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(9) 

representing in product form the effect of the optimal linear 

utilization of the observation on the previously propagated 

' covariance term, PN+l. We have arrived at equations II.8-

ll. 

It is instructive to note that (I - CN+lHN+l) (or 

[1 - cN+l] in problem III.l; where 0 < cN+l < 1) acts as 

a contraction on the cone of non-negative definite matrices: 

By equation IV.65, 
T -1 

= PN+l HN+l RN+l so that 

= (I ' CN+lHN+l )PN+l 

- [PN+l(HJ+lRNilHN+l)]P~+l 

Now PN+l is non-negative definite, yet the bracketed sym-

metric matrix above is non-negative definite, so that 

(10) 

IV.2 As a Conditional Expectation in a Gaussian Environment 

The approach taken in the more general problem of 

estimation for non-linear systems involves the determination 

of the conditional probability density function p(xiY), 

where x represents system state and Y the set of 

available observations. Given this function, one may proceed 

to calculate the conditional expectation: 

E[xlYJ = J x p(x!Y)dx 
x-space ' 

(11) 
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an estimate we shall show significant below. Bucy has stated 

that the wealth of published interpretations of estimation 

in the linear case which ignore this most general point of 

view has contributed to the lack of development of the non-

linear theory. Following Sorenson [17], we illustrate the 

importance of the conditional distribution: 

Theorem IV.l: The minimum-variance estimate of x 

is the conditional expectation 
A 

x = E[xiYJ · 

Proof: 

t(~) = E[(x 

= f· 
where y1 ,y2 , ... ,ym is the set of observation scalars 

constituting Y. Now p(x,y1 , ... ,ym) = p(xly1 , •.• ,ym) 

X p(yl, •.. ,ym), so that 
rtv 1\Cv 

I e (Q) J 
\ 

" 
l 

= 

\ v 
-&; -f>v 

( 12) 

, .. ' 
= r E[(x-~)T(x-~)IY]p(yl, •.. ,ym)dyl, 

... dym 

Expanding the integrand, we have 



25 

~T~ - ~TE[x(Y] E[xT(Y]~ + E[xTxlYJ (13) 

= (~- E[xiYJ)T(~- E[x(Y]) + (E[xTxiYJ - E[xTIY]E[x(Y]) 

The integrand being non-negative for all 1\ x,Y,x, 

term of (13) being independent of the choice of 

C:("x) left term non-negative, we clearly minimize c 

choosing ( 12). Q.E.D. 

the right 
1\ x, and the 

by 

The significance of this theorem is that no assumption 

on the type of distributions, the relation between x and 

Y, or the form of the candidate estimate was made. This 

explains the primacy of this approach for more general 

problems than those considered in this paper. 

Given the system and observation models of equations 

II.l-7, we now assume that the probability density functions 

for the system random forcing function, {Wn}, the observa-
1\ 

tion noise, {Vn}' and the previous estimate error, (XN-XN), 
are Gaussian (normal). We follow Ho [10]: 

Pw (W) =[ n/21 1/2] expf-~ WT%~1 W} 
N+1 (27r) ~~+11 

(14) 

p (V) - [ 1 
] expf- 1

2 VTR:-.i1 V} ( 15) 
VN+l - (2rr)m/21~+111/2 ·~ 

"" P)( (X) = 
N 

[ -( 2_rr_)_n/-r::2::--t-P N--,-r /-r.:2:--] e xp { - (16) 
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N 1\ 

where XN = XN- XN, and I· I represents the determinant of 

a matrix. 

Each assumed distribution is seen to have zero mean, and 

covariance matrix labeled as described in Section II. This 

is as previously required with one exception. The assumption 
~ A 

that E(XN) = 0 implies that XN is an unbiased estimate 

of XN: 

" Definition IV.l: X, an estimate of X, is said to be 

unbiased if 
1\ 

E[X] (17) E[X] = 

IV 
E[X - ~] i.e., E[X] = = 0 

Since E[YN+ 1 J = E[HN+l XN+l + VN+l J (18) 

= E[HN+ 1 ( ¢N+ 1 XN + WN+l) + VN+l J 

" = HN+l ¢N+l XN 

"' = HN+lXN and 
' 

E[(YN+l - At "' T HN+lXN) (YN+l - HN+l XN) J (l 9 ) 

1\t "' T] = E[(HN+l[XN+l-XN]+VN+l)(HN+l[XN+l-XN]+VN+l) 
N 

= E[(HN+lf¢N+lXN + WN+l}+VN+l) 

•(HN+lf¢N+lXN + WN+l}+VN+l)TJ 

ffi N N T]ffiT T 
= HN + ffN + 1 E [ XN XN 'fN + 1 HN + 1 

T T 
+ HN+l E[WN+l WN+l] HN+l 

T 
+ E[VN+l VN+l] 
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Since YN+l' a linear combination of Gaussian variables, is 

itself Gaussian we have 

Py (Y) = 
N+l 

Likewise, XN+l is normally distributed, with 

" "I N E [~ + 1 - ¢N + 1 XN ) ( XN + 1-¢N + 1 XN) J = E [~N + 1 XN + WN + 1) ( 22 ) 
""' T x ( ¢N + 1 XN + WN + 1 ) J 

= ¢N+lPN¢N+l + CN+l 

Px (X) = 
N+l 

" T '-lJv. " ¢N+ 1 XN) PN~tlA-¢N+fN)} 

(23) 

We now seek the conditional density function which 

describes the statistical situation given the observation 

YN+l' using Bayes' rule: 

p ( y N + 1 ' XN + 1 ) 
p(~+ll YN+l) = -------.;.._ 

p(YN+l) 

p(YN+ljXN+l)p(XN+l) 
= -----------------

p(YN+l) 

(24) 
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Pv. (YN+1 - HN+1xN+1) Px (xN+1) 
= __ N_+_1 __________________ N __ +1 ____ __ 

Py (YN+1) 
N+l 

exp { 

- ~ [(YN+1- HN+1XN+1)T~~1(YN+1- HN+1XN+1) 

" T ,-1 1\ 
+ (XN+1-¢N+1XN) PN+1(XN+1-¢N+1XN) 

~' T ' -1 - (YN+1-HN+1XN) (HN+1PN+1HN+1+~+1) 

Lemma 1 of Appendix IX.l may be used to factor the exponent 
" T -1 " of (24) into the form (XN+1-XN+1 ) PN+1 (XN+1-XN+1 ) , where 

(25) 

so that 

(26) 
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where, by Lemma 1, and the matrix inversion (Lemma 2) of 

Appendix IX.2, 

where 

1\ 
A
-1 BT 

~+1 = 
(27) 

( '-1 T -1 )-1( '-1th 1\ T -1 ) 
= PN+1+HN+1RN+1HN+1 PN+1~N+1XN+HN+1RN+1YN+1 

' ' T I T -1 f 
= (PN+1-PN+1HN+1fHN+1PN+1HN+1+~+1} HN+1PN+1) 

( '-1th " T -1 ) x PN+1~N+1XN+HN+lRN+1YN+l 

" ' T ' T -1 1\ 
= ¢N+1XN-PN+lHN+l(HN+1PN+lHN+l+~+l) HN+l¢N+lXN 

A A 
= ¢N+lXN + CN+l(YN+l- HN+l¢N+lXN) 

(28) 
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Also, PN+l is defined by 

-1 
PN+l = A ( 29) 

so that Lemma 2 now implies 

' ' 
= PN+l - ~+lHN+lpN+l (30) 

Again, we have arrived at equations II.S-11. 

The significant observation here is that the linear 

estimator of section IV.l has reappeared as a solution to the 

conditional estimation problem, as optimal out of the class 

of all unbiased 

below. 

estimators. We summarize these results 

IV.3 Summary of Optimality Extent 

(i) In the class of all unbiased linear estimators, the 

Kalman filter is optimal under the minimum error 

variance criterion, with no assumptions on the 

nature of the distribution functions for the system 

environment. 

(ii) In the class of all unbiased estimators, the Kalman 

filter is optimal under the minimum error varianc0 
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criterion, provided the environmental statistics are 

Gaussian; that is, the optimal unbiased estimator is 

linear in a Gaussian environment. 

Thus, the Kalman filter represents the optimal choice of 

unbiased estimator for all cases except the non-Gaussian, 

non-linear estimator case. We also note that the Kalman 

filter, providing the expected value of system state, pro-

vices the maximum likelihood estimate in the Gaussian case. 

IV.4 As An Orthogonal Projection in Hilbert Space 

Consider the Hilbert space H consisting of all random 

variables of zero mean and finite variance, and the subspace 

Y spanned by the observables y(l),y(2), .••• Note that the 

elements of H are random variables, and not particular 

outcomes. H is clearly closed under the natural addition· 

and scalar multiplication; we define an inner product by 

(x,y) = E(x,y) X' y E H. ( 31) 

The properties of the expectation operator render (•,•) a 
1 valid inner product. The induced norm on H is thus derived 

from variance: 

1 

' ( 32) 

To be completely correct, we must note that llxll = 0 does 
not imply x = 0, but only_ that{xlx f 0} is a set of events of 
probab1l1ty measure zero. We ~ay then form the ideal 
M={xjp(xfO) = 0}, and the quot1ent space H/M, thence pro-
ceeding as above. 
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Consider the subspace Y(N) spanned by y(l), y(2), 

••• y(N). The following theorem was presented by Kalman [11], 

and stands in hypothesis analagous to the statements of 

Section IV.3: 

Theorem IV.2: Let fx(n)} and {y(n)} be random processes 

with zero mean. We observe y(l),y(2), •.. , 

y(N). If either 

(a) Candidate estimators are restricted 
to be linear functions of the ob-
served random variables (i.e., 
elements of Y(N) ), and the norm 
of loss is variance (i.e., the 
problem is cast naturally in H), 

or 

(b) The random process (x(n)}, fy(n)} 
are Gaussian, and the criterion of 
optimality is variance of error, 

then the minimum variance estimate of 
x(n

0
) J given y(l), ..• ,y(N)J is the 

orthogonal projection of x(n0 ) on Y(N). 

Proof: (a) We seek an optimal estimate ~(n 0 ) which lies 

in Y(N) and which minimizes II x - ~If 

= (x- ~' x- ~). It is an elementary property 

of Hilbert space that the orthogonal projection 

of x(n
0

) on Y(N) is the element of Y(N) 

closest to x(n0 ): 

Let [e1 , ... ,eN1 be an orthonormal basis for 

Y(N). The orthogonal projection of x = x(n
0

) 

onto Y is then 



(b) 
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" 
N 1\ 

X = 2: (x,e.)e. the error in X is 
i=l l l 

N (x X = - ~) . Let " ' X be any point in Y(N), 

serving as an alternative estimate. 

Then 

II X - ~ ' 11 2 
= II ( X - X) + ( ~ - ~) 11 2 

= llx- (~- ~')11 2 

= 11~11 2 +II~ - ~' 11 2 

(33) 

the last line following from the generalized 

Pythagoreanidentity, which is equivalent to 

(~- Qt)l ~. 

From ( 33), 

llx - ~~ 11 2 > 11~11 2 
= II x- ~ 11 2 (34) 

,.., 1\ 
with equality holding only for X = x. 

" We must show that x(n
0

), the orthogonal pro-

jection of x(n
0

) on Y(N), is the conditional 

expectation, in order to invoke Theorem IV.l. 

If {x(n)} and {y(n)} are normal random 

processes with zero mean, then so also is 1\ x, 

as a linear combination of such processes, and 

similarly for f~(n)}. 

Then 

o = E(~(n 0 )) = E(x(n
0
)ly(l), ... ,y(N)), 

since ~(n) is orthogonal to y(l) ... ,y(N), 
0 

and orthogonal normally distributed random 



variables of zero mean are independent. It 

follows that 
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E[x(n0 ) -.~(n 0 )ly(l), ••• ,y(N)] (35) 

" = E[x(n0 )ly(l), ••• ,y(N)]- E[x(n
0
)ly(l), 

' 1\ 

••• ,y(N)] = E[x(n0 )IY(N)]- x(n0 ) = 0. 

Q.E.D. 

We are thus justified in considering the minimum-variance 

estimate of a normally distributed random variable, or the 

minimum-variance linear estimate of an arbitrary random 

variable1 to be the orthogonal projection of that variable 

onto the subspace spanned by the observation processes; the 

symbol E[ xI Y(N)] will acco_rdingl y be interpreted as a 

projection, in some cases. 

We further observe that Theorem IV.2 holds in the case 

of vector random processes by adaptation of the Euclidean 

vector inner product via expectation. 

Turning to the derivat~on of the filter equations, we 

assume that the observations y(l), •.• , y(N), spanning Y(N), 

have been made; the resulting estimate is assumed to be 

~(N) = E(xNIY(N)] • y(N+l) now becomes available, and we 

must compute 

(36) 

= E[XN+liY(N)] + E[XN+liZ(N+l)] 

where Z(N+l) is that portion of Y(N+l) orthogonal to 

Y(N), and we have taken a projection viewpoint. (Observe 
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that Z(N+l) = [0} implies 
A A 
~ + 1 = E [ XN + 1 I y"( N) ] = ¢N + 1 XN ' 

a pure extrapolation, since Z(N+l) = [0} implies y(N+l) 

lies completely in Y(N) implies E[y(N+l)IY(N)] = y(N+l) 

implies no new information is contained in y(N+l).) 

Then 

" ~+l = E[¢N+lXN + WN+l!Y(N)] + E[XN+l!Z(N+l)] (37) 

= ¢N+lE[XNIY(N)] + E[WN+l(Y(N)] + E[~+liZ(N+l)] 
A 

= ¢N+lXN + 0 + E[XN+liZ(N+l)] 

since WN+l is independent of Y(N). Now under the pro-

jection viewpoint, Z(N+l) is spanned by the single vector 

since 

(37) 

= YN+l - E[l-N+l XN+l + VN+ll Y(N) J 

= YN+l - E[HN+l¢N+lXN+HN+lwN+l+vN+liY(N)] 

= y N + 1 - IN+ 1 ¢N + 1 E [ XN I y (N ) ] + 0 
A 

= YN+l - HN+l¢N+lxN 

VN+l' WN+l' and Y(N) are independent. Then by 

(38) 
,.. 

and 
' ~+1 is of the form 

" " " XN+l = ¢N+l XN + ~+l(yN+l - HN + 1 ¢N + 1 XN) 

with ~+l to be determined. Now XN+l' less its pro-

jection onto Z(N+l), is orthogonal to Z(N+l): 

(38) 

(39) 



Then 

0 = ( (XN+1 - E[XN+11 Z(N+1) J)' YN+1) 

= E[(XN+1 - E[XN+1 1Z(N+1)])T • (yN+1 )] 

= tr ( "' N T E[ XN+1- CN+1YN+1)(yN+1) J 

= tr [ ( -""T ) ( ..v ,., T E XN+1 YN+1 - CN+1 E YN+1YN+1) J 

Using 

"' YN+1- E[yN+liY(N)] YN+1 = 

= HN + lxN + 1 + vN + 1 - E [ HN + 1 xN + 1 + v N + 1 I Y ( N) J 

= HN+l(¢N+lXN+WN+l)+VN+l- HN+l¢N+l E[XNIY(N)] 
1\ 

= HN+l¢N+l(XN-XN) + HN+lWN+l + VN+l 
N 

= HN+l¢N+1Xn + HN+lWN+l+VN+l we have 

from equation (40), 

= 0 

where 

PN+l = 
rv "'T 

E [ XN + 1 • XN + 1 J 

ctJ+l = E[WN+l w~+lJ 

~+1 = E[VN+l v~+lJ 

36 

(40) 

(41) 

(42) 

A sufficient condition for the choice of ~+1 to be 

optimal is thus that the bracketed matrix in ( 42) be zero; 

further, by the uniqueness of the orthogonal projection, this 

condition is necessary. Then letting P~+l = ¢N+ 1 PN¢~+l+ctJ+l' 
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we have 

(43) 

since the right matrix is positive-definite. Computing the 

expectation, using equation (41), 

E[XN+l·y~+l] = E[(XN+l)(HN+l¢N+lXN + HN+lWN+l+ VN+l)TJ (44 ) 
A "" N T 

= E[(¢N+lXN+¢N+lXN+WN+l)(HN+l¢N+lXN+HN+lWN+iVN+l) J 

= ¢N+lPN¢~+1H~+l + CN+lH~+l 

1\ IV 

since ~ 1 ~ We arrive at the expected result: 

(45) 

the remaining filtering equations follow as before. 

IV. 5 Relationship to "Least Squares" Estimation 

The (possible) choice of the statistical mean square 

norm on the space of random variables, as discussed in 

Section IV.4, and the resulting minimum expected mean square 

error viewpoint of the Kalman filter remind us of the filter-

ing (curve fitting, parameter estimation) scheme referred to 

as "the method of least squares," as practiced by Gauss. 

Within the theory of Kalman filtering, one may discover 

the traditional method of least squares, as a (more familiar) 

perspective from which to view the newer filtering equations; 



38 

conversely, the newer theory provides a more general setting 

from which to view the traditional curve-fitting ideas. 

It is instructive to consider several schemes for pro-

cessing observation data, which provide alternate viewpoints 

of the estimation process and illustrate methods for imple-

menting the computational process in the most efficient 

manner: 

(1) Batch Least Squares: The most familiar form of 

least squares estimation, in which a complete set 

("batch") of observation data is processed at one 

time, resulting in estimates of selected parameters. 

(2) Sequential Least Squares: A scheme providing the 

same (eventual) parameter estimates as the batch mode, 

but implemented in a recursive form to process ob-

servation data points sequentially, resulting in 

intermediate, sequentially updated parameter esti-

mates. In particular, this scheme lends itself well 

to real-time processing of incoming data, to provide 

simultaneous parameter estimates. 

(3) Single-Stage Kalman Filter: The application of the 

Kalman filter to estimation problems in which the 

dynamic (i.e., time-developing) nature of the system 

is either not present or implicitly represented in 

a one stage viewpoint. The single stage Kalman 

filter is closely related to batch least squares, 

and provides a solution to a more general problem 
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than that method. 

(4) Multi-Stage Kalman Filter: The viewpoint represented 

in the material of this paper as discussed to this 

point, which may be related to sequential least 

squares methods. 

(5) Stage-Sequential Kalman Filter: A method of practi-

cal computational significance to multi-stage pro-

cessing for systems in which a single time stage 

involves the incorporation of dimensionally large 

quantities of observations; by segmenting each time 

stage into sequential sub-stages, certain practical 

computation difficulties are reduced. While this 

device does not relate to the least squares dis-

cussion, its consideration is nevertheless appropri-

ate at this point. 

We now discuss these topics in detail. 

IV.5.1 Batch Least Squares Method 

We assume the (static) model 

Y=HX+c where 

Y =observation data vector (m x 1). 

X = state vector of parameters to be estimated 
(n x 1). 

(46) 

H = observation matrix relating states to observables 
(m x n). 

£=vector of observation errors (m x 1). 

(m x m). 
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As in the case of the Kalman equations, the estimator is 

identical for two cases: 

(i) Measurement Errors Distributed Normally 

The maximum likelihood estimate of X, for the case 

in which E. is a Gaussian random 
1\ 

variable of zero mean, is the estimate X which 

minimizes 

(47) 

Using Lemma 1 of Appendix IX.l, 

M(~) = YTR- 1Y-XT(HTR- 1Y)-(YTR-1H)X+XT(HTR- 1H)X (48) 

= (X- (HTR- 1H)-lHTR- 1Y)T(HTR- 1H)(X-(HTR- 1H)-l 

x HTR-lY)+(YTR-lY -YTR- 1H[HTR- 1H]-lHTR- 1Y) 

The first term of this quantity being positive semi-

" definite, and the second independent of X, the 

optimal estimate becomes 
1\ 
X = KY 

= [(HTR- 1H)-lHTR- 1 ]Y 

(49) 

this estimator is also the minimum variance state 

estimate in the Gaussian case: 

cov(X) = E[(X-X)(X-X)TJ 

= E[(X-KY)(X-KY)TJ 

= E[(X-(HTR- 1H)-lHTR-1HX-K£)(X-(HTR- 1H)-l 

= E[(X-X-KE)(X-X-KE)TJ 

= E[K£·£TK] 

x HTR- 1HX-K£)TJ 

(50) 



= (HTR- 1H)-lHTR-lR R- 1H(HTR-lH)-l 

= (HTR-lH)-1 

41 

(ii) Measurement Error Distribution Arbitrary; Minimum 
Variance Linear Estimator 

We seek K to minimize 

M(K) = E[XT·X] = tr E[X xi] 

= tr E[(X-KY)(X-KY)TJ 

= tr E[(X-KHX-Kt)(X-KHX-KE)TJ 

= tr[E[X·XT] + KH·E[X·XT]HTKT KH·E[X·XT] 

- E[X·XT]HTKT + KRKT} 

= tr[P + KHPHTKT - KHP - PHTKT+ KRKT} 

= tr{P + K(HPHT+R)KT- K(HP)-(PHT)KT} 

(51) 

= t r [ ( K T - ( HP H T + R) -l HP ) T ( HP H T +R) ( K T- ( HP H T +R) -l HP ) 

where P = E[X XT] = cov[X] represents initial 

uncertainty in knowledge of x
1 

and we have invoked 

Lemma 1 of Appendix IX.l. 

By the logic of Section IV.4, the optimal choice of 

K is 

K = [(HPHT+R)- 1HP]T 

= PHT(HPHT+R)-l 

(52) 

It is interesting that this represents an optimal 

choice of estimator, in the minimum variance sense, 

given initial knowledge (prior to observing Y) of 

X, as measured by P. The optimal variance becomes 



M(K) = tr[P - PHT(HPHT+R)- 1HP] 

= tr[~-l+HT R- 1 H) -l] , 

42 

(53) 

where we have utilized Lemma 2 of Appendix IX.2. 

In the case of interest, no a priori knowledge of 

X is available, so that P-~0 , and so 

M(K)~tr[(HTR- 1 H)-l] , 

E[X~TJ = (HTR- 1H)-l , 

or 

as in equation 

(54) 

(50). 

We may solve for the optimal value of K, including 

the I P 1~ oo case (as opposed to equation (52)) by 

observing that the above equations may be viewed as 

Hilbert space (inner product) arguments, and that 

the optimal estimate is characterized by 
1\ 1\J 

0 = (X,X) (55) 

N 
= (KY,X) 

1\ N N 
= (KH[X + X] + K£,X) 

A N tJ I'll 
"" = (KHX,X)+(KHX,X) + (K£ ,X) 

A NT N NT E[Kt· X~ = tr E[KHX•X ] + tr E[KHX•X ] + tr 

= tr[KHO +KHM + E[K£( X-KHX-K €. ) T J} 

= 0 ' 

By the uniqueness of the optimal estimate the optimal 

K is given by 

HM RKT = 0 
KT = R-lHM 

(56) 
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K = MTHTR-l 

= [P-1 + HTR-lH]-1 HTR-1 

where we have used (53). In the case of interest, 

K~ (HTR-lH)-lHTR-l , (57) 

as found in equation (49). 

IV.5.2 Sequential Least Squares Method 

We assume the "growing" model 

where (58) 

YN = vector of observation data (N x 1) accumulated 
from stage 1 to N; YN increases in dimension 
with time. 

X = state vector of parameters to be estimated 
(n X 1) • 

HN = observation matrix relating states to observ-
ables (N x n) ' 

£,N = vector of observation errors (N x 1) • 

~ 
= E(£·£T) = cov(£N) (N x N). N N 

Considering the results of Section IV.5.l, the optimal 

estimate is 

(59) 

1\. 

where XN represents the estimate of X at stage N, and 

we have momentarily taken the view that the entire problem 

is solved in the "batch" mode at the inclusion of each new 

observation. We now seek a description of the stage-to-stage 

progression of the solution to these batch problems. At 
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( bl) 

':. (_MNj R ~·H... + 

("JR;' " .. )'- ( HJ'R;'yNy\:.1 <i' ... ~ 

+ \, .. ~-~( W J R~· !4 .. rh .. :.] -.\ .. +.( H: R:'H~ f 

form the recursive equations of the least-squares estimation 

procedure; we have utilized Lemma 2 of Appendix IX.2. This 

computational scheme has the advantages of (1) inversion of 

a 1 x 1 (scalar) matrix at each iteration, and (2) the 

availability of real-time estimates of X, based upon obser-

vations to date. Our principal concern here is with the form 

of these equations. Since, from Section IV.5.1, 
IV AJT PN = E[XNXN] we see that the recursive least squares 

estimator is a special case of the Kalman-Bucy Filter, (equa-

tions II.8-ll), for the case in which the time-developing 

nature of the system state is removed (i.e., ¢=I), and 

system randomness is not present (i.e., QN= 0, so that 
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IV.5.3 Single-Stage Kalman Filter 

We now derive a form of the Kalman filter which is appro-

priate to problems in which the explicit dynamic aspect of 

the system is removed; this form provides a specialized 

estimator for one-stage problems and demonstrates a relation-

ship to batch least-squares estimation. 

Using Lemma 2 of Appendix IX.2, we may write the Kalman 

filter equations (II.9-ll) in an alternate form: 

?"~' --
_, 

'P .... -\, ':. 

c N-\1 : 

:. 

-- l 1' -· ~ I J ll 't R -I n I .L. 
1' R \+AI~, r"".f-• MNta N~' ftJ-"\ T t\AI"'' AI ... , T 

::: 



(We have not commuted products here.) 

Thus 
T ... 

T 
n 

The single-stage Kalman filter becomes 

( 

T ' ... 
f\ -· -t \4 I R ~ HI ) "' R.. 

47 

We have utilized the inverse form to allow us to once again 

observe that, for the total initial uncertainty case, with 

zero system randomness, 

Q \ -:: 0 

?:-· __,. 0 

c. I ~ (H; R ~I H I )-I \-1 ~ R I_, 

- (H,rR~-·1-l,Y' 
J 
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the conventional least-squares estimator result. This should 

not be surprising; the problems solved by the least squares 

estimator and Kalman filter are identical for the case 

described. 

We summarize by observing that the discrete Kalman filter 

may be viewed as the solution to the conventional least-squares 

problem extended to include explicit system dynamics and 

rand o mn e s s ( ~, Q) • 

IV.5.4 Multi-Stage Kalman Filter 

The multi-stage Kalman Filter is the estimator discussed 

as the principal topic of this paper, to this point. 

IV.5.5 Stage-Sequential Kalman Filter 

The stage-sequential form provides a means of incorpora-

ting dimensionally large (we refer to Y) observations in the 

filtering equations II.S-11, without the computationally 

expensive inversion of the observation-dimension matrix of 

equation II.9. A single time stage is divided into an arbi-

trary number of pseudo-stages, for which the transition 

matrix is temporarily equal to the identity matrix. At each 

pseudo-stage, a single observation or set of observations 

from within the vector YN+l is incorporated, by appropriate 

adjustments to H and R. In order that this scheme repre-

sent a time saving, the computation of extra stages must be 

accomplished more rapidly than the matrix inversion. 
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V. EXAMPLE SYSTEM COMPUTER SIMULATIONS 

We return to the example systems of Section III, the 

solutions (estimators) stated in that section having been 

derived in Section IV. Digital computer simulation of the 

examples was carried out by computer programs playing the 

roles of 

(1) The time-discretized, deterministic portion of the 

linear system (H,¢). 
(2) The stochastic effects present in the system forc-

ing function ({Wn}) and the observation model 

({Vn}). 

(3) The discrete estimator, including both the time-

dependent filter equation (II.B) and the propagation 

of estimator covariance and coefficients (II.9-ll). 

By generating (1) and (2) within the computer, we have 

the luxury of observing the unobservable; that is, the system 

state vector is available in uncorrupted form (although not, 

of course, to the estimator) for our comparison to the 

estimated state, as produced by the filter. This is certainly 

not to be the case in an actual application of the estimator, 

but allows us to study the overall behavior in a meaningful 

way, prior to an application. To avoid confusion, we reiter-

ate the fact that the estimator includes the stage-by-stage 

calculation of expected error variance, thus maintaining a 

measure of its own certainty. 
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The computer program exercises equations and makes 

available the relevant variables in printed and graphic form. 

A detailed description will be found in Appendix IX.4; we 

only add here that the program is designed to accept a 

description of the system in the general form of equations 

II.l-6, by the user's specification of the matrices ¢, H, Q, 

R, and P(O), which may be stationary or time-dependent. 

The reader is referred to Section III for review of the 

example sy sterns. 

V.l Scalar State (refer to Section III.l) 

MODEL: 
"f...Nlr\ -::. 'X.~ + w~+' 

~,.,-: r...~ ~ VN 

v~v-L.w~1= 6"1. 
Q. =- Q 

v~ l VN \ 
?.. K. ~ u,'t ~ 

ESTIMATOR: 

) 
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(l - ,C AJ+\ )( t'f N 

~ + ()Q .... ) b fol tl = 

: 
G""p. 't. ( 'iJ It) 'L + 6' Q 't.) 
~'+ i' ~ 2. -t- o"- 1. 

~1 

<;ffC\ftL cac;e : 6'"" Q 'l. :: () ~ ~ AJ+t --
~ ... ,) (;'()"' + '5" Po.'\. I 

Figure V.l.l illustrates both system and estimator 

behavior for the case 

1.. btt :: 5'. 0 ~ ( o\ :: q.o 

r:Q.t. : o, I 
A 

'X. (o) == b.O 

s-:'1. 
\) 

-::. l. 0 

It can be seen that the covariance/coefficient system (the 

filter) reaches a steady state; that is the filter becomes 

stationary in the limit. In general, the Kalman-Bucy filter 

is time-dependent. However, we shall show in Section VII 

that, under a wide variety of models, a stationary environ-

ment ( R , Q ) leads to a limiting stationary estimator which 

is independent of the initial uncertainty, Po (see also 

Figure V.l.4). This feature may be advantageous under con-

(l) 
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ditions of tight computer time and memory constraints, wherein 

one may utilize the constant limiting coefficients, elimina-

ting equations II.9-ll from the computer load, at the cost 

of transient suboptimality. We also note that the limiting 

filter provides a solution to the Wiener problem, which seeks 

a stationary, infinite-memory filter. 

The power of the K-B filter rests in part in its ability 

to handle non-stationary statistical environments. Figure 

V.l.2 illustrates filter response in the presence of a step 
. b . . l. 1n o servat1on no1se power-- ()R • Observe that the filter 

"closes down" at this step, each new estimate being optimal 
1.. '&. 

under the current statistical environment (~~ ~~ ). It 
" ' '~«"t 

is important to note that we have supplied the filter with 
"\ 1. 

the description of the statistical environment (~•~ ,~Qn), 

both level and step, throughout the run. Knowledge of the 

statistical environment, in the form of specification of the 

sequences { ()~:} and [ CJQ~}, is a fundamental prerequisite 

for Kalman filtering. Such knowledge is often not available 

or precise, but approximate figures make near-optimal filter-

ing feasible in many cases. When no data on environmental 

statistics are available, the K-B filter is reduced to an 

elegant statement of what the solution should be, but falls 

short of a solution which leads to the synthesis of a filter. 

In Section VIII we shall be concerned with methods for 

utilizing the Kalman-Bucy filter in the absence of~ priori 

statistical information. 
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In the special case of an unforced, deterministic system 
t ( 6Q :: 0 ) , with observations still corrupted ( op. 'L > o ) , con-

tinuing observation of a predictably propagating state leads 

in the limit to complete knowledge of state (i.e., P" ~ 0 ; 

see equations(l». The appropriate filter relies increasingly 
1\. 

on the propagation of XN, through ~' and decreasingly on 

incoming information, YN. Figure V.l.3 illustrates this 

situation • Note that C N .-. 0 and P N -+ 0 • The steady- state 

form of the estimator is thus 

A completely unforced system is an idealization which 

is never completely correct in physical systems. Pure propa-

gation simply reflects our unwillingness to model microscopic 

effects which play a small part in the problem. Unfortunately 

this idealization, representing a "lie" to the filter by the 

modeller, leads to difficulties. This topic is discussed 

further in Section VI.3. 

V.2 Rate Estimation (refer to Section III.2): 

MODEL: 

J 

~T : 0.1 SEC.· > 
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dN - ll \JN -

'JQY[WN1: [: :Q~] [ o. 0. 1 = Q -- o. o.o2. 
' 

?u .. + f~1. AT 

fu p\1. 

Figure V.2.1 illustrates the estimation oftx) and l~~ 
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V.4 Redundant Observation (refer to Section III.4): 

MODEL: 
XN+, = 'X. N ~ Ww.._ 1 

~N:1~~1N: [:l~~·l:JN 

vav[wul= '\. 
bQ : Q ::. o. \ 

l~ ~ : ~l ( S",O 5,0 l 
IJLW \_ \f N 1:: :· :. R ~ 

o.o o.o 
"-a 

ESTIMATOR: 

This example illustrates in simplistic form one of the 

prime applications of the K-B filter--the optimal combination 

of observations originating from several instruments. For 

example, in navigation problems we are faced with combining 

accelerometer outputs from inertial measurement units, 



:~·t~--~-L~--+·-:; ·•----t 
I 

j, ! 

.... [ _F_I G_U_R E_Y_._Y-_.l__,ru --- ~--:-_ ---r-~- -64-
I -·-------r------··. 
l 

---------····-·-· i--- ··--·· 
l 
I 
i 

l 
j 

·-~- ------------1·--·-·-----... 

........ 
..._-+---- -·---··--~·-·····-+-. -· ··--. -----

o. ·o 
- 0--· _\.tl. 

0 .. 
0 

~ 

---r---·- . ---- --------··-·-
• 
I 

l 
I 

--::-;~--~-=- r_, ___________ ----------
.. I 

.: 0 0 
I \I) 0 

..... 

'i 

LP. 

__ , ____ ~........, 
0 l.n 0 

0 0 
' 

0 
0 
(t) 

0 
0 
N 

0 
ln 

0 
0 

0 
in 

0 

i 
t 

I 
j I 

--~L- _ ~ _ -~ ·--~---i ___ _ 
I 

~ 

' ('0 N c) 0 

_.., 
~ 
~ 

c..) 

• 

-. 
0 
~~~ 

-
·--·•··----------~ -

! 
1 

= 

:: 
L) 

• 

_;: 

u 

' _.... 0 . . 
0 C> 



65 

velocity measurements from doppler radar or airspeed instru-

ments, position measurements from radio navigation or pilot 

visual acquisition methods, and so on. Each measurement 

source has its own characteristics in terms of bias, random 

errors, drift, etc. Indeed, the use of instruments of diverse 

error character is precisely what makes the use of more than 

one instrument a fruitful pursuit. 

Figure V.4.1 illustrates the performance of the esti-

mator, which is seen to be improved over that of Figure V.l.l. 

Also demonstrated is the effect of variation in the separate 

instrument statistics on the filter coefficients; as dis-

cussed in section V.l, it is important to note that the 

description of the non-stationary behavior of the instrument 

errors was provided to the filter. 
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VI. ADDITIONAL CONSIDERATIONS 

VI.l Deterministic Forcing Functions 

We may add slightly to the class of systems which are 

open to K-B estimation, by the inclusion of a (known) deter-

ministic forcing function, f(t), with time-discretized 

(t\ 

We utilize Theorem IV.l, and the projection methods of 

Section IV.4: 

Xlo4, " E f x .. 1. \ 'Ht~+•'>1 ('t.) 

~ E t )(N~' \ Y (~)1 + l: l )CN+, \ t:. (N\a)) 

where we have followed equations (IV.37-38). 

We observe that both the choice of optimal coefficient, 

CN+l , and the resulting filter variance are unaffected by 

the addition of the deterministic function, by noting that 

1\ 

=- X,_.,..,, - X tv+• 
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: l~N-tl x .. tW .... tft ..... ,) -1 ~ ... ,~N '\f .. h4- CN+t ( 'tAI+1 

- ~ .,,., q> .... t- H 1o4,-\ .. ~, )1 

as was the case in equation IV.4. 

VI.2 Correlated Processes 

Random effects on system state and observations are 

represented by the sequences [Wn} and [Vn} , having their 

origin in the physical world; these sequences are likely to 

have passed through "pre-processing" effects prior to their 

impinging on the subject system. One significant result of 

this is the "coloring" of these random processes such that 

our assumptions II.3, II.6 are no longer valid. For example, 

(+) 

may be more reasonable if the observation noise has passed 

through an appropriate first-order linear system prior to 
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disturbing observations. 

One means of coping with this situation is the inclusion 

of the noise pre-processing model in the estimator [17]; this 

scheme suffers from the disadvantage of a vanishing observa-

tion error covariance matrix, which will be seen to be unde-

sirable in Section VII. 

Bucy [ 4] has developed a more fundamental scheme for 

estimation in the presence of colored noise which does not 

suffer from this disadvantage. (We have not studied this 

method.) 

VI.3 Unforced Systems 

In Examples V.l.3 and V.3.2, we observed that estimation 

in an undriven (free) system ( Q = 0 ) leads to vanishing 

filter coefficents and error variance. As discussed in 

Section V.l, such a condition is generally an intentional 

misrepresentation on the part of the modeller. In an ideal-

ized error-free computing device, the operation of the filter 

under such conditions suffers no ill effects. However, real-

world, finite-precision computing devices depend directly on 

the stability properties of the estimation equations. In 

Section VII.5, we shall see that the matrix Q determines, 

through the concept of controllability, the stability of the 

estimator. In a practical computing device, instability due 

to Q = 0 may lead to diverging computing errors in propa-

gated estimates and covariance. 
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To describe the situation in another fashion, the K-B 

filter supplies the optimal filter coefficient under the 

model-supplied conditions. The inclusion of new observation 

data through a non-vanishing filter coefficient contributes 

directly to filter stability (see comments at end of Section 

IV.l). If the model data imply that the optimal coefficient 

should vanish, the filter relies increasingly on pure propa-

gation (through ~), and decreasingly on the error-bounding 

observations Y. Any perturbing effects (e.g., computing 

errors: round-off, thermal noise) may drive the resulting 

unstable system away from the desired equilibrium. 

One means of dealing with this situation is the inclu-

sion of knowledge of computational or physical perturbing 

effects in the model supplied the filter: Q is set to 

reflect the pseudo-random "noise" of computation round-off. 

The result is a "humble" filter which in equilibrium is not 

cut off from observation of the physical world (e.g., V.l). 

VI.4 Non-linear Systems: Linearization 

The linear nature of the model (II.l, II.4) is often 

itself an idealization. A more general situation is repre-

sented by the model 

lS) 
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In some cases, it is possible to treat such a non-linear 

system with the linear modelling scheme we have discussed, 

by use of a perturbation approach. The principle of use is 

that the propagation in time of the difference between two 

solutions to the non-linear system (5) is nearly linear if 

the solutions are close to each other. We presume that a 

solution * X to (5) is known, and that this solution is 

nominal in the sense that the actual solution will be close 

* * enough to X to make expansion about X adequately 

dominated by the linear term: .. 
Ax~.... :: x tJ+• - ~ ,..~. 

dP ( • ) 0 (K,t- x,.s· :. -· '(...~-~,., + ax 
X:X* 

I 
~ q> ,.,.. A 'X N + 0 = 

The addition of a random driving term to (6), as discussed 

in the previous section, is a means of keeping the resulting 

filter sufficiently open to accept corrections to the lineari-

zation of (6). 

We also linearize the obs$rvation process: 
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D. i ~ ":. ~N· yf\J (7) 

:: q ~=I~ .. ') -\, ( x,. I V~o~) 

: 'lh..j (x:-ll .. ) + o ( x:, l(.s· 
~X 

X-= x• 

I 

"' ~N A'i.N + 0 : 

It is likewise appropriate to add an observation noise term 

to ( 7) • 

The resulting filter will estimate the deviation from a 

known, nominal trajectory. Such a filter is of use when a 

nominal solution is available, and we wish to use observa-

tional data to correct that solution for deviations not 

modeled by the nominal case. As an example, consider the 

orbit of a satellite about the moon, under the influence of 

lunar gravity: 
• x = f lx) 

Y ~ h(x,v) 
I 

where l: represents a cartesian frame state vector 
• 
X 
• 't 

with origin fixed at moon center. Then 
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• 

• X. 
"1-

• • <, (, 

f(~) ':. -: ( '\) 
(~) 

- GM"' t 
('X., +"'q~)~'1. 

(~ - G IV\"'~ 
tx"-+ ~, 'f''L. 

) 

where we have assumed a spherical, homogeneous moon of mass 

Mm, and are solving only the two dimensional problem. 

Instrumentation may include inertial measurement of ax 

and a , doppler radar measurement of x and y , implicit y 
radar measurement of x and y , or other schemes. We 

consider the use of a horizon-sensing instrument, which 

measures the sight angles g and ¢ , as shown in Figure 

VI.l, relative to a stabilized platform: 

FIG n..l 
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Then 

= h(X) (10) 

Now (8) implies 

• 
~~~X 0 ( b."()1. (\ '\ (6X) - + - dx 

xi' 
or 

A'l.,", IV 

6 "'IJ + !!_tAX AT (\t) - d~ AJ ' 
x* 

where, from ( 9) , 

0 0 

0 0 0 

~~ - G-M~ t~t-1.~'") 3G-M~ ~ -x. 0 0 (\ ~) -:: 

~X l "' Jr ~ 1- )S/,_ ( l1.+'l' )S/1 

~G- M"' 't ~ - G-M'-(~"l-1.J,_) 
0 0 ('X z. + (,-'") ~,,. l ~,+d "")~/~ 
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* If we assume that the nominal trajectory X is a circular 

orbit of radius Ro' then 

0 0 0 

af 0 0 0 

IX 
':.. -(;.MM(t:-)t) ~ G M¥'1 'a?' (I~\ 

0 0 
'f. .. :* "Rot; RoS' 

3GM""1~ - G ~~(R! -3~ ") 0 0 
Ro~ Ro~ 

From ( 6 ) and ( 12 ) , 

(\~) 
} 

or 

0 ~T 0 

0 \ 0 ~\ 

I t -(;.('(l~~y~!-3'(~)A~) t~ c;.t'f\;~; 1.., A~) (\ i 

~N+• ""' 0 -

[ 3~:.~A"'"''"~i1 t- G.M~::-~~~)A~1 0 
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By similar calculation, 

0 0 L~J l-fr1 
H~ ~, - (l') 

:: lx -
l~;~ 1 ~-~: 1 ~ 0 0 

Equation s ( 6 ) , ( 7 ) , ( 1 7 ) and ( 18 ) form the mode 1 . At each 

time stage, an observation is compared to a stored or com-

puted nominal observation, to form 6YN • The resulting 

estimate of 6XN is used to correct the stored or computed 

* nominal state, XN. 

VI.5 Computer Errors and Stability 

The implementation of the filter equations in a digital 

or analog computer leads to the question of error introduced 

by the limited precision of computer arithmetic. The prin-

cipal issue is the stability of computer error thus intro-

duced. As discussed in Section VII.5, the stability of error 

is determined by the stability of the filtering equations 

proper. 

In the simplest case, we utilize a fixed-point arith-

metic computing device, which may be seen to have the follow-



ing error propagation character: 

Letting E..x = error in the computed value of )(, the 

arithmetic operations lead to error propagation through 

Addition: 
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(I~) 

Multiplication: 

f representing the pseudo-random truncation error. The 

filter equation (II.8) thus leads to the error equation 

) 
(-to) 

assuming £,= E~ :. 0 , which is not unreasonable. 
,.,~, 'j'~""' 

In the limiting case discussed in Section VII, (20) leads to 

• 
E. x = (F - \< H) t x + f { t) 

Further, the covariance equation (II.9,10,ll) leads to the 

limiting case Ricatti equation 

as discussed in Section VII. The error equation for (22) is, 

from (19), the Ricatti equation 

i..p ::. (r- p 11T p."'tt )£, + E r ( F- PHT rf't~)T- £, ( H ,.If, H\ t, -+ f H) I (L 3) 

-where P represents computed variance. 

A major result of Section VII.5 is demonstration of the 
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uniform asymptotic stability of (21) and (23). Other 

computational problems are thus generally more serious than 

that of stability. These include: 

(1) Dimensionality. The computational load and memory 

requirement of the filtering/variance equations for 

practical problems generally lead to efforts 

toward eliminating some of the state variables from 

the model, at minimal performance loss, in order to 

conserve computing time and hardware. 

(2) Dynamic Range. The range of variance encountered 

in transient conditions may lead to scaling problems 

in fixed-point machines, or expensive floating-

point arithmetic. 
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VII. GENERAL FILTERING DERIVATIONS AND INTERPRETATIONS 

We now discuss the filtering problem as first described 

in the Introduction--the estimation of the continuous 

function satisfying 

• 

X -- FX + GU (I} 

through the observation of system "output" 

'( = HX v l "l...) 

where o F,G, and H are system-determining matrix functions 

of time, assumed continuous by element. 

o U and V are random processes of zero mean and 

known second moment, playing the part of system 

driving and observation perturbing processes, 

respectfully. 

0 We seek 1\ x(t), the minimum-variance unbiased 

linear estimate of x(t). 

VII.l A Formal Argument 

One method of formally arriving at the continuous esti-

mator is via a limiting argument, based upon the discrete 

results of previous sections. The disadvantages of formalism 

are offset by the intuition gained, particularly in the area 

of the behavior of the random processes involved. 

Consider the whiteness requirements of equations II.3 
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and II.6. The limiting case (.~T~O) of the discrete random 

process (Wn} is the continuous(*) random process w(t), 

satisfying 

l~) 

where Q(t) is a deterministic function describing the 

covariance of w(t), and )\,t the Kronecker delta. This 

turns out to be undesirable, for such a random process has 

no effect on a linear system of the form (1). That is, no 

energy is delivered to the system by the driving process: 

Letting ~ be the fundamental matrix of F, 

t . ' 

= ~(~,to) f. L~\t-)1 + ) ~( i/t) E [wt't)1 h 
io 

(4) 

E[){l~)XT£t)1 ~ ~lt,to)[xH.)~-r(t.)]~'(t,h) l~) 

~ t 
. + J f ip(t,-r,)clw('t,)w-rtt~~~lt..t- .. ) jt.J.tt 

tt i. 
i 

::. (p(-1. 1 -\;~\'o~(t,h) + 0 
) 

(*)we refer to the continuum of the index set {t} of the 
variables, and not to continuity in resulting sample 
functions. 
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the integral vanishing by (3). At this point it is customary 

in the literature (in a formal argument; we are not at the 

foundation level) to introduce the remedial formalism 

where <b(t,-t) is the "Dirac Impulse Function," to replace 

equation (3). We make the following observations: 

(1) The impulsive device may be placed on solid mathe-

matical footing as an entity which is not a function, 

through the algebraic completion of the ring of 

continuous functions [ 6 ]. ~( s) becomes the 

identity in the resulting division ring, under 

convolution. 

(2) Such a mathematical justification adds little 

insight toward interpreting the physical meaning 

(if any) of the requirement (6). 

(3) Indeed, the mathematical properties of ~(t-Y)Qlt) 

do not seem to make physical sense here. 

What we seek is a random process, w(t), which preserves 

some aspects of both the whiteness and energy-delivery 

requirements which our intuition demands. The solution 

rests in the use of a random process which appears white to 

the physical system, but which is fact correlated over a 

relatively short period. That is, we require that E1wLt)\IT("r)] 
be non-vanishing for lt-~1 small compared to the typical 

response time for the physical system, as characterized by 
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F or ¢. Letting T represent the "short" time period we 

have in mind, we are requiring 

(7) 
J 

The requirement on w(t) becomes 

o > ) t - "t \ ~ T 17-

fi wlt)wT('t)1 = lf)Qlt), \t-l\ ~ Th. ' 

( ~) 

so that l~) 
± -t:.-'t, 

+ ) j q>lt,t,) Elw{-r,) ·W T C't.+~ )] 

't,=to S =-to- 't, 

t "''W\tt· t. ) ~ 1 
:: ~ {-1: ;to)fo ~ \L-l o) f J 1 cp( \: .'t ,) lt) Q ( 't,) 

't,:~. s~ ~Cl1-l to-1',)- ~] 

~ <P1 ( ~}Sit,) j S J1", 
t 

~ cp{i,-\;~ 'to f(t ;lo) + \ q>{ ~J 1',) Q (T,)~ 1 

( -1: /t,) ~t 1 ) 

~.=~. 

where we have used ~lt,~,+T) -=q5(t,1'.)~{t,,T+t,) ~ ~lt,t",). 
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The degree of approximation involved is determined by the 

correlation period T; more significant is the achievement 

of non-vanishing energy delivered to the physical system by 

a random process of finite covariance and system-relative 

whiteness to within any challenge level. 

Based on the above discussion, we feel free to revert 

to the abbreviation (6), which has the formal properties 

desired, provided this expectation appears only within 

integrals. We redefine the random processes {Wn} and {Vn}' 

such that 

(to) 

We propose to carry out a limiting argument on the resulting 

discrete system, keeping in mind that the symbols serve as 

carriers of the above described interpretation. 

It is helpful to review the connection between the 

discretized system II.l-8 and the continuous system (1), as 

summarized by Appendix IX.6. The solution X(t), to (1) has 

the property ~ .. ~, lll) 

)(.Lt .. ~,) ~ ~ (i ... ,,t.,) ~(t .. ) + J ~ ltNto,'t'\ G(t) V (t) ~ t 1 or 
t.~ 
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Assuming G is constant or at least continuous over the 

range of integration, we approximate (12) by 

Following Sorenson [17], 

having limit case 

X(t) ~ F[t)Xlt) + 6-(t)U(t) (\b) 



Similarly, for the optimal estimator, 

1\ A. A. A 

xl~u •. ): x,_., .. , = ct>N-t-\ 'AN + C.-.~-t,(Y~+\- H~+,¢>..., .. , x,..,) 

having limit case 

• 

X lt) :: F l-l) Xlt) + ~<li:) I 't'lt)- "t·nX t\:)1 
where 

exists for the optimal choice of CN+l: 

c~, 

~T 

84 

l l1) 

("2.0) 



85 

: l nt .. \-\- o( .. T)]\I,.(t .. +l)l Rtt .. 1",) + o(n)1 -I 

(note the similarity to equation IV.65). The variance 

equation becomes 

l-z..1.) 

Cz.; l 

? lt .. ~~- 1 l t .. ) -= F t-1: .. ')1'{{ .. ) + t>(.t.) F \t .. \ + G-l \ .. t,)Q l t....,) G-1 
( \; .... +,) 

~' 
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having limit case 

YL-t) ~ rlt)Pl~\+ rc-t:\r'"tt)-\- c,.Lt\Qtt)G.Ttt) -\<(t\\-\(t)f(t) 

-:o Flt)Ht) + fh:WTl~) + c.lt)Gl~HTl~)-'fH)ik)fitHHUPlt) 

This non-linear matrix differential equation is the Riccati 

Equation; its solution, given the initial uncertainty P(O), 

characterizes the performance of the continuous estimator. 

Section VII.5 is devoted to the study of properties of solu-

tions to this equation. To summarize, 

DISCRETE CASE 

y N ': "AI XAJ .... \) ~ 

X N~, = ~"'hi... + c .. +, ( v ..,~.- H"' .. , <P ..... X .. ) 
I th O A.,T t'i'1 I 1\T P N-l• -::. "t'~ .... , IJ ~"' .. , T 1 N., a~~~ ... r., •. 

I T ( If") I T I ,-, T ,_, 

C."'"'' : YN~' ~N ... , HAt..,, rN+• l-\ N"' t- 'R~o~ .. ,) -= PN~·"N.J' ~AI .. , 

? 1\1-4 I '::: li - C.'\1+1 1-\- N~ I)~ ~-4 \ 
1 

10) beY~ 

<I>..,~,= <P l~~ .. ,,-l~\ 

!t (p{t-,tN),.. ~l-l) ~ ltlt.a\ } <i? (t ... lt. .. \:: I 
rt: ... +, 

\' N~' w"'~' .-=- ) 4>(t.. ... ,l\ G-l't) \.Jl "t) ~1: 
~N 

E [~ .. wJ 1 ~ L-&r)QN: Q;> f l vN vJ l" lit)RN 

(z.~ l 
(z.~) 

(~7) 

( 2. ~) 

(1.'1) 
c~o) 



87 

LIMIT CASE 

• F)( + G u (~ ') )( = 
'? -= H X+ v (~1.) 

• Fx"'" \(r'f-Hx) l ~l\ " X : 

• F 1 + 1 f , + G Q G-T - ~ H t R _, \-\ 'f (1~) f -::. 

t< - F \"\ T R _, ( s5") ... 
I 

We now approach the continuous case from an alternate 

viewpoint, in line with the history of filtering theory's 

development. 
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VII.2 Continuous Filtering and the Wiener Problem 

In Section IV, we considered the selection of a co-

efficient sequence for an optimal time-discretized filter. 

The resulting filter might be viewed thusly: 

f 'f I~ 'l J ''' • ~ 
TAPPED DELAY LlNE 

AT ~T 6T ~T • • • 
lNCOM\NG I 

~IGNAL Ym y"'·l Vm .. 't 

D\~\1A\.. OR ANALOG-} • • • 
COEFF't C.\EN T MUL.. T. 

AT 

DlGlTs:\L OR l 
ANAL06 SUMME~J 

FIG. :mt.l 
FlL1'ER OUTPUT l 

(eSTIMATE) J 

We_have emphasized here the viewpoint that the estimate 

(in the steady state, or ignoring initial estimates) is formed 

from a linear combination of the incoming observations. It 

is interesting that recent developments in digital electronic 

technology have made practical the construction of filters 

in precisely this form [5 ]. These filters often take the 
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(non-Kalman) configuration of a "finite-memory" delay line 

which combines the M most recent observations in a fixed 

linear combination, resulting in a sub-optimal but highly 

flexible and useful filter. It would appear that an increased 

use of digital signal processing on ever-lower levels of 

component structure is the current trend. 

However, the historical origin of the Kalman-Bucy Filter 

is the Wiener Problem, predating the availability of such 

technology. During the years during and following World 

War II, Norbert Wiener was concerned with the problem of 

extracting from a noise-corrupted time-continuous signal a 

system state or message signal, using electronic filters 

constructed of "classical" analog components. In the lan-

guage of convolution, impulse response, and transfer function, 

Wiener stated and to a degree solved this problem [18]. The 

continuous Kalman-Bucy filter solves a problem broader than 

the Wiener problem; in the special case of a stationary 

statistical environment (R,Q), the limiting K-B filter is 

the solution to the Wiener problem, and presents directly 

the data necessary for actual synthesis of the filter, 

whereas the Wiener solution is in fact only a step toward 

synthesis. 

Consider the formation of an estimate, pertaining to 

the model (1), by 
t 
J t\(t,s)'{(~) ~s 
to 
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" XA(t) may thus be considered the output of a non-stationary 

linear filter having impulse response A(t,s), to input 

b( t- s) : 

Fig. VII.2 
~!.___A_~ 

Observe that the operation of convolution has replaced 

the discrete operations of Fig. VII.l. 

We now seek A(t,s) such that E[(X(t)-~A(t))T 
1\ 

x(X(t)-XA(t))] is minimized. Following Kalman and Bucy [13], 

we characterize the optimal filter impulse response function 

A(t,s); the following refers principally to equations (1), 

( 2) , and ( 36) : 

Theorem VII.l: " )\A (t) ot\\Vw\a\ ~ C.ov L ~~ (t) 1 '\' ( t') 1 = 0, 

'd 't E (io,i.). 

Proof: 

using the Hilbert space view of Section IV.4. Now 

( ~" t -l) I ~,co)= h E [ i A { t ) J :. 'i 1 ( '>) ~ T ( t Is) ~ s] 
t 

:: -\:"" 1 c.ov 1 X" ( t) , Y (s>) 'B -r(t,s) ~ s 
t.. 
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Then (l) ccovl X"tt), 'Jl(s)) = 0 'd s~ (*.,-{;)~KAt*) orii ... e~\. 

W.) ~"'lt) o f-\-i"""' \ -='> +--~:~ov l X" (t), ~ (s~ t} ( t 1s) ~s = 0 

~ ~{t,s\. Le+ ~(tis\:: covlt.t·H,Yls)] 

Then 

-t.,- ~-\; 'B (-I; I') y=s T (t IS') d S "= 0 I S 0 l "!>"') 
to 

-e,tt
1
<:.\= c.ovlX'Al-t),Y(s\) = 0 , t! s~ ({:.,i) . 

q.fJ). 

We note that (37) is a form of the Wiener-Hop£ Equation, 

which characterizes the optimal filter impulse response. 

Wiener discovered this equation in integral form, and a 

solution was thus difficult to obtain. One of Kalman/Bucy's 

principal contributions was the expression of the problem in 

differential form: 

Theorem VII.2: XAH) or~i ... q\ # ~ Al~ ,s) = f({\AI-t,s)-R(-tlt)K(~)A His), 

~ S E. l-lo,-l) 
1 

pr-ovide c) R (s) > 0 · 
lto) 

Proof: By theorem VII.l, 
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¢;) (OV [ "Xtt\ 'ils\1 "' Cov \5A ltl, 'l'lS\1 1 ~ S ~ l-lo,i:\ (41) 

t 
~ co"[)( lt) 1 its)) -= ~ f.\[t ,"'t) cov[Yl't\, Ylsl) Jt 1 \-} s ~ {t.,i\ . 

-\:o 

Differentiating each side of (41) with respect to t, using 

~ s~ lt.o, t) . ~\)-t 

~ t 

~ 1 A lt ,'t\r.ov 1 'f{'t}, 't\S\} J t "' ) ~ Ali:, "t\ eov l 't ('t\ 1 'I' lsl] ~ t 

~o {o 

+-A lt,-\:) co" ['t l t), '(l s )) l.tn l 

~ 

:: ~ ~ l1 ( t ,t \ cov t '( lt),Y !s)) ~ 't t r:\ li ,i:) cov lK Ltlx lt) 1 'i (s\] 1 

-lo tJ S ~ (-\: o ' { l . 
Equating (42) and (43), and using (41), 

t 
= ~ f-Lt)R {t ,t) Cov ['fl't\, 'i(s)1 Jt \"t'~) 

to 
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-t 

~ ~ t.r ~H,1:)~vl'<('t),Ycs\1h + Ali 1t):t\{t) c:ov[xlt\,'(lS\] 
to 

t 
: ~ ( ~ A (l,'t) + ~ lt ,t.\H lt\ A (-t.,'t\] c e vl Y (1:), 'C (s) 1 h 

-lo 

': 0 
) 

l l ~-\ e 
~ [flf.)llltlt)- }tAlttt)-IHt,t:)Hl+.)A(t,'t~l covlvtr),\'ts)Jh = o, · 
~0 

IV s E. t -t .,-l \ # ~A l-t:) o,-ti ..... \ . ib~"' 

(i) (40) is a sufficient condition for optimality. 

(ii) To establish the necessity of (40), we assume 

" optimality and observe that XA+B satisfies the 

Wiener-Hop£ equation (37), where B(t,~) is the 

bracketed quantity of (45): 

tov L XA.~ t+.) 
1 
'tl\)1 -:: Cov l iA l~) 1 't'l<>\)- c.ov L XaH> 1 'I' I~)} 

t 
: 0 .... ~ ~ ( i 1 1:) Cov l 'i It) 1 Y l s ~h 

.-bo 

I 

from (37) and (45). 
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Then by the uniqueness(*) of the (optimal) orthogonal pro-

jection, 

> O'r 

-\:. t 

~ ~ 'b{ t I i, \c..o V l '( ('t I) I y ( 't \.\1 e, T ( ~ 1 't \.\ ! 'l: 1 ch·~ 
io ~o 

- 0 
J 

or, using (2), 

t -*: 

J J ~li ,t~kov l\t It~) '#.("t~\ > H (1",.)'~{t,.)1 ?.>'tt 1t '") ~ 't 1 

-lo to 

Proof: 

+ ~(t,'t,.)Rh .. YB(t.'t'") 1dtl."' 0 

c. 0 v l X A l {) I '( t s \) .. 0 \:1 s E H 0 It) 

-\: l A l i I 't \ c 0" f v l 't \I'{ l \ \} ~ 't ( s I 
\o 
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Now (52) is continuous in s on both sides, implying 

that equality holds for s = t: 

Alt. ,t) 

Q.E. b, 

The similarity between this conclusion and equation (35) leads 

us to observe that the filter integral form (36) is related 

to the differential form (33) by Kt~\ = R(t ,t). 
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Theorem VII.4 The optimal estimator is the solution to 
• 
~(t) ': FLI:) ~lt) + \<L·t) i '{(t\- Hlt) Xltll 

: [F - K H} X + KY 
I 

where Klt~= Alt,-t:) 

" Proof: Let XA(t) represent the optimal estimate of X(t): 

t 
t~~ l-l,s) \'ts\ 6.s 

Then by theorem VII.2, 

~ A lt ,{) 't l t) 

t 
"" ~ [ t(t:) 1\lt ,s\- 1\ lt ,i;)H l-1:) Ali:, s \1 Y£ s) ~s _. M~ ;I:) V li:l 

~. 

-\ 

: [ f H:\- fl (t,·H 1HI: ~ ~ Prl-l,s) Y~) Js + 1\ H,t.\ Y li:) 
-\.o 

~ lF - \<. H 1 ~A lt) + \( 'f 
1 

where K(t) = A(t,t). Q.E.D. 

We have arrived at equations (33) and (35). 
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1\ ( . ' Theorem VI I • 5 X l-t) o t '' ~M <1 i \M f \ t' e s 
• 1' T T -.\ 

li) f(t) ~ FL-t:)Plt)-fl-t:)f (t) ~ &U:)Glt)Gli:) -fli)}{l-l)Rtt)r{lt)f(i) 
~~~ (nl 

(j,i) i,. lF-1<."\X + GV- KV ~s-" 

~ lF -k ~) 1 + G\J - \< V 

Li) ?lt)= cl'Xti=\·XTlt)1 

But by (59), 
t 

~lt\= <pf~~,t.)X'lto)f ~~~/:;)IG-ts)U(s)-\{(s\Yls~Js, (b! 
~\) 

so that 

1: 
+ ) <pf-~~, s) [ G l s) Qu.) G. TLS) + Kls)R t'-') KTts)}<J>:(~~s) js 

to 
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Then differentiating (61), 

We observe that this differential equation is a valid 

description of filter error variance in the general (non-

optimal) case, analagous to equation IV.5. In the optimal 

estimator case, we choose K = PHTR- 1 , so that 

• Pl-t) "::. F? T '?FT t GQGT- fHTR-'» f 

We have arrived at equation (34). 

VII.3 The Wiener-Hop£ Equation as an Euler-Lagrange Equation 

We show in this section that the Wiener-Hop£ equation, 

(37), may be reached by means other than those of Section 

VII.2; it is the necessary and sufficient condition for the 

minimization of the variance integral loss function, known 

in the calculus of variations as the Euler-Lagrange equation. 

We seek the linear filter, specified by A(t,s) in 

(36), which minimizes the variance in estimator error; we 

consider a simple scalar system: 

Signal: ~ l1:):. ~l-t) f V lt) 

t 
Estimate : ~ l t ) = ~ f\ l i: 1 S) 'd- l S ~ J. S 

to 
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t 
Error : ~ ( t) -= 1-( i-) - J ~ ( t 1 ~) i 1- ( S) + IJ ( S \ 1 J 'S 

to 

Variance: fL~ \ E L ~ lLt)1 

t 
::. Ef ~ ... LH} - l11Hi,s)E["Xts) 1-LHj J.s 

to 
-\: t 

+ f J Mt,,) f\ { t ,s ... ) E l ~( s ;'11, (s'l.) + V(s ;') v ls...)} J s, lh 
t -lo 

t -\: 

-: E \.~'I. (t)} + J J 1\ (i .~.) Mt ,s~ )I '\l)lt ts.,~& )+. \P11 (s,,s&~ J s, 
to -lo 

- ) A H, sz.)~~ (s~.,i:) 1 ~ s2. > 

where '\p denotes the covariance or autocorrelation function. 

The necessary (and in this case sufficient) condition for the 

minimization of ( bt) with respect to A(t,s2 ) is the 

Euler-Lagrange equation 

-t: 
~l\lt,s,\l'\V~(s,,c;&) ~\Vv(S,/;:.>]cls, -'W1(Ls'l.,i:)- o) 
<to 

for all s 2 E (t
0
,t). This is a more familiar form of the 

Wiener-Hop£ equation. However, it is equivalent to (37), by 

reversing the order of integration and expectation: 
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E t f f\ ( t, $ ,) [Xis,)+ v (s,))!s, • [ )Cls~)H (s .. )~ - X(s .. )X (i)] ('0 l -lo 

-- 0 

VII.4 Observability and Controllability 

We return to a question posed in Section IV.l: Under 

what conditions does observation of system output, Y(t), 

provide information of use in estimating system state, X(t)? 

In the noise-free, undriven case, 

Xl-t:) = F(t)XLt) 

'1 (-t~= \-\(~\)((t) 

(1) The observation matrix, H, is relevant through its 

singularity (or regularity). 

(2) The system matrix, F, is relevant in that the time 

development of state, as characterized by F, can 

"pull apart" the kernel of H. 
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Example VII.l: 

(b8) 

'( :: l' 

Clearly x1 and x2 cannot be distinguished via Y. 

Example VII.2: 

(b~) 

v --

Since Y will be of the form x1 (0)e-t + x2 (o)e- 2t 

observation of Y over a period of time (2 points!) provides 

exact knowledge of X(t). Note that H is identical in 

Examples 1 and 2. 

We quantify these with 

Defn. VII.l: The system (F,H) (i.e., (67)) is completely 

observable iff for each t, x(t) can be deter-

mined exactly when F ( s) , H( s), Y( s), are known 

for all s€_(t
0
,t), for some t

0
(t) < t. 

Theorem VII.6 ( Bucy) : The system (F,H) is completely 



observable iff for every t there exists 

t
0

(t) < t such that 
t 
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M t-t:,-l.) = j q/cs ,t ~I-I T(s) "ls) q> ( s,-t) d s > o (70) 
~0 

(i.e., is positive definite); + is the 

fundamental matrix of F. 

Proof : ( i ) M ( t , t 
0 

) > 0 ~ M-l ( t , t 
0 

) ex i s t s • But then 

V(s) = t' ts\ ~ (s,~) X (-t) l11) 

J~"($ 1 -t) H"(~W<s) ~s = 1~ t(s,t) HT (s) I" ls)ci(s,.t) ~s • X Lt) 

io ~o 

: M Lt I t 0) }( l t) J ~ 0 +~ ~ + l1 't) 
t 

~lt) = tvf'(i;to) ~~\s,t.)I-IT(s)'fls\ls l71) 
to 

describes X(t) in terms of observations. 

(ii) M(t,t
0

) l 0 ~ there exists X
0 

f 0 such that 

x!Mlt/to)Xo -= o . T\,evt 

t 

~~ Mlt,to') 'Ao = J II ){l~)cpts,t) x.\\1. !s = ~) lt 't) 
M(t,-l.) 

~0 

so that 



Comment: 

Fig. VII.3 

Then X = X and X = 0 produce identical 
0 
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observation functions over (t ,t), contradic-
o 

ting complete observability of (F,H). 
Q.E.D. 

We have been concerned here with the mapping 

Tt t: $...-.ef, which carries a state function, 
0' 

X(S), into an observation function, Y(S), 

STAlES 
{ T~"l EC"tOtl\fS\ 

O~SE'I.\)tfT \o).) S 
(T~Rl f('TO~l fS) 

Theorem VI I. 6 est ab 1 i shes Ke r ( T t , to ) = t 0\ ~ M ( t, t 0 ) > 0 ; 

that is, we demonstrated that the map is 1:1~ M(t,t ) > 0. 
0 

Note that the form of Theorem VII.6 makes it immediately 

applicable to time-discrete systems. 

Given that perfect observations imply unique states, we 

inquire as to the effect of imperfect observation (V) and 
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random system inputs (U) on this separation; in Section VII.5, 

we consider this problem, where the following definitions 

will become useful: 

Defn VII.2: (F,H) is uniformly R observable iff there 

exist positive reals -.i,J f> 1 J 0 1 ~ such that,~ 

for all t, 
ttA, 

~.I.> jcf(s,~.+A,)H\s~~:ls)\-l(s\P('s,~.+A,) ~s > K,I > o (? 
-t 

(This integral will be abbreviated WR (-\: .. b.) t); 
~. is referred to as the interval of observa-

bility.) 

A theory of duality between the stochastic filtering 

problem as stated at the beginning of VII and a deterministic 

optimal regulator control system problem exists [11]. 

Although we shall not discuss this topic, we mention it in 

justification of the terminology of the following definition: 

Defn VII.3: (F,G) is uniformly Q controllable iff there 

exist positive reals K1.
1 
~z. 1 1:::. 1 

for all t, 

i-+6~ 

, such that> 

~~I.> l~(i.+b~/;.)G(s)Q(s)G\s)~'c~:.+A~)s) ds >«~I>o. (l 
t 

(This integral will be abbreviated (Q {t4bt;!) 
~ 1 is referred to as the interval of con-
trollability.) 
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In the next section, we shall see that WR and c0 
determine uniform bounds on the uncertainty (P) in optimal 

estimates based upon observation. 

VII.5 The Riccati Equation: Solution and Stability 

A prime target for study in filtering theory is the 

matrix Riccati equation, which has been shown to be the 

description of filtering error covariance: 

• T l ,. _, p tt:) :: F(t) !(t) + !(-t) F L-t) + G(t) Q(-t)G- Lt)- 1(-t:) l-{ (-t:)"' (t) H lt) f L+.) . 

Although existence and uniqueness of solutions to (78) 

is a valid mathematical question, the origin of the differ-

ential equation in this case dictates both answers. 

A closed form solution to various cases of (78) was 

discovered by Levin, Reid, Radon, and others [14]; this 

solution transfers the computational problem to that of solv-

ing a time-dependent first order system of linear differential 

equations (this system is stationary whenever F,H,G,Q, and 

R are stationary). 

Stability theory is of interest in filtering in the 

following senses: 

(1) The stability of solutions to (78) describes the 

stability of the performance (quality, certainty) 

of the estimator; this stability is in the "classic" 
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direction of deterministic stability theory, as 

developed by Lyapunov. 

(2) The stability of solutions to the filtering equa-

tion (33) and the error equation (58) describes the 

assurance of the occurrence of sample function solu-

tions to these stochastic equations of desirable 

stability; this is undertaken through stochastic 

stability theory, as developed by Bucy [ 4 ]. We 

do not pursue this topic. 

(3) The stability of (1) and (2) in turn dictate the 

stability of computational error in exercising 

the filtering equations (33) and (34) on a limited-

precision computing device, digital or analog. 

The results discussed in this section are primarily due 

to Bucy [ 4 ]. We have supplemented or discussed further his 

proofs where appropriate. We utilize the definitions of the 

previous section to establish uniform bounds on solutions to 

(78), and these lead to stability descriptions of the Riccati 

and unforced filtering equations. 

Theorem VII.7 (A) (Levin et al): The solution to 

• 
'P : G ,1> "" ? ~'t + G 3 t "P CT~t 'P 

is given by 
_, 

f(t) = [M .. (-l-t.)f. +M,tl~·to'>} [M'",{t-t.)'Po + Mu(i-i•)1, ("o) 



(provided the inverse exists), where 

is the fundamental matrix of the system 

X, 

the above inverse exists for all P
0 

> 0, 

(C) P0 > 0 =9 P(t) > 0 for all t > t . 
0 

t > t . 
0 

Theorem VII.8 (Solution uniform upper bound)(*): (F,H) 

107 

uniformly R observable with interval of observability 

6, implies that for all t > t
0 

+ A, , 

where c0 and WR are defined in VII.4. 

p > 0, 
0 -

) 

Theorem VII.9 (Solution uniform lower bound): (F,G) uni-

formly Q controllable with interval of controllability 

A.,. implies that for all t > t
0 

+ b'l. , P
0 

> 0, 

( *) . Un1forml y in t. 
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( !4) 

Theorem VII.lO (Stability of variance and unforced filter): 

(F,G,H) uniformly Q controllable and uniformly R 

observable, and the existence of oc. > 0 such that 

imply 

(a) The unforced filter 
• 

is uniformly asymptotically stable, and 

(b) A steady-state solution to the Riccati equation 

exists, independent of initial condition, such 

that, for t > t
0

, P1 (t), P2 (t) solutions to 

(78) 
J 

J 
(<i1) 

where A and C are positive reals dependent 

These theorems complete a line of thought, and are proved 

below. In the case of an autonomous system, we have a further 

development of Bucy: 
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Theorem VII .11 (Direction of solution change): For p > 0, 
0 -

and t ~ t 0 , and in the autonomous case, 

where 

Theorem VII.l2 (Character of zero-start solution): In the 

autonomous case, and for p = 0 
0 ' 

(A): P(t) is monotone non-decreasing 

(B): If, further, (F,H) is completely observable, 

then 

exists, satisfies 

and P~ > 0 is constant. 

Theorem VII.l3 (Characterization of all autonomous steady 

state solutions): In the autonomous case, if (F,G,H) 

is completely observable and controllable, then for 

all P0 > 0, P~ exists and is the unique constant 

(~ 0) 



f .Jo = l \ W\ ? (. t) ) 
-l: 4 (t) 

where P(t) = 0. 
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We remark that Theorem VII.l3 substantiates the empirically 

observed unique steady state filter of Example V.l, Figure 

V.l.l and V.l.4. 

Proof of Theorem VII.7: 

(A) By direct substitution of (80) in (79), using (82), 

p L t) = L ~ II F 0 + .~ \ 1. 1 t ~ t. ' 1. + fv1 ~' 1--. t ~ .,. ) 

- r ~" 1' 0 +I'M , .. 11M,., 'f.+Mtt]'r ~ 1.1 fo + Mu 1l"" 11 'f.~ 141 t t r· 
= G, tM .. r. + M,t)\M .. ,l. + M .... r· 

+ L M .. Y. + M,,. 1[.., .. , \'.+ M .. ,yG. .. L """ r ... M .... )l ~h."· .. ~ttr 

t (r 1 lt-h,fo+ Nu 1 L ~ .. , fo-t M·n r + lt-A .. ?.t MIt JL "'" ?. t ~'tlr I 

)( G- "' l M" \> o + \\\ u.)l ~ 1.1 \' o t M 1. t.1-' 

r , 'VG .. \t,1 -+ .l. ... + (,.) + ! c;., f J 

provided the inverse exists. 
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(B) Suppose the inverse does not exist for some t = t 1 • 

Then by the continuity of the fundamental matrix, 

there exists fV1 =f 0 such that 

=o . 

Define X(t), Y(t) by 

Then 

l~ 1) 
) 

and from ( 9 6 ) , 

T T -· T T = Xrf-r"i + yr~QG- 1 ~+X HR HX- X f Y 

so that 

( 'f'l) 
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From (96) and (97), 

o = 11 'V} 11 ~ 
0 

+ r=n ~ y t\ ~ + n H ~< 11 ~ .• 1 s • t ' o o ~ 
to 

(If P
0 

> 0, this implies Y} = 0, and Q.E.D.; however, 

we must consider P
0 

= 0). From (100), H(s)X(s) = 0 

f o r a 11 s E ( t 
0 

, t 1 ) , so t h a t , from ( 9 6 ) , 

• y :: -f't'i I 0 V\ 

Th el\ Y ( t 1 ) = 0 ~ Y ( 0 ) = 0 ~ 'V} = 0 , and Q. E • D • 

(C) Suppose P
0 

> 0, and there exists t 1 , "7 such 

that II~ u;H I) :: 0 . Then let x, y be defined 

by (96), so that 

llo1.) 

where 

1: Mu'fo-+ M,1. lto>) 
~ -:: ~te~o + M1.1. 

Then by (80), (99), and (100), 
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-::. II ~ 1l u 'Z.fLl: ,) 

i. 
:;; IIIYlll ~. + j ll' y \\ ~ + II K X \1~ •I J. s 

-lo 

But \\ "'\ II ~H 
1
) = 0 ::9 II ~ 1j \1 zf l h) = 0 ~ 

II 11 II "l.r. ~ o :::::!;> ~ -= o , <X ~~~.J. Q . e ::t> . 

Example VII.3: Scalar State Estimation (Refer to Section III.l) 

We apply Theorem VII.7 to solve the Riccati variance 

equation arising from the system 

• ) E ll.l(S)\,\,(t)] 
1.. 

I)( ':. o.x -a. u..lt) :.. );(~ .. t) tfa 

-v-lt) E LV(~) V{t)) ~ (S- t) &""Itt 
~:. "X. + ' ':: 

) 

(Note that (105) is the continuous form of Example III.l) 

(78) becomes 

Following Theorem VII.7, 

(\os. 

(tO') 
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(lo7) 

The eigenvalues of A are -f.. ( fr'G \ 
- _,R ) , assuming 

; the corresponding solutions to (107) 

are 

M.. ,, 'L = 

± "rz sQ ! ( ~: )(i- -l:o) 
e. 

To satisfy M(O) =I (letting t
0 

= 0), 

--

Then from ( 80), 

(lo\) 



, 

and 

Observe that 

pio)cos~l~t) + ~~~Q)c;i~~{~t) 
p(o) si \\ ~(!! -1:) + ( E>'~t 5'Q)(f)s\., ~{} 

I 
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{ ll o) 
J 

(\ \' ) 

The solution in the case i"'cq-=O ( A
11

2. = C> ) may be calcu-

lated by inspection of (106), or by direct calculation (as 

above), or by the formal calculation 

'P(o) l?"R l. ] 

~(o) t 1- \!'~ t. 

l 
plo) 

KH\ :: ~toH 4-

plo) 

( \\ t) 

) 
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Observe that (112) and (113) coincide with the discrete 

solutions V .1. 

Example VII.4: Redundant Observation (Refer to Section III.4) 

Example III.4, in the limiting case, becomes 

• 
""' : 0 ?(. + ~ lt) • 

) 

0 

The variance equation is 

• 
~t 

? 'tlt) (t\t;) y lt) = -~ (~)t ' 

where 

' H1 R-' H : 
_L 

+ ( "~) \?.)1 = e-: t ~'"l t, 

-Thus ( 110) provides a solution, changing 1\t to ~R • 

Finally, 

K (t) = 
) 

--1. (ll1) w"R,t. 
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This situation is basically unchanged for other observation 

situations. 

Proof of Theorem VII.8 

Motivation: (i) For the case Q = 0, the solution to 

( 78) is 

provided the inverse exists, where 

A --

since 

L -- b _, implies that r satisfies 

(lll) 

(Note that this is a general means for converting the ~ 

Riccati equation to a linear system.) But (121) has solution 

,. 
~-FT {t,-ho)lo <P.fT{t,L) (122.) 

-\: 

+ j (l>_F., ( t ' s \ li i R _, ~ ~ :T l t Is) J s 
to 



T \-\ 

:: ( ipF ( -1: ,-to')'~o cpF (t,{o )J 
118 

+ j~;(s,t) H11f'H<PF(S,-t) d.s 
-lo 

) 

so that 

,, 
::: f' I l: + ~'Wit 1\ l A,. ) ( \<. ~) 

provided the inverse exists. 

(ii) For the case Q = 0, and (F,H) completely R 

observable(*), P(t) is bounded from above by \ij'-;'(!
1
-l-A{·U) 

~ 

since 

llt) :. ( A ~-r) -I + WR(t,io) {l2't) 

_, 
+ "vf"p. l t I -t- ~lt)) ~ (A A1 ) 

f>(t) "::: l-'lt) 

~ [ lf.\Al)'1 -1- WR[t,-\;-AlH\~ ·I 

_, 
:: ~l :t~ A 1 'W"Rli,{-ALt~R] f\7 

(*)By complete R observability, we imply that ~ i ~ 

Al-t:) >o ~ ~~(~ 1 t -Alt\) '> 0 
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(we note that the indicated inverse exists; see Simmons [16], 
':t ...I... D \ ... ' -- .;... (-•)"" 'D.." ,· f 0 ' Q.. L. I Theorem 57 .F; formally, ~ , o J c;- v ./ v J 

analagous to I 

We are reminded by (125) of the scalar case 

--
This may be established by 

'\VI\ + (RA'~"f' 

('\VA -t (j:\ t\'l ~ _, f' 
_, 

= Al_ I+ R"~"v"~ 1 A,. 

f ( ir) 
I 

' -

these following from the properties of positive-definite 

matrices [ 16 ]. 

With these thoughts in mind, we turn to Bucy's proof, 

for the case Q f 0. Intuition suggests that the variance 

of error in estimate for the system driven by random input 

U(t) should be greater than or equal to the variance for 

the undriven (Q = 0) system provided initial variance is 

unchanged. Let K(t) be the solution to the free case 

"t>o ~0 
I 
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and P(t) the solution to the driven system (78), with 

P ( t
0

) = P Let o· <bl~) = l>l~)- K L4:\ Then 

• 

::. ( F -I< Hi R,'
11-1) <j, + ~ ( F- \<. \t1 R''~ '/ 

- ~(HTR''t-t)<b + G-~G.T 

We now have P(t) ~ K(t), as suspected, since ~ {t) >, 0 , 

because 
-t 

~lt): \ ~l~,s\(GGG 1 + <;Hirf\o~~)(F't(t,s) J.s J 

to 

t the fund amen tal rna trix of l F - ~ t;1 ~ .. ,~ ) , sa ti sf ies 
0 • 

~l~)=- ~l~) a.~~ fl-l:o)~ \li.);:. c, <io +""+ 

( \ )o) 

( l ~ t) 

(We have altered Bucy's proof, which appears to be based upon 

an ill-defined function.) 

We have bounded P(t) from the "wrong side," but evade 

this difficulty through 



121 

~ l-t,t-b)~Lt-~t.)~T{t,-t:-~) 

t 
-1- ~ <}L-t,~) l GG!G-1

- ?H1 tf'Hfj<P1 {i,s) ~~ 
-t; .... 

~(-l,t-~)Yli:-A) <}\t:,!-~) + C:.Q(~,-t-~o) 

-t 
- J cp ti ,s\ \( ts) tt'~" p.-'\-1 iZ (!.~ ~,.(-t,s) J5 

-t.-~ 

where K satisfies (128) but l< lt-6) = 'Pl-t-t.-.) is the 

initial condition. Then from ( 127), 

Recalling Definitions VII.2,3, we have in fact shown 

p ("l) = l * '+ h 1 :r ) 
~.E.J). 

( ~~~) 

Proof of Theorem VII. 9: From Theorem VII. 7, Po> 0 :::,:> 'f-'t-t \ 
exists for all t > t • But P- 1 (t) satisfies 

- 0 

• T 
\( : (-F,) K + ~ ( - f T ) - \( G- d) c. T t< + H T ~ -· H 
Klto) -::. 'P.--• ~ 0 
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Then by Theorem VII.8, exchanging the roles of terms 
1 

\\li) ~ \ ~ t<P:, (S,i) G-QG T <P_,, (S ,t) J S ~-I ( 13') 
~-,6 

+ l ~\.,, {~,s) 1-1 r ~-· 1\ g>:, (t,s) 
t.-~ 

Jsl 
~ i 1~ - L~: (!,s)(,.Q G.T ~\4 ,s) Js -

+ t ) -tiP: l s ,t) H 1 T(' ~ ~" ( S, t) J s ~ 
-l·A 

- c ~\ l t 1 t- ~) t "vr it l t 1 ~ - ~) -

Recalling Definitions VII.2,3, we have in fact shown 3 K~ 1 ~ 1 >o ~ 

Vlt) = K~'(-l) ~ [ t + ~·1 l: 1 Y t 

q~p. 

Proof of Theorem VII.lO: 
1\ 

(A) We provide a Lyapunov function for X: 

1\ T /, .. , \ '\ 

-== X \'P (-t)) X 

(lsJ) 

(see Appendix IX.lO). \rsatisfies the Lyapunov criteria: 
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(ii) By Theorems VII.S and VII.9, if ~ = max of 

intervals of observability and controllability, 

there exist reals 6(. l 1 oi.'1.J ~', ~'1. ">0 such that 

for a 11 t > t 0 + A . Then ~ <b , , ~ 1 > 0 ~ 
1\ 
X + 0, t > t

0 
+ ~ implies 

1\ 

0 If- <t: \ u X l\ l. ~ "f ( X J t ) '- ) 2. l\ X u l. 

( ii) The rate of change of V along motions of ( 86) 

is 
• • 

• " 1\ T .. \ 1\ 1\ T .. , 1\ A 1 -\ • _, 1\ 
~ ( ~ ,t) = X f X. + X r X - 'X f p p )\ 

ll 't:O) 

(\ +1) 



t. 
~ ~o ~. I 

'> 0 

Then (141) becomes 

L. 0 . 

Then (86) is uniformly asymptotically stable 
A about X = 0. 
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t \ 't-1.) 

(B) By the Lyapunov-Perron-Malkin theorem (Appendix 

IX. 1 0 ) , ~ rea 1 s A 1 C > 0 ~ 

Using P1 (t), P2 (t) defined by hypothesis, and 

~ = r\-P'L > 

• 
.l:l 

• • 

-= "' - r 'L 

= ( F f' , + PI F, + ~ aG 1 - ? 1 t11 ~ _, H p, ) 
- ( f: P t t Pt. F T -\- G- CHi-T - 'P ... H l R _,li f' ._) 
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Q.E.'D. 

Proof of Theorem VII.ll 

Motivation: Consider the scalar case of Example VII.3; 

specifically, equation (110), which leads to 

I 

in agreement with (88). 

Proof: From Theorem VII.7, 
_, 

L ( t) -:D li:) 

where 
l(t) = Mu(i-.)1?o-4- Mu.lt) 
D lt-\ -= ~~\ (~) ~. + ~~:l(t} I 

and 
to:: 0 1 VJ.\.o. ~. 

Then 

l\41) 

( ( lt~) 



-:: 1>,. -I l ]) T L - )> T L j) ,, 6 ] J) •I 

:.. 1:> T _, [1> T L - L,. I) 1 )) 'I } 

the last line following from 

Now from (149) and (82), 

• L = FL + GGG-,.t> 

so that 
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( I t;O) 

( \ C)2) 

r ,. l 7 M T T ,, r 1": J 
+ l M .... f!VI,., + M .. t 6GG "' .... - 11. H R H t\\,~ +~I"\ F M'L ... 

:. 't:t> i? FT G T 'D Ll'f _, p 
' l o + to t Q ~ - .I o n R to\ o 



The last line of (153) follows from this reasoning: 

Let 

Then 

) 

Rlt) : 1\1\TAll~ M + M"t!AA tv\ 

-= M7 1A1!+ J"A)f\M 

= MT L 0] AM = 0 J 

R(o) -= JA , so 

-I 

0 

The four matrix components of (157) lead to (153). 
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I 

Q.E.D. 

Comment: Equation (88) makes the direction of solution 
• change clear, in the event P

0 
is sign definite. Such 

consideration leads us to 

Proof of Theorem VII.l2 

(A) From the previous theorem, for p = 0, 
0 

(\'i'1) 

(IS"~) 
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so that, for all X, 

and so t 1 > t 2 implies 

Comment: It is intuitively reasonable that a filter would 

exhibit monotone non-decreasing variance under these 

conditions. 

(B) In the autonomous case, complete observability 

implies uniform observability, so that, by Theorem 

VII.8, P is bounded from above. It follows from 

part (A) that there exists a constant, non-negative 

definite matrix f~, such that 

roo ~ t(\M "?l-l:) 
t.~a:> ) 

and (92) follows from this definition. 

Q.E.D. 

Proof of Theorem VII.l3: 

This result follows directly from Theorems VII.lO and 

VII.l2. A consequence is the fact that every completely 

observable, completely controllable autonomous system has an 

associated steady-state stationary filter, which is the 

solution to the Wiener problem. 

lt ~o) 

ll,l) 
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Example VII.4 (Refer to Section V.l) 

We may solve for the steady-state filter of Section V.l 

by setting the variance difference equation to its steady-

state configuration and solving the resulting quadratic for 

From ( 30), 

foo: (I -1"..,\iT'R,''I\)(~f..,q>T +Q) 

= ( 1 - roo /e--ll .. )( f'oo + e"ca ~) 

o.b~ 

O.t~ ) 

in agreement with Figure V.l. 

We may likewise utilize Theorem VII.l3 to calculate the 

limiting variance for the analagous continuous filter: 

:. ~Q 1.- r: ~~~ t 

Yeo = G"',. C)' £a rl'v 
<!>. 7 I -

kQ) = 
~~ ,_ o. \~ l C,ee 4\so ( l\l)) 
~lit 

~ 
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This difference between (162) and (163) is accounted for by 

the non-linearity of the Riccati Equation: the difference 

equation lS not an exact sampling of the differential form, 

as would be the case for linear equations. 
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VIII. ADAPTIVE FILTERING 

VIII.l Introduction 

The ability of the K-B filter to perform minimum vari-

ance estimation is dependent on our ability to provide an 

a priori description of the statistical environment (R(t), 

Q(t)). Given such a description, the filter is an optimal 

estimator even in non-stationary environments, but this 

optimality is lost if we are unable to provide such a 

description. Two cases of this sort come to mind: 

(1) Data on the filter environment are inadequate or 

unavailable (a familiar situation in real life 

undertakings). 

(2) The statistical environment is known to be non-

stationary to the extent that a fixed environment 

assumption produces a filter whose performance is 

unsatisfactory, and a prediction of the variation 

in statistics is not available. 

In such situations, we are led to consider the con-

struction of an adaptive filter--one which adjusts its coef-

ficients (passband, transfer function, etc.) based upon 

observations of the environment implicit in the ("usual") 

observation process. The design of adaptive filters has 

been considered in numerous cases [9]. 

Adaptive filters often operate by computing a sampled 
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inner product (cross-correlation) between observations and 

estimator error, perhaps made available through the trans-

mission of a known test signal through the channel. This 

leads to gradient adjustments in the filter coefficients, 

toward minimizing variance. 

In this section, we consider a new approach--the design 

of an adaptive Kalman-Bucy form filter, based on the follow-

ing ideas: 

(A) The error variance of an arbitrary (i.e., sub-

optimal) linear filter is governed by a system of 

linear differential equations, (VII.62). The non-

linear Riccati equation arises through the optimal 

connection of coefficient K(t) to variance P(t); 

however, the fact that K(t) will be a function of 

known history allows us to replace VII.63 with a 

linear differential equation. 

(B) Uncertainty in environment (R(t),Q(t)) renders 

filter error variance uncertain. However, the 
A 

error signal (Y(t) - H(t)X(t)) leads to a 

corrupted observation of filter error variance and 

observation noise variance. Stated another way, 

we may learn about the statistical environment by 

observing the response of a linear system (the 

sub-optimal filter) to that environment. 
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C are filter coefficients pertaining to the estimation P,R,Q 
of P, R, and Q, respectfully. 

Recalling the observations (A) and (B) above, we justify 

these equations. The filter equation (1) defines a sub-

optimal unbiased linear estimator. Its associated actual 

error variance equation is (VII.62), which becomes 

• f :: 
Assuming R is subject only to random variation, the result-

ing statistical situation is described by the linear system lt l ~ [ ~(F 0 -KH) :l][ :] ~ [ G:bT] * [ :R1 
1 

(II) 

or • 

(Recall that K(t), although sub-optimal, will be a function 

of known past history.) The observation model associated 

with (12) is 

e "' ~-~X)(Y-HX')
1 

"' l ~ X + v )( ~ X H) T 

( ''l) 
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-L H 1' \-\ T + R. +- t H K R + t R t( T HT J + \r£ 

( \3) 

where \r£ is a mean-zero matrix random process; our new 

observable £ is a known linear combination of the states of 

(12), corrupted by observation noise. Then (12) and (13) 

constitute a filtering problem in the canonical form (VII.l, 

2), as promised by (A) and (B). (We note that the usual 

assumptions about the system driving and observation cor-

rupting processes are no longer valid, and that the deter-

ministic forcing function is handled within the existing 

framework by the technique of Section VI.l). 

The form of an estimator for P and R is immediately 

suggested; however, the filter coefficients in this esti-

mater cannot be determined as before: 

or 

• 

" 2 

• 
1\ p 

• 

1\ 
~ (~- c~)r_ + C.€ ) 

: 

R ~ c: f C - 1-1 hr - R- H 1<. R ~ 

as described by (5,6). 

The coefficient submatrices Cp and CR of C cannot 
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be determined by minimum-variance arguments, for the sta-

tistics of Ye. and u2 are dependent upon the higher moments 

of V(t) and U(t), of the physical system; these are by 

hypothesis at least in part unknown. Other criteria, such 

as transient response or stability, may be used to select C. 

Other questions which arise are: 

(1) What is the relationship between the performance 

of (1-7) and that of the ideal adaptive estimator, 

the conventional Kalman-Bucy filter informed of 

environmental statistics? 

(2) What are the stability properties of (1-7)? 

We content ourselves here with answering the determinis-

tic form of the above questions; that is, the stochastic 

stability of (1-7) will not be discussed. 

VIII.3 Deterministic Stability 

Kalman and Bucy observe in their fundamental article 

[13 ] that the solution to the Riccati variance equation 

(VII.34) establishes a basis for comparison between actual 

and ideal adaptive behavior. That is, an ideal adaptive 

estimator would immediately be aware of any changes in its 

statistical environment (R(t),Q(t)), and thereby function 

precisely as the "informed" Kalman-Bucy filter. The solution 

to (VII.63) is thus suitable for comparison to a proposed 

adaptive estimator, as an idealized performance standard. 

We have found no evidence of pursuit of this idea in 
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the literature, but propose to follow it here. We shall be 

concerned with three variance variables: 

P(t) the actual error variance associated with the 

adaptive estimator (1-7), which cannot be pre-

cisely known by the system. 

" P(t) the estimated error variance computed by (5). 

* P (t) the idealized error variance, which would be the 

actual variance for the conventional (informed) 

K-B filter operating in the actual environment 

(R( t), Q( t)) present. 

Our principal result is the demonstration of the uniform 

asymptotic stability of both P and P about p* for the 

scalar case described above. This establishes the local 

convergence (1) of 
1\ 
p to the actual error variance, provid-

ing a reliable computed measure of estimate quality, and (2) 

of the actual variance to the idealized variance, demonstra-

ting a form of limiting optimal behavior. 

We con side r the de termini s tic c a s e V£ : 0 the equations 

governing " * P, P, and P are then 

• 
PU:) = ( t 7) 

( f(\ \ 
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become 

• ~ (f - f~ 1-\,. R ~• H - ~ H HT) ( C p'IIIIT) ( tHT{I.l-\ "!•- c.;{At.tllTp;\ u) 
~f 

• "' (0) l( F- f·~'Tl\ .. ,~) (0) 
6.\' --
• l-c:t-ntt) (c. i '"'~,) (- c; )lHf1tHT ~ .. , 4 l) ~~ 

or 

Now in the autonomous case (R,Q,F,H constant), Theorem 

VII.l3 implies that 

exists as a constant, provided (F,G,H) is completely observ-

able and controllable. Then a limiting form of (24) exists, 

namely, the autonomous linear system obtained by replacing 

p* with P~ in (24). Letting A denote the limiting form 

of A(t), we find that 

~~ 

. ~f 

~~ 

(z.b) 

: 1 ~ t F- P.• H1 p.~'H]- \ J • t ('~ [F- f:li1 I('H -1 C,~llj-X)· ( -:\ 

- CR1. ( H'P! \1,. R-' + 1)) + C~ \\ \{~: H 'T R~1.H t>: 

- Crt. l H t>! tl r !(' ~ I 1 ) 1 (~1) 

I 
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= t1\:_F-P:~ 1 ~:'H]-).}f )...,_ + }.[c~(trr!H 1 R-'+1) -d.(F 

_ p;, H,. 11.\1 - ~ c_; 1-111,. ) ] + c; HH T [ P! t{ ~-~ H r! - c.; ( H 

lCf!HTR-1+1) (Hf!\iTR- 1 +1){-~)(F-f!HTR-'\\- { Cr ... I-IW)]J 

: t l.[F- P!t{R"' H1 -)...}{At + A l c: (Hf!Hr ~ "'+ t) - 2 ( F 

] [ 

It 'l ~ ( r. .. ,. ff' ) - f: H t ~.-'!~ - t c , ... ~ H T ) + c.: H H T 'P Ql H 1 ~- H f... - l F- CIO tl H 

X ( H f! H,. ~ _, ~ I ') + ( \\ 1'! tl T \(
1 + l) c,... ( -1 + 1-\ H T) }1 

= ("I- A)('>.?. + Q A + b) 
Now in the case, for example, that F < 0, ~ > 0, H > 1, and 

Cp > 0, we have a > 0, b > 0, so that the real parts of 

all three eigenvalues are negative, and the limiting linear-

ized differential equation is a.s. 

Now we invoke two theorems: 

(1) Theorem IX.l0.3: The asymptotic stability of 

the limiting linearized equation implies that the 

linearized system (24) is u.a.s. 

(2) Theorem IX.l0.4: The uniform asymptotic stability 

of the linearized system (24) implies that the non-

linear system (21-23) is u.a.s. 

Then from (20), we find that a stable, completely 

observable, controllable, autonomous system of dimension 1 
1\ 

induces an adaptive estimator for which P(t) converges 



uniformly to P(t), and P(t) 
1\ 
R(O) sufficiently accurate. 

* /\ to P (t), for P(O) and 

The time-discrete form of the adaptive estimator 

((1)-(7)) is as follows: 

" 
f\ I Cpo(c,T (I.- C..,t,~L .. ,.,)'\'"'+-' + 'P J.J+' 

-:. 

1\. " T 
R..., .. ,= R"' + Cflo<C" 

" " CG L)( CCQT Q N+t-: Qf'J .... 

VIII.4 Example Simulation 
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(21) 

(l~) 

A digital computer simulation program for the adaptive 

filter equations in time-discrete form was written, and is 

described in Appendix IX.4. 
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We provide here an example computer simulation in the 

case F = 0, H = 1. Such a system was treated in Example V.l; 

Figure V.l.2 illustrates the response of the idealized 

(conventional Kalman) filter to a step in the channel noise 

power input. Figure VIII.l demonstrates the response of the 

proposed adaptive estimator to the input data stream of V.l.2. 

The variance/coefficient behavior of the idealized filter is 

superimposed in this figure, labeled * * Pll(t), cll(t). It can 
1\ 

be seen that R is an estimator of R; moreover, the input 

data stream (pictured in Figure V.l.2) shows that 
1\ 
R responds 

to local sample function variations in noise power. 

The result, in equation (27) that deterministic con-

vergence is not lost by C = 0, is illustrated in Figure 
p 

VIII.2, which represents the same model and input data stream, 

with cp = 0. 

Intuition suggests that the time constant of the adaptive 

system, determined by Cp Q R' should be longer than that of 
' ' 

the filter itself, determined by C. Further, the importance 

of stochastic stability study is illustrated by the apparent 

possibility of the estimates " " " P,Q,R losing their positive 

definite character, for appropriate sample function inputs. 

A time-dependent aspect for the adaptive filter coefficients 

has been omitted in the absence of a stochastic study. 

Bucy and Follin [ 3 ] have used equation VII.62 to 

design an adaptive estimator, but only to the extent of 

deriving the steady-state filter from the differential equation, 
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and thereafter, without the use of the differential equation, 

deriving a scheme for adapting from one steady state to 

another, as environmental statistics vary. Our results 

indicate convergence from one steady state to another. How-

ever, we believe that this result is weak, and that the use 

of the dynamically descriptive equation VII.62 actually opens 

the way toward adaptation which includes the transient be-

havior of the physical system (F,H,G) and the estimator (P,C). 

Under the heading of deterministic stability, the fol-

lowing topics merit investigation: 

(1) Higher Dimensionality--establishing the uniform 

asymptotic stability of (21-23) for systems of 

higher (n,m) dimension. 

(2) Global or Regional Asymptotic Stability--while 

the global stability of (21-23) is doubtful, the 

( 3) 

local result established should be replaced by 

calculated bounds on a region of initial error 

guaranteeing stable behavior. 

Time-Dependent Systems--the nature of * p ( t) is 

pivotal to the arguments of stability above. A 

broader result in the same spirit would utilize 

the character of * p ( t) for uniformly observable 

and controllable time-dependent physical systems, 

as discussed in Section VII, to establish con-

vergence of P(t) and ~(t) to or near a non-

eon stan t P * ( t ) . 
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IX.l Completion of Square 

Lemma 1: (i) A a symmetric, 

dimension 

Then 

(ii) 

(iii) 

B 

c 
and X 

an (n2 

Proof: By calculation. 

IX.2 Matrix Inversion 

nl. 

(n2 x 

x n2 ) 
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regular matrix of 

nl) rna trices. 

matrix. 

Lemma 2: (i) A and B positive-definite, symmetric 

matrices, of dimension n. 

(ii) H an (m x n) matrix. 

Then 

The inverse of (A + HBHT) exists, and 

Proof: Both indicated inverses exist, as they are 

inverses of positive-definite matrices. The 

proof follows by calculation of the product 

of the matrix and its inverse. 
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IX.3 Equivalence of Projection and Completing the Square 

That certain arguments of the text may be proved by 

both geometric projection and algebraic completion of square 

arguments is not coincidental; we argue here the equivalence 

of these viewpoints. 

Suppose f(X) = XTAX - BTX-XTB is to be minimized, 

where X and B are n-vectors, and A an (n x n) positive 

definite matrix. The algebraic solution is the completion 
1\ 

of square argument, in which X, an n-vector, and C, a 

scalar, are determined such that 

1\ 
so that X= X clearly minimizes f. We argue that this 

procedure is equivalent to a projection: 
T Let (X,Y) =X Y. Then if we can write f in the form 

f(X) = (X- X,A(X X)) + c 
1\ 2 

= II X - X II A + c 

we see that, from the theory of Hilbert space, f(X) will 

correspond to the square of the A-distance from X to Y, 

where 
1\ 2 

( i) Y is any vector such that II Y - XI~ = C. 

(ii) M is the orthogonal complement of the space 
1\ 

spanned by (Y- X). 

(iii) X is free to vary over (i.e., be chosen from) 

M. 
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c 
M 

A completion of square problem is derived from a pro-

jection problem in a similar fashion. 

IX.4 Computer Programs and Listings 

IX.4.1 Conventional Filtering 

Conventional Kalman-Bucy filtering as demonstrated in 

Section V was performed by a set of IBM 1130 FORTRAN programs 

which were written as a part of this work. The system is 

capable of simulating, in time-discrete form, a given system 

model, including random inputs, and the corresponding Kalman 

filter equations. The relevant equations are II.l,4,8,9,10, 

11. The problem is described by the user in canonical form 

by input of program data describing the matrices t,H,Q,R,P(O), 

X(O), and 
A 

X(O). The user may also specify non-stationary 

system behavior by supplying an appropriate subroutine. 
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Length of the simulation run, data sampling print 

interval, and selection of variables for plotting are also 

described by user data input. 

Data input is in the form of punched cards, and output 

of selected data is in printed or plotted form. 

We have completely avoided in this work the problem of 

dimensionality that is a part of many practical filtering 

problems, by using small systems as examples. We merely 

note in passing that large navigational filters are neces-

sarily implemented as assembly-language programs, and then 

with great effort to meet time, memory, and numerical error 

budgets. 

The following is a listing of the FORTRAN mainline 

program and subroutines used in the conventional filter 

simulation, followed by a brief description of each. 
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II JOB T 067 SCHINDEL KA~MAN-BUCY FILTER 
II GO ERASE FILTR 
II FORTRAN MAINLINE PROGRAM *LIST SOURCE PROGRAM 
*ONE WORD INTEGERS 
•IOCS(l403 PR!~T~R,2501 READER) 

... ~ ' ' ., -
,."' _t ; ·.'f L l ~ c a 

C-----LARGER SYSTEMS, SHORTER RUNS ACCOMODATED BY DIMENSIONS OF 
C ----- N P L 0 T { 5 , 1 0 0 ) , X ( 1 0) , X H { 10 } , Y ( 5 } , , H ( 50 ) , HT ( 50 ) , PH I ( 1 0 0 ) , PH IT ( 10 0) 
C----- P(100) ,PPK(100) ,Q( 100) ,R(25) ,C(50) ,vH 10) ,V(5) ,WORK( 100), 
C-----WORK2(100),WORK3(100),WORK4(50),WORK5(50},CP(50),CR(25),CQ(50), 
C----- QH(100),RH(25), THEN NMAX=10,MMAX=5,NCYCLMAX = 100.· 

DIMENSION X{2 ),XH{2 ),Y(2),H{2 ),HT(2 },PHI(4 },PHIT(4 ),P(4 
X , PPR(4 ) ,Q(4 ) ,R(4 ) ,C{4 ) ,W(2 ) ,V(2), WORK(4 ) ,WORK2(4 ) 
X WORK3(2 },NTITL(40),NVAR(5},INOX{5) 

COMMON NPLOT(5,400),NCYCL,GMIN(5),SCALE(5),NKEEP 
C----- NMAX = 2 
C ----- MMAX = 2 
C-----RANDOM SEED, IX. 

IX =- 10371 
NPIC = 0 
CC1l = 0 
CC2) = 0 

C-----READ SYSTEM DESCRIPTION. 

107 
REA0(8,107) NTITL 
FORMAT(40A2) 
REA0(8,10l) NCYCL,NPI,NSR,NPR 

101 FORMAT(8110) 
IFCNPR) 313,314,313 

313 REA0(8,1080} NKEEP,(NVARCK) ,INDX(K},K=l,NKEEP) 
1080 FORMAT(8ll0) 

108 
314 

102 

REA0(8,108) (GMIN(l),SCALE(l),l = l,NKEEP) 
F 0 R I~ A T ( 1 0 F 8 • 3 ) 
REA0(8,101)- N,M 
NSQ = N*N 
MSQ = r~*M 

NM = N•M 
READ (8,102)(PHI(l),I = 1,NSQ) 
FORMAT(10F10.3) 
READ {8,102) (H(l),I=1,NM) 
READ (8,102) (P(I),I = l,NSQ) 
READ (8,102)((~(1),1= 1,NSQ} 
READ(8,102) (R(I),I=l,MSQ) 
REA0(8,109) NRST,RFACT,NQST,QFACT 

109 FORMAT(IlO,F10.3,IlO,F10.3} 
C-----PRINT SYSTEM DESCRIPTION. 

104 

309 

105 

W~ITE(5,104) NTITL 
FORMAT('1',1X,40A2,//,' PHI, H, P(O), Q, R ------ 1 ,//) 

CALL MTXPT(PHI,N,N) 
CALL MTXPT(H,M,N) 
CALL MTXPT{P,N,N) 
CALL MTXPT(Q,N,N) 

- CALL MTXPT(R,M,M) 
IFtNSR)309,308,309 
REA0(8,102)(X{ l),I=l,N) 
REA0(8,102) (XH(!),!=l,N) 
WRITE{5,105) 
FORMAT(//,' X(O),XH(O) ---- 1 //) 
C A L L M T X P T ( X., N , 1 ) - . ---- -· ------- -
CALL MTXPT(XH,N,l) 
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308 CALL MTXTR{H,HT,M,N) 
CALL MTXTR{PHI,PHIT,N,N) 
WRITE (5,106) 

106 F0Rf-..1AT('l') 
.~ - - -- ·- - ) ;;z l : • C. I ~ ,:.._ L.. ;- I L T c iZ L G G ? • 

00 307 NCTR = 1,NCYCL 
C-----NON-STATIONARY ADJUSTMENTS. 

CALL NSTAT(Q,R,N,M,NCTR,NRST,RFACT,NQST,QFACT) 
301 lF(NPICl 302,303,302 
303 NPIC = -NPI 
C-----PRINT OUTPUT DATA. 

103 

304 

302 

~RITE (5,103) NCTR 
FORMAT (////'*** STAGE 1 tl5) 
CALL MTXPT(P,N,N) 
CALL MTXPT(C,N,M) 
IFCNSR) 304,302,304 
CALL MTXPT(X,N,1) 
CALL -NT X P T ( X H , N , 1 ) 
CALL MTXPT(Y,M,1) 
NPIC = NPIC+l 
IF(NPR) 305,306,305 

C-----SAVE REQUESTED PLOT DATA •. 

151 

305 CALL SAVE(X,XH,Y,P,C,PHI,H,Q,R,NCTR,NPLOT,GMIN,SCALE,NKEEP,NVAR, 
X INOX) 

C-----PROPAGATE FILTER COVARIANCE, COEFFICIENT. 
306 CALL MTXML(PHI,P,WORK,N,N,N) 

CALL MTXML{WORK,PHIT,PPR,N,N,N) 
CALL MTXADCQ,PPR,PPR,N,N) 
CALL MTXML(H,PPR,WORK,M,N,N) 
CALL MTXML{WORK,HT,WORK2,M,N,M) 
CALL MTXAO(WORK2,R,WORK,M,M) 
CALL MINVS(WORK,WORK2,M) 
CALL MTXML(HT,WORK2,WORK,N,M,M) 
CALL MTXML(PPR,WORK,C,N,N,M) 
CALL MTXML(C,H,WORK,N,M,N) 
CALL MTXML(WORK,PPR,WORK2,N 1 N,N) 
CALL MTXSB(PPR,WORK2,P,N,N) 
IF(NSRl 310,307,310 

C-----GENERATE RANDOM INPUTS. 
310 DO 201 I ; l,N 

201 

J = (l-1)*N+I 
SIG = SQRT(Q(J)) 
CALL GAUS(IX,SIG,O.O,W(I)) 
DO 202 I ; l,M 
J = ( I -1 ) * M.+ I 

S I G = S QR T ( R C J ) ) 
202 CALL GAUS(IX,SIG,O.O,V(l)) 
C-----UPDATA SYSTEM MODEL. 

CALL MTXML(PHI,X,WORK,N,N,1) 
CALL MTXAO(WORK,W,X,N,l)-
CALL MTXML(H,X,Y,M,N,l) 
CALL MTXAO(Y,V,Y,M,l) 

C-----EXERCISE FILTER. 

307 

CALL· MTXML{PHI,XH,WORK,N,N,l) 
CALL MTXML(H,WORK,WORK2,M,N,l) 
CALL MTXSB(Y,WORK2,WORK2,M,l) 
CALL MTXML(C,WORK2,WORK3,N,M,1) 
CALL MTXAO(WORK,WORK3,XH,N,·l}-
CONTINUE 
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If(NPR) 311,312,311 
C-----PLOT REQUESTED DATA. 
311 CALL LINK(GRAF) 

- 312 STOP 
E\D 

II GO ERASE MTXML 
II FORTRAN SUBPROGRAM *LIST SOURCE PROGRAM 
•ONE WORD INTEGERS 
C-----MATRIX NULTIPLIER, MINIMUM INDEX ARITHMETIC TIME. 

SUBKOUTINE MTXML{X,Y,Z,NR,NC,NC2) 
INTEGER XCOL,XROW,YCOL 
DIMENSION X(1},Y(l),Z(l} 
DO 201 YCOL = l,NC2 
IJ = 0 

- I I = YCOL-NCZ 
DO 201 XROW = l,NR 
IK = YCOL - NC2 
I I : I I + NC 2 
ZCII) = 0.0 
00 201 XCOL = l,NC 
IJ = IJ + 1 
I K = I K + NC 2 

201 ZCIIJ = ZCIIl + XCIJ)+YCIK) 
RETURN 
END 

II GO ERASE MTXSB 
II FORTRAN SUBPROGRAM *LIST SOURCE PROGRAM 
*GNE WORD INTEGERS 
C-----MATRIX SUBTRACTOR 

SUBROUTINE MTXSBCX,Y,Z,NR,NC) 
DIMENSION X(l),Y(l),Z(l) 
K = NR*NC 
DO 201 I = l,K 

201 ZCI> = XCIJ - YCI> 
RETURN 
END 

II GO PUT MTXSB 
II GO ERASE MTXAD 
II FORTRAN SUBPROGRAM *LIST SOURCE PROGRAM 
*ONE WORD INTEGERS 
C-----MATRIX ADDER. 

SUBROUTINE MTXAD(X,Y,Z,NR,NC) 
DIMENSION -X(l),Y(l),Z(l) 
K = NR*NC 
DO 201 I = l,K 

201 Z(l) = X(l) + Y(l) 
RETURN 
END 

II GO PUT MTXAD 
II GO ERASE MTXTR 
II FOKTRAN SUBPROGRAM *LIST SOURCE PROGRAM 
*ONE WORD INTEGERS 
C-----MATRIX TRANSPOSER. 

SUBROUTINE MTXTR(X,Y,NR,NC) 
DIMENSION X(l),Y(l) 
DO 2 01 I = 1, NC -
DO 201 J = l,NR 
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II = J + NR*(I-1) 
JJ = I + NC*(J-1) 

201 Y(ll) = X(JJ) 
RETURN 

II GO ERASE MINVS 
II FORTRAN SUBPROGRAM 
+ONE WORD INTEGERS 

*LIST SOURCE PROGRAM 

C-----MATRIX INVERSION, FAST. DIM(X) LESS THAN OR EQUAL-TO l. 

301 

302 

303 

SUBKOUTINE MINVS(X,Y,N) 
DIMENSION X(4),Y(4) 
IF(N-2) 301,302,303 
Y(1) = 1.01X(1) 
RETURN 
R = XC1)*X(4)-X(2)•X(3) 
Y(l)= X(4)1R 
Y(2) = -X(2)1R 
Y(3) ·= -X(3)1R 
Y(4) = X(1)1R 
RETURN 
END 

II GO PUT f-IINVS 
II GO ERASE MTXPT 
II FORTRAN SUBPROGRAM 
•ONE WORD INTEGERS 
C-----MATRIX PRINTER. 

*LIST SOURCE PROGRAM 

SUBROUTINE MTXPTCX,NR,NC) 
DIMENSION X(l) 

201 
101 

102 

DO 201 I = 1,NR 
J = ( I -1 ) * NC + 1 
JJ = J + NC - 1 
WRITE(5,10l)· (X(K),K=J,JJ) 
F 0 R ~1 A T ( 6 E 1 6 • 8 ) 

WRITE (5,102) 
FOR~1AT (I) 
RETURN 
END 

II GO PUT t-1TXPT 
I I GO f::KASE Rt.\ND 

II FORTRAN SUBPROGRAM 
*ONE WORD INTEGERS 

•LIST SOURCE PROGRAM 

C-----UNIFORM RANDOM NO. GEN (IBM SCI SUB). 

5 
6 

SUBROUTINE RANOCIX,IY,YFL) 
IY = IX*899 
IF(IY) 5,6,6 

IY = IY + 32767 + 1 
YF L = I Y 
YFL = YFLI32767 
RETURN 
END 

II GO PUT RAND 
II GO E~ASE GAUS 
II FORTRAN SUBPROGRAM 
•ONE WORD .INTEGERS 

*LIST SOURCE PROGRAM 

C-----NORMAL RANDOM NO. GEN (IBM SCI SUB>. 
SUBROUTINE GAUS(IX,S,AM,V) 
A = o~- · 
DO 50 I = 1,12 
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; C----- PLOTTING CRHIT PLIT PROGRAN) IS USED. 
COMMON NPLOT(5,400},NCYCL,GMIN(5},SCALE(5),NKEEP 
DO 201 I = l,NKEEP 
PAUSE 1111 

C----- PRUDUCE 3 INCH BY 8 INCH PLOTS. 

YSCAL = 3.01100.0 
CALL SCALF(TSCAL,YSCAL,O.O,GMIN(l)) 
CALL FPLOT(l,O,G~IN(l)) 

DO 202 J = l,NCYCL 
C-----ABOR.T PLOT TEST. 

CALL DATSW(O,K) 
GO TO '(201,2020) ,K 

2020 T = J 

Y = NPLOT{I,Jl 
C-----CLAMP DATA TO PLOT SIZE. 

IFCG~IN(l)-Y) 301,301,302 
302 Y = GMINCI) 
301 IF(Y-GMIN<Il-100)202,202,304 
304 Y = GMIN(l) + 100 

202 CALL FPLOT(-2,T,Y) 
201 CALL FPLOT(l,O,GMINCI}) 
C-----PRINT SCALING DATA. 

~RITE(5,101) GMIN,SCALE 
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1 0 1 F 0 R. t~ A T ( I I ' 1 5 X ' ' A ' t 1 3 X ' ' b ' t 1 3 X t I c ' ' 1 3 X , ' 0 ' , 1 3 X ' I E ' , I I ' I G M I N I ' 4 X ' 
X 5El4.4,1,' SCALE',3X,5El4.4,///) 

STOP 
END 

II GO PUT GKAF 
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Description 

(1) FILTR Mainline program performing system model and 

filter equation computation. Variables are 

named in correspondence with the conventions 

of this paper, and computations are there-

fore explained by the listing. 

Description of the problem to be solved is 

read from user-supplied data cards by this 

mainline. A data deck is organized as 

follows: 

(a) Title Card: Card Columns 2-80 hold 

title information identifying the run, 

to be printed with output data. 

(b) Run Description Card: 

Cols 1-10: 

Col s 11-20: 

Column 30: 

Column 40: 

Number of time stages to 

be simulated. 

Data output print inter-

val, in time stages. 

[
1~ ~onventional filter-

lng run. 

0~ Propagate Covariance 
and Coefficients only. 

{ 

1 ~Save data selected 
below for plotting. 

0~ No plotting. 

(c) Plot Data Description Card: If no data 

plotting is desired, this card omitted; 

otherwise, 
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Cols 1-10: Number of variables to be 

saved for plotting. 

Cols 11-20: Code number selecting data 

item to be saved: 

1 - X 
J\ 

2 - X 

3 - y 

4 - p 

5 - c 

6 - p 1 I 2 ( b~ c.\ e W\ e.~-\-) 

7 - (x-X) 

8 - R 

9 - Q 

Cols 21-30: Subscript indicating ele-

ment of selected data 

item to be saved, based 

on generalized matrix 

storage indexing. 

Cols 31-40: As 11-20, second data item. 

Cols 41-50: As 21-30, second data item. 

Limit 5 data items, with 

overflow cards permitted. 
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(d) Plot Data Scaling Card: 

Cols 1-8: Value of bottom ordinate 

level on graph, for first 

data item graph. 

Cols 9-16: (100/M), where M =(top 

graph ordinate - bottom 

graph ordinate), for first 

data item graph. 

Cols 17-24: As 1-8, for second data 

item graph. 

Cols 25-32: As 9-16, for second data 

item graph. 

(e) System Dimension Card: 

Cols 1-10: n = number of system state 

variables. 

Cols 11-20: m = number of system 

observables. 

(f) System Description Cards: 

Card 1: ~' listed by row, 10 card 

columns per element; over-

flow cards permitted. 
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Card 2: H, formatted as ~-
Card 3: p ( 0)' formatted as ~-

Card 4: Q, formatted as ~-
Card 5: R, formatted as ~-

(g) Environment Step Card: (The non-station-

(h) 

ary aspects of a system are simulated by 

the subroutine NSTAT, described below, 

which is user-supplied. One scheme is 

illustrated here, to create a step 

function in environment statistics.) 

Cols 1-10: Cycle number on which step 

in R11 is desired. 

Cols 11-20: Size of R11 step. 

Cols 21-30: Cycle number on which step 

in Qll is desired. 

Cols 31-40: Size of Qll step. 

State/Estimate Cards: (Omit if Run 

Description Card requests non-state run.) 

Card 1: 

Card 2: 

X(O), element-wise, 10 

card columns per element, 

overflow cards permitted. 
1\ 
X(O), formatted as X(O). 

As an example, the following data deck was utilized to 

produce the run of Figure V.l.l: 
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printer, where dim(X) = (NR x NC). 

(3) Random Number Generators: Generate sample functions 

for channel and drive noise inputs: 

(a) CALL RAND(IX,IY,YFL): Computes limiting 

uniformly distributed random number YFL, 

between 0 and 1; IX an odd positive 

integer random seed; an IBM Scientific 

Subroutine 

(b) CALL GAUS(IXJS)AMJV): Computes limiting 

normally distributed V, with mean AM and 

std. deviation S; IX a random seed used 

by RAND; an IBM Scientific Subroutine. 

(4) SAVE: Subroutine which scales and saves for graphic 

output all selected plot variables. Data is saved 

in integer form, to conserve storage. 

(5) NSTAT: User-defined subroutine specifying non-

stationary behavior in ~,H,R, or Q. Listing indi-

cates example form for step in R(t) and Q(t). 

IX.4.2 Adaptive Filtering 

Adaptive filtering as demonstrated in Section VIII was 

performed by a set of IBM 1130 FORTRAN programs, written as 

a part of this work, which are similar to and overlap those 

described in Section IX.4.1. This program set is more modu-

lar than that of IX.4.1, and is in fact the forerunner 

of a modularized system of simulation routines capable of 
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filtering of either type. 

The use of the adaptive system is similar to that of 

the conventional system. Listings and descriptions of programs 

not identical with those of Section IX.4.1 follow: 
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II JOB T 067 SCHINDEL ADAPTIVE FILTER SOURCE 
II GO ERASE MFIL2 
II FORTRAN MAINLINE PROGRAM 
•IOCSC1403 PRINTER,2501 READER) 
;< C ": r.:: ,', C <. f! : \ T:: G E: ~ S 

><LIST SGvr\CZ: Pr~::..~j{A>1 

C-----ADAPTIVE FILTER MAINLINE PROGRAM. 
C----- 2501 READER USE SAVES CORE. 
C-----LARGER SYSTEMS, SHORTER RUNS ACCOMOOATED BY DIMENSIONS OF 
C----- N P L 0 T ( 5 , 1 0 0 ) , X ( 1 0 ) , X H ( 1 0 ) , Y ( 5 ) , , H ( 50 ) , H T ( 50 ) , PH I ( l 0 0 ) , PH I T ( l.C 
C----- P ( 100), PPR ( 100), Q ( 100), R ( 25), C (50), W ( 10), V ( 5), ~.JORK ( 100), 
C-----WORK2(100),WORK3(100),WORK4(50),WORK5(50),CP(50),CR(25),CQ(50) 
C----- QH(l00),RH(25), THEN NMAX=lO,MMAX=S,NCYCLMAX = lOC 

DIMENSION X(2),XH(2),Y(2),H(2),HT(2),PHl(4),PHITC4),P(4) 
X ,PPR(4) ,Q(4) ,R(4) ,C(4) ,W(2) ,V(2) ,WORK(4) ,wORK2(4) ,WORK3(2) 
X ,WORK4{4) ,WORK5(4) ,NTITLC40} ,CP( 16) ,CR{4) ,CQ( 16) ,QH(4) 
X ,RH(4),NVAR(5},INOX(5) 

COMMON NPLOTC5,400),NCYCL,GMIN(5),SCALEC5),NKEEP 
C-----NCYCLMAX = 400 
C------NMAX = 2 
C-----t,1MAX = 2 
C-----RANDOM SEED, IX. 

IX = 10371 
Cll) = 0 
CC2> = 0 
NPIC = 0 

C---~-READ SYSTEM DESCRIPTION. 
CALL SPEC(X,XH,PHI,H,HT,PHIT,Q,R,P,N,M,NTITL,NCYCL,NPI,NSR,NPP 

X GMIN,SCALE,NSQ,MSQ,NVAR,INDX,NKEEP,NRST,RFACT,NQST,QFACT) 
C-----READ ADAPTIVE ESTIMATOR DATA. 

100 

J = NSQ•MSQ 
REA0(8,100) CCP(l),I = l,J) 
FORMAT(8Fl0.3) 
READ(8,100) CCQCI), I= l,J) 
J = MSCJ•tv,SQ 
REA0(8,100) CCR(I), I = l,J) 
REA0(8,100) (QH{I),l = l,NSQ) 
READ{8,100) (RH(I),I = l,MSQ) 
CALL MTXPT(CP,N,M) 
CALL MTXPT(CQ,N,M) 
CALL MTXPT(CR,M,M) 
CALL MTXPT(QH,N,N) 
CALL MTXPT(RH,M,M) 

C-----MAIN COMPUTATION LOOP. 
DO 307 NCTR = l,NCYCL 
IFCNPIC} 302,303,302 

303 NPIC = -NPI 
C-----PRINT OUTPUT DATA. 

302 

CALL OUTPTCX,XH,Y,P,C,N,M,NCTR,NSR) 
CALL t4TXPT ( RH, t-1, M) 

CALL MTXPT(QH,N,N) 
NPIC = NPIC + 1 
IF (NPR) 305,306,305 

C-----SAVE PLOT DATA REQUESTED. 
305 CALL SAVE CX,XH,Y,P,C,PHI,H,QH,RH,NCTR,NPLOT,GMIN,SCALE,NKEEP, 

X ,INDX) 
C-----ADJUST NON-STATIONARY ENVIRONMENT. 
306 CALL NSTAT(Q,R,N,M,NCTR,NRST,RFACT,NQST,QFACT) 
C-----UPDATA SYSTEM MODEL. 
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CALL SYSTM(X,Y,PHI,H,Q,R,W,V,N,M,WORK,!X)· 
C-----ADAPTIVE FILTER EQUATIONS. 

CALL MTXML{PHI,XH,WORK2,N,N,l) 
CALL MTXML(H,WORK2,WORK3,M,N,l) 
CALL ~TXS3{Y,~DRK3,~C~K5,~,1} 

c ~ L L 1,(: T A. T ;<_ ( ~·~ !__, ~'" 5 ' ~·; .:::;:..;. K 2 ' ;·~; t 1 ) 
CALL MTXML{WORK5,WORK2,WORK4,M,l,M) 
CALL MTXMLCPHI,P,WORK,N,N,N) 
CALL MTXML(WORK,PHIT,PPR,N,N,N) 
CALL MTXAO(QH,PPR,PPR,N,N) 
CALL MTXML{H,PPR,WORK,M,N,N) 
CALL MTXML(WORK,HT,WORK2,M,N,M) 
CALL MTXAO(WORK2,RH,WORK2,M,M) 
CALL MTXSBCWO~K4,WORK2,WORK4,M,M) 
CALL MINVS(w0RK2,WORK,M) 
CALL MTXMLCHT,WORK,WORK2,N,M,M) 
CALL MTXML(PPR,WORK2,C,N,N,M) 
CALL MTXML(C,H,WORK,N,M,N) 
CALL MTXML(WORK,PPR,P,N,N,N) 
CALL MTXSBCPPR,P,P,N,N) 
CALL MTXMLCCP,WORK4,WORK,NSQ,MSQ,l) 

C-----CALL MTXML(WORK,CPT,) ••• ) 
CALL MTXADCWCRK,P,P,N,N) 
CALL MTXML(CR,WORK4,WORK,MSQ,MSQ,l) 

C-----CALL MTXML(WC~K,CRT,) ••• ) 
CALL MTXAD(WORK,RH,RH,M,M) 
CALL MTXML{CQ,WORK4,WORK,NSQ,MSQ,l) 

C-----CALL MTXMLCWORK,CQT,) ••• ) · 
CALL MTXAO(WORK,QH,QH,N,N) 
CALL MTXML(PHI,XH,WORK,N,N,l) 
CALL MTXML(C,WORK5,~0RK2,N,M,l) 

307 
CALL MTXADCwORK,WORK2,XH,N,l) 
CONTINUE· 
IFCNPR} 311,312,311 

C----- PLOT OUTPUT IF REQUESTED. 
311 CALL LINKCGRAF) 
312 STOP 

END 
II GO PUT MFIL2 
II GO ERASE SPEC 
II FORTRAN SUBPROGRAM 
*ONE WORD INTEGERS 

*LIST SOURCE PROGRAM 

C----- SYSTEM DESCRIPTION INPUT SUBROUTINE. 
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SUBROUTINE SPECCX,XH,PHI,H,HT,PHIT,Q,R,P,N,M,NTITL,NCYCL,NPI,; 
X NPR,GMIN,SCALE,NSQ,MSQ,NVAR,INOX,NKEEP,NRST,RFACT,NQST,QFACT 

DIMENSION X ( 1) , XH { 1) , R ( 1) , Q ( 1), P ( 1), H ( 1) , PH I ( 1) , GM INC l), SCALE 
X ,NTITL(40) ,NVAR(5) ,INDX(5) 

C-----READ IN SYSTEM DESCRIPTION. 

107 

101 

313 

108 
314 

READC8,107) NTITL 
FORMAT(40A2) 
READ(8, 101) NCYCL,NPI INSR,NPR 
FORMAT(8110) 
IF(NPR) 313,314,313 
READ(8,101) NKEEP,CNVAR(K),INDXCK),K = 1,NKEEP) 
READ(8,108) CGMINCI),SCALE(I),I= l,NKEEP) 
FORMATC10F8.3) 
READ(8,101) N,M 
N S Q = N * N · ·- - -· -- - -

MSQ = M•M 
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NM = N*M 
READ (8,102) CPHI(l),I = l,NSQ) 

102 FORMATC8Fl0.3) 

109 

READC8,102) (H(I),I = l,NM) 

~EAC(b,l02} (~(1),1 = l,NSQ) 
REA0(8,102) (R(I),I = l,MSQ) 
REA0(8,109) NKST,RFACT,NQST,QFACT 
FORMAT(IlO,Fl0.3,IlO,Fl0.3) 
CALL MTXTRCH,HT,M,N) 
CALL MTXTR(PHI,PHIT,N,N) 

C-----PRINT SYSTEM DESCRIPTION. 
WRITECS,l04) NTITL 
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104 FORMAT('l',lX,40A2,//,' PHI, H, P(O), Q, R---- - 1 ,//) 

CALL MTXPT(PHI,N,N) 

309 

105 

308 
106 

CALL MTXPT(H,M,N) 
CALL MTXPT(P,N,N) 
~ALL MTXPTCQ,N,N) 
CALL MTXPT(R,M,M) 
IF(NSR) 309,308,309 
REA0(8,102) (X(I),I = l,N) 
READC8,l02) CXHCI>ri = lrNl 
WRITE(5,105) 
FORMAT(//,' XCO}, XH(O)---- - 1 //) 

CALL MTXPTCX,N,l) 
CALL MTXPT(XH,N,l) 
~RITE(5,106) 

FORMAT { ' 1 ' ) 
RETURN 
END 

II GO PUT SPEC 
77 ~0 ~~A~E OUTPT 
II FORTKAN SUBPROGRAM 
*ONE WORD INTEGERS 

*LIST SOURCE PROGRAM 

C-----OUTPUT PRINTING ROUTINE. 

103 

304 

302 

SUBROUTINE OUTPT(X,XH,Y,P,C,N,M,NCTR,NSR) 
WRITE(5,103) NCTR 
FORMAT(////' ***STAGE ',15) 
CALL MTXPT(P,N,N) 
CALL MTXPT(C,N,M) 
IF(NSR) 304,302,304 
CALL MTXPT(X,N,l) 
CALL MTXPT(XH,N,l) 
CALL MTXPTCY,M,l) 
RETURN -
END 

II GO PUT OUTPT 
II GO EkASE SYSTM 
II FORTRAN SUBPROGRAM *LIST SOURCE PROGRAM 
•ONE WORD INTEGERS 
C-----SYSTEM MODEL ROUTINE. 

SUBROUTINE SYSTMCX,Y,PHI,H,Q,R,W,V,N,M,WORK,IX} 
DIMENSION Q(l),R{l),W(l),V(l) 

C-----GENERATE RANDOM INPUTS. 

201 

DO 201 I = l,N 
J = (!-1)*-N + I 
S I G = S QR T ( Q C J) } 

CALL GAUSCIX,SIG,O.O,W(.l)) 
DO 202 I = l,M 
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J = (!-l)*M + I 
SIG = SQRTCR(J)) 

202 CALL GAUS(IX,SIG,Q.O,V(l}) 
C-----UPDATE SYSTEM STATE. 

,- ' ! l t_ .... ~ • ___ .. _ 

C~LL ~TX~D(~C~K,w,X,N,l) 

CALL MTXML{H,X,Y,M,N,l) 
CALL MTXAD(Y,V,Y,M,l} 
RETURN 
END 

II GO PUT SYSTM 

166 
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Description 

(1) MFIL2: Mainline program which serves as executive 

over simulation, and performs the adaptive 

filtering computations of equations VIII.28-

35. 

Variables are named in correspondence with 

the computations of this paper, and computa-

tions are therefore explained by the listing. 

Description of the problem to be solved is 

read from user-supplied data cards, and the 

format description of Section IX.4.1 should 

be followed. In addition, the conventional 

data deck is followed by the following adap-

tive filter data deck, read by MFIL2: 

(a) Adaptation Coefficients: 

Card 1: Cp, listed by row, 10 card 

columns per element, with over-

flow cards. 

Card 2: c0, formatted as Cp· 

Card 3: ~' formatted as CP. 

(b) Initial Environment Estimates: 
~ 

Card 1: Q(O), formatted as Cp. (Any 

precisely known values supplied.) 

Card 2: ~(0), formatted as O(O). 
(2) SPEC: System specification data input subroutine, 

which reads system description portion common 
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to all filtering problems. (i.e., SPEC does 

not read adaptive filter data.) 

(3) OUTPT: Data output subroutine which prints system/ 

estimator data at selected intervals. 

(4) SYSTM: Subroutine which performs system model simu-

lation, as described by equations II.l and 

II.4. 

IX.6 The State Transition Approach to Linear Dynamic Systems 

We state only definitions and theorems of use in the 

text: 

Definition IX.6.1: Assuming a solution to 

• 
X : 1={-f:) X 

X t~.) =- Xo 

exists and is unique, where x is an n-vector, and F an 

(n x n) matrix function, the state transition matrix 

(characteristic matrix, fundamental matrix) of F(t) is the 

unique solution of 

(I) 
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Theorem IX.6.1: The unique solution to 

X =. t= (-t) X + Gl~) 

~ 

xlt)-.. c¥(t 1-l.\)(o + ~ <P(-t 1s) G(S) J.s l~~ 
bo 

Proof: By differentiation of (3). 
"\: 

Theorem IX.6.2: If F(t) is commutative with l f(S) ~s 
to then 

the series converging uniformly on all finite closed inter-

vals. In the special case F = constant, we often write 

p = ~(t- t 0 ), as only a single parameter is required. 

Proof: See Bellman [2]. 

Theorem IX.6.3: (1) ~(t,t 0 ) is non-singular for all t. 

(2) ~- 1 (t 1 ,t 2 ) = ~(t 2 ,t 1 ), for all t 1 ,t2 • 

Proof: (1) See Bellman [1]. 

(2) x(t2 ) = ~ (t2 ,t1 )x(t1 ) = illCt 2 ,t 1 )~(t 1 ,t 0 )x 0 

= ~( t 2 , t ) X 
0 0 

, for all 

Then (2) follows, by the case 

X • 0 

t • 
0 
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IX.9 Hilbert Space 

Only the most elementary notions of Hilbert space are 

used in this paper. Refer to [16] for a more complete dis-

cussion. We recall the definitions leading to the structure 

of Hilbert space: 

Definition IX.9.1: 

(1) A real linear space is a triple (L,+,·) consisting 

of 

(i) A set L, 

(ii) An operation (addition) +:L x L_,L, such 

that 

( a ) X + { ~ + t) ~ (X + ~) + ~ J ~ X ( 'l , t: ~ L . 

(b)~ ocL 3 X-4-0= X )t; X~ L. 

(c) }(+~ s- ~-\-X, 'cJ x,~~ '-· 

(d) ~ )(' \., 1 '\ (-~) E: ~ ~ X+£-><)'= 0, 

(iii) An operation (scalar multiplication) 

• :R x L__..L, such that 

( a ) Q.·( X + ~) : <>. • X + o. • ~ , ~ G. ~ t , )( , ~ f: ~ • 

(b) (o. .... b )·X ::. (A. X .... 'o. )( , ij ~) 'b 6 R) X'~ \.. . 

(c) l o. ~) ·l< :: ~ ( b, lC) 1 'd Q 1 b e ~ J x f ~ · 

(d) 1 •)\ ~ Y.., 



(2) A complex linear space is a linear space with 

scalar multiplication defined over the field of 

complex numbers. 
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(3) A normed linear space is a linear space combined 

with a norm II ·II : L -+R, such that 

( i ) \\ ~ \\ ~ D · \\ X\\ = o ~ X = o , ~ X ~ L . ) 

( i i) \l X + ~ \\ 4:. t\ )( \\ + \\ ~ \\ I 'd X I 'j ~ \_ . 

( iii ) l\()( ·X \\ ~ \ ,( \ \\ X \\ J tJ o< E L , )( E l. . 

(4) A Banach space is a normed linear space which is 

complete as a metrix space under the norm-induced 

metric: 

(5) A Hilbert space is a complex Banach space with norm 

induced from an inner product ( •, "') :L x L--1)C, such 

that 

(iii) l y.. I "' ) : ll X ll "to J 

~ ~.'j,~cl; o.,bEC.. 
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IX.lO Stability and the Method of Lyapunov 

We list only principal definitions and theorems used in 

the text. 

Definition IX.lO.l: 

( i) xe is an equilibrium point of 

• f(x,t) X = (\) 

if f(x ,t) e = o. 

(ii) x(t) = ¢(t,x
0
,t

0
) denotes a solution to (1) with 

x(t
0

) = x
0

• 

(iii) xe' an equilibrium point of (1), is stable if for 

every t
0

, E > 0, there exists b (E, t
0

) > 0, 

such that, for every 

li'Ko-Xe\1 '\ 

t > t ' - 0 

(iv) xe' an equilibrium point of (1), is uniformly 

stable if it is stable and ~ may be chosen in 

(iii) independent of t
0

• 

(v) xe' an equilibrium point of (1), is asymptotically 

stable if it is stable and there exists r(t
0

) > 0 

such that 

(vi) 

\lx-'l..ell"~ ~ \•~ cp ( t 1 Xo 1 t c) = X e 
t~oo 

x , an equilibrium point of (1) is uniformly e 
asymptotically stable if it is asymptotically stable, 
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and r, ~ , may be chosen independently of t
0 

in 

(iii), (v), and convergence is uniform in x
0

• 

Theorem IX.lO.l (Lyapunov) If (1) has equilibrium point xe' 

and there exists a scalar function V(x,t), with continuous 

first partial derivatives, such that 

(i) V(xe,t) = 0, and 

(ii) There exist non-decreasing, continuous scalar 

functions o{ and ~ , with 

o<lo) :: V'fo) =0 

(iii) There exists a continuous scalar function 't , 

such that 

tlo) : 0 
1 

CA~c\ 

Then, xe is uniformly asymptotically stable. 

Proof: See Kalman and Bertram [12]. 

Theorem IX.l0.2 (Lyapunov-Perron-Malkin) 

uniformly asymptotically stable for 

• X = F(t)x, 

If X = 0 is e 

L 't.) 
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and ~(t,t 0 ) is the state transition matrix for F(t), then 

there exist ol, ~ '":> 0 such that, for all t > t
0

, 

-f.>( t - t 0) 
\1 ~(-lito) n L o( € 

Proof: See Kalman and Bertram [12]. 

Theorem IX.l0.3 If 

( i) A = lim A( t), 
i~GO 

and 

(ii) A(t) is con tin uou s, and 

(iii) • Ax is about 0, X = a. s. X = e 

Then 

x = A(t)x 

is u.a.s. about xe = 0. 

Proof: See Bellman [2 ], Theorem 2.2.2. 

Theorem IX.l0.4 If 

( i) (2) is the linearized form of ( 1 ) ' 

(ii) F is a uniformly good approximation 

X e' and 

(iii) (2) is u.a.s. about xe, 

Then 

(1) is u.a.s. 

Proof: See Kalman and Bertram [ 12]. 

and 

to f, near 
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