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LINEAR EQUATIONS AND STOCHASTIC EXPONENTS
IN A HILBERT SPACE

UDC 519.21

YULIYA MISHURA AND GEORGIY SHEVCHENKO

Abstract. We consider linear stochastic differential equations in a Hilbert space
and obtain general limit theorems. As a corollary, we get a result on the convergence

of finite-dimensional approximations of solutions of such equations.

0. Introduction

The linear stochastic differential equation

(0.1) X(t) = X0 +
∫ t

0

AX(s) ds +
∫ t

0

BX(s) dW (s)

is a classical model in financial mathematics. It also appears in some problems of mathe-
matical physics. The solution of the above equation in the one-dimensional case is called
the stochastic exponent. The stochastic exponent is given by

X(t) = X0 exp
{

BW (t) +
(

A − 1
2
B2

)
t

}
.

For higher dimensions this formula holds (now with matrix exponent) only if the oper-
ator A and the coefficients for different coordinates of the Wiener process are pairwise
commuting. An exact formula for the solution of equation (0.1) is known for some cases
in higher dimensions. However, if the space is infinite-dimensional, the form of the exact
solution of equation (0.1) is unknown in general.

Our idea used in this paper is to approximate the solution of equation (0.1) in an
infinite-dimensional space by solutions of linear finite-dimensional equations that can be
solved explicitly.

The first section below contains general limit theorems and convergence results for
finite-dimensional approximations of the linear homogeneous equation (0.1). In the sec-
ond section, analogous results for the linear nonhomogeneous equation are obtained. The
third section is devoted to some examples where the solution of the finite-dimensional
equation (0.1) can be written in an explicit form.

1. General limit theorems

Let X be a separable Hilbert space, L(X ) be the space of linear continuous operators
on X , and let L2(X ) be the space of the Hilbert–Schmidt operators. In what follows
we use the abbreviations L and L2 for L(X ) and L2(X ), respectively. All unessential
constants are denoted by C.
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140 YULIYA MISHURA AND GEORGIY SHEVCHENKO

Consider a linear stochastic differential equation in X :

(1.1) X(t) = X0 +
∫ t

0

(AX(s) ds + BX(s) dW (s)), t ∈ [0, T ],

where A is a closed linear operator with domain D, that is, A is the generator of the
C0-semigroup {U(t), t ≥ 0}, B is a linear operator acting from X to L2, W (t) is an
cylindrical Wiener process in X , and X0 is a F0-measurable square integrable random
variable. It is known that equation (1.1) has a unique pathwise continuous solution if

(1.2)
∫ T

0

‖AU(t)B‖2
L(X ,L2)

dt < ∞.

This solution is also a “mild” solution, i.e., it satisfies the equation

(1.3) X(t) = U(t)X0 +
∫ t

0

U(t − s)BX(s) dW (s)

and moreover supt≤T E ‖X(t)‖2
< ∞ (see, for example, Theorems 2.2.1, 2.2.2, 2.3.1,

and 2.3.2 in [1]).
In some cases it is impossible to write the solution of the equation (1.1) in an explicit

form. In such a case, one has to use an approximation by solutions of the equations

(1.4) Xn(t) = Xn
0 +

∫ t

0

(
AnXn(s) ds + BnXn(s) dW (s)

)
whose coefficients satisfy the same conditions as the coefficients of equation (1.1).

More precisely, assume that An is a closed linear operator with domain D(An) ⊃ D
and that An generates the C0-semigroup {Un(t), t ≥ 0} such that

(1.5)
∫ T

0

‖AnUn(t)Bn‖2
L(X ,L2) dt < ∞.

Then, as we have already mentioned, equation (1.4) has a unique solution that satisfies
the equation

(1.6) Xn(t) = Un(t)Xn
0 +

∫ t

0

Un(t − s)BnXn(s) dW (s).

Furthermore, we assume that

Anx → Ax, n → ∞, x ∈ D,(1.7a)

‖Bx − Bnx‖L2
→ 0, n → ∞, x ∈ X .(1.7b)

In view of the Banach–Steinhaus theorem, it follows from the latter assumptions that
the norms ‖Bn‖L2

are bounded in n.
Finally, assume that

(1.8) ‖Un(t)‖L ≤ C, t ∈ [0, T ].

We get from the Gronwall–Bellman lemma that supt≤T E ‖Xn(t)‖2
< ∞ uniformly in n.

It follows from (1.7a) and (1.8) that

Un(t)x → U(t)x, n → ∞,

for x ∈ X and uniformly on the segment [0, T ] (cf. [5]). In turn, this implies

(1.9) sup
t∈[0,T ]

‖(U(t) − Un(t))Bx‖L2
→ 0, n → ∞.
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LINEAR EQUATIONS 141

To justify the latter relation we consider finite-dimensional projections BNx of the op-
erator Bx. It is clear that ∥∥Bx − BNx

∥∥
L2

→ 0, N → ∞,

and

sup
t∈[0,T ]

‖(U(t) − Un(t))Bx‖L2
(1.10)

≤ sup
t∈[0,T ]

∥∥(U(t) − Un(t))BNx
∥∥
L2

+ sup
t∈[0,T ]

∥∥U(t)
(
Bx − BNx

)∥∥
L2

(1.11)

+ sup
t∈[0,T ]

∥∥Un(t)
(
Bx − BNx

)∥∥
L2

(1.12)

≤ sup
t∈[0,T ]

∥∥(U(t) − Un(t))BNx
∥∥
L2

+ C
∥∥Bx − BNx

∥∥
L2

.(1.13)

The convergence to zero of the latter expression can be proved in a standard way: namely,
we choose N such that the second term is sufficiently small; then we choose n such that
the first term is small.

Theorem 1.1. If conditions (1.5), (1.7), and (1.8) hold and

E ‖X0 − Xn
0 ‖

2 → 0, n → ∞,

then

E ‖X(t) − Xn(t)‖2 → 0, n → ∞,

uniformly on the segment [0, T ].

Proof. Put

Zn(t) = E ‖X(t) − Xn(t)‖2 .

We have Zn(t) ≤ C(A1 + A2 + A3 + A4), where

A1 = E ‖U(t)X0 − Un(t)Xn
0 ‖

2 ≤ C
(
E ‖Un(t)‖L ‖X0 − Xn

0 ‖
2 + E ‖(U(t) − Un(t))X0‖2

)
≤ C

(
E ‖X0 − Xn

0 ‖
2 + E ‖(U(t) − Un(t))X0‖2

)
,

A2 = E

∥∥∥∥∫ t

0

Un(t − s)
(
BnX(s) − BnXn(s)

)
dW (s)

∥∥∥∥2

≤ E

∫ t

0

‖Un(t − s)‖2
L ‖Bn‖2

L(X,L2)
‖X(s) − Xn(s)‖2

ds ≤ C

∫ t

0

Zn(s) ds,

A3 = E

∥∥∥∥∫ t

0

Un(t − s)(B − Bn)X(s) dW (s)
∥∥∥∥2

≤ E

∫ t

0

‖Un(t − s)‖2
L ‖(B − Bn)X(s)‖2

L2
ds ≤ CE

∫ t

0

‖(B − Bn)X(s)‖2
L2

ds,

A4 = E

∥∥∥∥∫ t

0

(
U(t − s) − Un(t − s)

)
BX(s) dW (s)

∥∥∥∥2

≤ E

∫ t

0

∥∥(
U(t − s) − Un(t − s)

)
BX(s)

∥∥2

L2
ds.
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Applying the Gronwall–Bellman lemma, we get from the latter bounds that

Zn(t) ≤ C

(
E ‖X0 − Xn

0 ‖
2 + E ‖(U(t) − Un(t))X0‖2

+ CE

∫ t

0

‖(B − Bn)X(s)‖2
L2

ds

+
∫ t

0

sup
u∈[0,T ]

E ‖(U(u) − Un(u))BX(s)‖2
L2

ds

)
eCt.

The integrands vanish as n → ∞ and have an integrable majorant C(1 + ‖X(s)‖2);
therefore Zn(t) ≤ CneCT and

Cn → 0, n → ∞. �

To prove the uniform convergence in probability, we need a stronger assumption.
Instead of condition (1.8), we assume that the semigroups {Un(t)} are of the uniformly
contracting type. This means that there exist a number β and, for every n, an equivalent
norm ‖·‖∼,n on X such that

‖Un(t)‖∼,n
L ≤ eβt, t ∈ [0, T ].

According to the Phillips–Lumer theorem (cf. [4]) the latter condition is equivalent to

(1.14) (Anx, x) ≤ β ‖x‖2
, x ∈ D(An).

Theorem 1.2. If conditions (1.5), (1.7), and (1.14) hold and also

E ‖X0 − Xn
0 ‖

2 → 0, n → ∞,

then the uniform convergence in probability holds; that is, for all δ > 0,

P

(
sup

t∈[0,T ]

‖X(t) − Xn(t)‖ > δ

)
→ 0, n → ∞.

Proof. We check the conditions of the Kotelenez theorem [2]. First,

sup
t∈[0,T ]

‖U(t)Ax − Un(t)Anx‖

≤ sup
t∈[0,T ]

‖Un(t)‖ · ‖(A − An)x‖ + sup
t∈[0,T ]

‖(U(t) − Un(t))Ax‖ → 0, n → ∞,

for x ∈ D. Second,

E

∥∥∥∥∫ t

0

BX(s) dW (s) −
∫ t

0

BnXn(s) dW (s)
∥∥∥∥2

≤ 2
∫ t

0

E ‖(B − Bn)X(s)‖2
L2

ds + 2
∫ t

0

E ‖B‖2
L(X ,L2)

‖Xn(s) − X(s)‖2
ds → 0

as n → ∞ by what we proved above. From the Kotelenez theorem we obtain the uniform
convergence in probability:∫ t

0

Un(t − s)BnXn(s) ds →
∫ t

0

U(t − s)BX(s) ds, n → ∞.
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Moreover

P

(
sup

t∈[0,T ]

‖U(t)X0 − Un(t)Xn
0 ‖ > δ

)

≤ P

(
sup

t∈[0,T ]

‖U(t)X0 − Un(t)X0‖ > δ/2

)

+ P

(
sup

t∈[0,T ]

‖Un(t)X0 − Un(t)Xn
0 ‖ > δ/2

)

≤ P

(
sup

t∈[0,T ]

‖U(t)X0 − Un(t)X0‖ > δ/2

)
+ P

(
sup

t∈[0,T ]

‖X0 − Xn
0 ‖ > δ/2K

)
→ 0

as n → ∞ by the assumption of the theorem (here K = supn≥1,t≤T ‖Un(t)‖). Combining
all the results above we get

P

(
sup

t∈[0,T ]

‖X(t) − Xn(t)‖ > δ

)
→ 0

as n → ∞. �

1.1. Finite-dimensional approximations. Let {ei, i ≥ 1} be an orthonormal basis
in X , and let

En = span{ei, i ≤ n}, n ≥ 1.

In this section, An and Bn are finite-dimensional approximations of the operators A and
B, respectively. We consider the case of

(1.15) En ⊂ D(A).

Remark 1.1. Condition (1.15) holds if, for example, X = L2(O), O ⊂ R
d, A is a differ-

ential operator, and en are orthogonal polynomials.
At first glance, condition (1.15) seems to contradict the condition D(An) ⊃ D(A) used

above. This, however, is not the case, since the domain of An is the entire space X (not
En as in the above case).

Now we may put An = PnAPn, X0
n = PnX0, and Bnx = Pn(Bx)Pn, where Pn is the

orthogonal projector on En. Equation (1.4) becomes of the form

(1.16) Xn(t) = PnX0 + Pn

∫ t

0

(
AXn(s) ds + BXn(s)Pn dW (s)

)
.

Conditions (1.5) and (1.7b) evidently hold in this case. If the semigroup generated by A
is of the contracting type, that is

(1.17) (Ax, x) ≤ β ‖x‖2 ,

then the semigroups generated by An are of the uniform contracting type. Indeed,

(Anx, x) = (PnAPnx, x) = (APnx, Pnx) ≤ β ‖Pnx‖2 ≤ β ‖x‖2
.

It is obvious that the convergence Anx → Ax, n → ∞, holds for x ∈
⋃

k≥1 Ek.
Sufficient conditions for the convergence for all x ∈ D are not obvious in general.

Nevertheless Un(t) s−→ U(t) if the convergence An → Ax holds on a dense set D1 such
that the set

(A − λ)D1

is also dense in X for sufficiently large λ. In other words, it is sufficient to assume that

(1.18) the set (A − λ)E is dense in X for all sufficiently large λ
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144 YULIYA MISHURA AND GEORGIY SHEVCHENKO

to prove the convergence, where E =
⋃∞

k=1 Ek. Thus we have proved the following result.

Theorem 1.3. If conditions (1.15), (1.17), and (1.18) hold, then the finite-dimensional
approximations (being solutions of equation (1.16)) uniformly with respect to t ∈ [0, T ]
converge in the mean-square sense to the solution of equation (1.1); that is,

E ‖X(t) − Xn(t)‖2 → 0, n → ∞.

Moreover, the uniform convergence in probability also holds:

P

(
sup

t∈[0,T ]

‖X(t) − Xn(t)‖ > δ

)
→ 0

as n → ∞.

2. The convergence for nonhomogeneous equations

In this section, we generalize the above results to the case where coefficients A and B
depend on “time” t. Consider the following linear nonhomogeneous equations on the
segment [0, T ]:

X(t) = X0 +
∫ t

0

A(s)X(s) ds +
∫ t

0

B(s)X(s) dW (s),(2.1a)

Xn(t) = Xn
0 +

∫ t

0

An(s)Xn(s) ds +
∫ t

0

Bn(s)Xn(s) dW (s),(2.1b)

where A(t) and An(t) are linear densely defined closed operators in X , and B(t) and
Bn(t) are linear continuous operators acting from X to L2(X ). For convenience, we set
A0(t) = A(t) and B0(t) = B(t) in the below conditions. Operators A(t) and An(t) are
assumed to satisfy the usual Kato–Tanabe conditions [6] uniformly in n; that is,

(i) for all n ≥ 0 and t ∈ [0, T ], the operators An(t) are the generators of some
semigroups;

(ii) the families An(t) are uniformly stable, i.e., there exist constants M and β such
that∥∥(An(tk) − λ)−1(An(tk−1) − λ)−1 · · · (An(t1) − λ)−1

∥∥ ≤ M(λ − β)−k

for all n ≥ 0, 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk ≤ T , and λ > β;
(iii) there exists a dense subspace D ⊂

⋂
D(An(t)) equipped with a norm ‖·‖D such

that the embedding of D in X is continuous and D is An(t)-admissible, i.e.,
esAn(t)D ⊂ D and

{
esAn(t)|D, s ≥ 0

}
are semigroups;

(iv) for all n ≥ 0 and t ∈ [0, T ], the operator An(t) maps continuously (D, ‖·‖D) to
the space X .

Then for any n ≥ 0, the operators An(t) generate an evolution family

{Un(t, s), 0 ≤ s ≤ t ≤ T}

of linear continuous operators that possesses the following properties:
1) Un(t, t) = I is the identity operator,
2) Un(t, r)Un(r, s) = Un(t, s) for 0 ≤ s ≤ r ≤ t ≤ T ,
3) Un(t, s) is strongly continuous in s and t,
4) for x ∈ D(An(s)),

∂

∂t
Un(t, s)x = An(t)Un(t, s)x.
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As in the preceding section, assume that

(2.2)
∫ T

0

∫ t

0

‖A(t)U(t, s)B(s)‖2
L(X ,L2) ds dt < ∞

in order to ensure the existence of solutions of equations (2.1).
The conditions

An(t)x → A(t)x, n → ∞, for all x ∈ D,(2.3)

lim
λ(E)→0

sup
n≥1

∫
E

‖An(t)‖L(D,X ) dt = 0 (λ is the Lebesgue measure),(2.4)

together with (i)–(iv) guarantee that

Un(t, s)x → U(t, s)x, n → ∞,

for all x ∈ X and uniformly with respect to s ≤ t ≤ T (cf. [5]). Assume further that

(2.5) ‖Bn(t)x − B(t)x‖L2
→ 0, n → ∞,

for all x and uniformly in t ∈ [0, T ]. Analogously to the preceding section, we prove the
following result.

Theorem 2.1. If conditions (i)–(iv) and (2.2)–(2.5) hold and

E ‖X0 − Xn
0 ‖

2 → 0, n → ∞,

then solutions of equations (2.1b) converge in the mean-square sense to the solution of
equation (2.1a); that is,

E ‖X(t) − Xn(t)‖2 → 0, n → ∞,

uniformly on the segment [0, T ].

To prove the uniform convergence in probability, one should assume that the families
Un(t, s) are of the uniform contracting type; that is, there is β > 0 and, for all n ≥ 0,
there exists an equivalent norm ‖·‖∼,n such that

(2.6) ‖Un(t, s)‖∼,n ≤ eβ(t−s), 0 ≤ s ≤ t ≤ T.

The Kotelenez theorem holds also for the nonhomogeneous case; hence we are able to
prove the following theorem.

Theorem 2.2. If conditions (i)–(iv) and (2.2)–(2.6) hold and

E ‖X0 − Xn
0 ‖

2 → 0, n → ∞,

then solutions of equations (2.1b) converge to the solution of equation (2.1a) uniformly
on the segment [0, T ]; that is, for all δ > 0,

P

(
sup

t∈[0,T ]

‖X(t) − Xn(t)‖ > δ

)
→ 0, n → ∞.

2.1. Finite-dimensional approximations for nonhomogeneous equations. Con-
sider finite-dimensional approximations for equation (2.1a). We use the notation intro-
duced for the homogeneous equations. As in the previous section, we assume that

En ⊂ D(A(t))

and moreover that En ⊂ D (D is the space involved in condition (iii)). Then we put
An(t) = PnA(t)Pn and equation (2.1b) becomes of the form

(2.7) Xn(t) = PnX0 + Pn

∫ t

0

(
A(s)Xn(s) ds + B(s)Xn(s)Pn dW (s)

)
.
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We further assume that the semigroups generated by A(t) are of the contracting type;
that is,

(2.8) (A(t)x, x) ≤ β ‖x‖2
, x ∈ D(A(t)).

Note that the condition on the stability is equivalent to∥∥∥eskA(tk)esk−1A(tk−1) · · · es1A(t1)
∥∥∥ ≤ Meβ(s1+···+sk)

for all
t1 ≤ · · · ≤ tk ≤ T, s1, . . . , sn > 0.

Then, conditions (i) and (ii) are satisfied for the operators A(t), and the semigroups
generated by the operators An(t) are uniformly contracting. Moreover, conditions (i)
and (ii) hold for An(t) with constants M and β that are independent of n. Condition
(iii) holds for An(t), since En ⊂ D. If condition (iv) holds for A(t), then this condition
holds for An(t), too. Moreover, ‖An(t)‖L(D,X ) ≤ ‖A(t)‖L(D,X ) and (2.4) follows from

(2.9)
∫ T

0

‖A(t)‖L(D,X ) dt < ∞.

Convergence (2.3) holds for x ∈ E =
⋃

n En. This convergence holds for x ∈ D, too, if,
for example,

(2.10) E is dense in (D, ‖·‖D).

Finally, (2.6) holds if

(2.11) B(t)x ∈ C([0, T ],L2)

for all x ∈ X . (At every point t ∈ [0, T ], the sequence ‖B(t)x − Bn(t)x‖ is monotone
in n and tends to zero as n → ∞; thus the convergence is uniform on [0, T ] by the Dini
theorem.)

Theorem 2.3. Let the operators A(t) satisfy conditions (iii), (iv), and (2.2). If condi-
tions (2.8)–(2.11) hold, then the solutions of equations (2.7) converge in the mean-square
sense and uniformly in probability to the solution of equation (2.1a); that is,

E ‖X(t) − Xn(t)‖2 → 0, n → ∞,

P

(
sup

t∈[0,T ]

‖X(t) − Xn(t)‖ > δ

)
→ 0, n → ∞.

3. Representation of solutions of finite-dimensional stochastic

differential equations

It is well known that if a ∈ L1[0, T ] and b ∈ L2[0, T ], then the one-dimensional
stochastic differential equation

(3.1) x(t) = x0 +
∫ t

0

a(s)x(s) ds +
∫ t

0

b(s)x(s) dw(s), t ∈ [0, T ],

has a unique solution given by

(3.2) x(t) = x0 exp
{∫ t

0

b(s) dw(s) +
∫ t

0

(
a(s) − 1

2
b2(s)

)
ds

}
, t ∈ [0, T ].

This solution is called the stochastic exponent constructed from the functions a and b.
We refer to the solution of equation (1.1) as the stochastic exponent constructed from
the operators A and B. Denote this solution by

X(t) = Et(A, B).
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It is impossible to express X(t) in terms of A, B, and W (t) in an explicit form similar to
formula (3.2). On the other hand, there are certain conditions under which the stochastic
exponent can be represented in a closed form in the case of finite-dimensional equations.
Below we provide such conditions.

Taking into account that Et(A, B) is a mean-square limit (and a uniform limit in
probability, as well) of the finite-dimensional stochastic exponents Et(An, Bn) if the as-
sumptions of Theorem 1.3 hold, we propose to represent Et(A, B) as a limit of finite-
dimensional stochastic exponents.

Let n > 1, A ∈ L(Rn), B ∈ L(Rn,L(Rd, Rn)), and let W (t) be a d-dimensional Wiener
process. Consider the linear stochastic differential equation

(3.3) X(t) = X0 +
∫ t

0

AX(s) ds +
∫ t

0

BX(s) dW (s).

One can rewrite this equation in the coordinate form as follows:

xi(t) = xi(0) +
n∑

j=1

aij

∫ t

0

xj(s) ds +
d∑

k=1

n∑
j=1

bk
ij

∫ t

0

xj(s) dwk(s),

where ai,j = (Aej , ei) and bk
ij = ((Bej)ek, ei).

If the operators A and Bk = (bk
ij)

n
i,j=1 are pairwise commuting, that is, if

ABk = BkA, BkBl = BlBk, k, l = 1, . . . , d,

then one can represent the solution of equation (3.3) in a closed form. We have in this
case

X(t) = exp

{∫ t

0

(
A − 1

2

d∑
k=1

(Bk)2
)

ds +
d∑

k=1

Bk dwk

}
X0.

This formula remains true also in the case where X0 is a common eigenvector of op-
erators A and Bk, k = 1, . . . , d, since the equation can be viewed in this case as the
one-dimensional one on the line determined by this eigenvector.

The case where the matrices of the operators A and Bk are of the upper-triangular
form, that is if

aij = bk
ij = 0 for i > j,

is the most interesting one. The solution of (3.3) can be represented in this case as
follows:

xn(t) = Mn(t)−1xn(0),

xi(t) = Mi(t)−1

(
xi(0) +

∫ t

0

Mi(s) dηi(s)
)

, 1 ≤ i ≤ n − 1,

where

ηi(t) =
n∑

j=i+1

∫ t

0

xj(t) dξi
j(s),

ξi
j(t) =

d∑
k=1

[
bk
ijwk(t) +

(
aij −

1
2
(
bk
ij

)2
)

t

]
,

Mi(t) = exp
{
−ξi

i(t)
}

.

Kunita [3] obtained the following result for homogeneous-in-time stochastic differential
equations on smooth manifolds whose coefficients are infinitely differentiable vector fields:
if the Lie algebra generated by the coefficients of the equation is solvable, then the solution
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of the equation can be represented in a certain closed form. Moreover, the Lie algebra
generated by commuting matrices and the Lie algebra generated by upper-triangular
matrices are solvable. Thus both cases above follow from the Kunita result. In order to
rewrite the Kunita formula for the solution in the case of upper-triangular operators, it
is convenient to set

B0 := A − 1
2

d∑
k=1

(
Bk

)2
, w0(t) := t,

and to consider equation (3.3) in the Stratonovich form

dX(t) =
d∑

k=0

BkX(s) ◦ dwk(s).

Let
Dk =

(
δijb

k
ij

)n

i,j=1

be the diagonal part of Bk, and let Nk = Bk − Dk be the nilpotent part of Bk, where
δij is the Kronecker delta. The Kunita formula for the solution becomes of the following
form:

(3.4)

X(t) = eM(t)eV (t)X0,

M(t) =
d∑

k=0

wk(t)Dk,

V (t) =
d∑

k=0

∫ t

0

e−M(s)NkeM(s) ◦ dwk(s)

+
1
2

∑
i<j

∫∫
0<s<u<t

[
e−M(s)N ieM(s), e−M(u)N jeM(u)

]
◦
(
dwi(s) dwj(u) − dwj(s) dwi(u)

)
+ · · · ,

where [·, ·] denotes the Lie brackets. The second sum is followed by a finite number of
terms, and each of them is a sum of multiple integrals similar to the above multiple
commutators of e−M(s)NkeM(s). Moreover the coefficients for the terms coincide with
the corresponding coefficients in the classical Campbell–Hausdorff formula

eXeY = eZ ,

Z = X + Y − 1
2
[X, Y ] + · · · .

The case of upper-triangular operators is essentially all that is given by the Kunita
theorem for linear equations considered above. Indeed, the Lie theorem gives the follow-
ing solvability criterion of a Lie algebra generated by complex matrices: a Lie algebra is
solvable if and only if all the matrices are of upper-triangular form in a certain basis. We
deal with real numbers; nevertheless we may apply the Lie criterion, although this can
be done at the cost of complexification, that is, by doubling the dimension of the phase
space (but not the dimension of noise). More precisely, assuming that the Lie algebra
generated by Bk is solvable, define matrices B̃k of dimension 2n× 2n composed of 2× 2
blocks

B̃k
ij =

(
bk
ij 0
0 bk

ij

)
.

Then there exists a basis for which the matrices are of “almost” upper-triangular form.
This means that the matrices B̂k are composed of the blocks B̂k

ij that equal zero for i > j
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and are of the form

B̂k
ij =

(
αk

ij −βk
ij

βk
ij αk

ij

)
for i ≤ j. Taking into account that B̂k

ij are pairwise commuting, we prove that equal-
ity (3.4) remains true for

Dk =

⎛⎜⎜⎝
B̂k

11 0 0 . . . 0
0 B̂k

22 0 . . . 0
. . . . . . . . . . . . . . . . . . . . .

0 0 0 . . . B̂k
nn

⎞⎟⎟⎠ , Nk = B̂k − Dk.
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