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1. Introduction. We describe in this paper a general approach to the problem of
linearly estimating a regression coefficient, with some applications. Let T be an arbitrary
index set and X(t), t £ T, a zero-mean random process with known covariance function
R(s, t) = EX(s)X(t). The process F(f) = X(f) + c/3(f), with known regression terms
/3(f), is observed for t in a fixed subset S of T. These observations are used to form linear
unbiased estimators c of the unknown regression constant c. Of particular interest is the
best linear unbiased estimator (BLUE) cBLU , i.e. the c having minimum variance. A
similar problem may be posed for several regression constants.

Regression analysis has generally been restricted to special cases, i.e. special forms of
T, S, R and /3(f). The earliest results dealt with finitely many uncorrelated random
variables. More recent investigations have been directed toward stationary disturbances
X (<). Grenander and Szego in [3] and [5] considered efficiency of the least squares esti-
mator for the case /3(f) = 1. Vitale [8] and Adenstedt [1] constructed more general as-
ymptotically efficient estimators. Grenander [4] considered certain general regressions
/3 (f) in the stationary case and Rosenblatt [7] extended Grenander's results to vector-
valued processes.

Most authors have approached the problem of finding cBLu by using properties of
the covariance matrix R in the case of finite S, and treating the case of infinite S by a
limiting procedure. In this paper we instead consider the problem in a Hilbert space
setting, without restricting S and the /3(f). We find in Sec. 2 that linear unbiased esti-
mators may be viewed as the elements of a hyperplane, leading to a useful representation
of Cblu (Theorem 1). This representation is used in Sec. 3 to show that the BLUE
coincides with the maximum likelihood estimator in the Gaussian case. In Sec. 4 we
establish a procedure for obtaining lower bounds for Var Ci,LU . Sees. 5 and 6 deal with
the case of estimating the mean for a stationary process. Theorems 3 and 4 generalize
results of Grenander and Szego concerning asymptotic efficiency of the sample mean. In
Sec. 7 we give examples of applications to nonstationary processes. Finally, in Sec. 8
we generalize Theorem 1 for the case of several regression variables and apply the result
to some special examples.

2. Representation of the BLUE. We retain the notation of the general problem
outlined above. All quantities are assumed real; generalizations to complex-valued
processes are straightforward. So that linear unbiased estimators exist, we always
assume that /3(f) 0 for at least one value of t in S.
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Linear estimators are limits (in mean-square) of finite linear combinations
1I

c„ = X) an,Y(tny) = X) anvX(tnv) + c anvj3(tnv), tnv £ S, (1)
v = \

with which we may associate the corresponding forms

<t>n = E an„X(tn„), t„v £ $. (2)
K=1

A finite estimator (1) is unbiased if E = 1- Then we have Var c„ = E(j>2, which
we write as ||</>„||2, for the corresponding form (2). While the correspondence between (1)
and (2) is straightforward for finite combinations, the appropriate correspondence for
limits presents some difficulties. To avoid these, we now adopt a slightly different point
of view.

Denote by fic the probability measure on sample path space for a process equal in
law to X(t) + c/3(t). Then, for « £ fi, we regard X(t, w) = Y(t, w) = w(<), evaluation
of the sample path at t. The processes differ only in that X(t) is considered as an element
in L2(mo), whereas Y(t) is considered as an element in L2(p.c). In this way we restrict
attention to a single set of sample paths. An estimator c(«) is now a function of the
sample path. It is unbiased if / c(co) dnc = c for every c, and is linear if it is in the sub-
space Hy(S) of L"(juc) spanned by the Y(t) for t in S.

A singular case arises when there is a form (2) with <j>n = 0 but E any/3(tnv) ^ 0 or,
more generally, when there is a sequence of elements (2) with J' <f>2 dn0 —> 0 but
E an,0(tnr) = 1. Then E anv[X(tnv) + c/3(t„y)] converges to c in L2(mo), or equivalently
Y. a„yY(tny) converges to c in L2Que). Thus c is precisely determined by linear combina-
tions of observations; in other words, cBlo = c.

In the non-singular case, the linear map L given by

L E a,X(Q = E aMO, U £ S,
V =1

is well-defined and bounded on the linear hull of the X(t), t £ S. Then L extends to a
bounded linear functional on the subspace HX(S) of L2(,u0) spanned by the X(t) for t in
S. This implies that X(t) —> X(t) + c/3(t), or equivalently X(t) —> Y(i), extends to a
bounded linear operator. Conversely, Y(t) —> X(t) is always bounded. Thus elements
of HX(S) are also in Hy(S), and conversely.

By the Riesz representation theorem, there is now a unique in HX(S) such that
L<f> = f <f>\p dno for <f> £ H X(S). t/< is determined from

Exm = m, te s-t ^ £ hx(s). (3)
For t, £ S, we have / Ei" a>Y(t,) dfic = c ^ a,/3(t„) = c / Y, a,X(t,)t[> dn0 and also
Var Y a-Y(tv) = ||X a„X(tv)\\2. Taking limits of finite linear combinations, we obtain

J </> dfj.c = c J <j»f/ dpo , Var </> = | [$| |

for 4> in H X(S). It follows that unbiased linear estimators c are precisely the elements of
the hyperplane / c\p d/in = 1 in HX(S), and that cIiLU is the element of minimum norm in
this hyperplane. By the Cauchy-Schwartz inequality then ||c|| > 1/||^||, with equality
if, and only if, c = ^/||^||2. Thus cBlu is determined as i/'/||i/'||2, and has variance 1/||^||2.
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We summarize the results in a theorem:
Theorem 1. The BLUE for c on the basis of observations Y(t) = X(t) + c/3(t),

t G S, satisfies
CbLu(u) = lK«)/|M| ' "^"ar ̂BLU = l/ll^ll j

where \p solves (3). If (3) has no solution then cBLu = c and c is perfectly estimable-
The theorem could also be derived from the relation EX(t)cBLV = /?(<) Var cBLu ,

t G S, which is similar to the integral equation obtained by Grenander in [3], We find the
above representation particularly attractive in that the solution of (3) is linear in (}(t),

3. Relation to maximum-likelihood estimation. Theorem 1 may be used to show
that cBlu is also the maximum-likelihood estimator when the process X(t) is Gaussian.
We now regard nc as a Gaussian measure and restrict attention to the <r-field generated
by the X(t) for t in S. The claim then follows from the result that the Radon-Nikodym
derivative

dpjdno = exp (ci - \c \\i\\2), (4)

where ^ solves (3). This is equivalent to a somewhat different form given in [3]. Clearly
(4) is maximum for c = ^/||^||2.

The proof of (4) is not difficult. Using a moment-generating function argument,
it suffices to show that

J exp [X a,X(Q] diic = f exp []£ a„X(i„) + ci — \c ||<A||2] o (5)

for finite linear combinations y^./' a„X(t„), t, G S. Carrying out the integrations in (5)'
we obtain, with use of (3) for the right side,

exp [-|c ||^||2 + | ||X) a„X(ty) + ci||2

exp c E a, / X(Q *dno + | 11 Z a.X(t.) 112]

= exp [c | X) a,a„R(t, , t„)].
v ,11

The last expression is seen to be the same as the left side of (5).
The derivative (4) would also be used in the Gaussian case for the signal-detection

problem of testing the hypothesis that c = 0. The likelihood ratio test will be based on
the BLUE ^/||^||2.

4. Lower bounds for the variance of the BLUE. Calculation of cBLU, or equiva-
lently solving (3), is in most practical situations difficult if not impossible because R(s, t)
is not known precisely. Therefore adequate approximations are needed. In this section
we describe a procedure which, in the spirit of the Cramer-Rao inequality, gives a
lower bound for Var cBlu • The procedure will be used in the examples of the following
sections to obtain estimators nearly as good as the BLUE.

Denote by HX(T) the Hilbert space spanned by the X(t) for t in T. Note HX(S) is
a subspace of H X(T). While solution of (3) may be difficult, we may more easily be able
to construct a \£> G HX{T) satisfying

EXm = 0(0, t G S. (6)
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The equation need not be satisfied for t (J S. Clearly such a ip exists if, and only if, c is
not perfectly estimable from observations over S. Note is not unique.

If P is the projection operator onto HX(S) and \p £ HX(T) satisfies (6), then EX(t)P\p
= EX{t)4> = P(t) for t £ S, so that tp = PJp is the solution of (3). Since ||^|| = ||Pi£|| <
H^ll, we are led to

Theorem 2. If ip is in HX{T) and satisfies (6), then Var cBLU > l/ll'/'ll2- If no
such ip exists, then Var cBlu = 0.

5. Estimating the mean of a stationary sequence. Assume that X(i), t = 0,
±1, • ■ • , is a zero-mean wide-sense stationary sequence with covariance function
R(s, t) = R(s — t). c is to be estimated from observation of Y{t) = X(t) + c for t =
1,2, ■ ■ ■ ,N. This corresponds to fi(t) = 1 in the general case. Of interest is the efficiency
relative to the BLUE of the sample mean Y = Y(t), which does not involve
knowledge of R in calculation.

Grenander and Szego show in [3] and [5] that

Var Y ~ Var cBLU ~ /(0)/N, N -> co, (7)

where R(t) = (2^)_1 J_,' e"x/(X) d\ and the spectral density / is positive and continuous.
This implies that

lim Var cBLU/Var Y = 1. (8)
AT—»co

The same result is derived in [1] under weaker assumptions on /; the proof is based on
approximation by trigonometric polynomials. We shall establish a somewhat stronger
result than (7) under still weaker assumptions, employing a different method of proof.

It is important to note that the standard definition of relative (asymptotic) efficiency
as used in (8) is not necessarily the best one from a practical standpoint. Of more interest
perhaps is a comparison, for two different estimators, of the minimum sample sizes
needed to attain a given accuracy of estimation. On account of (7), one could still say
that Y is asymptotically as good as cBLU in this new sense. Thus (7) is a better result
than (8). The latter formula is particularly empty in meaning when consistent estimation
is not possible, for then (8) simply states that Var cBhu and Var Y approach the same
nonzero limit as N —> °°. One could then hardly say that Y is as good as cBLU asymp-
totically unless its variance approaches this limit as rapidly as does that of cBLU . In
the following theorem we find that efficiency of Y relative to the BLUE, even in this
wider sense, depends strongly on the behavior of the spectral distribution function at
the origin.

Theorem 3. Let X(t) have spectral measure

dF(\) = clF„(\) -I- (2ir) 7(X) d\

on [ — ir, ir], where dFs(\) is singular with respect to d\.
(a) Then

lim Var Y = lim Var cBL[; = dF(0). (9)
AT-.00

(b) Assume also that / is positive and continuous at X = 0, that F,(\) — Fs( — \)
is constant in 0 < |X| < 6 for some 5 > 0, and that
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for some trigonometric polynomial p(X). Then

Var Y - dF(0) ~ Var cBLU - dF(0) ~ 1(0)/N, N-> ®. (11)

Proof, (a) By dominated convergence we always have

-£Var F = V
NZilXe dF(\) -» dF(0)

as N —> 00. This establishes (9) for the case dF(0) = 0. If dF(0) > 0, consistent estima-
tion is impossible because there is a $ with EX(t)4> = 1 for all t, namely \p = dZ(0)/dF(0),
where X(t) = /_,' e'adZ(\) is the spectral representation of the process. By Theorem 2,
Var cBlu > l/||$l|2 = dF(0). But also Var cBLU < Var Y —> dF(0), and (9) follows.

(b) By our assumptions, f S(X) — Fa( — \) = dF(0) for 0 < |X| < 8. Using dominated
convergence and properties of the Fejer kernel, we therefore obtain

dF(\) - N dF(0)N Var Y - N dF(0) = V"1 f £ e*"
TT I 1

= [ N'1 ID eiiX|2 dFs(\) + (27rV)"1 f | £ e"x|2 /(X) dX -> /(0)
^ I X | >« J-T

as N —» co. To prove (11) it remains then to show that

lim inf V[VarcBLU - dF(0)] > 1(0). (12)
N-a>

Let ax + • • • + aN = 1. Then

f E 2 dF(\) - dF(0) > (27T)-1 f | £ a^'T /(X)
•/ —7T * = 1 J —7T

d\.

Var Crlu — dF(0) is just the minimum over all such a, of the left side, while the minimum
over ai of the right side represents Var cBLU when Fe = 0. Thus it suffices to prove
(12) when Fs vanishes, and we now assume this.

Without loss of generality we may write the polynomial in (10) as p(X) = E-«° b„e'"x
and assume that p(0) 0. Define

*-/_>),iZW,
Then, by a simple calculation,

EXM = (27r)-1 f g(\)e~ia1(\) d\= 1, t = 1, 2, • • ■ , N.

Also,

ii^ii2 = __i r ip(x)12
N + a 2tt(N + a) |p(0)|2 /(X) Z <H d\ -► 1 //(0)

as N —* 0°. Using Theorem 2, we conclude that Var cBLU > l/ll'All2 ~ /(0)/iV, which
implies (12) for F. = 0 and completes the proof.
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The condition (10) says essentially that 1// is integrable, but allows / to have zeros
removable by |p(X)|2. The condition on F, certainly allows superposition of a finite
discrete spectrum on an absolutely continuous spectrum.

6. Estimating the mean of a stationary process. We consider the analogue of the
previous section for continuous time. X(t), — °° < t < oo, is a zero-mean wide-sense
stationary process with spectral measure

dF(\) = dF.(\) + (2jr)"1/(X) d\ (13)

on the line. Again dFs(\) is singular with respect to dX. Observations Y(t) = X(t) + c
for 0 < t < T are used to estimate c. The sample mean becomes Y = T_I f0T Y(t) dt
(mean-square integration), and its efficiency relative to cBLV is of interest.

The continuous-time analogue of (7) is proved in [3] and [5] for the case of a non-
deterministic process X(t) with Fs = 0. Restrictions are placed on / and the moving
average representation of the process. The proof involves relating the estimation prob-
lem to the problem of prediction. We make somewhat different assumptions and establish
the direct analogue of Theorem 3.

Theorem 4. Let X(t) have spectral measure (13).
(a) Then

limVar Y = limVarcBLU = dF(0). (14)
T-+ oo T-* co

(b) Assume in addition that / is positive and continuous at X = 0, that F,(\) —
F,(—\) is constant in 0 < |X| < 5 for some 5 > 0, and that

£
Jp(x)p d\_ ( .
(i + xrm ( '

for some positive integer n and function p of the form

P(X) = S br exp
e = 1

Then

Var ? - dF(0) — Var cBLU - dF(0) ~ 1(0)/T, T -> oo. (16)

Prooj. (a) We proceed as in Theorem 3.

Var Y = f T'2 f e<a
J -co I J 0

dt dF(\) —» dF(0),

always holds and implies (14) when dF( 0) = 0. If dF( 0) > 0 and X(t) = eadZ(\)
is the spectral representation, then = dZ(0)/dF(0) satisfies EX(t)\p = 1 for — oo <
t < co. Therefore dF(0) = 1/||^||2 < Var cBLU < Var Y —> dF(0) and again (14) follows,

(b) As in Theorem 3, we find that
T

t\ dF(\) - T dF(0)T Var Y — T dF(0) = T"1 / ei,K dt

= f T^\ fT eia di2 dFs(\) + (27tT)'1 [ [T eil"
J IX | >5 \Jq J — m | Jo

dt /(x) d\ -> m
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as T —> oo. We have used dominated convergence and properties of the continuous
Fejer kernel. It remains only to be shown that

lim inf T[Var cBLU - dF(0)] > /(0). (17)
T-* oo

By reasoning as in Theorem 3, we find that Var cBLU — dF(0) is no less than the infimum
over all n, ai + • • • + an = 1 and 0 < h , • • ■ , tn < T of (2tt)_1 exP (^»X)|2
/(X) dX, which is just Var cBLV when F, = 0. Thus it suffices to prove (17) when F,
vanishes, and we assume this from here on.

In the remainder of the proof, n is the integer and p(\) = by exp (—it,\)
the function in (15). Without loss of generality we may assume that the t, > 0 and
that p(0) 5^ 0. We set a = max {h , ■ ■ ■ , tm}.

In [3], Grenander shows that for the spectral density (1 + X2)""

Cblu = (2n + T)-l|jTr Y(t) dt + g (k Jk—l)*K(fc>(0) + Fa)(T)]} ,

with Var cBlu = (2n + T) \ Here Ya)(t) = dkY{t)/dtk in the mean-square sense. With
use of Theorem 1 and the spectral representation, it follows that the function

gT(X) = JTT e"x dt +%{kl JWK-l)1 + O (18)
satisfies

(2x)-1 J gr(X)e"m(l + X2)- d\ = 1, 0 < t < T. (19)

With gT+a(\) defined as in (18), let

*= L9(x) dZ(x)> g(X) = pfiik) dT+°m +xr"-
With use of (19), a simple calculation then reveals that

EX(t)i = (2tt)_1 J ff(X)e",,x/(X) d\ = 1, 0 < t < T.

Therefore Var cBi,u > 1/||$||2. Writing

m - (1 + xr"
we find that

«T

(2ttT)-1 J" J e"x dt h(\) d\ -> h{0) = l//(0)

as T —* oo. Also
pco | rT 2

h(X) d\ —* 0,(2irT)_1 f |(7r(X) - [ eiadt

since the integral has a bound independent of T. The triangle inequality for norms in
L2(h, — oo( oo) therefore yields
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f Iffr+aCX)!2 h(X) d\ -> l//(0)T + a 2tt(T + a) J-a

as T —■» Thus Var cBLD > l/||i/'||2 ~ j(0)/T, and (17) is established for F, = 0.
This concludes the proof.

The condition (15) stipulates that /(X) does not decrease too rapidly as |X| —> <»,
but allows / to have zeros. One may show that (15) implies that X(t) is nondeterministic.

7. Application to nonstationary processes. Our procedures are not restricted to
stationary processes. As an example we consider the model

F(<) = X(t) + C = C + >7 o, t = 0,

= c + Vt + £i + ■ • • + So t = 1,2, - -

Here vo , Vi , • • • , £i > £2 , • • • are uncorrelated random variables with zero means and
Z??;,2 = X2 > 0, = cr2 > 0.

This type of model is used by Chernoff and Zacks [2] in connection with estimation
of a mean value subject to change over time. They give an explicit but computationally
difficult-to-use formula for cnLV based on observations F(0), • • • , Y(N). 6liLU is not
consistent as N —> <». Mustafi [6] shows that

limVarcBLU = X2(l — A), (20)
N-> co

where
h T / ;A~II/2 „ ,

b = cr /X . (21)A-l+l- - i)'
Her proof is based on Chernoff and Zacks' representation.

We can establish (20) very easily by considering the estimation problem using
infinite data F(0), F(l), • • • . The X(t) have covariances R(s, t) = X2[53, + b min (s, t)],
where b = <r2/X and 8,t is Kronecker's delta. Thus the sums

ia = X"2 a'X(s), |a| < 1,
8 = 0

converge in mean-square. A straightforward computation shows that

EX(t)ia = X"2 ± a'R(t, s) = 1 - 7^—4 [(1 - a)2 - ba]
8=0 (.J-

for t = 0, 1, ■ • • . Since A, defined in (21), satisfies 0 < A < 1 and (1 — A)2 — bA = 0,
EX(t)\pA = 1 for all t. Also ||iAx||2 = X~2(l — A)'1, and it follows that

Cbi = (1 - A) Z A'Y(t), Var cBLU = X2(l - A)

for infinite data. Of course this implies (20) for the estimators based on finite data.
As a byproduct to this approach, we find that the easily-calculated unbiased esti-

mators

^ t A'Y(t)
I — A t = 0
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are asymptotically efficient in the usual sense that Var cBLu/Var cN —> 1 as N —* <».
We cannot say that cN is asymptotically as good as cBlu in the expanded sense described
in Sec. 5 without a more detailed analysis. However, it is not difficult to show that
Var cN = X2(l — A) + 0(A*V), so that the optimum variance is at least approached
exponentially fast.

We also mention a continuous-time model sometimes encountered in applications.
Assume that X(t), 0 < t < T, is continuous in mean and that the regression function
0(£) is in the range of R(s, t). Thus

/?(<) = [ R(t, s)a(s) ds,
Jo

0 < t < T,

for some function a(s). This relation immediately yields EX(t) f0T a(s)X(s) ds = p(t)
for 0 < t < T, so that \p = f0T a(s)X(s) ds characterizes the BLUE based on observa-
tions Y(t) — X(t) + c/3(t). We have ||^||2 = f0T a(t)/3(t) dt, whence

Cblu = [ a(t)Y(f) dt / [ a(t)p(t) dt,
J o / J 0

Var Cblu = 1 / a(t)P(t) dt.

The results might be compared with the commonly-used correlator estimator
/oT mY{t) dt/foT [/3(0]2 dt.

8. Case of several regression constants. We have restricted attention to a single
regression constant c so as not to obscure the results. More generally, however, we
might observe Y(t) = X{t) + 1" c,-/3,(0 for t £ S, where the /3,(i) are known and
the Cj are to be estimated. We discuss this situation and some applications briefly.

We retain the viewpoint and notation of Sec. 2, with the exception that fjc represents
measure on path space for a process equal in law to X(t) + ^ An estimator c,-
for Cj is now unbiased if / c,- d^c = c,- for all Ci , • • • , cm , and is linear if it is in HY(S).
To guarantee existence of unbiased linear estimators for each c,- , we assume that the
regression functions /Si (<), • • • , ,8m(t) for t (£ S are linearly independent. The respective
BLUE's are denoted by Sj,BLU ■

We may encounter singularity in that one or more of the c,- can be perfectly esti-
mated. In the non-singular case there are bounded linear functionals • , Lm on
HX(S) such that LjX(t) = pj(t) for t E: S, and there are unique elements i/'i , • • • , tm
in HX(S) such that L,</> = / d^0 for <f> G HX(S). The are determined from

EX(t)t, = 0(«), t E S; E HX(S) (j = 1, • • • , m). (22)
Arguing in a manner as in Sec. 2, we find that

J <f> d/ic = 22 c> J <t>t,: dpo , Var 4> = ||<£||2 (23)
for cj) in HX(S). Therefore unbiased linear estimators c; for c,- are precisely the elements
of the sets in HX(S) defined by

/ C;ipk dflo = 5Jfc , k = m. (24)
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Introduce the vector notation

c = Cblu — i =

h
c =

Cm, BLU.

Twhere c is linear and unbiased for c. (24) can be written / c\[/ dn0 = I, the m X m identity
matrix. Also define the covariances matrices

<r(c) = J ccT dfio , V = J \p\pT d/jio .

Define the usual partial ordering on symmetric matrices by writing A > B whenever
A — B is positive semidefinite. If we can find a minimum <r(c) in this ordering, clearly
the diagonal terms ||c,||2 will be minimum and cBLU obtained.

The covariance matrix V is non-singular, for if xp'a = 0 for some constant vector a
thenO = / 6\f/Tadn0 = la = a. Thus V~l exists and 0 < f (c — V~1\p)(c — V~l\p)T dn0 =
<r(c) — / c^V^1 dp.o — / V~I\[/cT dno + V'VV'1 = <r(c) — Tr_1, i.e. a(c) > V~l. Equality
holds if, and only if, c = V~l\p. We have proved

Theorem 5. In the above notation the BLUE and its covariance matrix are

Cblu(w) = ^ c(Cblu) = 1 >

where the components , ■ ■ ■ , \pm of \p satisfy (22) and have covariance matrix V.
Moreover, <r(c) — a(cBLU) is positive semidefinite for any linear unbiased estimator c.
If (22) has no solution for some j, then a linear combination of the c, is perfectly estimable.

The theorem may be used to show that cBLU is again the maximum likelihood esti-
mator in the Gaussian process case. The claim follows from the representation

duc/d^o = exp {cT\f/ — \cTVc)

of the Radon-Nikodym derivative, which may be established by the method of Sec. 3.
We may also obtain lower bounds for the covariance matrix o-(cBLU) by the method

of Sec.' 4. Suppose \pt , ■ ■ ■ , \pm are in HX(T) and satisfy EX(t)\j/j = /3,(<) for t £ S,
j = 1, • • • , m. Then the solutions of (22) are = P\pj , where P is the projection onto
HX(S). If V is the covariance matrix of the iand a is any constant vector, then a7 Va =
||a7i/'||2 = ||Pa:ri/'||2 < Ha^H2 = aTVa. Therefore V > V, and it follows that <t(cBlu) =
V'1 > V~\

Theorem 5 may be used to prove a generalization of part of the Gauss-Markov
theorem for the case of correlated errors and arbitrary parameter. Suppose in the above
setting we wish to estimate y ~ aTc = /. afii , where a is a given non-zero vector. By
(23), any unbiased linear estimator y satisfies J' fi/', dfi0 = a, for j = 1, ■ • • , m, or
/ y\p d/xo = a in vector form. Therefore aTV~la = J yaTV~l\p dn» and (a'K~'a)2 =
[/ ya7V~'\p duof < IItIT \W'V"Vl|2 = ||f||2 a V~xa. Thus we arrive at Var y > a'V~^a
= Var arcBLD , which implies that tBlu = ^2 aA.blu •

Another application of Theorem 5 is to best-line fitting. Suppose we wish to find
the best linear function Y = + c2t to fit the data Y(t) = X(t) + Ci + c2t, t G <S.
This corresponds to Pi{t) = 1, /32(0 = t. If iS = {<, , • • • , <lVj is finite and the X(ln)
are uncorrelated with a common variance X2, then it is easily seen that
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h = X"2 E no, = ^"2 E LY(tn),
n= 1

' N E tn

E tn E^
7 = X"

It follows that

cYblu] = n E <.]_1[ E TO
C2.BLU. .23 'n E - E tnY(tn)

with covariance matrix V~l. This is just the least-squares solution.
Also of interest is line fitting when S = [0, T] and X(t) is a Brownian motion with

a random initial value. Thus Y(t) = 77 + W(t) + Ci + c2t, where rj has mean zero and
variance X2 and is uncorrelated with the Brownian motion W(t) having variance pa-
rameter cr2. X(t) = t] + W(t) has covariance function X2 + o-2 min (s, t). We find that

= X_2F(0), h, = tr~\Y(T) - F(0)],

V = X"2 0

0 a~2T.

and therefore

c\blu = F(0), c2,BLn = T-\Y(T) - 7(0)].

The solution differs radically from that of the previous paragraph.
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