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Abstract- The authors develop a self-contained theory for 
linear estimation in Krein spaces. The derivation is based on 
simple concepts such as projections and matrix factorizations 
and leads to an interesting connection between Krein space 
projection and the recursive computation of the stationary points 
of certain second-order (or quadratic) forms. The authors use 
the innovations process to obtain a general recursive linear 
estimation algorithm. When specialized to a state-space structure, 
the algorithm yields a Krein space generalization of the celebrated 
Kalman filter with applications in several areas such zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas H w -  
filtering and control, game problems, risk sensitive control, and 
adaptive filtering. 

I. INTRODUCTION 

N some recent explorations, we have found that H" esti- 

mation and control problems and several related problems 

(risk-sensitive estimation and control, finite memory adaptive 

filtering, stochastic interpretation of the KYP lemma, and 
others) can be studied in a simple and unified way by relating 
them to Kalman filtering problems, not in the usual (stochastic) 
Hilbert space, but in a special kind of indefinite metric space 
known as a Krein space (see, e.g., [9], [lo]). Although the 
two types of spaces share many characteristics, they differ in 
special ways that turn out to mark the differences between the 

linear-quadratic-Gaussian (LQG) or H 2  theories and the more 

recent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAH" theories. The connections with the conventional 

Kalman filter theory will allow several of the newer numerical 

algorithms, developed over the last three decades, to be applied 

to the H" theories [22]. 
In this paper the authors develop a self-contained theory for 

linear estimation in Krein spaces. The ensuing theory is richer 
than that of the conventional Hilbert space case which is why 
it yields a unified approach to the above mentioned problems. 
Applications will follow in later papers. 

The remainder of the paper is organized as follows. We 
introduce Krein spaces in Section I1 and define projections 

in Krein spaces in Section 111. Contrary to the Hilbert space 
case where projections always exist and are unique, the Krein- 
space projection exists and is unique if, and only if, a certain 
Gramian matrix is nonsingular. In Section IV, we first remark 
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that while quadratic forms in Hilbert space always have 

minima (or maxima), in Krein spaces one can assert only that 

they will always have stationary points. Further conditions will 

have to be met for these to be minima or maxima. We explore 

this by first considering the problem of finding a vector k to 

stationarize the quadratic form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(z  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- k*y, z - k*y), where (., .) 
is an indefinite inner product, * denotes conjugate transpose, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
y is a collection of vectors in a Krein space (which we can 

regard as generalized random variables), and z is a vector 
outside the linear space spanned by the y. If the Gramian 
matrix R, = (y,y) is nonsingular, then there is a unique 

stationary point kGy, given by the projection of z onto the 

linear space spanned by the y; the stationary point will be 

a minimum if, and only if, R, is strictly positive definite as 

well. In a Hilbert space, the nonsingularity of R, and its strict 

positive definiteness are equivalent properties, but this is not 

true with y in a Krein space. 

Now in the Hilbert space theory it is well known (moti- 
vated by a Bayesian approach to the problem) that a certain 
deterministic quadratic form J (z ,y) ,  where now z and y 

are elements of the usual Euclidean vector space, is also 

minimized by kGy with exactly the same k as before. In the 

Krein-space case, kgy also yields a stationary point of the 

corresponding deterministic quadratic form, but now this point 

will be a minimum if, and only if, a different condition, not 

4 > 0, but R, - R,,R;lR,, > 0, is satisfied. In Hilbert 

space, unlike Krein space, the two conditions for a minimum 
hold simultaneously (see Corollary 3 in Section IV). This 

simple distinction turns out to be crucial in understanding the 

difference between H 2  and H" estimation, as we shall show 
in detail in Part I1 of this series of papers. 

In this first part, we continue with the general theory by 

exploring the consequences of assuming that { z ,  y} are based 

on some underlying state-space model. The major ones are 

a reduction in computational effort, O(Nn3)  versus O(N3) ,  
where N is the number of observations and n is the number 

of states and the possibility of recursive solutions. In fact, 

it will be seen that the innovations-based derivation of the 

Hilbert space-Kalman filter extends to Krein spaces, except 
that now the Riccati variable P,, and the innovations Gramian 
Re+ are not necessarily positive (semi)definite. The Krein 
space-Kalman filter continues to have the interpretation of 

performing the triangular factorization of the Gramian matrix 

of the observations, R,; this reduces the test for R, > 0 to 

recursively checking that the Re,% > 0. 

Similar results are expected for the corresponding indefinite 
quadratic form. While global expressions for the station- 

ary point of such quadratic forms and of the minimization 
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condition were readily obtained, as previously mentioned, 

recursive versions are not easy to obtain. Dynamic pro- 

gramming arguments are the ones usually invoked, and they 

turn out to be algebraically more complex than the simple 

innovations (Gram-Schmidt orthogonalization) ideas available 

in the stochastic (Krein space) case. 

Briefly, given a possibly indefinite quadratic form, our 

approach is to associate with it (by inspection) a Krein-space 

model whose stationary point will have the same gain IC; as for 

the deterministic problem. The Kalman filter (KF) recursions 

can now be invoked and give a recursive algorithm for the 

stationary point of the deterministic quadratic form; moreover, 
the condition for a minimum can also be expressed in terms of 

quantities easily related to the basic Riccati equations of the 
Kalman filter. These results are developed in Sections V and 

VI, with Theorems 5 and 6 being the major results. 

While it is possible to pursue many of the results of this 

paper in greater depth, the development here is sufficient to 

solve several problems of interest in estimation theory. In the 

companion paper [l], we shall apply these results to H" 
and risk-sensitive estimation and to finite memory adaptive 

filtering. In a future paper we shall study various dualities and 
apply them to obtain dual (or so-called complementary) state- 
space models and to solve the H 2 ,  H", and risk-sensitive 

control problems. We may mention that using these results 
we have also been able to develop the (possibly) numeri- 

cally more attractive square root arrays and Chandrasekhar 

recursions for H" problems [22], to study robust adaptive 

filtering [23], to obtain a stochastic interpretation of the 

Kalman-Yacubovich-Popov lemma, and to study convergence 

issues and obtain steady-state results. The point is that the 
many years of experience and intuition gained from the LQG 

or H 2  theory can be used as a guide to the corresponding 

H" results. 

A. Notation 

A remark on the notation used in the paper. Elements in 

a Krein space are denoted by bold face letters, and elements 

in the Euclidean space of complex numbers are denoted by 

normal letters. Whenever the Krein-space elements and the 

Euclidean space elements satisfy the same set of constraints, 
we shall denote them by the same letters with the former ones 
being bold and the latter ones being normal. (This convention 

is similar to the one used in probability theory, where random 
variables are denoted by bold face letters and their assumed 
values are denoted by normal letters.) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

11. ON KREIN SPACES 

We briefly introduce the definitions and basic properties of 
Krein spaces, focusing on those results that we shall need later. 

Detailed expositions can be found in books [9]-[ll]. Most 
readers will be familiar with finite-dimensional (often called 
Euclidean) and infinite-dimensional Hilbert spaces. Finite- 
dimensional (often called Minkowski) and infinite-dimensional 
Krein spaces share many of the properties Hilbert spaces but 
differ in some important ways that we shall emphasize in the 

following. 

Definition 1 (Krein Spaces): An abstract vector space 

{ K ,  (., .)} that satisfies the following requirements is called 

a Krein Space: 

i) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAK is a linear space over C, the complex numbers. 

ii) There exists a bilinear form (., .) E C on IC such that 

b) (ax + by,z) = a(x,z) + b(y,z) 

for any x,y,z E K ,  a,  b E C, and where * denotes 

complex conjugation. 

iii) The vector space K: admits a direct orthogonal sum 

decomposition 

a) ( Y , 4  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb y ) * .  

I C = K + $ K -  

such that { K , ,  (.,.)} and {IC-, -(.,.)} are Hilbert 

spaces, and 

(X,Y) = 0 

for any x E IC+ and y E IC-. 

Remarks: 
1) Recall that Hilbert spaces satisfy not only i), ii)-a), and 

ii)-b) above, but also the requirement that 

(x,z) > 0 when z # 0. 

2) The fundamental decomposition of K defines two pro- 

jection operators P+ and P- such that 

P + K = K +  and P-K=K- .  

Therefore, for every x E IC we can write 

x = P + x + P - x = x + + z ~ , x *  € IC* .  

Note that for every x E IC+, we have (z,z) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0, but 
the converse is not true: (2, x) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 0 does not necessarily 

imply that x E IC+. 
3) A vector x E K will be said to be positive if (z, x) > 0, 

neutral if (x,x) = 0, or negative if (z,x) < 0. Corre- 

spondingly, a subspace M c IC can be positive, neutral, 

or negative, if all its elements are so, respectively. 

We now focus on linear subspaces of K .  We shall define 
.C{yo, . . . , yN} as the linear subspace of K spanned by the 

elements yo, yl, . . . , yN in IC. The Gramian of the collection 
of elements {yo, . . . , yN} is defined as the ( N  + 1) x ( N  + 1) 

matrix 

The reflexivity property, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y,,yj) = (y3,yi)*, shows that the 

Gramian is a Hermitian matrix. 
It is useful to introduce some matrix notation here. We shall 

write the column vector of the {y,} as 

Y = COl{YO, Y1, . . . 7 Y N l  

and denote the above Gramian of the {y,} as 
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(A useful mnemonic device for recalling this is to think of the 

{yo, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , yN} as “random variables” and their Gramian as the 
“covariance matrix” 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE( .) denotes “expectation.” We use the quotation marks 

because in our context, the covariance matrix will generally 
be indefinite, so we are dealing with some kind of generalized 
“random variables.” We do not pursue this interpretation here 
since our aim is only to provide readers with a convenient 

device for interpreting the shorthand notation.) 

Also, if we have two sets of elements {zo,...,z~} and 

{yo, . . . , yN} we shall write 

z = co1{zo,z~, . . . zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,ZM}  

and 

Y = cO1{YO, Y l ,  . . . , YN> 

and introduce the (A4 + 1) x ( N  + 1) cross-Gramian matrix 

Note the property 

R,, = Rt,. 

We now proceed with a simple result. 
Lemma 1 (Positive and Negative Linear Subspaces): 

Suppose yo, ’ . . , yN are linearly independent elements of 
IC. Then C{yo, . . . , yN} is a “positive” (negative) subspace 

of IC if, and only if 

R, > O(R, < 0). 

Proofi Since the y2 are linearly independent, for any zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz # 
0 E C{yo, . . . , yN} there exists a unique k E CN+’ such that 
z = k*y. NOW 

(2,Z) = k*(y,y)k = k*R& 

so that (z, z )  > 0 for all z E C{yo, . . . , yN}, if, and only if, 

Note that any linear subspace whose Gramian has mixed 
inertia (both positive and negative eigenvalues) will have 

elements in both the positive and negative subspaces. 

R, > 0. The proof for R, < 0 is similar. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
A. A Geometric Interpretation 

Indefinite metric spaces were perhaps first introduced into 
the solution of physical problems via the finite-dimensional 
Minkowski spaces of special relativity [12], and some geo- 
metric insight may be gained by considering the special 
three-dimensional Minkowski space of Fig. 1, defined by the 

inner product 

(‘U1,VZ) = ZlZ2 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAYlY2 - t l t 2  

when 

U1 = (Zl,Yl,tl),  ‘U2 = (22,Y2,t2) and G,Yi,t, E c. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1 

NeptiLe subspacc 

.. . f-- Neutral cone 

Fig. 1 .  Three-dimensional Minkowski space. 

The (indefinite) squared norm of each vector ‘U = (x ,y, t )  is 
equal to 

(‘u,V) = LC2 + y2 - t2. 

In this case, we can take IC+ to be the LC - y plane and 

IC- as the t-axis. The neutral subspace is given by the cone, 

x2 + y2 - t2 = 0, with points inside the cone belonging to the 
negative subspace, x2 + y2 - t2 < 0, and points outside the 

cone conesponding to the positive subspace, x2 + y2 - t2 > 0. 
Moreover, any plane passing through the origin but lying 

outside the neutral cone will have positive definite Gramian, 
and any line passing through the origin and inside the neutral 
cone will have negative definite Gramian. Also, any plane 
passing through the origin that intersects the neutral cone will 

have Gramian with mixed inertia, and any plane tangent to the 

cone will have singular Gramian. 

Two key differences between Krein spaces and Hilbert 
spaces are the existence of neutral and isotropic vectors. As 
mentioned earlier, a neutral vector is a nonzero vector that has 
zero length; an isotropic vector is a nonzero vector lying in 

a linear subspace of IC that is orthogonal to every element in 
that linear subspace. There are obviously no such vectors in 
Euclidean or Hilbert spaces. In the Minkowski space described 
above, [l 1 a] is a neutral vector, and if one considers the 

linear subspace L{[1 1 a], [& 0 l]}, then [l 1 fi] is also 

an isotropic vector in this linear subspace. 

m. PROJECTIONS IN mEIN SPACES 

An important notion in both Hilbert and Krein spaces is that 

of the projection onto a subspace. 
Definition 2 (Projections): Given the element z in IC and 

the elements {yo, yl, . . . , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAyN} also in IC, we define 2 to be 
the projection of z onto C{yo, yl, . . . , yN} if 

z=5+2 (2) 

where i E C{y,, . . . , yN} and 2 satisfies the orthogonality 
condition 

2 L L { Y 0 , ” ’ , Y N }  

or equivalently, (2, yi) = 0 for i = 0,1, . . . , N 
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In Hilbert space, projections always exist and are unique. In 

Krein space, however, this is not always the case. Indeed we 

have the following result, where for simplicity we shall write 

Lemma 2 (Existence and Uniqueness of Projections): In the 

Hilbert space setting, projections always exist and are unique. 

I n  the Krein-space setting, however: 

a) If the Gramian matrix zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(y,y) is nonsingular, then 

the projection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz onto C(y} exists, is unique, and is 

given by 

(3)  

C(Y} 2 L{YO,. . . , YN}. 

= (z, d(Y, Y)-lY = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARZ,R,lY. 

b) If the Gramian matrix R, = (y,y) is singular, then 

i) If R(R,,) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC R(R,) (where R(A)  denotes the 
column range space of the matrix A), the projection 

i exists but is nonunique. In fact, i = k: y, where ko 
is "any" solution to the linear matrix equation 

R,ko = R,,. (4) 

ii) If R(R,,) R(R,), the projection i does not exist. 

Prooj Suppose i is a projection of z onto the desired space. 

By (2 ) ,  we can write 

z = k,*y+H 

for some ko E c ( ~ + ~ ) .  Since (2 ,~)  = o 

R,, = (z,y) = k,*(y,y) + 0 = k:R,. (5 )  

If R, is nonsingular, then the solution for k in (5 )  is unique 
and the projection is given by (3). If R, is singular, two things 

may happen: either R(R,,) R(R,), in which case (5 )  will 

have a nonunique solution (since any k ;  in the left null space 
of R, can be added to IC:), or R(R,,) R(R,), in which 

case the projection does not exist since a solution to (5)  does 

not exist. 

In Hilbert spaces the projection always exists because it 

is always true that R(R,,) C R(R,), or equivalently, that 

N(R,) C N(R,,) where N ( A )  is the right nullspace of the 

matrix A. To show this, suppose that 1 E N(R,). Then 

R,l = 0 + l*R,l = 0 

* l*(y, y)l = (l*y, l*y) = 0 

* l*y = 0 

where the last equality follows from the fact that in Hilbert 

spaces ( 2 , ~ )  = 0 * z = 0. We now readily conclude 

that (z,l*y) = R,,l = 0, i.e., 1 E N(R,,) and hence 

N(R,) C N(R,,). Therefore a solution to (5)  (and hence 
a projection) always exists in Hilbert spaces. 

In Hilbert spaces the projection is also unique because if kl 
and IC2 are two different solutions to (5 ) ,  then (?GI - kz)*Ry = 

0. But the above argument shows that we must then have 

(kl - ka)y = 0. Hence the projection 

2 = IC;y = k;y 

is unique. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

The proof of the above lemma shows that in Hilbert 

spaces the singularity of R, implies that the (y,} are linearly 

dependent, i.e., 

det(R,) = 0 * k*y = 0 for some vector k E CN+l. 

In the Krein-space setting, all we can deduce from the sin- 

gularity of R, is that there exists a linear combination of the 

(y,} that is orthogonal to every vector in C(yo, . . + , yN}, i.e., 

that C(yo, . . . , yN} contains an isotropic vector. This follows 

by noting that for any complex matrix k1, and for any k in 

the null space of R,, we have 

k:R,k = (kTy, k*y) = 0 

which shows that the linear combination k*y is orthogonal to 

k;y, for every ICl, i.e., k*y is an isotropic vector in L{y}. 
Standing Assumption: Since existence and uniqueness will 

be important for all our future results, we shall make the 

standing assumption that the Gramian 

R, is nonsingular. 

A. Vector-Valued Projections 

Consider the n-vector z = col(z1, . . .  ,zn} composed of 

elements z, E IC, and the set (yO,...,yN}, where y3 E IC; 
project each element z, onto L(yo,...,y,} to obtain iz. 
We define i = c o l ( i l , . . .  ,in} as the projection of z onto 

L(yo,...,yN} . (Strictly speaking, we should call i E IC" 
the projection of z E IC" onto Ln(yo,...,yN} , since it 

is an element of Ln{yO,...,yN} and not L{yo,...,yN} . 
For simplicity, however, we shall generally use the looser 

terminology.) 
It is easy to see that the results on the existence and 

uniqueness of projections in Lemma 2 continue to hold in 

the vector case as well. 

In this connection, it will be useful to introduce a slight 

generalization of the definition of Krein spaces that was given 

in Section 11. There, in Definition 1, we mentioned that IC 
should be linear over the field of complex numbers, C. It turns 

out, however, that we can replace C with any ring S. In other 

words, the first two axioms for Krein spaces can be replaced 

by : 

i) 
ii) 

iii) 

K is a linear space over the ring S. 
There exists a bilinear form (., .) E S on K such that 

b) 

for any q y , x  E IC and a , b  E S,  and where the 

operation * depends on the ring S. 
When the inner product (., .) E S is positive, (IC, (., .)} 
is referred to as a module. Thus the third axiom for 

Krein spaces can be replaced by iii). 
The vector space IC admits a direct orthogonal sum 
decomposition 

a) ( Y , 4  = (Z,Y)* 
(ax + by,z) = a(z,z) + b(y,z) 

K = K, e3 IC- 

such that {IC+, (., .)} and {IC-, -(., .)} are modules, 

and (2, y) = 0 for any 3: E IC+ and y E IC-. 
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The most important case for us is when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS is a ring of 

complex matrices, and the operation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA* denotes Hermitian 

transpose. 
The point of this generalization is that we can now directly 

define the projection of a vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIC" onto Cn{yo,. . . , yN} 
as an element 2 E Gn{yo, . . . , yN}, such that 

2 = k;;y, IC;; E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcnxN 
where k is such that 

A 
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 (2 - kGy, y) = Rzy - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk;R, 

or 

k; R, = Rzy . 

Finally, let us remark that to avoid additional notational 

burden, we shall often refrain from writing ICn and shall 
simply use the notation K: for any Krein space. The ring S 
over which the Krein space is defined will be obvious from 

the context. 

IV. PROJECTIONS AND QUADRATIC FORMS 

In Hilbert space, projections extremize (minimize) certain 

quadratic forms, as we shall briefly first describe. In Krein 
spaces, we can in general only assert that projections station- 

arize such quadratic forms; further conditions need to be met 
for the stationary points to be extrema (minima). This will be 
elaborated in Section IV-A, in the context of (what we shall 
call) a stochastic minimization problem. In Section IV-B, we 

shall study a closely related quadratic form arising in what 

we shall call a partially equivalent deterministic minimization 

problem. 

A. Stochastic Minimization Problems in 
Hilbert and Krein Spaces 

Consider a collection of elements { y o , . . - , y N }  in a 
Krein space IC with indefinite inner product (., .), Let z = 
col{zo, . . . , Z M }  be some column vector of elements in IC, and 

consider an arbitrary linear combination of {yo, . . . , yN}, say zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k*y, where k* E C(M+l)X(N+l) and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy = col{yo,. . . , y N } .  A 

natural object to study is the error Gramian 

P ( k )  = (z  - k*y,z - k*y). (6) 

To motivate the subsequent discussion, let us first assume 
that the {y,} and { z j }  belong to a Hilbert space of zero-mean 
random variables and that their variance and cross-variances 
are known. In this case the inner product is ( z ~ ,  y j ) z  = Ez,y,T 
(where E( . )  denotes expectation), and P ( k )  is simply the 
mean-square-error (or error variance) matrix in estimating z 
using k*y, viz. 

P ( k )  = E(" - k*y)(z - k*y)* = 11.2 - k*yll&. 

It is well known that the linear least-mean-square estimate, 

which minimizes P(k ) ,  is given by the projection of z on L{y} 

2 = k,*y 

where 

k; = Ezy*[Eyy*]-' = RzyR$'. 

The simple proof will be instructive. Thus note that 

P ( k )  = llz - k*Yll& 

= llz - 2 + f - k*yl/& 

= llz - 211; + 112 - k*& 

(z  - i , f  - k*y)z = 0. 

P(k)  2 P(ko) 

since by the definition of 2, it holds that 

Clearly, since f = k,*y 

with equality achieved only when 5 = ko. 

are in a Krein space, since then we could have 

This argument breaks down, however, when the elements 

IJi - k*y1I2 = Ilk,*y - k*y/I2 = 0, even if ko # k .  

A11 we can assert is that 

k;y - k*y = an isotropic vector in the linear 

subspace spanned by {yo, . . . , yN}. 

Moreover, since Ilkty- k*y1I2 could be negative, it is not true 
that P(k )  will be minimized by choosing k = ko. So a closer 

study is necessary. 

We shall start with a definition. 

DeJinition 3 (Stationary Point): The matrix ko E d N + l )  

x ( M  + 1) is said to be a stationary point of an (Ad + 1) x 
( M  + 1) matrix quadratic form in k ,  say 

P ( k )  = A + B k  + k*B* + k*Ck 

iff koa is a stationary point of the "scalar" quadratic form 
a*P(k)a for all complex column vectors a E C M + l ,  i.e., iff 

aa; f )a lkxk0 = 0. 

Now we can prove the following. 

Lemma 3 (Condition for Minimum): A stationary point of 
P ( k )  is a minimum iff for all a E CM+l  

Moreover, it is a unique minimum iff 

(7) 
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Theorem 1 {Stationary Point of the Error Gramian): When 

R, is nonsingular, ko, the unique coefficient matrix in the 
projection of z onto L{y} zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= kiy,  ko = RG'R,, 

yields the unique stationary point of the error Gramian 

A P ( k )  = (2 - k*y,z - k*y) 

= [ I  - k * l [ 2 ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAnd,"] [_ Ik ]  (12) 

Fig. 2. 
(z  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk*y , z  - k*y) over all k*y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAE L { y } .  

The projection 2 = k:y stationarizes the error Gramian P ( k )  = 
over all k E C ( N S 1 ) x ( M + l ) .  Moreover, the value of P ( k )  at 
the stationary point is given by 

Proofi Writing the Taylor series expansion of u*P(k)u 
around the stationary point ko yields (since u*P(k)u is 

quadratic in ka),  as shown at the bottom of the previous 

P(k0)  = R, - R,,R,'R,,. 

Proof: The claims follow easily from (11) by differentia- 
page, or equivalently tion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Further differentiation and use of Lemma 3 yields the 

Corollary 1 {Condition for a Minimum): In Theorem 1, ko 
following result. 

is a unique minimum iff 

u*P(k)u - u*P(ko)u 

* ( k  - k0)u. 

Using the above expression, we see that ko is a minimum, 

i.e., u*P(k)u - u*P(ko)u 2 0 for all k # ko iff (7) 
is satisfied. Moreover, ko will be a unique minimum, i.e., 

u*P(k)u - u*P(ko)u > 0 for all k # ko iff (8) is satisfied. 

Let us now return to the error Gramian P ( k )  in (6) and 

R, > 0 

i.e., R, is not only nonsingular but also positive definite. 

B. A Partially Equivalent Deterministic Problem 

We shall now consider what we call a partially equivalent 

deterministic problem. We refer to it as deterministic because 
expand it as 

or more compactly 

Note that the center matrix appearing in (9b) is the Gramian 

of the vector col{z,y}. 

For this particular quadratic form, we can use the easily 

verified triangular factorization (recall our standing assumption 

that R, is nonsingular) 

to write 

u * ~ ( k ) u  = [U* u*k* - u*R,,R;~] 

1.  U 

R, ku - R;lR,,u 
(1 1) 

Calculating the stationary point of P ( k )  and the corresponding 
condition for a minimum is now straightforward. Note, more- 

over, that R, nonsingular implies that the stationary point is 

unique. 

O I [  [". - ~ , f ; l ~ , ~  

it involves computing the stationary point of a certain scalar 

quadratic form over ordinary complex variables (not Krein 
space ones). Moreover, it is called partially equivalent since 

its solution, i.e., the stationary point, is given by the same 
expression as the projection of one suitably defined Krein- 

space vector onto another, while the condition for a minimum 

is different than that for the Krein-space projection. 

To this end, consider the scalar second-order form 

where the central matrix is the inverse of the Gramian matrix 

in the stochastic problem of Theorem 1 [see (9b)l. Suppose 
we seek the stationarizing element zo for a given U. [Of course 

now we assume not only that R, is nonsingular, but so also 
the block matrix appearing in (13).] Note that z and y are 

no longer boldface, meaning that they are to be regarded as 

(ordinary) vectors of complex numbers. 
Referring to the discussion at the beginning of Section IV- 

A on Hilbert spaces, the motivation for this problem is the 
fact that for jointly Gaussian random vectors {z, y}, the linear 

least-mean-squares estimate can be found as the conditional 
mean of the conditional density pZy(z, y)/py(y). When {z, y} 

are zero-mean with covariance matrix. [t, 2;].tam 
logarithms of the conditional density results in the quadratic 

form (13) which is the negative of the so-called log-likelihood 

function. In this case, the relation between (13) and the 
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projection follows from the fact that the linear least-mean- 

squares estimate is the same as the maximum likelihood 

estimate [obtained by minimizing (13)]. With this motivation, 
we now introduce and study the quadratic form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ ( z ,  y) without 

any reference to { z ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy} being Gaussian. 

Theorem 2 (Deterministic Stationary Point): Suppose both 
R, and the block matrix in (13) are nonsingular. Then 

a) The stationary point zo of J ( z ,  y) over z is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zo zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= R,,R;~~.  

b) The value of J (z ,  y )  at the stationary point is 

4 x 0 ,  Y )  = Y*RylY. 

Corollary 2 (Condition for a Minimum): In Theorem 2, zo 
is a minimum iff 

R, - R,,R~lR,, > 0. 

Prooj? We note that [see (lo)] 

so that we can write 

It now follows by differentiation that the stationary point of 

J ( x , y )  is equal to zo = R,,R;'y, and that J(zo,y) = 
y*R;'y. To prove the Corollary, we differentiate once again, 
and use Lemma 3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

Remark I :  Comparing the results of Theorems 1 and 2 
shows that the stationary point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA20, of the scalar quadratic form 
(13) is given by a formula that is exactly the same as that in 
Theorem 1 for the Krein-space projection of a vector z onto 

the linear span L{y}. In Theorem zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2,  however, there is no 

Krein space: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx and y are just vectors (in general of different 
dimensions) in Euclidean space and 20 is not the projection 
of x onto the vector y. What we have shown in Theorem 2 
is that by properly defining the scalar quadratic form as in 
(13) using coefficient matrices R, , R,, Rzy , and hz that are 
arbitrary but can be regarded as being obtained from Gramians 
and cross-Gramians of some Krein-space vectors { z ,  y}, we 

can calculate the stationary point using the same recipe as in 

Theorem 1. 
Remark2: Although the stationary points of the matrix 

quadratic form P ( k )  and the scalar quadratic form J ( z ,  y) 

are found by the same computations, the two forms do 
not necessarily simultaneously have a minimum, since one 
requires the condition R, > 0 (Corollary l), and the other 
requires the condition R, - R,,R;'R,, > 0 (Corollary 2). 

This is the major difference from the classical Hilbert space 

context where we have 

When (14) holds, the approaches of Theorems 1 and 2 give 

equivalent results. 
Corollary 3 (Simultaneous Minima): For vectors z and y 

of linear independent elements in a Hilbert space X, the 
conditions R, - R,,R;'R,, > 0 and R, > 0 occur 

simultaneously. 

0 
We shall see in more detail in Part 11, and to some extent in 

Section VI-B of this paper, that this difference is what makes 

H" (and risk-sensitive and finite memory adaptive filtering) 

results different from H 2  results. Briefly, H" problems will 
lead directly to certain indefinite quadratic forms: to station- 
arize them we shall find it useful to set up the corresponding 
JSrein-space problem and appeal to Theorem 1. While this will 
give an algorithm, further work will be necessary to check for 

the minimum condition of Theorem 2 in the H" problem. 

It is this difference that leads us to say that the deterministic 

problem is only partially equivalent to the stochastic problem 
of Section IV-A. (We may remark that we are making a 
distinction between equivalence and "duality": one can in fact 

define duals to both the above problems, but we defer this 

topic to another occasion.) 
Remark 3: Finally, recall that Lemma 2 on the existence 

and uniqueness of the projection implies that the stochastic 

problem of Theorem 1 has a unique solution if, and only if, R, 
is nonsingular, thus explaining our standing assumption. The 
following result is the analog for the deterministic problem. 

Lemma 4 (Existence of Stationarizing Solutions): The de- 
terministic problem of Theorem 2 has a unique stationarizing 

solution for all y if, and only if, R, is nonsingular. 

Proof: Immediate from the factorization (10). 

Proofi Let us denote 

A B  [: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%;I-, = [B c] 
so that 

If J(z,y) has a unique stationarizing solution for all y ,  
then A must be nonsingular (since by differentiation the 
stationary point must satisfy the equation Azo = By). But 
the invertibility of A and the whole center matrix appearing in 
J ( z ,  y) imply the invertibility of the Schur complement C - 
B*AP1B. But it is easy to check that this Schur complement 

must be the inverse of R,. Thus R, must be invertible. 

On the other hand if R, is invertible, then the deterministic 
problem has a unique stationarizing solution as given by 
Theorem 2. U 

C. Altemative Inertia Conditions for Minima 

In many cases it can be complicated to directly check for 
the positivity condition of the deterministic problem, namely 
R, - R,YR;lRy, > 0. On the other hand, it is often easier 
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to compute the inertia (the number of positive, negative, and 

zero eigenvalues) of R, itself. This often suffices [24]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Lemma 5 (Inertia Conditions for Deterministic Minimiza- 

tion): 

If R, and R, are nonsingular, then the deterministic 

problem of Theorem 2 will have a minimizing solution 

(i.e., R, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- R,,R;lR,, will be > 0) if, and only if 

I-[R,] zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 I-[%] + I- [(Ry - R y z R ~ ' R z y ) ]  (15) 

where I-[A] denotes the negative inertia (number of 
negative eigenvalues) of A. 
When R, > 0 (rather than just being nonsingular) then 
we will have a minimizing solution iff 

(16) 

i.e., if, and only if, R, and R, - R,,R;lR,, have the 

same inertia. 

I- [Ry] = I-[R, - R,,R,lR,,] 

Proof: If R, and R, are both nonsingular, then equating the 

lower-upper and upper-lower block triangular factorizations of 

the Gramian matrix in (10) will yield the result that 

0 R,R,,R;lR,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO I  
' 1  and [". 

RY 

are congruent. By Sylvester's Law that congruent matrices 
have the same inertia 1161, we have 

I-[R, - R,,R;lR,,] + I-[R,] 

= I- [R,] + I- [ ( R y  - Ry,R;'R,y)]. 

Now if (15) holds, then I-[R, - R,,R;'R,,] = 0, so that 

R, - R,,R;lR,, > 0. 
Conversely if I-[R, - R,,R;lR,,] = 0, then (15) holds. 
When R, > 0, we have I-[R,] = 0, and (16) follows 

The general results presented so far can be made even 

more explicit when there is more structure in the problems. In 

particular, we shall see that when we have state-space structure 
both R, and R, - R,, R;' R,, are block-diagonal. Moreover, 

a Krein space-Kalman filter will yield a direct method for 

computing the inertia of R,. Thus, when we have state-space 
structure, it will be much easier to use the results of Lemma 5 
than to directly check for the positivity of R, - R,,R;lR,, 

immediately. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 

~ 2 1 ,  ~ 4 1 .  

V. STATE-SPACE STRUCTURE 

One approach at this point is to begin by assuming that the 

components zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{y,} of y arise from an underlying Krein space 
state-space model. To better motivate the introduction of such 
state-space models, however, we shall start with the following 
(indefinite) quadratic minimization problem. 

Consider a system described by the state-space equations 

(17) 

where F, E CnXn, G, E C n X m ,  and H, E C p x n  are given 
matrices and the initial state xo E Cn, the driving disturbance 

U ,  E C m ,  and the measurement disturbance v, E C p ,  are 

X ~ + I  = F,x, + G,U,, 0 I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj 5 N c Y, = HJX, + U, 

unknown complex vectors. The output y j  E C P  is assumed 

known for all j. 
In many applications one is confronted with the following 

deterministic minimization problem: Given { yj}j",,, minimize 

over xo and { U ~ } Y = ~  the quadratic form 

subject to the state-space constraints (17), and where Q, E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
cmxm , S, E C m x p ,  R, E CPxp, IIo E C n X n  are (possibly 
indefinite) given Hermitian matrices. 

The above deterministic quadratic form is usually encoun- 

tered in filtering problems; a special case that we shall see in 

the companion paper is the 23"-filtering problem where the 

weighting matrices are IIo, Q, = I ,  and R, = 

and where H, is now replaced by col{H,,L,}. Another 
application arises in adaptive filtering in which case we 
usually have U ,  0 and F, = I 1151, [23]. In the general 
case, however, I Io  represents the penalty on the initial state, 
and {Q,, R,, S,} represents the penalty on the driving and 

measurement disturbances {U,, w,}. (There is also a "dual" 
quadratic form that arises in control applications which we 

shall study elsewhere.) 

Such deterministic problems can be solved via a variety of 

methods, such as dynamic programming or Lagrange multi- 

pliers (see, e.g., [5]) ,  but we shall find it easier to use the 

equivalence discussed in Section IV: construct a (partially) 
equivalent Krein space (or stochastic) problem. To do so we 
first need to express the J(XO, U, y) of (18) in the form of (13) 
of Section IV-B. 

For this, we first introduce some vector notation. Note that 

the states {x,} and the outputs {y,} are linear, combinations 

of the fundamental quantities (20 ,  {U,, w,},"=,}. We introduce 
(the state transition matrix) 

[' -;;I]. 

and define 

as the response at time j to an impulse at time k < j (assuming 

both 20 = 0 and 01, E 0). 
Then with 

the state-space equations (17) allow us to write 
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H1 @(I, 0) 

H 2 @ ( 2 , 0 )  _I and r =  F! (; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA;2 : .I. 
-HN@iN, 0) - 

Finally we make the change of coordinates 

to obtain 

J ( Z 0 ,  U ,  Y) = 

-U -r I 

I 0 0 I I 0 0 0  

0 r 1  o S * R  
= E ] * { [ O  I O ]  1 0  Q zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS] 

O ~ I  

This is now of the desired form (13) (with z 2 c o l { z ~ , ~ } ) .  
Therefore, comparing with (12) in Theorem 1, we introduce a 
Krein space state-space model 

(224 
xJ+l FJxJ + GJuJ, 0 5 j 5 N 
Y3 = H J X 3  + vu3 

where the initial state, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAxo, and the driving and measurement 

disturbances, {uJ} and {vj}, are such that 

The condition (22b) is the Krein-space version of the usual 
assumption made in the stochastic (Hilbert space) state-space 
models, viz., that the initial condition 20 and the driving and 
measurement disturbances { uz ,TI%} are zero-mean uncorrelated 

random variables with variance matrices no and 

respectively, and that the {U%, vz} form a white (uncorrelated) 

sequence. As mentioned before, the Krein-space elements can 
be thought of as some kind of generalized random variables. 

Now if, as was done earlier, we define 

Y = COl{YO , . . . Y N  1 
U = col{uo, . . .UN} 

21 = COl{VO,~~ . U N }  

then we can use the state-space model (22a) to write 

I 0 0 '  
O I O  
U ~ I  

and to see that 

which is exactly the inverse of the central matrix appearing 
in expression (21) for J ( z 0 ,  U ,  y). Therefore, referring to 

Theorems 1 and 2, the main point is that to find the stationary 
point zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof J (zo ,u ,y)  over { z o , ~ } ,  we can alternatively find 
the projection of (20, U} onto L{y} in the Krein-space model 
(22a). 

Now that we have identified the stochastic and deterministic 

problems when a state-space structure is assumed, we can give 

the analogs of Theorems 1 and 2. 
Lemma 6 (Stochastic Interpretation): Suppose z = col{xo, 

U} and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy are related through the state-space model (22a) and 
(22b), and that R, given by (27) is nonsingular. Then the 
stationary point of the error Gramian 

over all k*y is given by the projection 

where 

Moreover this stationary point is a minimum if, and only if, 
€2, > 0. 

We can now also give the analog result to Theorem 2. 
Lemma 7 (Deterministic Quadratic Form): The expression 

yields the stationary point of the quadratic order form 

x [Q, s J ] - ' [  u3 ] (29a) s; RJ YJ - H J X J  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ J J  
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space constraints zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

~ j + l  = F j ~ j  + Gjuj, 0 5 j 5 N { y j  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHjZj + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAwj. 

In particular, when zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBASj 0, the quadratic form is 

The value of J ( z 0 ,  U ,  y) (with either Sj 
the stationary point is 

0 or Sj # 0) at 

J ( p O I N > f i l N , Y )  = y*R,'y. 

A. The Conditions for a Minimum 

As mentioned earlier, the important point is that the condi- 
tions for minima in these two problems are different: R, > 0 
in the stochastic problem, and 

A M = R, - R,,R;lR,, > 0 where z = col{xo,u} 

in the deterministic problem. In the state-space case R, is 
given by (27). In this section we shall explore the condition 

for a deterministic minimum under the state-space assumption. 

First note that for M we have (30) as shown at the bottom 

of the page. 

Now we know that M > 0 iff both the (1, 1) block entry in 
(30) and its Schur complement are positive definite. The (1, 
1) block entry may be identified as the Gramian of the error 
20 - & I N ,  i.e., 

A IIo - IIoO*R[~OIIO = (20 - &JN,ZO - 3 2 0 ~ ~ )  = POIN. 

(31) 

To obtain a nice form for the Schur complement of the (1, 
1) block entry, say A, we have to use a little matrix algebra. 

Recall that 

+ R - S*Q-lS. 

Using the second expression for R, and a well-known matrix 
inversion formula leads to the expression 

x ( R  - S*Q-lS)-l[O I? + S*Q-']. (32) 

Now we use another well-known fact: the (2, 2) block element 
of M-' is just A-l (where A-l exists since M is positive- 
definite). Therefore the condition now becomes 

Q - l +  (r* + Q-lS)(R - S*Q-lS)-l(r + S*Q-l) > 0 

so that we have the following result. 

Lemma 8 (A  Condition for a Minimum): If Q and R - 
S*Q-'S are invertible, a necessary and sufficient condition 
for the stationary point of Lemma 7 to be a minimum is that 

i) POIN > 0. 

ii) Q-l+(r*+Q-lS)(R-S*Q-lS)-'(I'+S*Q-l) > 0. 

When S F 0, the second condition becomes Q-'+I'*R-lr > 
0. 

The conditions of Lemma 8 need to be reduced further to 

provide useful computational tests. This can be done in several 

ways, leading to more specific tests. One interesting way is 

by showing that Q - l +  (r* + Q-'S)(R - S*Q-'S)-'(r + 
S*Q-l) may be regarded as the Gramian matrix of the output 
of a so-called backward dual state-space model. This identifi- 
cation will be useful in studying the Hm-control problem (and 
in other ways), but we shall not pursue it here. 

Instead we shall use the altemative inertia conditions of 

Lemma 5 to circumvent the need for direct analysis of the 

matrix R, - R,, R; R,, . Recall from Lemma 5 that if R, > 
0, a unique minimizing solution to the deterministic problem 

of Theorem 2 exists if, and only if, R, and R, - R,,R;lR,, 
have the same inertia. For the state-space structure that we are 
considering, however 

so that after some simple algebra we have 

Thus R, - R,,R;'R,, is block-diagonal, and we have the 
following result. 

Lemma 9 (Inertia Condition for Minimum): If I Io  > 0 and 

Q > 0, then a necessary and sufficient condition for the 
stationary point of Lemma 7 to be a minimum is that the 

matrices R, and R - S*Q-lS have the same inertia. In 
particular, if S = 0, then R, and R must have the same inertia. 

As we shall see in the next section, the Krein space-Kalman 
filter provides the block triangular factorization of R,, and 

thereby allows one to easily compare the inertia of R, and 
R - S*Q-lS. 
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VI. RECURSIVE FORMULAS 

So far we have obtained global expressions for computing 
projections and for checking the conditions for deterministic 
and stochastic minimization. Computing the projection re- 
quires inverting the Gramian matrix R, and checking for the 
minimization conditions requires checking the inertia of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR,, 
both of which require zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAO ( N 3 )  (where N is the dimension of 
R,) computations. 

The key consequence of state-space structure in Hilbert 

space is that the computational burden of finding projections 

can be significantly reduced, to O(Nn3)  (where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is the 

dimension of the state-space model), by using the Kalman 
filter recursions. Moreover, the Kalman filter also recursively 

factors the positive definite Gramian matrix R, as LDL*, L 
lower triangular with unit diagonal, and D diagonal. 

We shall presently see that similar recursions hold in Krein 
space as well, provided 

R, is strongly nonsingular (or strongly regular) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(34) 

in the sense that all its (block) leading minors are nonzero. 

Recall that in Hilbert space if the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{y2} are linearly indepen- 

dent, then R, is strictly positive definite; so that (34) holds 

automatically. In the Krein-space theory, we have so far only 
assumed that R, is invertible which does not necessarily imply 
(34). Recursive projection, i.e., projection onto C{y,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . . , y,} 
for all 2,  however, requires that all the (block) leading subma- 
trices of R, are nonsingular; recall also that (34) implies that 

R, has a unique triangular decomposition 

R, = LDL*. (35) 

Therefore, In(R,) = In(D), and in particular, I1?J > 0 iff 
D > 0. This is the standard way of recursively computing the 
inertia of R,. 

The standard method of recursive estimation, which also 

gives a very useful geometric insight into the triangular 
factorization of R,, is to introduce the innovations 

e, = YJ - Y,, 0 I j 5 N (36) 

= the projection of y, onto C {yo, 

Note that due to the construction (36),  the innovations form 

an orthogonal basis for C{yo, . . . , yN} (with respect to the 
Krein-space inner product) which simplifies the calculation of 
projections. For example, we can express the projection of the 
fundamental quantities z 0  and uJ onto C{y,, . . . , yN} as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

a 
where y, = 
. . .  

N 

20 lN = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC(Q, e2)(e2, e2)-leZ 

GjIN = ~ ( U J , 4 ( e 2 , e z ) %  (38) 

(37) 
2=0 

and 
N 

2=0 

factorization of the Gramian R,. To this end, let us write 

Y, = 5, + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe, 

= (g,,, eo)R,;eo + ’ ‘ . + (Y2, e2-1)11,,21_1e2-1 + e, 

and collect such expressions in matrix form zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1= I”] 

Y N  

where L is lower triangular with unit diagonal. Therefore, 
since the e, are orthogonal, the Gramian of y is 

R, = LReL*, where Re = Re,O @ Re,1 @ . . . @  re,^. 

We thus have the following result. 

Lemma IO (Inertia of R,): The Gramian R, of y has the 
same inertia as the Gramian of the innovations, Re. The strong 
regularity of % implies the nonsingularity of Re,,, 0 5 e 5 N .  
In particular, Iz?J > 0, if and only if 

Re,% > 0, for all i = 0 ,1 , .  . . , N.  

We should also point out that the value at the stationary point 

of the quadratic form in Theorem 2 can also be expressed in 

terms of the innovations 

J (z0 ,y )  = y*RL1y = Y*L-*R,~L-’Y 
N 

= eXR,le = e,*R,’e,. (39) , =O 

A. The Krein Space-Kalman Filter 

Now we shall show that the state-space structure allows 
us to efficiently compute the innovations by an immediate 

extension of the Kalman filter. 

the 
Krein-space state equations 

Theorem 3 (Kalman Filter in Krein Space): Consider 

with 

Assume that R, = [(y,, y,)] is strongly regular. Then the 
innovations can be computed via the formulas 

e, = y, - H,x,, 0 5 a 5 N 

xz+1 = Fa& + Kp,z(yz - &%), 
(41) 

(42) 

(43) 

where the state-space structure may be used to calculate the 
above inner products recursively. 

Before proceeding to show this, however, let us note that 
20 = 0 

any method for computing the innovations yields the triangular Kp,, = (F,P,H,* + G,S,)R,t 
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where and 

The number of computations is dominated by those in (44) 
and is readily seen to be O(n3) per iteration. 

Remark: The only difference from the conventional 
Kalman filter expressions is that the matrices Pa and Re, ,  
(and, by assumption, I Io ,  Q, and R,) may now be indefinite. 

Proof: The same as in the usual Kalman filter theory (see, 

e.g., [13]). For completeness and to show the power of the 
geometric viewpoint, however, we present a simple derivation. 

There is absolutely no formal difference between the steps in 
the (usual) Hilbert space case and in the Krein-space case. 

Begin by noting that 

e, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy, - 9, = y, - (H& + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.;a) 

= y, - H,X, = Hap,  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU, (45) 

where 5, is the projection of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz, on L{y,, . . . , Y,-~} and where 

we have defined 3, = 2, - ka. It follows readily that 

n 
Re,% = ( e , , e , )  = R,  + H,PaH,*, Pa = (3a,3,). (46) 

Recall (see Lemma 10) that the strong nonsingularity (all 
leading minors nonzero) of R,  implies that the {Re, , }  are 
nonsingular (rather than positive-definite, as in the Hilbert 
space case). The Kalman filter can now be readily derived by 
using the orthogonality of the innovations and the state-space 
structure. Thus we first write 

2 

5a+11$ =ka+l= C ( x , + 1 : e j ) ( e j , e j ) ~ :  1 ej 

j = O  

and to seek a recursion we decompose the above as 

Pi = I I i  - ci. 

The state-space equations (22a) show that the state variance 
Hi, obeys the recursion 

IIi+l = FiIIiF: + GiQfGf .  

Likewise, the orthogonality of the innovations implies that (47) 
will yield 

Subtracting the above two equations yields the desired Riccati 

recursion for Pi, 

Equations (46)-(49) constitute the Kalman filter of Theorem 

3. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 
In Kalman filter theory there are many variations of the 

above formulas and we note one here. Let us define the filtered 
estimate, f i l i  = the projection of zi onto L{yO,. . . , y i } .  

Theorem 4 (Measurement and Time Updates): Consider 
the Krein state-space equations of Theorem 3 and assume 
that R, is strongly regular. Then when Si 0, the filtered 
estimates 5+ can be computed via the following (measurement 
and time update) formulas 

Now 

a - 1  

= C ( z 2 + 1 , e j ) R ; : e j  + Kp,tea 

A 

where e,, R,,, ,  and Pa are as in Theorem 3. 

of Theorem 4 can be combined into the single recursion 
j=0 Corollary 4 (Filtered Recursions): The two step recursions 

KP,, = ( z , + i , e a ) ~ i i .  

2,+11a+1 = C.%aIz+Kf,a+1(Yz+l -Ha+lFZ&l,>, 8 - 1 1 - 1  = 0. 
(52) 

Note also that the first summation can be rewritten as 

2-1 2-1 

Fa ej)R,;ej + G ,  x ( u a , e j ) R G i e j  = Fa& + 0. 
j =O j =0  

Combining these facts we find 

x a + l  = K &  + KP,,ea (47) 

For numerical reasons, certain square-root versions of the 
KF are now more often used in state-space estimation. Fur- 

thermore, for constant systems or in fact for systems where 
the time-variation is structured in a certain way, the Riccati 
recursions and the square-root recursions, both of which take 
O(n3)  elementary computations (flops) per iteration, can be 
replaced by the more efficient Chandrasekhar recursions which 
require only O(n2) flops per iteration [17], [18]. The square- 
root and Chandrasekhar recursions can both be extended to 
the Krein-space setting, as described in [22] .  

Before closing this section we shall note how the innova- 

tions computed in Theorem 3 can be used to determine the 
projections 5 o l ~  and using the formulas (37) and (38). 
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Lemma I 1  (Computation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof Inner Products): We can write identified in Lemma 7 

In particular, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA pol^ and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAB,IN are the stationary points of 

J~(zo,u,y) over ICO and u3 and subject to the state-space 
constraints zj+l = F3x3 + GJu3, j = 0 , .  . . , N .  In the 
recursions, for each time i ,  we find zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADolz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC312 which are 

(54) 
where 

I-1 

@ F - - K H ( Z , j )  e n ( F k  - K p , k H k ) .  

k=3 the stationary points of 

These lead to the recursions 

and (56), found at the bottom of the page, where @&-KH( i , j )  
( i  2 j )  satisfies the recursion s; R3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY3 - H j X J  

["i %]-I[ u3 1. 
@ > - K H ( ~  + 1,j) = @ > - ~ ~ ( i , j ) ( F i  - Kp,iHz)* Theorem 6 (Deteiministic Problem): If R, is strongly reg- 

ular, the stationary point of the quadratic form @ > - K H ( j , j )  = 

Pro08 Straightforward computation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2 

Ji(X0, U ,  Y> = z;Fq1zo + Er.,. (Y3 - HJ%)* 1 
3 =O 

B. Recursive State-Space Estimation and Quadratic Forms 

Theorems 5 and 6 below are essentially restatements of 
Theorems 1 and 2 when a state space model is assumed and 

a recursive solution is sought. 

The error Gramian associated with the problem of projecting zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
{ZO, U} onto C{y} has already been identified in Lemma 6 and 

over 20 and U?, subject to the state-space constraints x3+1 = 
F3z3 + G,u,, j = 0,1,  . . . , z can be recursively computed as 

(55), and (56) furnishes a recursive procedure for calculating 
this projection. The condition for a minimum is R, > 0, where 

This gives the following theorem. 
Theorem (Stochastic Problem): Suppose z = col(x0, a} 

and y are related through the state-space model (22a) and (22b) 
and that R, is strongly regular. Then the state-space estimation 
algorithm (S), (56) recursively computes the stationary point 

of the error Gramian 

201, = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAzo12--1 -t- & @ L K H ( z ,  O)H,*R,be,, 201-1 = 0 

RY has been shown to be to the diagonal matrix Re' and see (x), shown at the bottom of the page, where the 
innovations e3 can be computed via the recursions 

&+I = F A  + Kp,,e,, 20 = 0 

with KP,% = (F,P,H,* + G,S,)R;t, Re,% = R2 + H,P,H,*, 
e, = y, - H,&, and P, satisfying the Riccati recursion 

(z - k*y,z - k*y) 

over all k*y. Moreover, this stationary point is a minimum if, 
and only if Moreover, the value of Jz(zo,  U ,  y) at the stationary point is 

given by 
Rc,3 > 0 for j = O , . - .  , i .  

2 

Similarly, the scalar quadratic form associated with the 

(partially) equivalent deterministic problem has already been 

J Z ( ~ O l 2 ,  f 4 2 ,  Y) = ep,;e,. 
j=0 
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Proof: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAThe proof follows from the basic equivalence be- 

tween the deterministic and stochastic problems. The recur- 

sions for Eolz and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG,l, are the same as those in the stochastic 
problem of Lemma 11, and the innovations e, are found via zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 
As mentioned earlier, the deterministic quadratic form of 

Theorem 6 is often encountered in estimation problems. By 

appeal to Gaussian assumptions on the w,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU,, and 20, and 

maximum likelihood arguments, it is well known that state 

estimates can be obtained via a deterministic quadratic mini- 
mization problem. Here we have shown this result using simple 
projection arguments and have generalized it to indefinite 
quadratic forms. 

The result of Theorem 6 is probably the most important 
result of this paper, and we shall make frequent use of it in 

the companion paper [ l ]  to solve the problems of H" and 

risk-sensitive estimation and finite-memory adaptive filtering. 
In those problems we shall also need to recursively check for 

the condition for a minimum, and therefore we will now study 

these conditions in more detail. 
Recall from Lemma 9 that the above deterministic problem 

has a minimum iff, R, and R- S*Q-lS have the same inertia. 

Since R, is congruent to the block diagonal matrix Re, and 

since R - S*QP1S is also block diagonal, the solution of 
the recursive stationarization problem will give a minimum 

at each step if and only if all the block diagonal elements of 

Re and R - S*Q-lS have the same inertia. This leads to the 
following result. 

Lemma 12 (Inertia Conditions for a Minimum): If zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIIo > 0, 

Q > 0, and R is nonsingular, then the (unique) stationary 

points of the quadratic forms zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(59), for i = O , l , .  . . N ,  will 
each be a unique minimum iff the matrices 

the Krein space-Kalman filter of Theorem 3. 

R+ and Rj  - Sj*Q;lSj 

have the same inertia for all j = 0,1, . . . N .  In particular, 

when S, s 0, the condition becomes that Re,,, and R, should 

have the same inertia for all j = 0,1, + . . N .  
The conditions of the above Lemma are easy to check since 

the Krein space-Kalman filter used to compute the stationary 
point also computes the matrices Re,,. There is another 
condition, more frequently quoted in the H" literature, which 
we restate here (see, e.g., [4]). 

Lemma 13 (Condition for a Minimum): If I I o  > 0, Q > 0,  
R is invertible, Q-SR-lS* > 0, and [F, G,] has full rank for 

all j ,  then the quadratic forms (59) will each have a unique 
minimum if, and only if 

P,T;=P,-l+H;RrlH, > O  j = O , l , . . . , N .  

It also follows in the minimum case that Pj+l > 0 for 
j = 0,1 , . .* ,N.  

Remark: In comparison to our result in Lemma 12, we 

here have the additional requirement that the [Fj G, 1 must 
be full rank. Furthermore, we not only have to compute the 
P, (which is done via the Riccati recursion of the Kalman 

filter), but we also have to invert P, (and R3) at each step 

and then check for the positivity of P,-' + H;Ry1H,. The 

test of Lemma 12 uses only quantities already present in the 
Kalman filter recursion, viz. Re,, and R,. Moreover, these 

are p x p matrices (as opposed to P,?: which is n x n) with 

p typically less than n and whose inertia is easily determined 

via a triangular factorization. Furthermore it can be shown [22] 
that even this computation can be effectively blended into the 
filter recursions by going to a square-root-array version of the 
Riccati recursion. Here, however, for completeness we shall 

show how Lemma 13 follows from our Lemma 12. 
Proof of Lemma 13: We shall prove the lemma by induc- 

tion. Consider the matrix 

1 .  

1 [ -QO1 0 

-Iq1 0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4 
0 -QO1 QOlSo [ Ho SO*QO1 Ro-S,*QG1S0 

Two different triangular factorizations (lower-upper and upper- 
lower) of the above matrix show that 

-nil 0 0 

0 Ro+HoIIoH,* 

and (y), shown at the bottom of the page, have the same inertia. 

Thus, since IIo > 0, QO > 0, and QO - SoR;'S,* > 0, then 
the matrices R,,o = Ro + HODOH,* and Ro - S,*QOlSo will 

have the same inertia (and we will have a minimum for Jo) iff 

II,' + H;ROIHo > 0. 

Now with some effort wd may write the first step of the Riccati 

recursion as 

Pl = IF0 Go1 (r:' $1 + [QFso] 
-1 

x ( R i l  - S;Q;lSo)-l[Ho S;Q;']) [z]. 
Moreover, the center matrix appearing in the above expression 
is congruent to 

(Qo - SoRi'S,*)-' O I  

[no1 + YR,'Ho 

and hence is positive definite. Thus if [Fo Go] has full rank, 

we can conclude that PI > 0. We can now repeat the argument 
for the next time instant and so on. 0 

We close this section with yet another condition which will 

be useful in control problems. 
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Lemma 14 (Condition for a Minimum): If in addition to the 
conditions of Lemma 13, the matrices Fj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- GjSjR;’Hj are 

invertible for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAj ,  then the deterministic problems of Theorem 

6 will each have a unique minimum iff P N + ~  > 0 and 

Proof Let us first note that the Riccati recursion can be 

rewritten as 

The proof, which uses the last of the above equalities, now 
follows from the sequence of congruences, found in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(2) at the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 top of the page, and Lemma 13. 

VII. CONCLUDING REMARKS 

We developed a self-contained theory for linear estimation 
in Krein spaces. We started with the notion of projections and 
discussed their relation to stationary points of certain quadratic 

forms encountered in a pair of partially equivalent stochas- 
tic and deterministic problems. By assuming an additional 
state-space structure, we showed that projections could be 
recursively computed by a Krein space-Kalman filter, several 

applications for which are described in the companion paper 

U]. 
The approach, in all these applications, is that given an 

indefinite deterministic quadratic form to which Ha, risk- 

sensitive, and finite-memory problems lead almost by inspec- 
tion, one can relate them to a corresponding Krein-space 
stochastic problem for which the Kalman filter can be written 
down immediately and used to obtain recursive solutions of 
the above problems. 
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