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LINEAR ESTIMATION FOR APPROXIMATELY
LINEAR MODELS

By JEROME SACKS! AND DONALD YLVISAKER?
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An approximate linear model is proposed to allow for deviations from
an underlying ideal linear model as follows: If, in standard notation, ¥ =
AB + ¢ is the ideal model then ¥ = AS + r + ¢ where |ri| < M; for M a
given vector is an approximate linear model. The problem solved here is
that of finding a linear estimate of a single linear function of 8 which
minimaxes mean square error in the approximate model. The estimate
obtained may be the standard one from the ideal model, but in general it
is not. The estimate is calculated as a solution to a set of nonlinear
equations (generalizing the usual normal equations) and an algorithm is
given for obtaining the solution.

1. Introduction. Robust estimation of the parameters in a linear model has
been the subject of intense inquiry in recent years (for example, [3], [S] and
[6]) and considerable success has been achieved in dealing with those problems
which arise when there is departure from the assumption of normality of errors.
The issue of ‘“model robustness,” i.e., behavior of estimates when there is de-
parture from the assumed linear model, has long been recognized to be of
central importance but it has not received the concerted attention given to the
issue of “distributional robustness.”” It is the aim of this paper to propose and
discuss some approximately linear models which admit deviations from an ideal
linear model as follows: if ¥ = 48 + ¢ is the model (standard notation is used
here) then the approximate models to be studied have the form

(1.1) Y=A48+r+ ¢

where r is an n-vector satisfying |r;| < M, for a given n-vector M. The case
where M is the O-vector reduces the approximate model to the linear one.

The approximate linear models of (1.1) seem flexible enough to admit
common types of deviations from an ideal model and they are tractable enough
to permit determination of that linear estimate of a single linear function of
B8 which minimaxes the mean square e€rror. The modification of the stand-
ard Gauss-Markov estimate achieved by this approach is, qualitatively, to
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downgrade the contribution of those observations for which the departure from
the linear model is great (technically, this means that the weight attached to
Y, is small when M, is large).

As an illustration consider the approximately linear regression model where
independent observations Y, taken at locations x; € R! have mean f(x;) and vari-
ance ¢*, i = 1, ..., n, and f is approximately linear in the sense that, for some
m= 0,

(1;2) [f(x) — By — B.x| £ mx® forsome [, and B, andall x.

In the notation used at (1.1) M; = mx;* represents the possible departure from
linearity of the ith observation. With m = 0 one has straight line regression
but with m > 0 the collection of possible regressions is much larger. In any
event, one may think of §,and g, as 8, = f(0), 8, = f’(0). Among the estimates
of 8, of the form 7, ¢, Y, = ¥ ¢(x,)Y,, the one that minimaxes the mean
square error over the model (1.2) when m > 0 has ¢(x) defined by a positive
quadratic loop covering the origin with the possible addition of a negative quad-
ratic loop supported on an interval disjoint from the first. The particulars depend
on m and on the design points x;, .- -, x,. The case m = 0 is a degenerate one:
the x* term is missing and the best ¢ is, of course, a linear function. In the
ideal linear model observations farthest from the origin are weighted most
heavily but in the approximately linear model the observations closest to the
origin have the most weight. Corresponding results hold for the estimation of
B, The details are in Section 3 (Theorem 1 and Remark 3).

The calculation of an estimate of a single linear function of 8 requires so-
lution of a set of nonlinear equations (see (3.8)) which reduce, as expected, to
the normal equations when the ideal model holds, that is, when M = 0. Fortu-
nately, a uncomplicated algorithm can be provided to solve these nonlinear
equations and the algorithm appears to be very efficient. Details of this appear
in Section 5 with some computed examples in Section 6.

The problem of simultaneous estimation of several linear functions of the
parameters can also be solved but the computability of the solutions is doubtful.
This situation is mitigated somewhat by the fact that the use of single parameter
estimates in the simultaneous estimation problem is fairly efficient (of course,
it is perfectly efficient in the ideal model). A discussion of this appears in
Section 4. I

2. Approximately linear models. Approximately linear models are presented
here as relaxed versions of the strict linear models employed in a variety of
statistical contexts. The proposed models are parametric in nature, although
the parametrizations necessarily possess some novel features. Approximate
models are first introduced in a general setting in order to emphasize their
flexibility. Afterwards, some concrete examples are given and the correspond-
ing parametrizations identified.

Let f and ¢ be real-valued functions on some index set . with ¢ > 0.
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Assume one has observations
(2.1) Yi:Yxi:f(xi)—f—a(xi)ei, x,eZ,i=1,.--,n,

where the ¢, are uncorrelated random variables, each with mean zero and vari-
ance one so that f(x,) = EY;. Imagine f (and possibly ¢) to be unknown.

Let f;, f1, - - -, f, and M be real-valued functions on .2 with M = 0. The
observations are said to follow an approximately linear model if

(2.2) There is a vector 8 = (B, -+, 8,)’ so that
' (X) — Theo B:fi(0)] £ M(x) forall xe. 2.

If M = 0 then (2.2) gives the linear model determined by {f,, - - -, f;} while if
M = 0, the set of f’s given by (2.2) contains the linear model.

If f satisfies (2.2) and if r(x) = f(x) — 3] B,f,(x) then |r(x)] £ M(x) and the
model (2.1) becomes

Y, = X B;fi(x:) + r(x) + o(x;)e
which has the form of (1.1). It is slightly more convenient to describe the

model by (2.1) and (2.2).
Under (2.2) the parameters of the model are said to be identified if

(2.3) | 2250 B, [(X)] £ M(x) for all xe22” and
some f implies 5 =0.

If M = 0, (2.3) is the assumption of linear independence of f;, - - -, f, over 27
when M > 0 (2.3) is, evidently, a more stringent requirement than linear inde-
pendence. The sense of (2.3) is this: one can readily show, via the triangle
inequality, that when the parameters of the approximately linear model are
identified (2.2) cannot hold for two distinct coefficient vectors. Thus, if (2.2)
and (2.3) hold, it makes sense to refer to the guaranteed and unique coefficients
Bos - - -, B, as the (regression) parameters of the function f.
Here are some examples.

ExAMPLE 1. Let 227= R? and take f;, - .., f, to be the monomials of degree
< v in d variables, i.e., each f; has the form f,(x) = [T¢, x(}, D&, v < v
Take M(x) = o(|x|")as x — 0. Itiseasily checked that (2.3) holds. (2.2) means
that f has a Taylor series expansion to order v at the point 0, the 8, are the
Taylor coefficients of f, and f differs from its Taylor series by no more than
M(x) at the point x. As a particular case, the choices d = 1, fi(x) = 1, fi(x) =
x and M(x) = x* yield the approximately linear regression model |EY, — §, —

B, x| = {f(x) — f(0) — f'(0)x] < x* for all x.

EXAMPLE 2. Let 27 = R' and suppose z,, - - ., z, are distinct real numbers.
Take f;(x) = [It.; (x — z)/11%.,; (z; — z;) and let M be any nonnegative function
that vanishes at z,, - - -, z,. The f; are the Lagrange interpolating polynomials

of degree k so (2.3) applies. Under (2.2), 8, = f(z,) and the function f differs
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from its Lagrange interpolating polynomial by no more than M(x) at the point
x. Asaspecial case, the choicesk = 1,2, = 0, z, = land M(x) = x* A (x — 1)
yield the approximately linear regression model |EY, — B(1 — x) — 8,x| =
|f(x) — f(0O)(1 — x) — fl)x] < x> A (x — 1) for all x.

ExAMPLE 3. Let f;, -- -, f, be a Chebyshev system on an interval 2”C R,
i.e., Y ta,f(x) does not vanish more than k times (counting multiplicities)
unless all the a,’s are zero. If M has k 4- 1 zeroes (counting multiplicities) on
£ then (2.3) is satisfied and, if f satisfies (2.2), the coefficients 8, can be related
to certain linear combinations of { f(x,), f*(x,), - - -, f™(x;)} where M(x,) = 0
with multiplicity m;. For example, 27 = [0, z], fi(x) = 1, fi(x) = sin x, f(x) =
cos x, M(x) = |sin 2x| gives an approximate trigonometric regression model.

ExaMpPLE 4. Begin with a standard linear model in the form Y = 48 + ¢
where Y = (Y}, ---, Y,) is a vector of observations, ¢ is a vector of uncorrelated
random variables with mean zero, and A4 is a known n X (k 4 1) matrix with
rank k + 1. Now take -27= {1, ..., n} and regard the columns f;, - - -, f, of
A as functions on 2. If (2.3) applies for some M = 0, one may take the ap-
proximately linear model to be |[EY — 48| < M for some (unique) 8. It is
important to note that (2.3) can only apply if M vanishes often enough and,
when this is so, the 3, are appropriate linear combinations of the mean values
at the points where M = 0.

As a particular case, consider the » X ¢ analysis of variance model without
interactions and with one observation per cell. Take M = 0 in the first row
and column with M arbitrary but nonnegative elsewhere. The approximately
linear model which results (using standard notation) has

|EY sy — o — e —
- lEYij - E(Y1. + Y, - Yu) - E(Yn - Y.1) - E(Ylj - Y1-)
=|E(Y,; — Y, - Y,; + Y| =< M,; for i<r, j<c.

Other approximate linear models in the same context are given by
|EY;; — p| = |E(Y;; — Y| S M, with M, =0

which arises as an approximation to the linear model Y;;, = ¢ + ¢;; and,
similarly,

|EY1J_/’Z_/U“‘: IE(Yz]'— i1)|§Mij Wlth Milzo, i = 1, e, r,
which arises as an approximation to the linear model EY;; = g + 1, + &;;-

3. Linear estimation of a single parameter. Suppose that observations are
taken according to the model given by (2.1) and (2.2) for some specified functions
foo -+, fr and M = 0. The problem investigated here is the estimation of a
single linear combination L'8 = }1%_, [, 8,. The estimates considered are linear
in the observations; a comment on this restriction is made in Remark 5. The
identifiability assumption (2.3) is not needed here; see Remark 6 for further
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discussion about (2.3). In this section and the next ¢ is to be regarded as
known; the problem with unknown o¢? is discussed in Section 6.

Consider the mean square error of estimation of L'Sby Y7, ¢, Y, when f(x) =

ko B;fi(x) + r(x) and |r(x)] < M(x) for all x. One finds

B(Sr. ¢ Y — LBy
(3.1) = Bl a(Ye = ) + (Dt ef(x) — LBy
= 2ia &0 (x) + (Zior € Liao Bifi(x:) + L ar(x) — L'BY .

Now 3 is an arbitrary (k 4+ 1)-vector so (3.1) is unbounded unless
(3.2) racfi(x) =1, J< k.
As in the linear model L'§ is said to be estimable if (3.2) admits some solution
in the ¢;’s. Then, if L'g is estimable and the ¢, satisfy (3.2), (3.1) becomes

(3.3) 2 cizoz(xi) -+ (Z?=1 C; r(xi))z .

The convexity of (3.3) in the ¢,’s reduces consideration to estimates with ¢, =
¢(x;), i.e., to weights ¢; that depend only on the location of the observations.
Note also that the maximum of (3.3) as r(x) varies subject to |r(x)| < M(x) is
given by

(3.4) LTy (%)™ (x:) 4 (Xiy [e(x) | M(x))* -
Thus, in order to minimax the mean square error, one must find a function ¢
which minimizes (3.4) subject to the estimability conditions (3.2).

To facilitate the exposition, let & be the design (counting) measure, §({x}) =
#(x; = x) and write F(x) = (fy(x), - - -, fi(x)). As described above the problem
is to minimize

(3.5) J(c) = § *o* dE 4 (§ |c|M dE)?
subject to
(3.6) (cFdé = L.

THEOREM 1. Suppose L'( is estimable. Then there is a unique ¢® which minimizes
(3.5) subject to (3.6) and is given by

(3.7) €'(x) = o (X)(6'F(x) — AM(x))*" — (6'F(x) + AM(x))"]
where (b, 1) is any solution to
(3.8) § o2 [(b'F — AMY — (b'F 4+ AM)"|Fdé = L

(o (b'F — AM)* + (b'F + AM)" IM dé = 4.
(Note: (3.8) means c° satisfies (3.6) and § |"|M d§ = 4.)

ProOF. According to Theorem 3.9 of Whittle [11], there is a vector b of
Lagrange multipliers such that

(3.9) K(c) = J(c) — 2§ c- b'F df
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is minimized at ¢® where ¢® minimizes (3.5) under (3.6). Because K is strictly
convex, if ¢® minimizes K it does so uniquely and

(3.10) lim, ,, K+ ¢0) — K(©) 5 g

3
for any ¢. Calculating the limit in (3.10) one finds
(3.11) { [0 4 (§ |c°|M dE)(sgn <YM — b'Flo dé
+ (1M dg) § (1 — [sgn )| M dé 2 0
for any ¢.

If ¢® minimizes (3.5) subject to (3.6) and § |c¢'|M d§ = O then, from (3.11),
c(x) = o7%(x) - b'F(x) a.e. § and thus ¢° has the required form with 2 = 0.

If ¢® minimizes (3.5) subject to (3.6) and § |c°|M dé = 2 > 0, then (3.11)
implies that on the set {¢® = 0}, |§'F| < AM; on the set {c¢* > 0}, ¢® = ¢ }(d'F —
AM); on the set {c® < 0}, ¢®* = ¢7%b'F + AM). Thus c° has the required form.

If (b, 4) satisfies (3.8) and ¢ is defined by (3.7) then, since 4 = 0, (3.11) holds
for any ¢. It follows that K is minimized at ¢ which, by uniqueness and the
first sentence of the proof, is the solution. The theorem is proved.

RemARK 1. When 4 =0, ¢® gives the least squares estimate of L’8. This
necessarily occurs when M = 0 but it can also happen when M = 0, in which
case the least squares weight function c¢* must satisfy §|c*| Mdf = 0. The
latter event is not a common occurrence and is generally precluded in settings
like those of Examples 1, 2 and 3 of Section 2.

REMARK 2. It is useful to note that
§ ("Yo*ds = § (b'F — (sgn c®)AM) d§

=Lb— 2§|\Md§ =L'b — ¥
which implies that

(3.12) Jc®) = L'b .

In particular this means that if the problem is one of estimating 5, then L'b =
b, > 0.

REMARK 3. The qualitative difference between the estimate from the approxi-
mately linear model and the one from the ideal linear model is that the former
estimate dampens the influence of those observations drawn at levels “far” from
the linear structure, i.e., of observations at levels where M is large. In fact,
there is also a truncation effect in operation. To see this, consider the particu-
lar linear regression model cited at the end of Example 1 in Section 2. For the
ideal linear version the least squares weight function for estimating §, is linear
after multiplication by ¢?, and observations far from x = 0 are given the largest
weight. Inthe approximate model with M(x) = x?, the optimum weight function
(following multiplication by ¢?) consists of a positive quadratic loop of the form
(by + b,x — Ax*) covering the origin (since &, > 0 by the comment following
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(3.12)) with the possible addition of a negative quadratic loop (b, + b, x + 4x%)
on an interval disjoint from the first. Here observations far from x = 0 tend
to be discarded. The specifics depend, of course, on the measure ¢ as it gives
rise to values of b,, 6, and 1. The presence of the negative loop is assured if &
is concentrated on (0, co) since in this case one cannot satisfy § (6, + b, x —
Ax*)xo~¥x) dé = 0. The negative loop will usually not be present if 0 is in the
“middle” of the support of &.

REMARK 4. When M = 0 the optimum estimate of L’S is L’f where f is the
vector of optimum estimates of the individual 8,’s. This is usually false when
M= 0.

REMARK 5. The restriction to linear estimates remains an open issue. In the
case of the ideal model it is not a serious one (at least from the minimax view).
In the case of no error (i.e., ¢* = 0) the use of linear estimates is no restriction
(this result is credited to Smolyak by Michelli [10]). It is certain that when ¢
is nondegenerate normal there is something to be gained by use of nonlinear
estimates, but how much is unclear. Of course, any discussion which attempts
to handle both model robustness and distributional robustness would necessarily
entail dealing with nonlinear estimates.

REMARK 6. As noted at the beginning of this section (2.3) has not been used
in finding the optimum estimates. The function of (2.3) is to permit an une-
quivocal interpretation of the parameters and therefore of the estimates. One
can always imbed a given problem in a new one for which identifiability holds;
however, the new 27" may introduce fictitious treatments or locations and may
be far from realistic so that interpretation of the parameters will remain elusive.
The point of view taken here is that to each problem there is a natural &2~
(certainly this is true of the examples in Section 2) and that identifiability with
respect to this 77 is required to make clear the meaning of the parameters and
the estimates. (It may be noted here that for identification of aparticular para-
metric function L’8, (2.3) may be weakened to

(3.13) I35 B8, /;(x)] £ M(x) forall xes and
some [ implies L'8=0.

When (3.13) holds, one may have 8 # y so that |f(x) — 2%, B, f:(x)] £ M(x)
for all xe 527 and |f(x) — 25, 7,f4(x)] < M(x) for all xe 2 but then neces-
sarily L' = L'y.)

4. Several parameters. This section is devoted to a discussion of the simul-
taneous estimation of several linear functions of 8 under the model of (2.1)
and (2.2).

Suppose Aisan s x (k + 1) matrix (s < k + 1) and the problem is to estimate
AB using linear estimates. If C is an s-vector of functions on 2Z”the estimability
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restriction on the estimate 3 7., C(x;)Y; becomes, as in Section 3,
(4.1 {CFdé = A,
and the mean square error matrix is
(4.2) E(>r, C(x,)Y, — AB) (., C(x,)Y, — AB)Y
= CC?dé + (§ Crdé)(§ Crds) = I(C) + Iy(r, C),
where the notation V, B refers to variance and bias, respectively.

In order to compare matrices consider criteria @, i.e., functions ® on the
nonnegative definite s X s matrices satisfying ®(Z,) = ®(2,) whenever X, — Z,
is nonnegative definite, and the problem of minimizing
(4.3) Jo(C) = max, ., O, (C) 4 Iy(r, C))
subject to (4.1). This is not a tractable problem even in the case O(Z) = tr ()
where the problem is to minimize, subject to (4.1),

(4.4) J(C) = { C'Co* d§ + max,, ., (§ Crdéy(§ Crdf)

= { C'Co* dé + max,,_, ({ CMu d&y(§ CMu df) .
Even though J, is strictly convex in C the Lagrange multiplier technique em-
ployed in Theorem 1 does not help much because of the nature of the second
term on the right side of (4.4) under small perturbations of C.

Some useful bounds can be obtained which suggest that in a variety of cases
use of the single linear combination estimates of Section 3 will give satisfactory
results. To see this let L,’ denote the ath row of A and let v, = J(c,”) where
¢, is the solution of Theorem 1 for the problem with L replaced by L,. Then,
if ¢, denotes the ath coordinate of C and (4.1) holds,

JAC) = X ua 00 ds + (¢ lo? dé + (§ |c |M dEY
2 Zj#a S Cj20'2 dE + vzx
2 Zj#a /Uj* + va

where v,* is the variance of the least squares estimate of L/8. It follows that

(45) min Jtr(c) g maX, <.z, (Zj*a ’Uj* + ’Ua) .
Let C° = (¢’ ---,¢). Then
(4.6) Jo(C?) = Ziva-

If the ratio of the right sides of (4.5) and (4.6) is close to I then C° is a satis-
factory estimate. Of course the upper bound of (4.6) is made unnecessary by
a computation of J, (C?). '

Here is another criterion which can be discussed in a similar way. Let
®(X) = max eigenvalue of £ = max,,,_, @’Za. Then

Jue(C) = max,,, (1 (@/CYot dé + (§ |a'C|M ds))

and minimizing J, , subject to (4.1) again presents difficulties. A lower bound
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is obtained by writing
inf, J,5(C) Z max,,_, inf, [{ (¢C)a* ¢ + (§ |a'C|M d&)']

max,,,_, infrifrF’=a’A J(T)

v IV

= max v(a,A) = maX;<,<, ¥

a’a=1 a

where v(a’A) is the minimum value of J for the problem of Section 3 when L’
is replaced by a’A. A crude upper bound on J,;(C") is easily obtained from
(4.6) since J,, ;(C°) < J,(C°). This bound is useful if there is one 8, which domi-
nates in the sense that it is much more difficult to estimate than the others.

For criteria of the form ®(Z) = tr ZQ where Q is positive definite, the dis-
cussion with J,, is pertinent by changing A to QtA. Other criteria of the type
discussed here can also be dealt with in the same fashion but a detailed analysis
is yet to be done.

5. Computation of ¢°. In this section an algorithm for computing the opti-
mum solution of Theorem 1 is proposed and discussed. Although ¢* (= ¢°(x))
is assumed known here, the algorithm makes sense if an estimate of ¢* is used;
further discussion on this point is to be found in Section 6.

Some notation is required. To this end let S* and S- be disjoint subsets of
#2” and let $* = §* U §-, § = (S*, $7). Define the function M by My(x) =
M(x) if x e S*, My(x) = —M(x) if xe §-, and let H; be the (k 4+ 2) X (k + 2)
matrix
(5.1) H, = < (s FFo dé {or FMgo~? df > .

(oo MoFlo2ds (o MPo™2dé + |

If S§,* = {¢* > 0} and S, = {¢® < 0} then the equations (3.8) can be written as
(5.2) Hy(2) = (5)
with § = §,. On the other hand, if (b, 2) satisfies (5.2) and if ¢(x) is defined
by the right side of (3.7) for this (b, 2), then ¢ = ¢® provided {¢ > 0} = S+ and
{c < 0} = S§-. Thus to find ¢°, it suffices to find an § = ($*, $7) so that when
(5.2) is solved for (b, 1) and ¢ is formed as at (3.7), S* and S~ are the positive
and negative sets of ¢, respectively.

Based on the above observation, the following algorithm has proved useful.

Let S, = (S,*, §,7) be a starting pair of sets. If S, , is defined for p = 2, let
(b,, 4,) satisfy

(5.3) Hg _ (32) = (§)
and set
(5:4) ¢)(x) = 0(b,'F — 2, M)* — (b,F + 2, M)}

Sp+:{cp>0}’ Sp_:{cp<0}'
If S, =5, (ie., S, = 83, and S,- = §;_,), then stop because ¢, = ¢". If

S, #+ S,_;, continue through (5.3) to S, ;.
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There are two potential difficulties in reaching the optimum solution as
outlined: the equations (5.3) may not be solvable at some stage, and cycling
might occur. In the case of one regression function (k = 0) it is shown below
that for any starting pair S, for which {g, fM 0=* d§ > 0, the algorithm stops
with §, , = §,, some p. The corresponding result when k& > 0 (and with S,
subject only to minor restrictions) is not known, but in all examples thus far
attempted the solution has been found by the present method, and in very few
steps.

It has been pointed out to us by George Knafl that the algorithm just described
is closely related to the Newton-Raphson algorithm. This can be seen as follows:
let v = (), let ¢ be determined from (3.7) and take S*(v), S~(v) to be the sets
where ¢ > 0, ¢ < 0, respectively. Let g(v) = Hg,,vand A = (4). The problem
is to solve g(v) = A and, formally, the Newton-Raphson method produces
recursively

Vp = Vpy — (Jg(vp—l))_l(g(vp—l) - A)

where (Jg)~* is the inverse of the Jacobian of g. If S(v) does not change in a
neighborhood of v,_, (as will often happen), Jg(v,_,) = Hy,,_,, and then v, =
Hg, A asat (5.3). Jg does not exist everywhere and, even though directional
derivatives exist so that Jg may be defined and is perhaps invertible, it is not
clear how to produce a proof of convergence. Modifications of Newton-
Raphson can be employed to assure convergence in most cases; e.g., let v, =
v,_, — d(g(v,_,;) — A)fora positive constantd. These modifications are presently
being investigated.

Here is the proof for the case k = 0. Write f, = fand fix L = 1. Assume
first that the least squares estimate is not optimum, as can be easily checked,
so that the optimum (&,, 4,) satisfies b, > 0, 4, > 0. S, will denote the optimum
pair (S,*, S;7).

Take S, to be a starting pair with S;* = {b,f — 4, M > 0} and S~ = {b,f +
M <0}, b, >0, 2 >0. The function f is positive on S;* and negative on
S,”, insure that at least one of these sets is nonempty. Now solve (5.3) with
p = 2 to produce (b,, 4,): this may be done since |Hy | = Ysr fr07° dé > 0. It
can be easily argued from (5.3) that both b, and 2, are positive. Denote b,/4;
by o, i =0,1, ..., and write the second equation of (5.3) in the form

(5-5) $sp (0of — M)Mo™d + (s; (—0of — M)Mo=2d§ = 1.

Suppose first that p, < p,. If also p, < 9,, make the following replacements in
(5.5): ps by 05, S,* by S,* (D S§,*) and S;” by S~ (D S,7). But then

(5.6) s (of — M)Mo~2dé + (g (—pof — M)Mo~2dE > 1,

which contradicts the nature of S;, (b,, 4,), since optimality necessitates equality
in (5.6). Thus p, < p, implies p, = p,.
Suppose next that p, > p, > p, so, in particular, S;* < §;* and §,- C §,~.
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Then

(5.7) Sp (af — M)Mo~dE < St (pof — M)Mo~* dé
< S (0of — M)Mo~ d

because o, f — M < 0 on §;* — §;*. Similarly,
(5.8) s (—0uf — M)Mo~ d& < o (—pof — M)Mo~ d .
Adding (5.7) to (5.8) leads to the contradiction at (5.6). Thus p, < p, implies
0o = 03

Suppose finally that p, < p, < p,. The first equation at (5.3) with p = 2 can
be written as

SS{* (sz - M)fg_z dé + SSI_ (fpz + M)fU_2 dé = At

Now f is positive on S;* and negative on S,~ so it cannot be that both §," =
{b:f — 44M > 0} and S,” = {b,f + 2,M < 0} are empty, since i, > 0. Then
solve (5.3) with p =3 to get (b;, 4). An argument above gives p, = p, and
then, if o, > p,,

(5:9) Sof (0f — MYMa=d& > S5 (o, f — M)Mo~ dé
> (gt (ouf — M)Mo~ dé .

In the same way,

(5100 {g (—puf — M)Mo2dE > (o= (—pof — M)Ma= d .

Add (5.9) to (5.10) to get a contradiction. Thus when p, < o, < oy, 05 < p,.

The above facts together show that b,/2, = b,/4, = ... = b,/4,. In terms of
the pairs §;, this means S,* 2§, 2 .- 2 8%, 85, 252 --- 2 S,”. Since
only finitely many sets are available, S, = S, for some p. The special starting
pairs S, used above are not required for if §sr fMg 07dE > 0, (5.3) can be solved
for (b,, 4,) and, in fact, 5, > 0, 1, > 0.

A convenient starting place for the algorithm is §;* = {¢* > 0} and §,- =
{e,* < 0}, where c* is the least squares weight function. This choice is efficient
if M is small. If M is not small, one can proceed by solving the problem for
¢M with ¢ small and then using ¢(¢) (the optimum solution for eM) to determine
a starting pair for the problem with 2¢M, etc. This procedure has been carried
out and found to be efficient, because the number of iterations required to solve
an auxiliary problem is usually 1 or 2, even if ¢ is moderate.

6. Examples; unknown ¢*. This section covers some specifics of the general
examples given in Section 2. The results are suggestive of what might be ex-
pected in other cases. In Examples 1 — 6 below, the calculations are done as
if ¢* is known; the final comment of the section deals with the question of
unknown o

ExaMpLE 1. Consider the model of the type discussed in Example 4 of Section
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2 with

Y, =p+r+0¢&;; j=1.n,i=12,
and |r;] £ M,. Assume M, < M,. The problem is to estimate x and here F =
fo= 1. If v, = 6//n,, v, = 0,/n, then this model can be reduced to

Yi.:ﬂ—‘l_ri'*'/viiéi i:1’2>
&£ ={1,2}. Since L =1and L'b > 0 (see (3.12)) it must be that 4 > 0 and,
consequently, ¢%(i) = (b — AM;)*/v,—the negative part never appears. Because
M, £ M, the optimum S* is either {1} or {1, 2}. In order for S* to be {1} it
must be, according to the discussion at the beginning of this section, that

1 M o\

v v
Gro={a e

v,

satisfies &6 — AM, > 0 and 5 — AM, < 0. Since b, — 1 are the same positive
multiple of (M*/v;) + 1 and — M, /v, respectively, the first condition 4 — M, >
0 is assured, while & — M, < 0 if and only if
(6.1) M L MM

,Ul vl
Thus if (6.1) holds the optimum estimate of x is determined by (1) = 1,
c’(2) = 0, i.e., the estimate is Y,,. If (6.1) does not hold then S* = {1, 2} and

1.1 MM
H. — v, (21 v, Yy
VAN VAR VAN VA
/Ul /UZ /UI v2
One then calculates
M 1
WM e T
co(l) . 1 1 1 1v2 1 ,
e (M, — My
,vl ,U2 12
oM, 1
(M1 - Mz) v ,vl 'U_
Co(z) — 1 1 1 1¥2 2
L (M, — My
v, v, VU,

Note that if M, = 0 (which is required for identifiability) the result implies that
information from the second population is always useful, but to a small extent
if M, is large.

ExAMPLE 2. In the context of Example 1 of Section 2 take k =0, f, = 1,
M(x) = |x|, and d arbitrary. Then ¢ = 67%(b — Z|x|)*.since L = | impliesb > 0
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ahd then no negative loop appears. It follows that the observations which are
used lie in some sphere around 0. The calculation of b, 2 is easy and assured by
the algorithm of Section 5.

ExampLE 3. Consider the case of approximately linear regression, i.e., the
setup of Example 1 of Section 2 with k = 1, and take M(x) = m|x?. Let L' =
(1,0, ---,0). Then the ¢®* which is optimum for estimating j, is given by

S =07b + 276, x19 — Am|x[)*t
where x'¥ is the jth coordinate of x, and ¢°~ is obtained by changing the sign
of the coefficient of |x|* in ¢+ and taking the negative part. Thus the support
of ¢™* is the set of all points x in the support of ¢ which lie in a ball B* (say)
and the negative part of ¢® has support on a ball whose center is diametrically
opposite to that of B* but whose radius is smaller (or 0).

For the specific situations given below the calculations were done using the
algorithm of Section 5. In all cases it is only necessary to describe c°*.

ExampLE 3(a). Letd =1, m = 4, ¢ = .525, n = 21, and let the x,’s be uni-
formly spaced on [0, 3] including the endpoints. For estimating j5,,
i = (413 — .555x — .173x%)*, J(ep) = 217
If 2 is desired, note that ¢=2Am = .173. For estimating j3,,

¢t = (—.549 4 1.34x — .605x%)*,  J(cb) = .704 .

The weight functions ¢; and ¢; differ markedly from their least squares versions.
In particular, the positive loop of ¢j is over [0, .6] while the negative loop
covers [1.20, 1.95]. Here the truncation effect is manifest: observations at x >
2.10 are not used. For ¢} the situation is similar: it is negative on [0, .3] and
positive on [.6, 1.65].

ExaMPLE 3(b). Let d =1, m =1, ¢* = .525, n = 21, and let the x,’s be
uniformly spaced on [ —1, 2] including the endpoints. Then
Cor = (-109 — .00022x — .102x*)*, J(c,) = 057,
cgf = (—.0037 + .454x — .354x%)*, J(eg,) = .239.
In this case ¢j; = 0, which typically happens when 0 lies near the middle of
the support of §&. The negative loop of ¢; covers the x;’s in [—1, —.1] while

the positive loop covers [.05, 1.25]. The marked reduction in mean square error
from that of 3(a) is due to the change in design.

ExAMPLE 4. Consider the nearly quadratic model with k = 2, f;(x) = x%, j =
0,1,2, M(x) = |x*/6, 0 = .525, n = 21, and the x,’s equally spaced in [ -1, 2].
Then

cgr = (-120 4 .0271x — .107x* — .0279[x|})*, J(c},) = -063,
gy = (.0215 4 .185x — .0771x* — .414[x|)*, J(cg,) = .097.
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Here ¢} has a large positive loop covering [ —.85, .9] and a small negative loop
over [1.7, 2]. Similarly, ¢ has one positive and one negative loop. In other
cases, there is the possibility of two positive or two negative loops. In fact,
leaving other matters the same, the first possibility occurs for estimating 8, when
the design is on [0, 3] and M(x) = |x[*/2; two negative loops show up when the
design is on [ —1, 2] and M(x) = |x|%/2.

It is interesting to compare the computations in 3(b) with the present ones.
Real differences in the models do not appear in comparing the c}’s: these
are fairly close to one another, with a small difference in mean square error.
However, the effect of changing models on the estimation of 8, is noticeable:
there is a substantial drop in mean square error. It appears that an approxi-
mately linear model may be adequate for estimating f(0), but that one requires
at least an approximately quadratic model to get satisfactory estimates of f’(0).

ExaMpLE 5. Consider the following specific case of Example 2, Section 2.
Letk = 1, fi(x) = 1 — x, fi(x) = x, M(x) = min (¥*, (1 — x)?)/2, 6* = .525, and
suppose there are 21 observations at equally spaced points of [0, 3]. Then

o = (.282(1 — x) + .054x — .262M(x))*, J(cy,) = 282,
gt = (-06(1 — x) 4 .09x — 178 M(x))*, J(c5,) = -09.

Here ¢} is positive on [0, 2.10] and is never negative, while ¢} is positive on
[0, 1, 2] and negative on [1.35, 2.4].

ExaMPLE 6. The computation of the bounds (4.5) and (4.6) for the simul-
taneous estimation of 3, and 8, in 3, 4 and 5 produces the following table.

TABLE 1
Example Lower Bound ((4.5)) Upper Bound ((4.6))
3a) 797 .921
3(b) .270 .296
4 .145 .160
5 342 372

Unknown ¢°*. When ¢* is unknown it has to be estimated. An appropriate
procedure in 1, for example, is to estimate ¢, by the sample variance in the ith
population, i = 1, 2. In regression problems, one would normally try an adap-
tive or iterative technique. One can take a starting value of o2, use it to estimate
{f(x,)} by means of the algorithm of Section 5, where M at each x; can be con-
veniently taken to be M(|x — x;|). The resulting estimates {f"(x;)} can then be
used to estimate ¢* by ¢;?, so that the process can be iterated with ¢, as a new
starting value (once should be enough). This has been done for ¢* constant and
found to be adequate.

When o is not constant, a number of methods could be used in estimating it.
Fortunately, the effect of moderate changes in ¢ on ¢® appears to be small.
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When estimating all f{x;)’s, a good starting place for computing the estimate of
f(x:,) is provided by the solution to the problem of estimating f(x;) where x, is
close to x;,,. Then the number of iterations is small and the entire procedure
is not costly unless n is large. Further work is required in order to be more
definitive about this problem.

7. Miscellaneous remarks.

Designs. With a design element present, the issue of inaccuracies in ideal
regression models has been raised by Box and Draper [4], and has received
attention in the work of Karson, Manson and Hader [7] and Kiefer [8]. The
types of inaccuracy investigated in [7] and [8] do not, however, bear much re-
semblance to the kind allowed by the approximately linear models discussed
here. A design problem in the setting of (2.1) and (2.2) has been explored by
Marcus and Sacks [9].

Asymptotic behavior. In regression models of the type described in Example
1 of Section 2 it is possible to obtain the asymptotic behavior of J(c°) as the
number of observations gets large, provided the sequence of design measures
{£,} behaves regularly enough. For example, consider the case of approximately
vth degree polynomial regression in dimension 1 with M(x) = |x]**!, %" an
interval in R'. If P, = (1/n)§, is such that lim, . ¥~ sup, |P,(:) — P(r)] = 0,
and if P has a density p which is continuous and positive at 0, then for esti-
mating the coefficient 3, of the constant term,

(7.1) Jch ) = O(n- v iy

In fact, the exact limiting behavior can be found: it depends on p(0) and
solutions to continuous versions of the equations at (3.8). In dimension d, the
corresponding result is

(7'2) J(cgom) — O(n—<2y+2>/<2y+2+d>) .

Estimation of the other coefficient can be similarly handled. For example, in
estimating the coefficient 5, of x in the context of (7.1), one finds

(7.3) J(ch ) = O(n2wantv)

Thus ford = 1, v = 1, J(cj ) = O(n~*)and J(c} ) = O(n?); ford = 1,v = 2,
J(ch, ) = O(n™%), J(cj, ) = O(n~*). This gives the asymptotic counterpart to the
numbers obtained in Section 6, 3(b) and 4.
The details of (7.1) to (7.3) are a bit messy and so are not presented here.
In the context of Example 4 of Section 2 it would be useful to know the
different types of asymptotic behavior which can occur when, for instance, the
number of cells in a two-way layout becomes large. This is as yet unexplored.

Other approximate models. In regression models especially, it would seem
natural to require, instead of (2.2), that f(x) — 37 8, f;(x) = r(x) with r a smooth
function. For example, in the context of Example 1 of Section 2 with d = 1,
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Z¢7=10, 1] and v = 1, the requirement that f*’ (and therefore #"’) be continuous
with | f”(x) < |1 givesrise to a class of f’s which are included in those of (2.1),
(2.2) when M(x) = x*/2. This kind of modification leads to related problems
which are, unfortunately, quite complicated. One such problem has been
studied by Berkovitz and Pollard [1], [2]. The ease and generality of solution
for the models of (2.1) and (2.2), and the fact that there is some numerical
evidence indicating very little gain in going to the smoother models, suggest
that the present setup might prove more useful in practice.
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