be a system of hyperequations in Hermite normal form.
Then S∗ is solvable if, and only if, both of the following conditions are satisfied.

(i) Each atomic hyperequation (T = z) ∈ S∗ is consistent.

(ii) For each non-atomic hyperequation (T = z) ∈ S∗, the atomic hyperequa-
tion (pℓ

⊙ T = pℓ
⋅ z) is consistent, where ℓ ≥ 1 is minimal such that

pℓ
⋅ ci(T ) = 0 for all i ∈ [n] (in particular, if pℓ = 0 ∈ Zd, then some

coefficient ci(T ) is a unit in Zd).

Proof. Clearly, if S∗ is consistent then the conditions (i) and (ii) hold.
For the other direction, we make use of the assumption that S∗ is in Hermite

normal form. Let S′ ⊆ S∗ be the subset of non-atomic hyperequations in S∗

and let (T0 = z0), . . . , (Tk−1 = zk−1) be an enumeration of S′ such that for the
[k] × [n]-coefficient matrix M[S′] and an appropriate [n] × [n]-permutation
matrix P we have

M[S′] ⋅ P = ⎛⎜⎝
a0,0 ⋯ ⋯ ⋯ a0,(n−1)

0 ⋱ ⋮ ⋯ ⋮

0 0 a(k−1),(k−1) ⋯ a(k−1),(n−1)

⎞⎟⎠ ,

where a0,0 ∣ a1,1 ∣ ⋯ ∣ a(k−1),(k−1) and where for all j ∈ [k] and i ∈ [n] it holds
that aj,j ∣ aj,i. Next, we use property (L) of hyperterms to obtain for every
hyperterm Tj , j ∈ [k], an equivalent linear term tj = ∑i∈[n] aji ⋅ vi + yj for
appropriate vi ∈ Vi and yj ∈ Zd.

Let j ∈ [k]. By condition (ii) we know that (pℓ
⊙ Tj = p

ℓ
⋅ zj) is consistent

where pℓ is the minimal power of p which annihilates ajj . We conclude that
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pℓ
⋅ (zj − yj) = 0 and thus ajj ∣ (zj − yj) where we use that every element x ∈ Zd

can be written as x = pe
⋅ u for an appropriate power pe of p and a unit u ∈ Z∗d.

Now, the system of hyperequations S′ is consistent if, and only if, the system
of linear equations (M[S′] ⋅P ) ⋅ v⃗ = b⃗ is consistent where v⃗ = (v0, . . . , vn−1) and
where

b⃗ =
⎛⎜⎝

z0 − y0

⋮

zk−1 − yk−1.

⎞⎟⎠
Let j ≤ k be minimal such that for some α ∈ L all linear equations tj′ = zj′

with index j ≤ j′ ≤ k − 1 are satisfied under the assignment α. We claim that
j = 0. Otherwise we assume that j ≥ 1 and we fix a witnessing α ∈ L, i.e.
tj′[α] = zj′ for all j′ ≥ j. The first observation is that we can change α(vj−1)
without affecting the value tj′[α] for all j′ ≥ j. The second observation is that,
since a(j−1),(j−1) ∣ a(j−1),i for all i ∈ [n] and a(j−1),(j−1) ∣ (zj−1 − yj−1), we have
that a(j−1),(j−1) ∣ ∑i≥j a(j−1),i ⋅ α(vi) − (zj − yj). Hence, a(j−1),(j−1) ⋅ α(vj−1) =
∑i≥j aj,i ⋅α(vi)− (zj −yj) for an appropriate α(vj−1) ∈ Zd. This contradicts the
minimality of j and finishes the proof of the lemma.

The preceding lemma shows that the solvability problem for systems of
hyperequations in Hermite normal form can be reduced to the consistency
check for atomic hyperequations. By Lemma 5.11 this test can be expressed in
Choiceless Polynomial Time. This finishes our proof of Theorem 5.12.

5.4 Discussion

We introduced cyclic linear equation systems and we discussed their relevance
in the quest for a logic for polynomial time. In particular, we saw that the
solvability problem for cyclic linear equation system cannot be defined in
fixed-point logic with counting although such equation systems are structurally
rather simple. Our main result was that Choiceless Polynomial Time can
define the solvability of cyclic linear equation systems. This shows that CPT

extends FPC by a non-trivial and interesting class of polynomial-time queries.
In these regards, the main open question is whether Choiceless Polynomial

Time can express the solvability problem for general linear equation systems
over finite (Abelian) groups. We saw that if we put the strong structural
assumption of having cyclic linear equation systems, then the solvability
problem can be defined in CPT. Hence, a natural approach would be to
generalise our ideas and to prove that CPT can solve linear equation systems
also with more restricted kinds of auxiliary structure. We want to sketch two
possible ways of proceeding along such lines.

For both approaches we again consider linear equation systems of the form
(V,S,⪯) which have an auxiliary linear preorder ⪯ on their set of variables
V = V0 ⪯ ⋯ ⪯ Vn−1, but we drop the requirement of having cyclic constraints
Ci on the classes Vi. Then the first natural idea is to require that all blocks Vi
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of ⪯-equivalent variables are of bounded size, that is ∣Vi∣ ≤ b for some constant
b ∈ N and for all i ∈ [n] (this resembles pretty much the notion of structures
with bounded colours, see Section 6.1, Definition 6.6). In fact we can prove,
and it partly follows from our results in the next chapter, that CPT can define
the solvability of such systems for the case where b ∈ {1,2,3} (note that the
case b = 1 corresponds to ordered systems, but for b = 2 we already capture
the linear equation systems for CFI-graphs). For the case b = 4 we have some
preliminary results which look promising, but for the general case, it is far open
whether the solvability problem for such b-bounded linear equation systems can
be expressed in Choiceless Polynomial Time.

The second approach is based on the insight that for cyclic linear equation
systems (V,S,⪯), every block Vi represents a single variable. More precisely, if
we fix the value of any variable in a block Vi, then the value of every other
variable in the same block is fixed as well due to the cyclic constraint Ci ⊆ S.
This suggests to consider b-determined linear equation systems for b ∈ N. For
such systems, every block Vi comes with an associated constraint Di ⊆ S such
that whenever we fix the value of at least b different variables from Vi, then Di

determines the values of all remaining variables in Vi. In particular, for b = 1

we obtain the notion of cyclic linear equation systems. We aim to study how
far one can get with such an approach in the future.



Chapter 6

Canonising structures with

Abelian colours

In this chapter we introduce structures with Abelian colours. Our main result is
that structures with Abelian colours can be canonised in Choiceless Polynomial
Time. The immediate consequence is that every polynomial-time property of
such structures can be expressed in Choiceless Polynomial Time.

Structures with Abelian colours have been considered quite frequently in
finite model theory. Most importantly, all structures which are constructed
in a way similar to the graphs of Cai, Fürer, and Immerman turn out to
be structures with Abelian colours, for example multipedes [55], structures
from the construction of Hella [57], and CFI-structures over general Abelian
groups [10, 59], see also Chapter 4. Since such families of structures have been
introduced to prove limitations of the expressive power of fixed-point logic with
counting, our result identifies a general collection of polynomial-time queries
which cannot be expressed in fixed-point logic with counting, but in Choiceless
Polynomial Time. In particular, our canonisation procedure solves an open
question posed by Blass, Gurevich, and Shelah in [16, Question (5.12)]: the
isomorphism problem for multipedes can be defined in Choiceless Polynomial
Time, see Theorem 6.13.

The notion of structures with Abelian colours is motivated by the following
reasoning. We know that ordered structures are simple in the sense that
they are rigid and, more importantly, that they can be identified with a
canonical string representation via a first-order transformation. In addition,
the Immerman-Vardi Theorem shows that every polynomial-time algorithm
which operates on strings can be expressed in (least) fixed-point logic. Thus, if
we restrict to ordered structures, then the question for a logic for polynomial
time is solved. The basic idea of structures with Abelian colours is to relax
the assumption of having a complete linear order on the universe just as little
as necessary to obtain a class of structures on which fixed-point logic (even
with counting) fails to capture polynomial time. Strikingly it turns out, that
the resulting notion generalises many of the known examples for separating
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fixed-point logic with counting from polynomial time.
To be more precise, a structure with Abelian colours consists of a usual

relational structure A extended by a linear preorder ⪯ on the universe A =
A0 ⪯ A1 ⪯ ⋯ ⪯ An−1, and for every colour class Ai, i ∈ [n], it possesses an
ordered and Abelian group Γi which acts transitively on Ai. In other words, the
universe of A is almost linearly ordered up to the colour classes Ai on which
we can access an ordered Abelian group Γi which relates all pairs of elements
in the colour class Ai.

The concept of Abelian colours is related to the well studied notion of
bounded colour class size. Recall that a structure A with bounded colours also
contains a built-in linear preorder ⪯ on its universe A = A0 ⪯ A1 ⪯ ⋯ ⪯ An−1, but
instead of having ordered Abelian groups acting transitively on the individual
colour classes Ai, the requirement is that these colour classes Ai are small,
that is their size is bounded by some function in ∣A∣ (which usually grows very
slowly, or which is even constant). We will discuss the precise connections
between structures with Abelian colours and with bounded colours at the end of
Section 6.1. However, let us already mention at this point that our initial aim
was to develop a CPT-definable canonisation procedure for structures with
constantly bounded colours. We discovered the notion of Abelian colours when
we studied the following simplification. Assume that for a given structure A

with bounded colours, all colour classes Ai induce substructures of A which
have Abelian automorphism groups. As we can show, such structures can easily
be transformed into structures with Abelian colours and thus, our canonisation
procedure can be applied for such particular structures with bounded colours
as well, see Theorem 6.8.

This chapter is strongly based on [1]. In Section 6.1, we introduce structures
with Abelian colours. One particular feature of such structures is that they can
contain relations of unbounded arity (similar to hypergraphs). Nevertheless,
we prove in Theorem 6.5 that every structure with Abelian colours can be
transformed, in Choiceless Polynomial Time, into a graph with Abelian colours.
Furthermore, we discuss connections between structures with Abelian colours
and with bounded colours. In Section 6.2 we establish our main result of
this chapter which is a CPT-definable canonisation procedure for structures
with Abelian colours. We conclude that Choiceless Polynomial Time captures
Ptime on the class of structures with Abelian colours, see Theorem 6.13. For
our canonisation procedure we strongly make use of cyclic linear equation
systems (see Chapter 5). We close with a discussion in Section 6.3.

6.1 Structures with Abelian colours

The aim of this section is to introduce and motivate the notion of structures
with Abelian colours. In particular, we will see that we already encountered
structures with Abelian colours several times in this thesis. For instance,
the generalisations of the Cai, Fürer, Immerman graphs which we studied in
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Section 4.4 are, up to a CPT-definable preprocessing, structures with Abelian
colours. More generally, the cyclic linear equation systems which we defined
in Chapter 5 fall into this category as well (and, in some sense, they form
the prototype examples of structures with Abelian colours). Secondly, in
this section we gather some important properties of structures with Abelian
colours. In particular, we show that every structure with Abelian colours can
be extended by any set of tuples of arbitrary length such that we can maintain
the property of having Abelian colours via a CPT-definable transformation.
While this result is interesting on its own, it also plays an important role for
our CPT-canonisation procedure in the following section. Finally, we discuss
connections between structures with bounded colours and with Abelian colours.

Definition 6.1. A structure with Abelian colours is a quadruple (A,⪯,X,Φ),
where ⪯ is a linear preorder on the universe A = A0 ⪯ A1 ⪯ ⋯ ⪯ An−1, where
X ⊆ A<ω is a finite set of tuples over A (of arbitrary length), and where
Φ = {(Γi,≤) ∶ i ∈ [n]} is a family of ordered Abelian permutation groups
Γi ≤ Sym(Ai) which act transitively on the colour classes Ai for i ∈ [n].
Moreover, we denote the class of structures with Abelian colours by KAC.

At first glance, this definition is not completely satisfactory, since the
quadruple (A,⪯,X,Φ) is not a relational structure in the usual sense (the
elements X and Φ are higher-order objects in HF(A)). However, at least
for Φ a representation in a standard relational structure can easily be obtained.
By definition, Φ is an ordered set which itself consists of ordered groups of
Ai-permutations, that is of bijective functions from Ai to Ai. We can represent
Φ in the following way: we extend our universe by an ordered index set AΦ

of new atoms aγ (we add one atom aγ for each permutation γ ∈ ⋃Γi) and
use a ternary relation symbol RΦ with the interpretation that for all aγ ∈ AΦ,
the relation RΦ(aγ , x, y) defines the graph of a bijective function from Ai to
Ai (the graph of the permutation γ). The important point to observe is that
the set of new indexing elements AΦ is totally ordered, which means that the
auxiliary atoms aγ ∈ AΦ belong to colour classes of size one (and on colour
classes of size one, an action of an ordered Abelian permutation group can
trivially be defined). Still, this approach requires some further discussion
about the sizes of structures with Abelian colours. In fact, if we measure
their sizes by m = ∣A∣ + ∣X ∣ (which would be natural since ⪯ and Φ are rather
auxiliary objects), then it might seem that the size of Φ can be exponential
in m. However, as we require in our definition that the ordered groups (Γi,≤)
are Abelian and transitive we know that ∣Γi∣ = ∣Ai∣.

The more critical point is the encoding of the relational part of the structure,
that is of (A,X). For the special case of classes K of structures with Abelian
colours where X ⊆ A≤k for all (A,⪯,X,Φ) ∈ K and for a fixed k ≥ 1, we
can easily encode such structures as triples (A,⪯,Φ) where A ∈ S(τ) for a
suitable vocabulary τ . In this case we say that K is a class of τ -structures with
Abelian colours. Let us denote the class of τ -structures with Abelian colours
by KAC(τ).
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In general, however, (A,X) cannot be encoded as a τ -structure (for any
fixed vocabulary τ), since the tuples in X can be of unbounded length. Hence,
we have to use a similar approach as we did for Φ above, that is we would like
to introduce for every tuple x ∈X a new atom ax and to encode the structure
of the tuple x, that is the entries together with the corresponding components,
by auxiliary relations. Moreover, in order to match our definition of structures
with Abelian colours, we also have to extend the preorder ⪯ to the newly
created atoms ax and, more importantly, also define ordered Abelian groups
which act transitively on the resulting colour classes. This, however, turns out
to be much more difficult as for the case of Φ. The reason is that, in contrast
to the case of Φ, we do not have access to a linear order on X.

Nevertheless, in Theorem 6.5 we show that this approach is feasible. More
precisely, we show that each structure (A,⪯,X,Φ) with Abelian colours can be
encoded (via an invertible CPT-transformation) as an (undirected) graph with
Abelian colours, that is we obtain a CPT-definable encoding of KAC-structures
as KAC({E})-structures.

In Figure 6.1 we illustrate the notion of structures with Abelian colours.

A0 A1 An−1⪯ ⪯ ⪯⋯

(Γ0,≤)
acts

transitively
on

(Γ1,≤)
acts

transitively
on

(Γn−1,≤)
acts

transitively
on

Γi ≤ Sym(Ai)
ordered and

Abelian groups

X ⊆ A<ω
relational

part (A, X)

Figure 6.1: Illustration of the notion of structures with Abelian colours

Our main result in this chapter is that there exists a CPT-program Π which
transform each structure A ∈ KAC into an isomorphic structure (B,<) ∶= Π(A)
over an ordered universe B ∈ HF(∅) such that B ≅ A. In other words, there
exists a CPT-definable canonisation procedure on the class KAC and, as a
consequence, Choiceless Polynomial Time captures Ptime on KAC.

Before we proceed, let us consider a concrete example of a class of structures
with Abelian colours. Specifically, we want to show that the generalised CFI-
structures over prime fields Fq, which we defined in Section 4.4, are structures
with Abelian colours. More precisely, we show that these CFI-structures can
be extended by the necessary algebraic components (that is by the ordered,
Abelian and transitive groups Γi) in Choiceless Polynomial Time (in fact,
the logic DTC suffices). In particular, this holds for the original Cai, Fürer,
Immerman graphs [21], since they arise as a special case for q = 2.
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Let A = CFIq(G, d⃗) be a CFI-structure over Fq for q ∈ P, for an (undirected),
ordered, and connected graph G = (V,≤,E), and for a sequence d⃗ ∈ FV

q of gadget
values as defined in Section 4.4. Recall that A possesses a linear preorder ⪯
on the set Ê that induces a linear order on the set of edge classes {ê ∶ e ∈ E}
(furthermore, recall that Ê = ⊎e∈E ê).

In order to represent A as a structure A
′ with Abelian colours we can take

Ê as our universe and adopt the preorder ⪯ on Ê for A
′. Furthermore, it is

easy to define ordered Abelian groups on the individual edge classes ê. This is
because on every edge class ê the cycle relation C defines a directed cycle of
length d. Thus, the automorphism group of this directed cycle is a transitive
Abelian group Γ(e) ≤ Sym(ê) which can be defined and canonically ordered,
for instance, in DTC, see Lemma 3.3. Moreover, the inverse relation I can
directly be embedded into the relational part X of A

′, since it consists of
undirected edges between edge nodes in Ê. Finally, we have to encode the
equation nodes ρ ∈ V̂ . This we naturally do by using the set X ⊆ Ê<ω again:
for every ρ ∈ v̂ we add the tuple (eρ(e))e∈E(v) to X.

6.1.1 From general structures to undirected graphs

In what follows, we solve the question from the beginning: how can we represent
the class KAC of structures with Abelian colours as a class of τ -structures
over a fixed vocabulary τ? Specifically, we demonstrate how to transform, in
Choiceless Polynomial Time, each structure A = (A,⪯,X,Φ) ∈ KAC into an
{E}-structure B = (B,⪯′,E,Φ′) with Abelian colours, E ⊆ B2, in such a way
that B encodes A. In particular, we guarantee that from a canonical copy
B< ∈ HF(∅) of B we can extract in CPT a canonical copy A< ∈ HF(∅) of the
original structure A. This shows that, up to a CPT-definable preprocessing,
we can assume that KAC ⊆ S(τ) where τ = {⪯,E,RΦ} (and where RΦ is a
ternary relation symbol which encodes the family of ordered Abelian groups Φ,
as discussed before). In particular, this result will be very helpful for describing
the canonisation procedure in the following section, since it allows us to restrict
to graphs with Abelian colours (instead of structures which contain relations
of unbounded arity).

To establish the described CPT-transformation, we first show that, without
loss of generality, we can assume that the tuples in X have a certain kind of
normal form. More precisely, we want that each tuple x ∈X has at most one
entry in each of the classes Ai and, moreover, all tuples in X agree on the
specific classes Ai to which their entries belong. Formally this means that
there is a set I ⊆ [n] of indices I = {i1, . . . , ik} ⊆ [n] of size ∣I ∣ = k such that
X ⊆ Ai1

×Ai2
× ⋯ ×Aik

⊆ A<ω. To put it in different words, all tuples in X

belong to the same Γ-orbit where Γ is the following Abelian group Γ ≤ Sym(A)
which results by composing the Abelian groups Γi that component-wisely act
on individual colour classes Ai:

Γ ∶= Γ0 × Γ1 ×⋯× Γn−1 ≤ Sym(A).
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Note that although, in general, the size of Γ is exponential in the size of A, we
can explicitly access the ordered set of generators Θ ∶= ⊎i∈[n] Γi. Also, given
two group elements γ, δ ∈ Γ we can easily express in CPT that γ ≤ δ by using
the induced lexicographic ordering on Γ. We remark that Γ also plays an
important role in the following section. Now, in order to obtain the described
normal form for the set X ⊆ A<ω we introduce the key notion of shapes.

Definition 6.2. Let 1 ≤ k ≤ ℓ. An (ℓ, k)-shape is a sequence ρ = (γ0, . . . , γℓ−1) ∈
Θℓ for which the set of relevant colours V (ρ) ∶= {i ∈ [n] ∶ ρ(j) ∈ Γi for j ∈ [ℓ]}
has size k = ∣V (ρ)∣. In this case,

(i) A(ρ) is the set of assignments α ∶ V (ρ)→ A with α(i) ∈ Ai for i ∈ V (ρ),
(ii) and, for α ∈ A(ρ), we let ρ[α] ∈ Aℓ denote the ℓ-tuple whose entry at

position j ∈ [ℓ] results by applying γ = ρ(j) ∈ Γi to the element α(i).
We aim to use shapes to identify ℓ-tuples x ∈ Aℓ by pairs consisting of

an ordered object x̂ = ρ ∈ HF(Θ) (the shape of x) and a realising assignment
α ∈ V (ρ). This assignment α, in turn, can then be identified with a tuple
ᾱ ∈ Ak which satisfies the normal form conditions that we described above.

More precisely, since Θ is an ordered set (and since shapes are objects
in HF(Θ)) we can canonically define the shape of a tuple x ∈ Aℓ as the
lexicographically minimal (ℓ, k)-shape x̂ = ρ such that x = ρ[α] for a (unique)
α ∈ A(ρ) where k = ∣{i ∈ [n] ∶ x(j) ∈ Ai for j ∈ [ℓ]}∣. More directly, to obtain
the shape of x we first collect all indices i ∈ [n] such that x contains elements
from the colour class Ai. We then independently consider all subtuples (x ↾ Ai)
of x which result by restricting x to those entries which belong to Ai. Let
y ∶= (x ↾ Ai) ∈ Ar

i be one of such sequences. To obtain the corresponding
subsequence ŷ ∈ Γr

i of the shape x̂ of x we first choose the minimal group
element γ ∈ Γi and put it as the first entry ŷ(0) ∶= γ of ŷ. Moreover, we
choose a = α(i) ∈ Ai for our realising assignment such that γ(a) = y0. This
is possible since Γi is a transitive group. Then all other entries ŷ(j) of ŷ are
immediately determined as the unique δ ∈ Γi which map a to yj . It is clear
that this procedure can be expressed in Choiceless Polynomial Time.

Lemma 6.3. There is a CPT-program which, given a structure (A,⪯,X,Φ)
with Abelian colours as above, associates to every tuple x ∈ X a pair (x̂, ᾱ) ∈
HF(Θ) ×A<ω, where Θ ∶= ⊎i∈[n] Γi, such that

• x̂ = ρ ∈ HF(Θ) is the shape of x where V (ρ) = {i0 < i1 < ⋯ < ik−1}, and

• where for α ∶ V (ρ)→ A, ij ↦ ᾱ(j) we have α ∈ A(ρ) and ρ[α] = x.

Let x, y ∈ Aℓ and assume that x↔ (x̂, ᾱ) and y↔ (ŷ, β̄) (where ↔ denotes
the correspondence from the preceding lemma). If x̂ = ŷ, then x and y belong
to the same Γ-orbit. This is easy to see, since for all j ∈ [n] there exists at most
one entry i ∈ [k] such that ᾱ(i) ∈ Aj or β̄(i) ∈ Aj and, since x̂ = ŷ, in such case
we have ᾱ(i) ∈ Aj and β̄(i) ∈ Aj . Moreover, a witnessing group element γ ∈ Γ



6.1. Structures with Abelian colours 141

which maps x to y can easily be defined in CPT (it suffices to map ᾱ to β̄).
In other words, the shape of a tuple x ∈ Aℓ completely describes its Γ-orbit.

Before we proceed, we give a small example which illustrates the notion of
shapes and how they are applied to encode tuples x ∈ A<ω. Let n = 4, let

A = A0 = {a0, a1} ⪯ A1 = {b0, b1} ⪯ A2 = {c0, c1} ⪯ A3 = {d0, d1},
and let Γi = Sym(Ai) = {γi, δi} be the symmetric group acting on the two
elements in Ai. Here, γi = idAi

denotes the identity on Ai and δi denotes
the transposition of the two elements in Ai. Then ∣Γi∣ = 2, Γi is Abelian and,
moreover, we have a canonical order γi < δi on Γi. Now, consider the tuple
x = (b0, a0, a1, b0, d1, a1, d0) ∈ A7. Then x is identified, according to Lemma 6.3,
with the pair (x̂, ᾱ) ∈ HF(Γ0 ⊎⋯⊎ Γ3) ×A3 that is given as

x̂ = (γ1, γ0, δ0, γ1, γ3, δ0, δ3) and ᾱ = (a0, b0, d1) ∈ A3.

Note that the tuple y = (b1, a1, a0, b1, d1, a0, d0) ∈ A7 has the same shape ŷ = x̂,
but the realising assignment β̄ = (a1, b1, d1) for y would differ from that of x
accordingly. Moreover, every group element λ ∈ Γ which maps ᾱ to β̄ also
maps the tuple x to the tuple y. For instance, this holds for λ = (δ0, δ1, γ2, γ3).
Lemma 6.4. There is a CPT-program which, given a structure (A,⪯,X,Φ)
with Abelian colours, defines an extension of ⪯ to X = X0 ⪯ ⋯ ⪯ Xm−1 and
a family of ordered, Abelian permutation groups Ψ = {(∆i,≤) ∶ i ∈ [m]},
∆i ≤ Sym(Xi), which act transitively on the classes Xi. In particular, all tuples
x, y ∈Xi have the same shape x̂ = ŷ = X̂i for i ∈ [m].
Proof. As a first preparation we use Lemma 6.3 to decompose X into an
ordered partition of classes X = Z0 ⪯ Z1 ⪯ ⋯ ⪯ Zr−1 such that all tuples
y, z ∈ Zi have the same shape, i.e. if y ↔ (ŷ, ᾱ) and z ↔ (ẑ, β̄), then ŷ = ẑ.
This refinement process can be expressed in CPT by Lemma 6.3 and the fact
that shapes are ordered objects. As explained above, this also implies that all
tuples in the refined classes Zi belong to the same Γ-orbit. From now on, let
us assume that X = Zi is one of these classes.

What remains is to obtain an Abelian and ordered group ∆ ≤ Sym(X)
which acts transitively on X. Of course, the natural approach is to consider the
induced action of Γ on X. However, in general X is not a block, that is it might
happen that for some γ ∈ Γ we have X ≠ γ(X),X ∩ γ(X) ≠ ∅. To overcome
this problem we make use of the fact that we can access the ordered set Θ of
generators for Γ. Let γ ∈ Θ be minimal such that X ≠ γ(X),X ∩ γ(X) ≠ ∅.
Then we split X into the two parts X ∖ γ(X) and X ∩ γ(X) which we can
canonically order, for instance, by setting (X ∖ γ(X)) < (X ∩ γ(X)). We
continue with this CPT-definable refinement process as long as some of the
resulting classes split (i.e. as long as they are not blocks). Summing up, we
have refined X into classes X =X0 ⪯X1 ⪯ ⋯ ⪯Xm−1 such that

• for y, z ∈Xi we can fix (in CPT) an element γ ∈ Γ such that γ(y) = z,
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• and for all γ ∈ Γ we either have that γ(Xi) =Xi or γ(Xi) ∩Xi = ∅.

We can now easily define in CPT the ordered Abelian groups ∆i ≤ Sym(Xi), for
i ∈ [m], which act transitively on Xi. To this end we fix for each pair y, z ∈Xi

a group element γ ∈ Γ such that γ(y) = z. Then we consider the permutation
which is induced by γ on Xi. The set of these induced permutations yields the
desired group ∆i.

The preceding lemma brings us quite close to our goal of showing that every
structure with Abelian colours can be encoded, via a CPT-definable invertible
mapping, as a graph with Abelian colours. Let A = (A,⪯,X,Φ) ∈ KAC and
let us assume that we have refined X = X0 ⪯ X1 ⪯ ⋯ ⪯ Xm−1 as stated in
Lemma 6.4. Then all tuples x, y ∈Xi have the same shape ρi ∶= x̂ = ŷ and we
can use the position i ∈ [m] of the block Xi in the order ⪯ to store this common
information. As a consequence we can represent tuples x ∈Xi by their realising
assignments ᾱ ∈ Ai0

×⋯ ×Aik−1
where V (ρi) = {i0 < i1 < ⋯ < ik−1}. Since the

order on the classes Ai is fixed, we can encode these assignments ᾱ by new
atoms zᾱ which are connected via undirected edges to the elements ᾱ(j) ∈ Aij

for j ∈ [k]. In particular, note that the preorder ⪯ on X and the group actions
∆i on Xi directly induce corresponding actions on the newly created atoms so
that we can maintain the property of having a structure with Abelian colours.
In this way we have represented the structure A as a graph B = (B,E ⪯′,Φ′)
with Abelian colours, where E ⊆ B2 is a symmetric edge relation, where A ⊆ B
and where ∣B∣ ∈ O(∣A∣ + ∣X ∣).

At this point, we have to discuss another technical issue. While the
translation A ↦ B is clearly invertible in CPT, it is not clear whether we can
construct, given a canonisation B< ≅ B of the graph B, also a canonisation A<

of the original structure A in Choiceless Polynomial Time. The difficulty is that
this would require to reconstruct tuples from their shapes and their realising
assignments. But what happens if the realising assignments take values in
another domain (like it would be the case if we were working with assignments
over an ordered copy of the universe of A). Then it is unclear how we can
evaluate shapes (which contain group elements from the original groups (Γi,≤))
for such assignments. The solution is to carefully analyse the canonisation
procedure in the following section. Then we observe that the canonical copy of
B< also contains canonical copies Γ<i of the groups (Γi,≤) ∈ Φ′. These groups
Γ<i , in turn, act on the ordered universe of B< and we can, moreover, fix a single
isomorphism which maps (Γi,≤) → Γ<i (and this isomorphism is part of an
isomorphism between B and B<). Hence, we can translate shapes canonically
to shapes over the ordered copy B< which can then be used to reconstruct the
tuples for our canonical copy of the set X from the original structure A.

Theorem 6.5. There is a CPT-program Π which encodes structures A ∈ KAC

with Abelian colours as graphs B ∈ KAC({E}) with Abelian colours in such a
way that if we apply our canonisation procedure (Theorem 6.13) for B, then
we can obtain in CPT a canonical copy of A from the canonical copy of B.
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In other words, the preceding theorem says that the class KAC can be
identified with a subclass of S({E,P}) via a CPT-definable transformation.
This solves our problem of representing structures with Abelian colours as
usual relational structures.

6.1.2 Structures with bounded colours

At the end of this section we want to discuss connections between structures
with Abelian colours and certain classes of structures with bounded colours.

Definition 6.6. Let f ∶ N → N. A τ -structure with colour class size f , or a
τ -structure with f -bounded colours, is a pair (A,⪯) where A ∈ S(τ) and where
⪯ is a linear preorder on A = A0 ⪯ A1 ⪯ ⋯ ⪯ An−1, such that ∣Ai∣ ≤ f(∣A∣) for
all i ∈ [n]. As before, the classes Ai are called the colour classes of (A,⪯).

Again one may think of the linear preorder ⪯ as an “approximation” of
a linear order on the universe A. The difference to the notion of structures
with Abelian colours is that we do not have access to an Abelian group action
on the colour classes Ai. Instead we have the guarantee that the sizes of the
colour classes Ai are bounded by f(∣A∣) (and usually, f will be a function
which grows very slowly, or which is even constant).

Let Kf
BC
(τ) denote the class of all τ -structures with f -bounded colours for

some function f ∶ N → N. We are interested in the (descriptive) complexity
of the isomorphism problem on Kf

BC
(τ) and, more generally, in a (definable)

canonisation procedure on this class. Of course, the hardness of these two
problems crucially depends on the choice of the function f ∶ N → N. For
example, while both problems are trivial for f = 1, they are as hard as possible
if we let f = idN.

Let us briefly summarise what is known about the algorithmic complexity
of these problems on Kf

BC
(τ). Most importantly, it is known that the structure

isomorphism problem is polynomial-time decidable on Kf
BC
(τ) if f ∈ N is a

constant [12, 36]. Interestingly, the corresponding isomorphism test is strongly
based on algorithmic techniques for handling permutation groups (membership
testing, intersection problems, and so on). More precisely, the basic idea
is to compute sets of generators for the automorphism group of the given
structure by iteratively stabilising small substructures and by successively
combining the intermediate results. In some sense, it is fair to regard these
permutation group algorithms as generalisations of the method of Gaussian
elimination for general, that is non-Abelian groups. It is an easy observation
that these isomorphism tests and canonisation procedures on Kf

BC
(τ) also

work for the case where f is not constant, but very slowly growing, for instance
if f(n) = log(n)/ log(log(n)). More precisely, the original algorithms run in
time O((f(n)! ⋅ n)c) for some constant c. It is also worth mentioning that,
more recently, the notion of bounded colour class size has been studied for
hypergraphs and in the context of fixed-parameter tractability, see [76] and
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see [6] for an algorithm with an improved running time. However, in this
thesis, whenever we speak of structures with bounded colours, then we always
assume that we have structures over a fixed vocabulary (as opposed to the
case of hypergraphs where hyperedges can be of unbounded width).

Despite these nice algorithmic results, fixed-point logic with counting
already fails to express the isomorphism problem on K2

BC(τ) if we assume that
τ contains a relation symbol of arity at least three. This is because the CFI-
graphs can be represented as relational structures in K2

BC(τ) where τ = {R}
consists of a single ternary relation symbol R. Also, if we restrict ourselves to
graphs, then the bound on the constant does not increase significantly. In fact,
the CFI-graphs are already contained in K4

BC({E}) and this bound is sharp:
it follows from [66] that all graphs in K3

BC({E}) can be canonised in fixed-
point logic with counting. Summing up, the tremendous mismatch between
the algorithmic tractability of the isomorphism problem on Kf

BC
(τ) and its

definability in fixed-point logic with counting, makes the classes Kf
BC
(τ) an

interesting testing ground for other candidates for logics capturing polynomial
time such as rank logic FPR and Choiceless Polynomial Time CPT.

Theorem 6.7 ([12, 21, 36]).

(a) Let f ∶ N→ N be such that f(n)! ∈ O(nc) for c ≥ 1. Then the isomorphism
problem is decidable in polynomial time on Kf

BC
(τ) and, more generally,

there exists a polynomial-time canonisation procedure on Kf
BC

.

(b) The isomorphism problem on K4
BC(τ) where {E} ⊆ τ , and on K2

BC(σ)
where σ contains a relation symbol of arity at least three, is not definable
in fixed-point logic with counting.

In particular, this leads to the following important question: is the iso-
morphism problem on Kf

BC
(τ) definable in Choiceless Polynomial Time (or in

rank logic) for all constants f ∈ N? Indeed, such a result would significantly
increase our knowledge about the gain in expressiveness when we pass from
fixed-point logic with counting to CPT (or to FPR). Also, it would provide a
promising starting point from where one could study the definability of the
isomorphism problem on more complicated classes of structures for which
efficient isomorphism tests are known, but on which the Weisfeiler-Lehman
method, and thus FPC, fails. This includes, for example, classes of graphs
with bounded degree [37, 75] or classes with slowly growing treewidth [31, 74].

Interestingly, the CPT-canonisation procedure on KAC which we develop
in the following section provides a first step towards an answer to the above
question. More specifically, if we consider classes K ⊆ Kf

BC
(τ) of structures

with f -bounded colours (for a sufficiently slowly growing function f) and if
make the the additional assumption that all substructures which are induced
on the individual colour classes have Abelian automorphism groups, then the
structures in K really are, up to a CPT-definable preprocessing, structures



6.1. Structures with Abelian colours 145

with Abelian colours. As a consequence, the CPT-definable canonisation
procedure on KAC(τ) provides a CPT-definable canonisation procedure on K.

Theorem 6.8. Let f ∶ N→ N be such that f(n)! ∈ O(nc) for c ≥ 1. Moreover,
let K ⊆ Kf

BC
(τ) be a class of τ -structures (A,⪯) with f-bounded colours such

that for all colour classes Ai ⊆ A the automorphism group Aut(A ↾ Ai) of the
substructure (A ↾ Ai) induced on Ai is Abelian.

Then there is a CPT-program Π which defines, given (A,⪯) ∈ K, a refine-
ment ⪯′ of the preorder ⪯ on A and a set Φ = {(Γi,≤) ∶ i ∈ [m]} of ordered and
Abelian groups (Γi,≤) which act transitively on the colour classes A′i that are
induced by the refined preorder ⪯′, that is (A,⪯′,Φ) ∈ KAC(τ).

Proof. To obtain an appropriate CPT-transformation Π we use an important
algebraic characterisation for the structure of sets of isomorphisms between
two relational structures (this characterisation also plays an important role for
our canonisation procedure which we establish in the following section).

Let (A,⪯) ∈ K be a structure with f -bounded colours, let Ai ⊆ A be a colour
class of (A,⪯) and let B ∶= (A ↾ Ai) denote the substructure of A induced on
B = Ai. By our assumption on K we know that Γ ∶= Aut(B) ≤ Sym(B) is
an Abelian group which can be constructed in CPT since ∣Sym(B)∣ = ∣B∣ ! ∈
O(∣A∣c). However, we neither have a linear order on this group Γ, nor can we
assume that Γ acts transitively on B (which are the necessary conditions to
obtain a structure with Abelian colours).

To attack these problems, we denote by B< ∶= {0, . . . , ∣B∣ − 1} ⊆ HF(∅)
an ordered set of size ∣B∣ and we identify the linear orderings on B with
the set O(B) of bijections π ∶ B → B< in the obvious way. Of course, if we
apply any bijection π ∈ O(B) to the structure B, then we obtain an ordered
structure π(B). More importantly, whenever it holds that π(B) = σ(B) for
some π,σ ∈ O(B), then (σ−1

⋅ π)(B) =B, that is (σ−1
⋅ π) ∈ Γ. Hence, if we fix

an ordered structure B
< (for example, the lexicographically minimal one) such

that π(B) = B< for some π ∈ O(B), then the set of isomorphisms π ∈ O(B)
with π(B) =B< can be written for every σ ∈ O(B) with σ(B) =B< as

{π ∈ O(B) ∶ π(B) =B<} = σΓ = σΓσ, see also Lemma 6.9.

In particular, this shows that we can define in Choiceless Polynomial Time a
set σΓ ⊆ O(B) of bijections between B and B< with the indicated algebraic
structure. We claim that, given this set σΓ, we can easily obtain a linear
order on Γ. First of all, every bijection π ∈ σΓ induces a group isomorphism
ϕπ ∶ Γ→

πΓ, γ ↦ πγ. Since πΓ acts on B< we can identify πΓ with an ordered
permutation group. Finally, the order on πΓ translates via ϕπ into an ordering
on Γ. The problem is that, in general, these group isomorphisms ϕπ may differ
for the various possible choices of π ∈ σΓ (which also means that we do not
obtain a unique ordering on Γ).
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However, we claim that this cannot happen in our situation since Γ is an
Abelian group. To see this let π ∈ σΓ. Then π = σλ for some λ ∈ Γ and we have

πγ = πγπ−1
= σλγ λ−1σ−1 Γ Abelian

= σγσ−1.

Hence, for all π, ̺ ∈ σΓ we have ϕπ = ϕ̺. In this way we obtain a definable
linear order on Γ.

Finally, we have to treat the case where Γ does not act transitively on B.
Thus, assume that C ⊂ B is a Γ-orbit. Then for all bijections π, ̺ ∈ σΓ we
have C< ∶= π(C) = ̺(C) ⊆ B< since Γ(C) = C. Moreover, it is easy to see that
for every pair of different Γ-orbits C1,C2 ⊂ B we have C<1 ∩C

<

2 = ∅. Thus, we
can use the natural order on P(B<) ∈ HF(∅) to obtain an ordering on the
Γ-orbits of B (note that for this last step we have not used that Γ is Abelian).
Then the induced action of Γ on the individual orbits C ⊂ B yields the desired
family of ordered, Abelian and transitive groups.

In particular, the preconditions of Theorem 6.8 are satisfied for every class
K2

BC(τ) of τ -structures with colour class size two. Indeed, if ∣Ai∣ ≤ 2, then
Sym(Ai) is an Abelian group which can be ordered canonically. Thus, given our
results from the following section, this observation shows that CPT captures
polynomial time on τ -structures with colour class size two (see Corollary 6.14).

6.2 Canonising structures with Abelian colours

In this section we establish a CPT-definable canonisation procedure on the
class KAC of structures with Abelian colours. As an immediate consequence it
follows that Choiceless Polynomial Time captures Ptime on KAC.

We proceed as follows. First, we introduce some further piece of notation
and summarise simple facts about the algebraic structure of sets of isomor-
phisms between two relational structures. We then describe, in a second step,
a general canonisation procedure for structures with Abelian colours. Unfor-
tunately, this procedure cannot be expressed in Choiceless Polynomial Time
directly, since it requires to manipulate exponential-sized sets of isomorphisms
between (parts of) the input structure and a (partially) canonised version.
Hence, it is necessary, in a third step, to develop a succinct representation of
these sets of isomorphisms in such a way that basic operations (such as testing
for emptiness) are definable in Choiceless Polynomial Time. The main idea in
this last part will be to use cyclic linear equation systems to obtain a succinct,
and CPT-definable, representation of these sets of isomorphisms.

Let A ∈ KAC be a structure with Abelian colours. By Theorem 6.5 we can
assume that A = (A,⪯,E,Φ) ∈ KAC({E}), that is A is a graph with Abelian
colours. As before, let A = A0 ⪯ A1 ⪯ ⋯ ⪯ An−1 and let Φ = {(Γi,≤) ∶ i ∈ [n]}
denote the family of Abelian and ordered permutation groups Γi ≤ Sym(Ai)
which act transitively on the colour classes Ai. Recall the definition of the
Abelian group Γ ∶= Γ0 × Γ1 × ⋯ × Γn−1 ≤ Sym(A) from the last section. We
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already pointed out that, in general, the size of Γ is exponential in the size of A,
but that we can access the ordered set of generators Θ ∶= ⊎i∈[n] Γi. Also, given
two group elements γ, δ ∈ Γ we can express in CPT that γ ≤ δ by using the
induced lexicographic ordering on Γ (which means that we can implicitly define
an ordering on Γ without having to represent it completely). We also consider
the natural extension of the action of Γ on A to the class of hereditarily finite
sets HF(A) over A. Moreover, we let qi ∶= ∣Ai∣ = ∣Γi∣ denote the size of the
i-th colour class and we set A<i ∶= {(i,0), . . . , (i, qi − 1)} to obtain an ordered
and distinguished set of size qi which will serve as an ordered domain for the
colour class Ai. Accordingly, we let A< ∶= A<0 ⊎⋯⊎A<n−1 denote an ordered set
of size ∣A∣ which provides an ordered domain for the complete universe A. We
also translate the preorder ⪯ to the classes A<i in the obvious way, that is let
Ai ⪯ Aj if, and only if, A<i ⪯ A

<

j .

Lemma 6.9. There exists a CPT-program which defines, given a graph A =
(A,⪯,E,Φ) with Abelian colours as above, for every i ∈ [n], a set O(Ai) of
bijections between Ai and A<i such that Γi acts transitively on O(Ai). In
particular, it holds that O(Ai) = πiΓi for all πi ∈ O(Ai).
Proof. Since Γi is an Abelian and transitive group, the images γ(a) for a ∈ Ai

are different for all γ ∈ Γi. Moreover, we have access to a linear order on
Γi, i.e. Γ = {γ0 < γ1 < ⋯ < γqi−1}. In this way we obtain for every a ∈ Ai an
ordering of Ai as γ0(a) < γ1(a) < ⋯ < γqi−1(a) which corresponds to a bijection
πa ∶ Ai → A<i . Finally, it is easy to see that γ(πa) = πγ(a) for all γ ∈ Γi.

In particular, the sets O(Ai) are of size qi = ∣Ai∣ = ∣Γi∣. In what follows,
whenever we refer to the sets O(Ai), then we mean the canonically constructed
set of bijections between Ai and A<i (which effectively correspond to linear
orderings of Ai) of the form O(Ai) = πiΓi for all πi ∈ O(Ai) as in the previous
lemma. We let O(A) ∶= O(A0) × ⋯ × O(An−1) denote the set of bijections
π ∶ A → A< which result by composing the individual bijections from O(Ai).
Since O(Ai) can be written as O(Ai) = πiΓi for some πi ∈ O(Ai) (although
we cannot fix such a πi canonically), we can write O(A) as O(A) = πΓ where
π ∈ O(A). We stress the fact that we can not select such an ordering π ∈ O(A)
during the run of a CPT-program; in fact, if we could, then this would, in
particular, render our whole approach useless, since we had access to a complete
linear order π ∈ O(A) on A which makes canonisation very easy.

We make a further crucial observation. Of course, each π ∈ O(A) maps
objects x ∈ HF(A) to objects π(x) ∈ HF(A<) and, since A< is an ordered set, we
can canonically distinguish different objects in HF(A<) (in fact, up to a CPT-
definable transformation, all objects in HF(A<) are strings). In particular,
given an object x ∈ HF(Ai) we can identify in CPT a (non-empty) subset
M ⊆ O(Ai) of orderings on Ai such that for all π,σ ∈M we have π(x) = σ(x).
In fact, we can just apply all π ∈ O(Ai) to x and choose M ⊆ O(Ai) to consist
of those π ∈ O(Ai) which map x to the lexicographically minimal element in
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HF(A<i ). As we already saw in the previous section, such subsets M ⊆ O(Ai)
have the following algebraic structure:

M = π∆ = π∆π for any π ∈M and for ∆ = Aut(x) ∩ Γi.

Moreover, for each ordering π ∈ O(Ai) we can consider the induced group
isomorphism π ∶ Γi →

πΓi, γ →
πγ = πγπ−1 which maps Γi to its canonical copy

Γ<i ∶=
πΓ. Since Γi is an Abelian group, and since Γi acts transitively on O(Ai),

these isomorphisms coincide for all π,σ ∈ O(Ai) which means that we obtain a
single isomorphism ψi ∶ Γi → Γ<i which is induced by any of the isomorphisms
π ∈ O(A) (or π ∈ O(Ai)).

6.2.1 An inductive canonisation scheme

We are ready to give a high level description of our canonisation procedure.
The first important step is to split the structure A into an ordered sequence of
small substructures A0,A1, . . . ,Am−1, Ai ⊆ A. The benefit is that these “small”
substructures Ai can be canonised easily. This leads to the idea of constructing
the canonisation of A along the decomposition inductively: first, we determine
canonisations A<i of the small substructures Ai of A and then, in a second
step, we combine the small canonised pieces A<i to obtain a canonisation of
the full structure A.

In general, the canonisation A<i of the substructure Ai is not unique, that
is we will obtain different ordered structures A<i which are isomorphic to Ai.
As a consequence, we have to choose one canonical copy A<i of Ai among the
set of possible candidates (which we can do, since the structures A<i have an
ordered universe). However, fixing a canonisation for one of the substructures
Ai imposes constraints on the remaining choices of canonisations A<j of the
substructures Aj , since different substructures Ai and Aj can have common
vertices. This means that when we combine the canonised parts A<i for the
different substructures Ai, then we have to ensure that the choices we make
are compatible.

To guarantee this, we maintain a set of isomorphisms (a subset of O(A) with
a certain algebraic structure) between the processed part of the input structure
and the partial canonisation that we constructed so far. As we mentioned
before, the main technical step is to succinctly encode this exponential-sized
set of witnessing isomorphisms by using the notion of cyclic linear equation
systems.

Let us now formulate the approach precisely. First of all, we define the
decomposition of A as A0,A1, . . . ,Am−1 where Ak is the subgraph of A which
is induced on the vertex set Aij ∶= Ai ∪Aj for 0 ≤ i ≤ j < n (and where k is the
position of the set {i, j} in an enumeration of ([n]

2
) ∪ [n]). We say that Ak

denotes the k-th component of A and that Ai and Aj are the relevant colours.
For s ∈ [m] we denote by A[s] ⊆ A the (not necessarily induced) subgraph of
A that consists of the first s components, that is A[s] = A0 ∪⋯ ∪As−1. For
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technical reasons, we sometimes assume that the substructures Ai are defined
over the whole universe A (but that they only contain the part of E which is
induced on the relevant colour classes).

Definition 6.10. Let s ≤m. An s-canonisation of A is a canonisation of A[s],
that is an ordered structure π(A[s]) = π(A0)∪⋯∪π(As−1) for some π ∈ O(A).
A non-empty set C ⊆ O(A) witnesses this s-canonisation if π(Aj) = σ(Aj) for
all π,σ ∈ C and j ∈ [s].

Since A = ⋃i∈[m]Ai, an m-canonisation of A is a canonisation of A. Thus
we aim to use the decomposition A = A0 ∪A1 ∪⋯ ∪Am−1 of A to design an
inductive canonisation procedure. Specifically, we want to iteratively construct
s-canonisations A<[s] of A for increasing values of s ≤ m. While doing so,
we maintain a set Cs ⊆ O(A) of isomorphisms that witnesses the partial
canonisations A<[s] of A[s]. This last step is necessary to guarantee the
consistency of our construction.

Before we present the full canonisation procedure in Figure 6.2, we need
a further notation. For C ⊆ O(Aij) ∶= O(Ai) ×O(Aj), where 0 ≤ i ≤ j ≤ n,
we define the extension of C to O(A) as the set ext(C) = {(π0, . . . , πn−1) ∈
O(A) ∶ (πi, πj) ∈ C} ⊆ O(A). Similarly, for 0 ≤ i ≤ j < n, and for a group
∆ ≤ Γij ∶= Γi × Γj , we denote by ext(∆) ≤ Γ the extension of ∆ to Γ, that is

ext(∆) = {(γ0, . . . , γn−1) ∈ Γ ∶ (γi, γj) ∈∆}.
Let us explain our canonisation procedure (Figure 6.2) more precisely. For

the main loop, we assume that s ≥ 1 and that we have constructed an (s − 1)-
canonisation A<[s − 1] of A together with a set Cs−1 ⊆ O(A) of witnessing
isomorphisms. Our task is to extend this (s − 1)-canonisation A<[s − 1] of A
by a canonical copy A<s−1 ∶= π(As−1) of the (s − 1)-th component As−1 in such
a way that the choice is consistent with our decisions before, that is we have to
ensure that we select π ∈ Cs−1 to define π(As−1) = A<s−1. Moreover, we have to
update the set of witnessing isomorphisms as Cs ∶= {σ ∈ Cs−1 ∶ σ(As−1) = A<s−1}.

To start, we identify in step (1) the colour classes Ai,Aj which are relevant
for the subgraph As−1. In the next step we would like to choose π ∈ Cs−1

in order to define π(As−1) = A<s−1. However, recall that a CPT-program
cannot fix a complete isomorphism π ∈ Cs−1 ⊆ O(A). Fortunately, in order to
determine π(As−1) it suffices to know how π acts on the relevant colour classes
Ai and Aj . Thus, instead of selecting π ∈ Cs−1 we can simply choose π from
the set O(Aij) = O(Ai) ×O(Aj) (which we can, in contrast to O(A), access
explicitly), but by doing so we have to guarantee that π can be extended to
an isomorphism in Cs−1. This is why we define in step (2) the set Os−1 of all
possible orderings in O(Aij) which are consistent with Cs−1 in this sense.

We next argue that the algebraic structure on Cs−1 and on O(Aij) can
be transferred to the set Os−1 ⊆ O(Aij). First, we know by our induction
assumption that Cs−1 = σs−1Λs−1 for some σs−1 ∈ O(A) and some group
Λs−1 ≤ Γ (again we stress the fact that we do not have access to σs−1 ∈ O(A)).
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Given: Graph A = (A,⪯,E,Φ) with Abelian colours (notation as above)

(0) Construct sets of Ai-orderings πiΓi = O(Ai) (according to Lemma 6.9)

(In what follows, construct for s ∈ [m] an s-canonisation A<[s] with wit-
nessing set Cs ⊆ O(A), i.e. for π,σ ∈ Cs we have π(A[s]) = σ(A[s]) = A<[s].
Moreover, Cs has the following algebraic structure Cs = σsΛs for σs ∈ O(A)
and Λs ≤ Γ)

C0 ∶= πΓ = O(A) and A<[0] ∶= ∅
for s = 1 to m do

(1) Let As−1 be the subgraph which is induced on the set Ai ∪Aj

(2) Define Os−1 ∶= {σ ∈ O(Aij) ∶ ext(σ) ∩Cs−1 ≠ ∅}
(3) Define ∆s−1 ∶= {π−1σ ∶ π,σ ∈ Os−1} ∩Aut(As−1) ≤ Γij

(4) Partition Os−1 as Ds−1 ∶= {σ∆s−1 ∶ σ ∈ Os−1}
(5) Fix some set σ∆s−1 ∈Ds−1

(6) Set Cs ∶= Cs−1 ∩ ext(σ∆s−1)
(7) Set A<[s] ∶= A<[s − 1] ∪ π(As−1) for some π ∈ σ∆s−1

end for

Return: The canonisation A< ∶= A<[m] of A
(and isomorphisms ψi ∶ Γi →

πiΓi which map Γi to its canonical copy πiΓ)

Figure 6.2: Canonisation procedure for structures with Abelian colours

Let us denote by Λ
ij
s−1 ≤ Γij = Γi × Γj the induced action of Λs−1 on the

pair of colour classes Ai × Aj and let us similarly denote by σ
ij
s−1 ∈ O(Aij)

the restriction of σs−1 to the colour classes Ai and Aj . Then we have that
Os−1 = σ

ij
s−1Λ

ij
s−1 where Λ

ij
s−1 ≤ Γij and σ

ij
s−1 ∈ O(Aij).

Note that Λ
ij
s−1 = {π−1σ ∶ π,σ ∈ Os−1}. In general, two orderings π,σ ∈ Os−1

define different ordered copies π(As−1) ≠ σ(As−1) of the (s − 1)-th component
As−1. Thus, in step (3) and step (4), we partition the set Os−1 into blocks of
isomorphisms which map As−1 to the same ordered graph. As we elaborated
before, the structure of such blocks can be described by the action of the
subgroup ∆s−1 = Aut(As−1) ∩ Λ

ij
s−1 ≤ Λ

ij
s−1 on Os−1, that is the set of orbits

Ds−1 = {σ∆s−1 ∶ σ ∈ Os−1} of the action of ∆s−1 on Os−1 corresponds to the
desired partition. Moreover, since every block σ∆s−1 ∈Ds−1 corresponds to a
different ordered graph σ(As−1), we can fix in step (5) such a block canonically.

Next, for some (or equivalently all) π ∈ σ∆s−1 we let A<s−1 ∶= π(As−1) denote
the ordered copy of the component As−1 which was fixed by our choice of
σ∆s−1 ∈D. Then we can refine in step (6) the set of witnessing isomorphisms
as Cs ∶= Cs−1 ∩ ext(σ∆s−1) (which yields a non-empty set) to guarantee that
for all π ∈ Cs we have π(As−1) = A<s−1. Finally, we can extend in step (7) the
(s − 1)-canonisation A<[s − 1] of A by the canonisation A<s−1 of the (s − 1)-th
component As−1 to obtain the desired s-canonisation A<[s] of A.

Unfortunately, it is not clear how to formulate this canonisation procedure
in Choiceless Polynomial Time. The difficulty is to maintain the sets of
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witnessing isomorphisms Cs ⊆ O(A), which might be of exponential size,
during our iterative construction of A<. In other words, we have to find a
succinct and CPT-definable representation for these sets of isomorphisms Cs

such that certain basic operations (most importantly, testing for emptiness
and taking intersections) are CPT-definable as well. This will be the subject
of the following subsection where we show how to represent the sets Cs by
families of cyclic linear equation systems. Before we proceed, let us summarise
the requirements for representations of the sets Cs which are needed to express
our canonisation procedure for structures with Abelian colours (Figure 6.2) in
Choiceless Polynomial Time.

Definition 6.11. A suitable representation (of witnessing sets of isomor-
phisms) is a triple of CPT-programs (Π∅,Π∩,Πext) such that, given the pre-
conditions as in Figure 6.2 (with the notation from above), the programs manip-
ulate succinct representations ρ ∈ HF(A) of sets of isomorphisms σ∆ ⊆ O(A),
where ∆ ≤ Γ, in the following way.

(i) Consistency. Given a representation ρ of a set σ∆, the program Π∅
defines whether σ∆ ≠ ∅.

(ii) Intersection. Given two representations ρ1, ρ2 of sets σ1∆1 and σ2∆2, a
representation ρ of the set σ1∆1 ∩ σ2∆2 is defined by Π∩.

(iii) Representation of basic sets. Given σ∆ ⊆ O(Aij) for 0 ≤ i ≤ j < n and
∆ ≤ Γij , Πext defines a representation of ext(σ∆) ⊆ O(A) = πΓ.

6.2.2 Representing sets of witnessing isomorphisms

What remains is to find suitable representations for the sets of witnessing
isomorphisms Cs = σsΛs, where Λs ≤ Γ and where σs ∈ O(A), which satisfy
the requirements of Definition 6.11. Basically, we aim to associate single
isomorphisms with vectors over finite rings Zd in such a way that the resulting
sets of vectors inherit the algebraic structure of the sets Cs. This will make it
possible to describe these sets of vectors as solution spaces of (cyclic) linear
equation systems. The crucial step is to show that such a correspondence
between isomorphisms and vectors can be defined, in Choiceless Polynomial
Time, for the sets πiΓi = O(Ai) for each colour class Ai.

Lemma 6.12. There exists a CPT-program Π such that, given a set B ⊆
HF(A) together with an ordered and Abelian group Γ ≤ Sym(B) which acts
transitively on B, the program Π defines the associated set O(B) = πΓ of
B-orderings (according to Lemma 6.9) and

• a decomposition of Γ into subgroups of prime-power order, that is Γ =

⟨δ1⟩⊕⋯⊕ ⟨δk⟩ for δ1, . . . , δk ∈ Γ where ∣δi∣ = di is a prime-power, and

• sets W1, . . . ,Wk ⊆ HF(B) where ∣Wi∣ = di together with a linear order
W1 <W2 < ⋯ <Wk, and
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• if we set Li ∶= Z
Wi

di
and let ei ∈ Li denote the Li-identity vector which

is defined as ei(w) = 1 for all w ∈ Wi, then Π defines an embedding
ϕ ∶ πΓ→ L1×⋯×Lk which respects the action of Γ on πΓ in the following
way. For all σ ∈ πΓ and γ = ℓ1 ⋅ δ1 ⊕⋯⊕ ℓk ⋅ δk ∈ Γ we have that

ϕ(σγ) = ϕ(σ) + (ℓ1 ⋅ e1,⋯, ℓk ⋅ ek).
In other words, via the canonical group embedding ψ ∶ Γ→ L1×⋯×Lk, (ℓ1 ⋅
δ1 ⊕⋯⊕ ℓk ⋅ δk)↦ (ℓ1 ⋅ e1,⋯, ℓk ⋅ ek), the action of Γ on πΓ corresponds
to the action of ψ(Γ) on ϕ(πΓ).

Proof. First of all, we use the linear order on Γ to fix in CPT a set of generators
δ1, . . . , δk ∈ Γ of Γ which yield a decomposition of Γ as required (recall from
Section 2.5 that this step can be expressed already in fixed-point logic). For
the remaining parts we use the following recursive procedure.

If k = 1, then Γ = ⟨δ⟩ is a cyclic group of prime-power order d which acts
transitively on W ∶= B. Since Γ is Abelian, we can define the unique group
isomorphism θ ∶ Γ→ σΓ, γ ↦ σγ for σ ∈ πΓ. We let B< ∶= {0, . . . , ∣B∣− 1} denote
an ordered set of size ∣B∣ and we define the unique ρ ∈ Sym(B<) such that
ρ(σδ) = ρσδ = (0 1 2⋯ ∣B∣ − 1) ∈ Sym(B<). We let L = ZW

d and we denote by
e ∈ L the L-identity vector, i.e. e(w) = 1 for all w ∈ W . Then the mapping
ϕ ∶ πΓ → L,σ ↦ ϕ(σ) where ϕ(σ)(w) ∶= ρσ(w) for w ∈ W is CPT-definable.
We claim that ϕ(σ ○ δ) = ϕ(σ) + e for all σ = πδs ∈ πΓ. To verify this let
w ∈W . Then (ϕ(σ) + e)(w) = ϕ(σ)(w) + 1 = ((ρσδ)(ρσδs))(w) = ρσδs+1(w) =
ϕ(σ ○ δ)(w).

Now let k > 1. Then Γ = ∆ ⊕ Λ where ∆ = ⟨δ1⟩ and Λ = ⟨δ2⟩ ⊕⋯ ⊕ ⟨δk⟩.
We partition B into the set X̄ ∶= {X0, . . . ,Xt−1} of Λ-orbits and the set
Ȳ ∶= {Y0, . . . , Ys−1} of ∆-orbits. It holds that the subgroups ∆ and Λ act
transitively on X̄ and on Ȳ , respectively. Furthermore, note that t = d1 and
s = Πk

j=2dj and that t = ∣∆∣ and s = ∣Λ∣. We claim that for each pair of sets
(X,Y ) ∈ X̄ × Ȳ it holds that X ∩Y = {b} for b = b(X,Y ) ∈ B. To see this, assume
that X ∩Y ⊇ {b, c}, b ≠ c. Then there were a δ ∈ ∆ and a λ ∈ Λ which both map
b to c. This, however, is a contradiction to our assumption that the action of
Γ on B is regular (since Γ is an Abelian and transitive group). Moreover, the
intersection of X ∩ Y cannot be empty because of the pigeonhole principle: all
elements of X (note that ∣X ∣ = s) have to appear in some of the orbits in Ȳ .

In other words, every element b = b(X,Y ) ∈ B can be identified with the
unique pair (X,Y ) ∈ X̄ × Ȳ such that X ∩ Y = {b}. This is the crucial insight
for our following construction. More precisely, we aim to infer from an ordering
of the set of Λ-orbits X̄ and from an ordering of the set of ∆-orbits Ȳ , an
ordering of the set B.

To describe the formal construction we partition the ordered set B< =
{0, . . . , ∣B∣−1} into t segments S0 = {0, . . . , s−1}, S1 = {s, . . . , 2s−1}, . . . , St−1 =

{(t − 1)s, . . . , ts − 1}. Then each of these segments has size s and, modulo s,
each segment is a disjoint copy of the initial segment S0. Similarly, we partition
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B< into s segments T0, T1, . . . , Ts−1 by setting Tr ∶= {0+ r, s+ r, . . . , (t−1)s+ r}.
Note that each set Tr has size t and, modulo s, the set Tr represents r where
0 ≤ r < s.

In the next step we determine a permutation ρ ∈ Sym(B<) over the ordered
domain B< such that for every σ ∈ O(B) = πΓ the following holds:

(i) for every Λ-orbit X ∈ X̄ we have ρσ(X) = Sj for a j = 0, . . . , t − 1, and

(ii) for every ∆-orbit Y ∈ Ȳ we have ρσ(Y ) = Tr for some 0 ≤ r < s.

Let us first show that such a permutation ρ ∈ Sym(B<) exists and that
it can be constructed by a CPT-program. We start by fixing an arbitrary
bijection σ ∈ O(B). Then σ induces a linear order on X̄. Hence we can easily
construct a permutation ρ1 ∈ Sym(B<) such that ρ1σ(X) ∈ {S0, . . . , St−1}.
Next we want to construct a permutation ρ2 ∈ Sym(B<) such that

• ρ2(Si) = Si for all i ∈ [t], and

• ρ2ρ1σ(Y ) ∈ {T0, . . . , Ts−1} for all Y ∈ Ȳ .

If we have achieved this, then we can set ρ ∶= ρ2ρ1 to satisfy our claim from
above. We construct ρ2 recursively by using the linear order on Ȳ . Assume that
for some orbit Y ∈ Ȳ (for example, the minimal one with respect to the order
induced by σ) we have ρ2ρ1(Y ) ∩ Ti ≠ ∅ but ρ2ρ1(Y ) ≠ Ti for some minimal
i ∈ [s]. Then we can fix a ∈ Y such that ρ2ρ1(a) ∉ Ti and b ∈ B ∖ Y such that
ρ2ρ1(b) ∈ Ti. Let ρ3 = (ρ2ρ1(a)ρ2ρ1(b) ) ∈ Sym(B<) denote the transposition
of the two elements ρ2ρ1(a) and ρ2ρ1(b). Then we have ρ3ρ2ρ1(a) ∈ Ti and
thus we made progress in the sense that we increased the number of elements in
Y which are mapped to positions in Ti. Moreover, since a, b belong to different
∆-orbits we know by our assumption that ρ2ρ1(a), ρ2ρ1(b) ∈ Sj for some j ∈ [t].
Thus ρ3(Sj) = Sj and we can maintain the property that ρ3ρ2ρ1(Sj) = Sj for
all j ∈ [t].

Still, the dependence of our construction on σ ∈ πΓ seems to be problematic.
More strikingly, we have only verified the claimed properties for the single
ordering σ ∈ O(B) = πΓ. However, since Γ acts on both sets X̄ and Ȳ , it is
easy to see that ρ indeed satisfies the above properties with respect to every
ordering in σΓ. Also, if by our construction we really obtain different ρ, then
we can just canonically choose the (lexicographically) minimal one.

As observed earlier, the action of Γ = ∆ ⊕ Λ on B corresponds to the
component-wise action of ∆ ⊕ Λ on X̄ × Ȳ . Specifically, we obtain a CPT-
definable embedding η ∶ ρπΓ→ O(X̄)×O(Ȳ ), ρπγ ↦ η(ρπγ) if we let η(ρπγ) ∈
O(X̄) ×O(Ȳ ) be the linear order which assigns to every Λ-orbit X ∈ X̄ the
position j for 0 ≤ j ≤ t − 1 such that ρπγ(X) = Sj and to each ∆-orbit Y ∈ Ȳ
the position 0 ≤ r ≤ s − 1 such that ρπγ(Y ) = Tr. For all δ ⊕ λ ∈ ∆ ⊕ Λ and
σ ∈ ρπΓ we have η(σ ○ (δ ⊕ λ)) = (η(σ) ↾ X̄ ○ δ, η(σ) ↾ Ȳ ○ λ). In particular we
have that η(ρπΓ) = νX∆ × νY Λ where νX ∈ O(X̄) and νY ∈ O(Ȳ ).



154 Chapter 6. Canonising structures with Abelian colours

Recursively for the smaller groups ∆ = ⟨δ1⟩ and Λ = ⟨δ2⟩ ⊕⋯⊕ ⟨δk⟩ that
act on X̄ and Ȳ , respectively, and for νX∆ and νY Λ we obtain two ordered
sequences of CPT-definable sets W1 and W2 < ⋯ <Wk, and for Li = Z

Wi

di
the

CPT-definable embeddings ϕX
∶ νX∆→ L1 and ϕY

∶ νY Λ→ L2 ×⋯×Lk, with
the appropriate properties as stated above. Now we put everything together
to obtain the desired embedding ϕ ∶ πΓ→ L1 ×⋯×Lk via

ϕ(πγ) = ϕX(η(ρπγ) ↾ X̄) ×ϕY (η(ρπγ) ↾ Ȳ ).
Before we proceed, we want to present an alternative proof of Lemma 6.12.

The reason is that if we use our (recursive) construction from above, then we
obtain index sets Wi whose (set-theoretic) rank depends on the number k of
summands of Γ. For instance, if k ≥ 2 and if B ⊆ A is a set of atoms, then the
index sets X̄ and Ȳ which are constructed in the first step are sets of orbit
of elements from B, which means that both sets, X̄ and Ȳ , have rank two.
More generally, if the set B has rank ℓ, then the sets X̄ and Ȳ are sets of rank
ℓ + 1. Since in the following steps we recursively apply our construction to the
resulting sets Ȳ , it follows that the index set Wk has rank ℓ + k.

Although this is not a problem in the setting of Choiceless Polynomial Time,
it can become problematic if we want to express our canonisation procedure
in logics which cannot access higher-order objects. Indeed, very recently we
studied the question of whether our procedure can be expressed in solvability
logic (with solvability operators over all finite rings Zd). It turns out that
this is indeed possible, but we have to adapt our proof from above to avoid
index sets of unbounded rank. For details we refer to the Bachelor’s thesis of
Matthias Voit [88].

Alternative proof (sketch) of Lemma 6.12, see [88]. Again, we first decompose
Γ as Γ = ⟨δ1⟩⊕⋯⊕ ⟨δk⟩ for δ1, . . . , δk ∈ Γ where ∣δi∣ = di is a prime power. The
main difference to our proof from above is that we construct the index sets Wi

at once rather than using recursive applications of our procedure along the
decomposition of Γ.

Let ∆i = ⟨δ1⟩ ⊕ ⋯ ⊕ ⟨δi−1⟩ ⊕ ⟨δi+1⟩ ⊕ ⋯⟨δk⟩ be the restriction of Γ to all
summands which are different from ⟨δi⟩. Moreover, let Wi be the set of all
∆i-orbits on B. Then ∣Wi∣ = di and ⟨δi⟩ acts transitively on Wi. Hence, we can
define a directed cycle on Wi whose automorphism group coincides with the
action of ⟨δi⟩ on Wi. Moreover, for every σ ∈ πΓ we know that σ(Wi) yields
a partition of B<. In particular, for each σ ∈ πΓ we can identify one block
Zi

σ ∈Wi (say, the unique block such that 0 ∈ σ(Zi
σ)). With this preparation we

can easily define the vector ϕ(σ). For Z ∈Wi we set

(ϕ(σ))(Z) =
⎧⎪⎪⎨⎪⎪⎩

0, if Z = Zi
σ,

ℓ, if Z = δℓ
i (Zi

σ),0 < ℓ < di.

It is easy to verify that this embedding satisfies the claimed properties.
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With Lemma 6.12 we are prepared to show that the witnessing sets of
isomorphisms Cs = σsΛs ⊆ O(A) = πΓ can be encoded in Choiceless Polynomial
Time by sequences of cyclic linear equation systems. One technical difficulty
which remains is that the groups Γi can contain elements of co-prime order.
In contrast, we have defined cyclic linear equation systems only over rings
Zd where d is a prime power. However, from the previous lemma we already
know that we can decompose the groups Γi into direct sums of subgroups of
prime power order. As a consequence we can treat the components for different
primes separately. This is why we use a sequence of cyclic linear equation
systems (instead of a single system) to cover all primes which occur in the
factorisation of the order of Γ.

To proceed, we first apply Lemma 6.12 and decompose Γi = ⟨δi
1⟩⊕⋯⊕ ⟨δi

ki
⟩

for all i ∈ [n] into a direct sum of cyclic groups ⟨δi
j⟩ where for all 1 ≤ j ≤ ki

the order di
j of δi

j is a prime-power and we define (again for all i ∈ [n]) sets

W i
1 < W

i
2 < ⋯ < W

i
ki

of size ∣W i
j ∣ = di

j and for Li
j ∶= Z

W i
j

di
j

with corresponding

Li
j-identity vectors ei

j ∈ L
i
j two embeddings

• ϕi
∶ πiΓi → Li

1 ×⋯×Li
ki

,

• ψi
∶ Γi ↦ Li

1 ×⋯×Li
ki
, (ℓ1 ⋅ δi

1 ⊕⋯⊕ ℓki
⋅ δi

ki
)↦ (ℓ1 ⋅ ei

1, . . . , ℓki
⋅ ei

ki
),

such that for all σ ∈ πiΓi and all γ ∈ Γi we have

ϕi(σγ) = ϕi(σ) + ψi(γ).
We set L = L0

1 × ⋯ × L0
k0
× ⋯ × Ln−1

1 × ⋯ × Ln−1
kn−1

and we combine the
embeddings ϕi of πiΓi in Li

1 ×⋯×Li
ki

to obtain an embedding ϕ of πΓ in L,
that is we let ϕ ∶ πΓ→ L, (σ0, . . . , σn−1)↦ (ϕ1(σ0), . . . , ϕn−1(σn−1)). Similarly,
we combine the embeddings ψi of Γi in L to obtain an embedding ψ of Γ in L,
that is ψ ∶ Γ→ L is defined as ψ((γ0, . . . , γn−1)) = (ψ0(γ0), . . . , ψn−1(γn−1)).

Our goal is to represent a subset σ∆ ⊆ πΓ (a witnessing set of isomorphisms)
as the solution space of a sequence of cyclic linear equation systems. Note
that via the embedding ϕ we can represent σ∆ as the subset ϕ(σ∆) of the
linear space L. What remains is to show that the algebraic structure of ϕ(σ∆)
suffices to encode this set as the solution space of a family of cyclic linear
equation systems.

To see this, we first analyse ϕ(πΓ) restricted to a single component Li
j ,

that is the set Oi
j ∶= (ϕ(πΓ) ↾ Li

j) = (ϕ(πiΓi) ↾ Li
j) ⊆ Li

j . If we similarly
denote by Ei

j ∶= (ψ(Γi) ↾ Li
j) = {ℓ ⋅ ei

j ∶ 0 ≤ ℓ ≤ di
j − 1} ⊆ Li

j the restriction of
the embedding of Γi into L to the component Li

j , then we get Oi
j = O

i
j +E

i
j .

This means that for all W i
j -vectors x⃗, y⃗ ∈ Oi

j over Zdi
j

it holds that x⃗ − y⃗ ∈ Ei
j .

This in turn means that for all x⃗, y⃗ ∈ Oi
j and indices w,w′ ∈ W i

j we have
x⃗(w) − x⃗(w′) = y⃗(w) − y⃗(w′). Hence, we can define a cyclic constraint Ci

j
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on the set W i
j such that Oi

j corresponds precisely to the set of assignments
α ∶W i

j → Zdi
j

with α ⊧ Ci
j (recall Definition 5.1).

As mentioned before, a technical problem arises from the fact that the
linear spaces Li

j for i ∈ [n],1 ≤ j ≤ ki are defined over rings Zd for co-prime
integers d = di

j . To deal with this issue we let P ∶= {p1, . . . , ps} denote the set of
all primes pi ∈ P such that Γ contains elements of order pi. For p ∈ P we further
let Γ

p
i ≤ Γi denote the subgroup of Γi which consists of all elements γ ∈ Γi

whose order is a power of p. Then it holds that Γi = Γ
p1

i ⊕⋯⊕Γ
ps

i . In particular,
every summand Γ

p
i for p ∈ P is the direct sum of all subgroups ⟨δi

j⟩ ≤ Γi where
di

j is a power of p. Of course we also have that ψ(Γi) = ψ(Γp1

i ) +⋯+ψ(Γps

i ).
Similarly, for any subgroup ∆ ≤ Γ and prime p ∈ P we let ∆p ≤∆ denote

the subgroup of ∆ which consists of elements δ ∈∆ whose order is a p-power.
Then ∆ =∆p1 ⊕⋯⊕∆ps and ∆p ≤ Γ

p
0 × Γ

p
1 ×⋯× Γ

p
n−1 =∶ Γ

p.
From the definition of ψ it further follows that when we embed the subgroup

Γp for p ∈ P into L via ψ, then all components Li
j where di

j is co-prime to p
are zero. To capture this observation formally we define for every prime p ∈ P
the following subspace L[p] of L,

L[p] ∶= {(v0
1, . . . , v

0
k0
, . . . , vn−1

1 , . . . , vn−1
kn−1
) ∈ L ∶ if vi

j ≠ 0 then di
j is a p-power}.

Then our above observation can be phrased as ψ(Γp) ≤ L[p]. In particular, we
obtain a decomposition L = L[p1]⊕⋯⊕L[ps] of L which corresponds to the
decomposition of Γ as Γp1 ⊕⋯⊕ Γps .

For σ ∈ O(A) let us denote by ϕ(σ)L[p] ∶= (ϕ(σ) ↾ L[p]) the projection of
the vector ϕ(σ) ∈ L to the subspace L[p]. Then for every subgroup ∆ ≤ Γ we
obtain a decomposition of ϕ(σ∆) as

ϕ(σ∆) = ϕ(σ)L[p1] + ψ(∆p1)⊕⋯⊕ϕ(σ)L[ps] + ψ(∆ps) ⊆ L[p1]⊕⋯⊕L[ps].
Hence, in order to represent the set ϕ(σ∆) ⊆ L, it suffices to represent each

individual component ϕ(σ)L[p] +ψ(∆p) ⊆ L[p] as the solution space of a cyclic
linear equation system over Zd where d is a p-power. In what follows we use
the cyclic constraints Ci

j , which we defined above, to show that this is possible.
Naturally, to define an appropriate equation system we aim to use the (non-

trivial) indexing components of vectors from L[p] as variables. Thus, formally,
we define the set of variables as W [p] ∶= ⊎{W i

j ∶ d
i
j is a p-power}. Moreover,

we let d ∶= pℓ = max{di
j ∶ d

i
j is a p-power} denote the maximal p-power which

occurs as the order of a group element δi
j ∈ Γ. At this point we have to discuss

another small technical difficulty. Of course, in general the vectors in L[p] can
have entries in different rings Zd1

,Zd2
for d1 = p

ℓ1 ≠ pℓ2 = d2, while we aim to
define a cyclic linear equation system over the single ring Zd. However, by our
choice of d we know that for every such d′ = di

j = p
k we have d′ ∣ d. Hence we

can use the embedding ι ∶ Zd′ → Zd, z ↦ (d/d′) ⋅ z to identify vectors in Z
W
d′

with vectors in Z
W
d . Of course, this embedding is not surjective and thus not

all vectors in Z
W
d correspond to vectors in Z

W
d′ . Hence, we somehow have to



6.2. Canonising structures with Abelian colours 157

ensure that for solutions of our equation system we only allow such vectors
from Z

W
d which are contained in im(ι)(ZW

d′ ) ⊆ ZW
d . Fortunately, this is very

easy. The only thing we have to do is to add for each set Li
j = Z

W
d′ , which we

lifted via the embedding ι ∶ Li
j → Z

W
d , an auxiliary set of linear constraints

d′ ⋅ v = 0 for all v ∈W . Then precisely the vectors in im(ι) ⊆ ZW
d satisfy these

constraints. Of course, we can similarly lift the cyclic constraints Ci
j on Li

j to
corresponding cyclic constraints on im(ι) ⊆ ZW

d .

By now we have identified L[p], via ι, with a subspace of ZW [p]
d

, and it only

remains to be shown how we can represent ι(ϕ(σ)L[p] +ψ(∆p)) ⊆ ZW [p]
d

as a
cyclic linear equation system with variable set W [p] over Zd. Recall from above,
that we have already defined for every component Li

j a cyclic constraint Ci
j on

the set W i
j . If we let C[p] denote the collection of these constraints for all sets

W i
j ⊆W [p], then the set of ZW

d -vectors which satisfies these cyclic constraints
(and, of course, the new auxiliary equations which we added above) is precisely
ι(ϕ(σ)L[p]+ψ(Γp)). The question remains whether we can add an appropriate
set of linear equations to represent ι(ϕ(σ)L[p] +ψ(∆p)) ⊆ ι(ϕ(σ)L[p] +ψ(Γp)).

This question can be answered by taking into account the algebraic structure
of the set ϕ(σ)L[p] + ψ(∆p). To start, assume that for some set W and some
prime power d = pℓ we have a subgroup ∆ ≤ ZW

d . For an appropriate index
set I, let us consider a W × I matrix A ∈ ZW×I

d whose columns generate ∆.
Let us write ⟨A⟩ ≤ ZW

d to denote the smallest subgroup of ZW
d which contains

all columns of A. By the choice of A we have ⟨A⟩ = ∆. By exploiting the
fact that divisibility is a preorder in Zd, we can find two invertible matrices
Q ∈ ZW×W

d and R ∈ ZI×I
d such that B ∶= Q ⋅A ⋅R is a diagonal matrix. Now for

the diagonal matrix B it is straightforward to find a J ×W matrix MB such
that the linear equation system MB ⋅ x⃗ = 0⃗ has ⟨B⟩ as its solution space. We
claim that for MA ∶=MB ⋅Q, the linear equation system MA ⋅ x⃗ = 0⃗ has ⟨A⟩ =∆

as its solution space. To verify this it suffices to check that Q ⋅ ⟨A⟩ = ⟨B⟩.
Then for every w⃗ ∈ ZW

d we have that MA ⋅ w⃗ = 0⃗ if, and only if, Q ⋅ w⃗ ∈ ⟨B⟩
if, and only if, w⃗ ∈ ⟨A⟩. Now, to capture the algebraic structure of the set
ϕ(σ)L[p] + ψ(∆p) we show how we can represent w⃗ +∆ ⊆ ZW

d for some vector
w⃗ ∈ ZW

d by a linear equation system with variables in W over Zd. To this end,
we first choose an appropriate I ×W -coefficient matrix M such that M ⋅ x⃗ = 0⃗

has the solution space ∆ (this is possible as we saw before). Then we can
take the linear equation system M ⋅ x⃗ = M ⋅ w⃗ which has, as one can easily
verify, w⃗ +∆ as solution space. We conclude that for any prime p ∈ P the set
ι(ϕ(σ)L[p] +ψ(∆p)) can be represented as a cyclic linear equation system Sp

over Zd with variable set W [p].
To sum up, we saw how we can represent any set σ∆ with ∆ ≤ Γ and σ ∈ πΓ

by a sequence of cyclic linear equation systems (Sp1
, . . . , Sps). However, we

have not discussed how a CPT-program can effectively define the appropriate
cyclic linear equation systems which is, according to Definition 6.11, necessary
at least for the basic sets ext(σ∆) where σ∆ ⊆ O(Aij). Hence, let us finally go
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through the requirements of Definition 6.11 to verify that our representation is
indeed suitable in this sense.

(i) Consistency. To express whether (Sp1
, . . . , Sps) represents a non-empty

set σ∆ we just have to check whether each single cyclic equation systems
Sp is consistent. This is possible in CPT by Theorem 5.12.

(ii) Intersection. Given two representations of sets σ1∆1 and σ2∆2 as
sequences of CESs (Sp1

, . . . , Sps) and (Tp1
, . . . , Tps), we can represent

σ1∆1 ∩ σ2∆2 by the sequence (Sp1
∪ Tp1

, . . . , Sps ∪ Tps) where Sp ∪ Tp

denotes the CPT-definable cyclic linear equation systems which results
by combining the sets of linear equations from Sp and Tp.

(iii) Representation of basic sets. Given a set σ∆ ⊆ O(Aij) for 0 ≤ i ≤ j < n and
∆ ≤ Γij we want to define in CPT a representation of ext(σ∆) ⊆ O(A).
We saw above that, from an algebraic viewpoint, such a representation
can be achieved.

To define a representation in Choiceless Polynomial Time, we first fix an
auxiliary ordering ρ ∈ O(Aij) as a parameter. Then ρ induces a linear
order on the colour classes Ai and Aj and also (via ϕ) a linear order
on all sets of variables W i

ℓ ,W
j
ℓ

which are relevant to define the cyclic
linear equation systems for representing ext(σ∆). Having this, we can
now simply follow the steps described above to obtain an appropriate
representation as (Sp1

, . . . , Sps). Finally, the dependence on ρ does not
cause any problems, since for all ρ we obtain linear systems which have
the same solution spaces. Hence, we can just combine all systems into a
single system without changing the represented set.

Theorem 6.13. Choiceless Polynomial Time captures Ptime on the class
KAC of structures with Abelian colours.

By Theorem 6.8 and the subsequent discussion we further obtain:

Corollary 6.14. Choiceless Polynomial Time captures Ptime on every class
of structures with 2-bounded colours.

Our canonisation procedure generalises the CPT-definable isomorphism
test for CFI-graphs of Dawar, Richerby, and Rossman [32]. Moreover the
preceding corollary solves an open question of Blass, Gurevich, and Shelah
[16, Question (5.12)]: the isomorphism problem for multipedes can be defined
in Choiceless Polynomial Time. This follows from the simple observation that
multipedes are structures with 2-bounded colours.

Corollary 6.15. The isomorphism problem for multipedes can be defined in
Choiceless Polynomial Time (see [16, 55]).
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6.3 Discussion

We introduced structures with Abelian colours and we discussed their impor-
tance in the quest for a logic capturing polynomial time. Furthermore, we
pointed out connections to the well-studied notion of structures with bounded
colour class size. In particular, we saw that many of the known queries which
separate fixed-point logic with counting from polynomial time are based on
structures with Abelian colours. On the other hand, in our main result of this
chapter we proved that Choiceless Polynomial Time captures polynomial time
on structures with Abelian colours. Hence, structures with Abelian colours
form a very interesting class of structures which separates CPT from FPC.

The notion of Abelian colours is very well-motivated by the fact that it
provides interesting insights into the importance of linear-algebraic techniques
in descriptive complexity theory. On the other hand, from an algorithmic
point of view, this notion does not seem very interesting as it imposes very
specific and rather artificial structural properties on the input structures. In
fact, there are many more natural classes of structures on which algorithmic
techniques from computational (linear) algebra have been applied successfully
in order to solve the isomorphism and the canonisation problem. One of the
simplest among these classes, which also was the starting point of our studies,
are structures of bounded colour class size. Hence, we think that the most
interesting open question in this context is: Does CPT capture Ptime on
classes with bounded colour class size? In fact, we saw that this holds for
classes with 2-bounded colours (see Corollary 6.14), and we can show that
this is true for classes with 3-bounded colours as well (this is part of ongoing
investigations).

Generalising our techniques from Abelian colours to bounded colours may
require to leave the area of linear algebra and to consider more general
ideas from the field of computational group theory. At least the classical
deterministic canonisation algorithm for structures with bounded colour class
size is based on techniques to manipulate permutation groups. However, since
we do not even know whether linear equation systems (with bounded colours)
can be solved in Choiceless Polynomial Time, it seems hard to express such
general techniques from computational algebra in CPT. More importantly,
in our canonisation procedure we use an implicit representation of sets of
isomorphisms, that is we represent these sets as the solution spaces of linear
equation systems. In contrast, the algorithms for manipulating permutation
groups make use of an explicit representation of groups by sets of generators. In
particular, it is unclear whether our CPT-definable canonisation procedure can
be formulated by using (a succinct encoding of) a set of generators to encode
the sets of witnessing isomorphisms. Besides this, there is a nice result of
Arvind, Kurur, and Vijayaraghavan [7] which puts the isomorphism problem of
graphs with bounded colour class size in the #L-hierarchy (see for example [3]
for background on this complexity class). We aim to explore how far their
ideas can be transferred to Choiceless Polynomial Time.
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Another interesting approach is to investigate whether at least all properties
of structures with bounded colours which are definable in order-invariant (or
successor-invariant) first-order logic can be expressed in Choiceless Polynomial
Time. Note that there are properties of structures with bounded colours which
can be expressed in order-invariant first-order logic but not in fixed-point logic
with counting (the isomorphism problem for multipedes).

Another way to proceed is to generalise our setting from Theorem 6.8.
There we saw that if we consider structures with bounded colours such that
every colour class induces a substructure with an Abelian automorphism
group, then we can solve the canonisation problem in Choiceless Polynomial
Time (since such structures basically are structures with Abelian colours).
This naturally leads to the idea of allowing more general groups which act as
automorphism groups on the individual colour classes. For instance, we propose
to study structures with bounded colours for which the colour classes induce
automorphism groups which are nilpotent or, more generally, solvable (which
are both well-studied concepts from algebra to generalise Abelian groups).

In particular, we studied classes of structures with bounded colours such
that every colour class induces a substructure whose automorphism group is
the dihedral group Dk acting on k letters (for some constant k). For k = 3

we obtain, as a special case, precisely the class of structures with 3-bounded
colours. In this case we can show that our methods for canonising structures
with Abelian colours can be adapted to obtain a canonisation procedure for
this class of structures. Moreover, for the case k = 4 we have some promising
preliminary results. However, this is part of ongoing research.

Finally, we remark that there are several other classes of structures for
which efficient canonisation algorithms exist, but for which we don’t have
a natural logic which captures polynomial time. Most importantly, this is
the case for graphs with bounded degree. In general, a good benchmark for
these classes is the Cai, Fürer, Immerman query. In this thesis we saw that
the CFI-query can be defined in Choiceless Polynomial Time. However, we
strongly made use of the fact that the underlying graph was ordered. Actually
it is open whether the CFI-query can be defined in Choiceless Polynomial Time
also when we start from unordered cubic graphs (and we think it would be a
nice result to prove this). Interestingly, for some graph classes, like complete
graphs or graphs with bounded colours, one can show that the CFI-problem
over such graphs can be defined in Choiceless Polynomial Time.
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Conclusion

The current frontier in the search for a logic capturing polynomial time is
defined by problems from the field of computational algebra. While fixed-
point logic with counting expresses a robust, natural, and rich fragment of
polynomial time, it fails to capture important algorithmic techniques to handle
large, algebraically-structured objects, which are specified in a succinct way.
The main difficulty is to understand how such algorithmic methods, which
are often based on computing non-canonical normal forms, can naturally be
captured by logical mechanisms. As witnessed by the many new insights
that were established during the last years, the solvability problem for linear
equation systems over finite algebraic domains is a good starting point for
further investigations. In this thesis, we extended our knowledge about this
question, and we want to summarise our main contributions together with
some important open questions, which can serve as subjects for (ongoing and)
future research. For more details, we refer to our “Discussion” sections at the
end of the corresponding chapters.

In Chapter 3, we studied the inter-definability of linear equation systems
over Abelian groups, rings, modules. We saw that if these algebraic domains
have a built-in linear order, then we can reduce, in fixed-point logic, linear
equation systems over all domains to equivalent systems over cyclic groups of
prime-power order. However, we left open whether a reduction to cyclic groups
can also be achieved in the absence of an ordering, which would be nice, since
we could then concentrate our studies completely on linear equation systems
over cyclic groups (whose algebraic structure is very simple). Moreover, it
also remained open whether we can go from cyclic groups of prime-power
order further to cyclic groups of prime order. This is basically equivalent
to the question of whether rank logic can define the solvability problem for
linear equation systems over all rings Zm, where m ≥ 1 is not necessarily
prime. Another interesting aspect, which was raised during our investigations,
concerns the definability of simpler problems over Abelian groups. For instance,
can fixed-point logic (with counting) define summation over arbitrary sets in
Abelian groups? Indeed, while much effort has been invested to understand
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the expressive power of logics over various classes of graphs, almost nothing
seems to be known for other important classes of structures, such as groups.

In Chapter 4, we studied extensions of fixed-point logic with counting by
logical operators, specifically solvability quantifiers and rank operators, which
can express the solvability of linear equation systems over finite fields. Our
main result solves an open question of Dawar and Holm by showing that these
operators over different prime fields cannot simulate each other. This also
separated rank logic, in the original definition with a distinct rank operator
for every prime, from polynomial time. In particular, a revised version of rank
logic FPR

∗, with a uniform rank operator rk∗, turns out to be strictly more
powerful than the original version FPR with distinct operators rkp for every
prime p ∈ P. We further saw that rank operators are strictly more powerful
than solvability quantifiers in the absence of counting.

Of course, the main open question is whether the revised version of rank
logic FPR

∗ suffices to capture polynomial time. There is no reason to believe
that this is the case, and, in particular, it remains open whether FPR

∗ can
express the solvability problem for linear equation systems over all Abelian
groups. A good starting point would be to answer the following simplified
version of this question first: can FPR

∗ distinguish between generalised Cai,
Fürer, Immerman structures over all cyclic groups, for example, over Z4.

In Chapter 5, we introduced the notion of cyclic linear equation systems.
Recall that for such systems, the set of variables is almost completely ordered,
up to classes in which all pairs of variables are related via a given set of
linear equations. Although such systems are structurally quite simple, they
generalise, especially, the isomorphism problem for Cai, Fürer, Immerman
graphs. Our main result shows that Choiceless Polynomial Time can express
the solvability of cyclic linear equation systems. This yields a new family of
queries to separate fixed-point logic with counting from Choiceless Polynomial
Time. Of course, the most important open question is, whether Choiceless
Polynomial Time can express the solvability of general linear equation systems
over finite Abelian groups. Most likely, answering this question would also
give new insights about the relation of rank logic and Choiceless Polynomial
Time. Our definability result for cyclic linear equation may serve as a starting
point to systematically investigate this question by considering linear equation
systems with built-in auxiliary structure. For instance, one could study linear
equation systems whose variables are linearly ordered up to classes, such that
either these classes are of (constantly) bounded size, or such that, fixing the
value of (constantly) many variables in each class determines the value of all
remaining variables (this is a direct generalisation of cyclic linear systems for
which we only need to fix the value of a single variable in each class).

In Chapter 6, we established a CPT-definable canonisation procedure
for structures with Abelian colours. One of the central ingredients for this
procedure are cyclic linear equation systems which are used to succinctly encode
large sets of isomorphisms between the input structure and its (partially)
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canonised copy. We saw that structures with Abelian colours appear frequently
in finite model theory, most importantly, in connection with constructions
which resemble the one of Cai, Fürer, and Immerman. We further found
interesting connections to the well-studied notion of structures with bounded
colour class size. For example, it follows from our results that Choiceless
Polynomial Time captures polynomial time on structures with colour class size
two. This also solved an open question of Blass, Gurevich, and Shelah: the
isomorphism problem for multipedes is CPT-definable (since multipedes are
structures of colour class size two). In fact, our original starting point was
the question of whether Choiceless Polynomial Time captures polynomial time
on classes of structures with bounded colour class size, and we still believe
that it would be very interesting to establish a CPT-definable canonisation
procedure on such classes. Again, our notion of Abelian colours may serve
as a starting point to guide the search for such a canonisation procedure.
Recall that a structure with bounded colours in which every colour class
induces a substructure with an Abelian automorphism group has Abelian
colours. This gives rise to natural generalisations: what happens if the induced
automorphisms groups are nilpotent or solvable?
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