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\S 0. Introduction.

In a previous paper [1] with the same title, we studied linear evolution

equations of the form

(E) $du/dt+A(t)u=f(t)$ , $0\leqq t\leqq T$ , $ u(O)=\phi$ ,

in a Banach space $X$. The main Purpose of the present paper is to prove

some approximation theorems related to (E). Before doing so, however, we
find it useful to strengthen some of the fundamental results of [1] by replac-

ing the strong continuity of certain operator-valued functions with strong

measurability.

As regards the approximation theorems, we considered similar problems

in another paper [2] under somewhat different assumptions. However, only

approximation in the X-norm was considered in [2]. In what follows we are
primarily interested in aPproximation in a stronger norm.

The results of this paper are useful, among others, in applications to

nonlinear evolution equations. Such applications will be discussed in other

publications.

The Paper is self-contained in definitions and statements of theorems,

but their proof heavily leans on [1].

\S 1. Quasi-stability.

Let $X$ be a Banach space. We denote by $G(X)$ the set of all negative

generators of $C_{0}$-semigroups on $X$. A family $A=\{A(t)\}$ of elements of $G(X)$ ,

defined for $a$ . $e$ . $t\in I=[0, T]$ , is said to be quasi-stable if

(1.1) $\Vert\prod_{J=1}^{k}(A(t_{j})+\lambda_{j})^{-1}\Vert\leqq M\prod_{J=1}^{k}(\lambda_{j}-\beta(t_{j}))^{-1}$

for every finite family of real numbers $\{t_{j}, \lambda_{j}\}$ such that $0\leqq t_{1}\leqq\ldots\leqq t_{k}\leqq T$ ,

$\lambda_{1}>\beta(t_{1}),$ $\cdots$ , $\lambda_{k}>\beta(t_{k})$ , where $M$ is a constant and $\beta$ is a real-valued, upper-

integrable function (in the Lebesgue sense) defined $a$ . $e$ . on $I$. Of course only
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those $t_{j}$ where $A(t_{j})$ and $\beta(t_{j})$ are dePned are considered in (1.1). The pro-

duct on the left member of (1.1) is time-ordered (see [1]). We shall call the

pair $\{M, \beta\}$ a stability index for $A$ .
Quasi-stability is a generalization of the notion of stability introduced

in [1], in which $\beta$ was a constant. Some results of [1] for stable families

can be extended immediately to quasi-stable ones. For example, (1.1) is
equivalent to

(1.2) $\Vert\Pi\exp[-s_{j}A(t_{j})]\Vert\leqq M$ exp $[\Sigma s_{j}\beta(t_{j})]$ , $s_{j}\geqq 0$ .

Also, Propositions 3.4 and 3.5 of [1] have obvious generalizations. Thus if
$A$ is quasi-stable as above and if $B:I\rightarrow B(X)a$ . $e$ . is given with $\Vert B(\cdot)\Vert$ upper-

integrable, then $A+B$ is quasi-stable with a stability index $\{M, \beta+M\Vert B(\cdot)\Vert\}$ .
(Here $B(X)=B(X, X)$ , and $B(X, Y)$ is the set of all bounded linear operators

on $X$ to Y. $B:I\rightarrow B(X)a$ . $e$ . means that $B(t)\in B(X)$ is defined for $a$ . $e$ . $t\in I$.
$\Vert B(\cdot)\Vert$ denotes a function $t\vdash\rightarrow\Vert B(t)\Vert a$ . $e.$ , where $\Vert\Vert=\Vert\Vert_{X}$ denotes the operator

norm.)

Quasi-stability is introduced with the purpose of estimating Riemann
products

(1.3) $\Pi$ exp $[-(a_{j}-a_{f-1})A(t_{j})]$ ,

where $0\leqq a_{0}\leqq t_{1}\leqq a_{1}\leqq\cdots\leqq a_{k}\leqq T$ . (1.2) implies that the norm of (1.3) does

not exceed

(1.4) $M$ exp $[\sum(a_{j}-a_{j- 1})\beta(t_{j})]$ .

We want (1.4) to be uniformly bounded. This is true only when $\beta$ is bounded,

if we admit all possible $a_{j}$ and $t_{j}$ . It will be shown, however, that there are
sufficiently many sums appearing in (1.4) that are uniformly bounded, pro-

vided $\beta$ is upper-integrable. In this restricted sense, quasi-stability implies

stability.

\S 2. A new existence theorem for the evolution operator.

We now state our fundamental assumptions for the family $A=\{A(t)\}$ in
(E). These are generalizations of conditions (i), (ii”), and (iii) of [1], which
were not necessarily the most general ones considered in [1] but were the
most satisfactory in the case of a general Banach sPace.

$(i^{\prime})$ $A:I\rightarrow G(X)$ is quasi-stable, with index $\{M, \beta\}$ .
(ii”’) There is a Banach space $Y$, continuously and densely embedded in

$X$, and a family $S=\{S(t)\}_{t\in I}$ of isomorphisms of $Y$ onto $X$, such that

(B) $S(t)A(t)S(t)^{-1}=A(t)+B(t)$ , $B(t)\in B(X)$ , for $a$ . $e$ . $t\in I$ ,
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where $B:I\rightarrow B(X)a$ . $e$ . is strongly measurable with $\Vert B(\cdot)\Vert_{X}$ upPer-integrable

on $I$. Furthermore, there is a strongly measurable function $\dot{S}$ : $I\rightarrow B(Y, X)$

$a$ . $e.$ , with $\Vert\dot{S}(\cdot)\Vert_{Y,X}$ uPper-integrable on $I$, such that $S$ is equal to an inde-

finite strong integral of $\dot{S}$.
(iii) $Y\subset D(A(t)),$ $t\in I$, and $A:I\rightarrow B(Y, X)$ is norm-continuous.
REMARKS. 1. $(i^{\prime})$ is a simple generalization of (i) replacing stability by

$quasi\cdot stability$ . (ii”’) is a generalization of (ii”), in which $B$ and $\dot{S}$ were
assumed to be strongly continuous. (B) should hold with the strict domain

relation implied. (iii) is the same as in [1], but see the remark after Theo-

rem I.

2. Strong measurability of operator-valued functions is taken in the

usual sense (see Hille-Phillips [3, $P\cdot 74]$ , Yosida [4, $P\cdot 130]$ ). Thus $B$ is
strongly measurable if $B(\cdot)x$ is strongly measurable (as an X-valued function)

for each $x\in X$. This does not necessarily mean that $\Vert B(\cdot)\Vert_{X}$ is Lebesgue-

measurable; hence we assume the upper-integrability of $\Vert B(\cdot)\Vert_{X}$ and $\Vert\dot{S}(\cdot)\Vert_{Y,X}$ .
The assumptions on $\dot{S}$ imply that $\dot{S}$ is integrable in the strong sense, and it

is assumed that $S$ is one of the strong indefinite integrals. Thus we have
$dS(t)y/dt=\dot{S}(t)y$ for $a$ . $e$ . $t\in I$ for each $y\in Y$ , the exceptional set depending

on $y$ . We note that $S:I\rightarrow B(Y, X)$ is norm-continuous under these assump-

tions.
THEOREM I. Let $(i^{\prime})$ , (ii“’), and (iii) be satisfied. Then there exists a uni-

que evolution operator $U=\{U(t, s)\}$ , defined on the triangle $\Delta$ : $T\geqq t\geqq s\geqq 0$ ,

with the following Properties.

(a) $U$ is strongly continuous on $\Delta$ to $B(X)$ , wilh $U(s, s)=1$ .
(b) $U(t, s)U(s, r)=U(t, r)$ .
(c) $U(t, s)Y\subset Y$, and $U$ is strongly continuous on $\Delta$ to $B(Y)$ .
(d) $dU(t, s)/dt=-A(t)U(t, s),$ $dU(t, s)/ds=U(t, s)A(s)$ , which exist in the

strong sense in $B(Y, X)$ and are strongly continuous on $\Delta$ to $B(Y, X)$ .
REMARK. This theorem strengthens Theorem 6.1 of [1]; note that the

properties(a) to (d) are exactly the same as in that theorem, $U(t, s)$ being

strongly continuously differentiable in $B(Y, X)$ everywhere. If we are satisPed

instead with $a$ . $e$ . differentiability, we can weaken condition (iii) to $ A\in$

$L^{1}(I, B(Y, X))$ . A similar generalization was made by Hackman [5] under some-
what different conditions, but he assumes that $X$ is separable and reflexive.

The first half of this paper is devoted to the proof of Theorem I (and

the remark above). The proof follows the same line as in [1], but it is

rather long. The reason is that we have to aPproximate certain integrals

involving $\beta,$ $B$ , and other functions by Riemann sums, but this is not so easy

when these functions are only measurable in the Lebesgue sense.



Linear evolution equations of ”hyperbolic” type, II 651

\S 3. Construction of $U$ .
In what follows we assume $(i^{\prime}),$ $(ii^{\prime\prime\prime})$ , and (iii). First we shall show that

Theorem 4.1 of [1] is still true, but we have to modify slightly the construc-

tion of $U$ given in [1].

Condition (B) implies that $Y$ is $A(t)$ -admissible for $a$ . $e$ . $t$ (see Proposition

2.4 of [1]). Let $\tilde{A}(t)$ be the part of $A(t)$ in $Y$ . On the other hand, $A_{1}=A+B$

is quasi-stable with a stability index $\{M_{1}, \beta_{1}\}$ , where $M_{1}=M$ and $\beta_{1}=$

$\beta+M\Vert B(\cdot)\Vert$ (see \S 2). Thus we see, by slightly modifying the proof of Pro-

position4.4 of [1], that $\tilde{A}$ is quasi-stable with a stability index $\{\tilde{M},\tilde{\beta}\}$ , where
$\tilde{M}=M_{1}c^{2}e^{cM_{1}V}$ and $\tilde{\beta}=\beta_{1}$ with the notation used there. (V is the total varia-

tion of $S$ ; it is finite by $V\leqq\int^{*}\Vert\dot{S}(t)\Vert_{Y,X}dt$ , where $\int^{\triangleright}$

’

denotes upper-integral.

$c=\max\{\sup_{l}\Vert S(t)\Vert_{Y,X}, \sup_{\iota}\Vert S(t)^{-1}\Vert_{X,Y}\}$ is also finite.)

Now we define approximate evolution operators $U_{n}$ as in [1] by appro-
ximating $A$ by step functions $A_{n}=\{I_{nk}, A(t_{nk})\},$ $n=1,2,$ $\cdots$ (for this notation

see Appendix at the end of the paper). But the rather arbitrary partitions
$\{I_{nk}\}$ of $I$ used in [1] will not work, since the associated Riemann products

(1.3) may not be uniformly bounded. A more careful choice of the partitions

is necessary.

In what follows we assume, without loss of generality, that $\beta$ and $\tilde{\beta}$ are
nonnegative and Lebesgue integrable; otherwise we can replace them by

dominating integrable functions. We then choose $\{I_{nk}\}$ and the numbers
$t_{nk}\in I_{nk}$ in such a way that $\sup_{k}|I_{nk}|\rightarrow 0,$

$ n\rightarrow\infty$ , and that the corresponding

Riemann step functions $\beta_{n}=\{I_{nk}, \beta(t_{nk})\}$ and $\tilde{\beta}_{n}=\{I_{nk},\tilde{\beta}(t_{nk})\}$ converge to $\beta$

and $\tilde{\beta}$ , respectively, in $L^{1}$ -norm as well as pointwise $a$ . $e$ . This is possible

by Lemma Al and a remark after Lemma A2 (see Appendix).

With this choice of $\{I_{nk}\}$ and $t_{nk}\in I_{nk}$ , we construct the step function
$A_{n}=\{I_{nk}, A(t_{nk})\}$ and the associated evolution operator $U_{n}$ as in [1], with

obvious modifications. (For example, $U_{n}(t, s)=\exp[-(t-s)A(t_{nk})]$ if $t,$ $s\in I_{nk}$

and $t\geqq s.$) Then we have by (1.4)

(3.1) $\Vert U_{n}(t, s)\Vert_{X}\leqq M$ exp $\Vert|\beta_{n}\Vert|_{1}$ , $\Vert U_{n}(t, s)\Vert_{Y}\leqq\tilde{M}$ exp $\Vert|\tilde{\beta}_{n}\Vert|_{1}$ ,

corresponding to (4.3) of [1], where $\Vert|\Vert|_{1}$ denotes the $L^{1}$ -norm. (3.1) implies

that the $U_{n}(t, s)$ are uniformly bounded in $B(X)$ as well as in $B(Y)$ , since
$\beta_{n}\rightarrow\beta$ and $\tilde{\beta}_{n}\rightarrow\tilde{\beta}$ in $L^{1}$ -norm. Thus the construction given in [1] applies

without further modification, yielding $U=\lim U_{n}$ satisfying Theorem 4.1.
(We note in passing that Proposition 4.3 of [1] may no longer be true in
general, but we need only a special case of this proposition that is easy to

prove.)
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To prove the remaining part of Theorem I, we need some preparations.

\S 4. Convolution of operator-valued kernels.

In what follows we consider various vector- and operator-valued func-

tions. For $f:I\rightarrow Xa$ . $e.$ , we write

$\Vert|f\Vert|_{\infty,X}=ess\sup_{t\in I}\Vert f(t)\Vert_{X}$ , $\Vert|f\Vert|_{1,X}=\int;\Vert f(t)\Vert_{X}dt$ .

We use similar notation for functions on $\Delta$ to $X$. For an operator-valued

function $F:I\rightarrow B(X, Y)a$ . $e$ . or $\Delta\rightarrow B(X, Y)a$ . $e.$ , we define $\Vert|F\Vert|_{\infty,X,Y}$ and
$\Vert|F\Vert|_{1,X,Y}$ similarly. Here $X,$ $Y$ are arbitrary Banach spaces, and we write
$\Vert|F\Vert|_{\infty,X}$ for $\Vert|F\Vert|_{\infty,X,X}$ . In all these expressions, subscripts $X$ or $X,$ $Y$ may be

omitted if there is no ambiguity.

LEMMA 1. Let $G^{\prime}$ : $\Delta\rightarrow B(X^{\prime}, Y^{\prime})$ and $G$“ : $\Delta\rightarrow B(X^{r}, Y‘‘)$ be strongly con-
tinuous. Let $F:I\rightarrow B(Y^{\prime}, X^{\nu})a$ . $e$ . be strongly measurable with $\Vert|F\Vert|_{1}<\infty$ . Then

there is $G:\Delta\rightarrow B(X^{\prime}, Y‘‘)$ , denoted by $G=G^{W}FG^{\prime}$ , such that

(4.1) $G(t, r)x=\int_{r}^{t}G^{\prime\prime}(t, s)F(s)G^{\prime}(s, r)xds$ , $t,$ $ r\in\Delta$ ,

for each $x\in X^{\prime}$ . $G$ is strongly continuous on $\Delta$ to $B(X^{\prime}, Y^{\prime})$ , and

(4.2) $\Vert|Gx\Vert|_{\infty}\leqq\Vert|G^{\prime\prime}\Vert|_{\infty}\Vert|F\Vert|_{1}\Vert|G^{\prime}x\Vert|_{\infty}$ ,

$\Vert|G\Vert|_{\infty}\leqq\Vert|G^{\prime\prime}\Vert|_{\infty}\Vert|F\Vert|_{1}\Vert|G^{\prime}\Vert|_{\infty}$ ,

where $Gx$ denotes the vector-valued function $t,$ $s\mapsto G(t, s)x\in Y$“.

PROOF. For fixed $t,$ $r$ and $x$, the integrand in (4.1) is strongly measurable
by Lemma A4 of Appendix. Since it is strongly integrable by $\Vert|F\Vert|_{1}<\infty$ ,

the existence of $G(t, r)\in B(X^{\prime}, Y^{\prime\prime})$ and the estimates (4.2) follow easily.

It remains to show that (4.1) is continuous in $Y^{\prime\prime}$ -norm in $t,$ $ r\in\Delta$ for

fixed $x$. To this end it is convenient to extend $G^{\prime}$ and $G^{\prime\prime}$ to the square
$I\times I$, setting $G^{\prime}=0,$ $G^{\prime\prime}=0$ outside $\Delta$ . Then the range of integration in (4.1)

may be taken to be $I$, and we have

$\Vert G(t_{n}, r_{n})x-G(t, r)x\Vert\leqq\int_{I}\Vert G^{\prime\prime}(t_{n}, s)F(s)[G^{\prime}(s, r_{n})-G^{\prime}(s, r)]x\Vert ds$

$+\int_{I}\Vert G^{\prime\prime}(t_{n}, s)-G^{\prime/}(t, s)]F(s)G^{\prime}(s, r)x\Vert ds$ .

If we let $t_{n}\rightarrow t$ and $r_{n}\rightarrow r$, the right member tends to $0$ by the dominated
convergence theorem; note that the extended kernels $G^{\prime\prime}(t, s)$ and $G^{\prime}(s, r)$ are
strongly continuous except possibly at $s=r$ and $s=t$ .
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\S 5. Kernels $V$ and $W$.

From $U$ constructed in \S 3 and $B$ given by (B), we construct a new kernel
$V$ by

(5.1) $V=\sum_{p=0}^{\infty}(-UB)^{p}U$ ,

where $(-UB)^{p}U$ are defined successively using Lemma 1. The series con-
verges uniformly on $\Delta$ in $B(X)$ -norm, as is seen from the Volterra-type

estimates

(5.2) $\Vert|(UB)^{p}U\Vert|_{\infty}\leqq\Vert|U\Vert|_{\infty}^{p+1}\Vert|B\Vert|_{1}^{p}/p$ !, $p=0,1,2,$ $\cdots$

Thus $V:\Delta\rightarrow B(X)$ is well dePned and is strongly continuous. Similarly,

we define a strongly continuous kernel $W:\Delta\rightarrow B(X)$ by

(5.3) $W=\sum_{p=0}^{\infty}(VC)^{p}V$ ,

where

(5.4) $C(t)=\dot{S}(t)S(t)^{-1}\in B(X)$ for $a$ . $e$ . $t\in I$ .

By $(ii^{\prime\prime\prime}),$ $C:I\rightarrow B(X)a$ . $e$ . is strongly measurable with $\Vert|C\Vert|_{1}<\infty$ .
LEMMA 2. We have

(5.5) $S(t)U(t, s)S(s)^{-1}=W(t, s)$ , $t,$ $ s\in\Delta$ .

This is our key lemma, from which the remaining part of the assertions

of Theorem I follows easily as in [1]. (5.5) shows directly that $U$ is strongly

continuous on $\Delta$ to $B(Y)$ . The proof of the lemma will be given in the fol-

lowing sections.
We note in passing that

(5.6) $W+UDW=U$ , $W=\sum_{p=0}^{\infty}(-UD)^{p}U$ , $D=B-C$ .

This follows easily from

(5.7) $V+UBV=U$ , $W-VCW$ $=V$ ,

implied by (5.1) and (5.3). Thus $W$ could have been constructed directly

from $U$ , without goint through $V$ . But we need $V$ in the proof of Lemma 2.

\S 6. Step function approximation readjusted.

It appears that the only method available for the proof of Lemma 2 is

to approximate $U$ and $W$ by sequences $U_{n}$ and $W_{n}$ based on step function
approximations for $A$ and $B$ . In view of the delicacy of such approximations

and the appearance of $B$ in addition to $A$ , we have to readjust the partitions
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$\{I_{nk}\}$ and the numbers $t_{nk}$ involved. There is another complication due to

the fact that steP function aPproximation for $B$ , which is only strongly mea-
surable, seems to work only on a separable subspace. (The readjustment is

not necessary if $X$ is separable. In this case it suffices to choose the parti-

tions used in \S 3 adapted to $\beta,\tilde{\beta}$ , and $B$ in the sense of the remark to Lemma
A2.)

Let $x_{0}\in X$ be arbitrary but fixed; we want to show that (5.5) is true

when aPplied to $x_{0}$ . Let $X_{0}$ be the (closed) subspace of $X$ spanned by the
$W(t, s)x_{0}$ for all $t,$ $s\in\Delta;X_{0}$ is separable since $W$ is strongly continuous.

Since $C:I\rightarrow B(X)a$ . $e$ . is strongly measurable, there is a separable sub-

space $X_{1}$ of $X$ containing $x_{0}$ and the $C(t)X_{0}$ for $a$ . $e$ . $t\in I$ (see Lemma A3).

F’inally, let $X_{2}$ be the subspace of $X$ spanned by the $V(t, s)X_{1}$ for all
$t,$ $ s\in\Delta$ . $X_{2}$ is separable since $V$ is strongly continuous.

We now introduce step functions $B_{n}$ that approximate $B$ in a convenient
way. Let $\hat{B}(t)$ be the restriction of $B(t)$ on $X_{2}$ , so that $\hat{B}(t)\in B(X_{2}, X)$ for
$a$ . $e$ . $t$ . Then $\hat{B}$ : $I\rightarrow B(X_{2}, X)a$ . $e$ . is strongly measurable with $\Vert\hat{B}(\cdot)\Vert\leqq\Vert B(\cdot)\Vert$

integrable. Since $X_{2}$ is separable, Lemma A2 shows that $\hat{B}$ can be approxi-

mated by a sequence of Riemann step functions $\hat{B}_{n}=\{I_{nk},\hat{B}(t_{nk})\}$ in the

following sense: $\sup_{k}|I_{nk}|\rightarrow 0$ as $n\rightarrow\infty,\hat{B}_{n}(t)\rightarrow\hat{B}(t)$ strongly in $B(X_{2}, X)$ for

$a$ . $e$ . $t$ , and $\hat{B}_{n}(\cdot)x\rightarrow\hat{B}(\cdot)x$ in $L^{1}(I, X)$ for every $x\in X_{2}$ . Moreover, we can
achieve that $\beta_{n}=\{I_{nk}, \beta(t_{nk})\},\tilde{\beta}_{n}=\{I_{nk},\tilde{\beta}(t_{nk})\}$ , and $b_{n}=\{I_{nk}, b(t_{nk})\}$ approxi-

mate $\beta,\tilde{\beta}$ , and $b$ , respectively, pointwise $a$ . $e$ . as well as in the $L^{1}$ -norm (see

the remark after Lemma A2); here $b$ is an integrable function such that
$\Vert B(t)\Vert\leqq b(t)$ $a$ . $e$ . Then we define also $B_{n}=\{I_{nk}, B(t_{nk})\}$ ; $B_{n}$ is a Riemann

step function for $B$ and $\hat{B}_{n}(t)$ is obviously the restriction of $B_{n}(t)$ on $X_{2}$ .
Note that the $I_{nk}$ and $t_{nk}$ are in general different from the ones used in \S 3;

this is why we talk about readjustment.

With the new $I_{nk}$ and $t_{nk}$ , we define a new step function $A_{n}=\{I_{nk}, A(t_{nk})\}$

and the associated evolution operator $U_{n}$ . These are different from the ones
used in \S 3 to construct $U$ as their limit, but we claim that the new $U_{n}$

converge to the same $U$ ; we have namely the following lemma.

LEMMA 3. We have

(6.1) $\Vert|(U_{n}-U)x\Vert|_{\infty}\rightarrow 0$ , $ n\rightarrow\infty$ , for each $x\in X$ .

PROOF. As in \S 3, $\lim U_{n}(t, s)=\overline{U}(t, s)$ exists strongly in $B(X)$ , uniformly

in $t,$ $s$ , and defines an evolution operator for $A$ satisfying Theorem 4.1 of
[1]. But since such an operator is unique, we must have $\overline{U}=U$. This
proves (6.1).

Next we define new kernels $V_{n}$ : $\Delta\rightarrow B(X)$ by
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(6.2) $V_{n}=\sum_{p0}^{\infty}(-U_{n}B_{n})^{p}U_{n}$

corresponding to (5.1); note that $U_{n}$ and $V_{n}$ : $\Delta\rightarrow B(X)$ are strongly continuous.
LEMMA 4. We have

(6.3) $\Vert|(V_{n}-V)x\Vert^{1_{\infty}}\rightarrow 0$ , $ n\rightarrow\infty$ , for $x\in X_{1}$ .

PROOF. We use the identity

(6.4) $V_{n}-V=(1+U_{n}B_{n})^{-1}[(U_{n}-U)-(U_{n}-U)BV-U_{n}(B_{n}-B)V]$ ,

which follows easily from (5.1) and (6.2). Here the operator $(1+U_{n}B_{n})^{-1}$ is
best defined by Neumann series expansion, which makes (6.4) meaningful by

the estimates similar to (5.2); note that $\Vert|B_{n}|\Vert_{1}\leqq\Vert|b_{n}\Vert|_{1}\leqq const$ . Thus it is
uniformly bounded when regarded as an operator on $C(\Delta, X)$ into itself, and
(6.4) gives

(6.5) $\Vert|(V_{n}-V)x\Vert|_{\infty}\leqq const$ . [ $\Vert|(U_{n}-U)x\Vert|_{\infty}+\Vert|(U_{n}-U)B$ VX $\Vert|_{\infty}$

$+\Vert|U_{7l}(B_{n}-B)$ VX $\Vert|_{\infty}$].

The lemma will be proved if we show that each term on the right of (6.5)

tends to $0$ .
For the first term, this is obvious by (6.1). The second term is majoriz-

ed by

(6.6) $\sup_{t,r}\int_{I}\Vert(U_{n}-U)(t, s)B(s)V(s, r)x\Vert ds$ ,

where we suPpose that $U_{n},$ $U,$ $V$ are extended to $I\times I$ as in the proof of

Lemma 1. By Lemma A3, there is a closed subset $E$ of $I$, with arbitrarily

small $|I-E|$ , such that $B$ is strongly continuous on $E$ to $B(X_{2}, X)$ . Then

BVx is piecewise continuous on $E\times I$ to $X$ (note that $V(s, r)x\in X_{2}$ because
$x\in X_{1})$ . Hence there is a compact set $S^{\prime}\subset X$ containing the image of $E\times I$

under the map $BVx$ . But (6.1) implies that $(U_{n}-U)(t, s)\phi\rightarrow 0$ in $X$ uniformly

for $t,$ $s\in E\times I$ and $\phi\in S^{\prime}$ . Hence the integrand of (6.6) tends to $0$ uniformly

for $t,$
$ r\in\Delta$ and $s\in E$ . By first choosing $|I-E|$ small and then $n$ large, we

see that (6.6) tends to $0$ as required (note that $\int_{I-E}\Vert B(s)\Vert ds$ is uniformly small

if $|I-E|$ is small).

The third term on the right of (6.5) is majorized by

(6.7) $sup\int_{I}\Vert(B_{n}-B)(s)V(s, r)x\Vert ds$

because $\Vert|U_{n}\Vert|_{\infty}\leqq const$ . (again extend $V$ to $I\times I$ ). Since $Vx:\Delta\rightarrow X_{2}$ is con-
tinuous, there is a compact set $S^{\prime\prime}\subset X_{2}$ such that $V(s, r)x\in S$“ for $s,$

$r\in I\times I$.
Since $B_{n}(s)\rightarrow B(s)$ strongly in $B(X_{2}, X)$ for $s\in I-N$, where $N$ is a null set,
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we have $(B_{n}-B)(s)\phi\rightarrow 0$ uniformly for $\phi\in S^{\prime\prime}$ for each fixed $s\in I-N$. In
other words, $\epsilon_{n}(s)=\sup\Vert(B_{n}-B)(s)\phi\Vert\rightarrow 0,$ $s\in I-N$. Then (6.7) is majorized

$\phi s\parallel$

by $\int_{I}\epsilon_{n}(s)ds$ , which tends to $0$ by the Vitali convergence theorem. Note that

$\epsilon_{n}(\cdot)\leqq const$ . $(\Vert B_{n}(\cdot)\Vert+\Vert B(\cdot)\Vert)\leqq const$ . $(b_{n}(\cdot)+b(\cdot))$ satisfies the condition for

Vitali’s theorem because $b_{n}\rightarrow b\in L^{1}$ in $L^{1}$ -norm (the Vitali-Hahn-Saks theorem,

see [4, p. 70]). This completes the proof of Lemma 4.

\S 7. Completion of the proof of Theorem 1.

We proceed to the construction of approximating kernels for $W$. To this
end, we have to modify the $U_{n}$ and $V_{n}$ slightly.

For each $n$ , let $a_{n}(t)$ denote the uPper end of $I_{nk}$ if $t\in(t_{nk}, t_{n,k+1}$]. We
set $a_{n}(t)=0$ if $t\in[0, t_{n1}]$ and $a_{n}(t)=T$ if $t\in(t_{nm}, T$ ] with $m$ the largest of

the indices $k$ . Thus $a_{n}$ : $I\rightarrow I$ is a monotone nondecreasing step function, and
$a_{n}(t)\rightarrow t$ as $ n\rightarrow\infty$ uniformly in $t$ .

For $t,$ $ s\in\Delta$ let

(7.1) $U_{n}^{\prime}(t, s)=U_{n}(a_{n}(t), a_{n}(s))$ , $V_{n}^{\prime}(t, s)=V_{n}(a_{n}(t), a_{n}(s))$ .

These are “ step functions” in $t,$ $s$ , and are in general discontinuous.

LEMMA 5. We have as $ n\rightarrow\infty$

(7.2) $\Vert|(U_{n}^{\prime}-U)x\Vert|_{\infty}\rightarrow 0$ for $x\in X$ , $\Vert|(V_{n}^{\prime}-V)x\Vert|_{\infty}\rightarrow 0$ for $x\in X_{1}$ .

PROOF. Obvious from Lemmas 3, 4 and the uniform convergence $a_{n}(t)$

$\rightarrow t$ ; note that $Ux$ and $Vx:\Delta\rightarrow X$ are continuous.
We now define

(7.3) $W_{n}^{\prime}(t, s)=S(t)U_{n}^{\prime}(t, s)S(s)^{-1}$ , $t,$ $ s\in\Delta$ .
$W_{n}^{\prime}(t, s)\in B(X)$ since $U_{n}(t, s)$ maps $Y$ into $Y$ (see (3.1)). $W_{n}^{\prime}$ : $\Delta\rightarrow B(X)$ is
piecewise strongly continuous.

LEMMA 6. We have

(7.4) $\Vert|(W_{n}^{\prime}-W)x_{0}\Vert|_{\infty}\rightarrow 0$ , $ n\rightarrow\infty$ .

PROOF. We use the identity

(7.5) $W_{n}^{\prime}=V_{n}^{\prime}+V_{n}^{\prime}CW_{n}^{f}$ ,

which is an analog of the second identity of (5.7). Here both va and $W_{n}^{\prime}$

are piecewise continuous so that there is no difficulty in the meaning of
$V_{n}^{\prime}CW_{n}^{f}$ . In fact the integral involved can be evaluated on each subinterval
$(t_{n,k- 1}, t_{nk})$ , leading to an algebraic identity which is easy ’ to vetify. Since
similar identities are deduced in [4] and [6], we $shalI\prime omit$ the rather
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straightforward proof of (7.5).

(7.4) can now be proved using (7.5) in the same way as (6.3) was proved

using (6.2). Since $V_{n}^{\prime}$ and $W_{7J}^{f}$ are piecewise continuous, there is no difficulty

in applying the argument used in the proof of Lemma 4. It suffices to add
the following remarks. We have $\Vert|(V_{n}^{\prime}-V)x_{0}\Vert|_{\infty}\rightarrow 0$ by (7.2) because $x_{0}\in X_{1}$ ,

and $C(s)W(s, r)x_{0}\in X_{1}$ for $a$ . $e$ . $s$ and all $r$ by the dePnition of $X_{1}$ .
PROOF OF LEMMA 2. Fix $t,$ $ s\in\Delta$ . We have $S(t)^{-1}W_{n}^{\prime}(t, s)x_{0}=U_{n}^{\prime}(t, s)S(s)^{-1}x_{0}$

by (7.3). Letting $ n\rightarrow\infty$ and using Lemmas 5 and 6, we obtain $S(t)^{-1}W(t, s)x_{0}$

$=U(t, s)S(s)^{-1}x_{()}$ (note that $S(t)^{-1}$ is bounded on $X$ to $X$ ). Since $x_{0}\in X$ was
arbitrary, we have proved Lemma 2.

As remarked after Lemma 2, this completes the proof of Theorem I.
PROOF OF THE REMARK AFTER THEOREM I. Only a slight change of the

above argument is required to prove the assertion made in the remark. In
the construction of $U$ given in \S 3, the partitions $\{I_{nk}\}$ and the numbers $t_{nk}$

should be chosen in such a way that $A_{n}=\{I_{nk}, A(t_{nk})\}$ approximates $A$ point-

wise $a$ . $e$ . as well as in $L^{1}(I, B(Y, X))$ , in addition to satisfying $\beta_{n}\rightarrow\beta$ and
$\tilde{\beta}_{n}\rightarrow\tilde{\beta}$ ; this is possible by Lemma Al and the remark after Lemma A2.

Since it implies $\int_{I}\Vert A_{n}(t)-A_{m}(t)\Vert_{Y,X}dt\rightarrow 0$ as $m,$ $ n\rightarrow\infty$ , the construction of [1]

can be carried out, yielding a unique $U$ satisfying Theorem 4.1 of [1] except

for the obvious modification of the part (d) contained in that theorem.

A similar change is required in the readjustment of the $I_{nk}$ and $t_{nk}$ given

in \S 6. In the Pnal result, $dU(t, s)/dt$ will not exist everywhere but it exists

at each point $t$ where $(d/dt)\int^{t}A(s)ds=A(t)$ holds, and similarly for $dU(t, s)/ds$ .

Since $A\in L^{1}(I, B(Y, X))$ , the exceptional set has measure $0$ .

\S 8. The inhomogeneous equation. Mild solutions.

Suppose that the assumptions of Theorem I are satisfied. The mild soltt-

tion of the inhomogeneous equation (E) is given by

(8.1) $u(t)=U(t, 0)\phi+\int_{0}^{t}U(t, s)f(s)ds$ .

For simplicity we abbreviate (8.1) to

(8.2) $u=U(\delta\otimes\phi)\oplus Uf=U(\delta\otimes\phi\oplus f)$ .

In general $u$ need not be a solution of (E) in the strict sense, but we have

the following results regarding the map $U$ . Here we use the simplified

notation

(8.3)
$\iota.\grave{L}(X)\overline{\leftarrow}L^{1}(I, X)\prime\prime\prime\ltimes,$

’

$C(X)=C(I, X)$ , etc.
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THEOREM II. $U$ maps (a) $\delta\otimes X\oplus L(X)$ into $C(X)$ , (b) $\delta\otimes Y\oplus L(Y)$ into
$C(Y)$ , and (c) $\delta\otimes Y\oplus L(Y)\cap C(X)$ into $C(Y)\cap C^{1}(X)$ . The map is continuous
in each case, and we have for (8.2)

(8.4a) $\Vert|u\Vert|_{\infty,X}\leqq\Vert|U\Vert|_{\infty,X}(\Vert\phi\Vert_{X}+\Vert|f\Vert|_{1,X})$ in case (a),

(8.4b) $\Vert|u\Vert|_{\infty,Y}\leqq\Vert|U\Vert|_{\infty,Y}(\Vert\phi\Vert_{Y}+\Vert|f\Vert|_{1,Y})$ in cases (b) and (c),

(8.4c) $\Vert|du/dt\Vert|_{\infty,X}\leqq\Vert|f\Vert|_{\infty,X}+\Vert|A\Vert|_{\infty,Y,X}\Vert|U\Vert|_{\infty,Y}(\Vert\phi\Vert_{Y}+\Vert|f\Vert|_{1,Y})$

in case (c) ,

(for notation see \S 4). In case (c), $u$ is a solution of (E) in the strict sence.
PROOF. If $\phi\in X$ and $f\in C(X)$ , then it is obvious that $u\in C(X)$ and (8.4a)

holds. Since $C(X)$ is dense in $L(X),$ $(a)$ follows with (8.4a). Similarly one
proves (b) and (8.4b). To prove (c) we use the result of [1], Theorem 7.1,

which shows that if $\phi\in Y$ and $f\in C(Y)$ , then $u\in C(Y)\cap C^{1}(X)$ and solves
(E). In this case (8.4c) follows from (E) and (8.4b). Then the desired results

follow since $C(Y)$ is dense in $L(Y)\cap C(X)$ .

\S 9. Preliminary estimates.

To develop quantitative approximation theory, it is convenient to intro-

duce some primitive constants that describe the behavior of the family $\{A(t)\}$ .
In particular, we want to estimate $\Vert|U\Vert|_{\infty,X}$ and $\Vert|U\Vert|_{\infty,Y}$ in terms of such con-
stants.

The following system of numbers (or any system majorizing these) will

be called the Primitive constants for $\{A(t)\}$ :

(9.1) $M$ , $\Vert|\beta\Vert|_{1}$ , $\Vert|S\Vert|_{\infty,Y,X}$ , $\Vert|S^{-1}\Vert|_{\infty,XY}$

)
$\Vert|B-C\Vert|_{1,X}$ ,

where $\{M, \beta\}$ is a stability index for $A$ . We do not count $\Vert|A\Vert|_{\infty Y,X}$ among
them, although it was used in (8.4c).

$\Vert|U\Vert|_{\infty,X}$ and $\Vert|U\Vert|_{\infty,Y}$ can be easily estimated in terms of the primitive

constants. The construction of $U$ given in \S 3 gives immediately

(9.2) $\Vert|U\Vert|_{\infty,X}\leqq M$ exp $\Vert|\beta\Vert|_{1}$ .

To estimate $||\Vert U\Vert|_{\infty,Y}$ , we note that

(9.3) $\Vert|U\Vert|_{\infty,Y}\leqq\Vert|S\Vert|_{\infty,Y,X}\Vert|S^{-1}\Vert|_{\infty,X,Y}\Vert|W\Vert|_{\infty,X}$

by (5.5). But we have from (5.6)

(9.4) $\Vert|W\Vert|_{\infty,X}\leqq\Vert|U\Vert|_{\infty,X}$ exp $(\Vert|B-C\Vert|_{1,X}\Vert|U\Vert|_{\infty,X})$

by using Volterra-type estimates similar to (5.2).
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\S 10. Perturbation theory.

Suppose we have another equation of the same type

$(E^{f})$ $du^{\prime}/dt+A^{\prime}(t)u^{\prime}=f^{f}(t)$ , $0\leqq t\leqq T,$ $u^{\prime}(O)=\phi^{\prime}$ ,

in the same Banach space $X$ . For $\{A^{\prime}(t)\}$ we make the same basic assump-

tions $(i^{\prime}),$ $(ii^{\prime\prime\prime})$ , (iii), and use the obvious notation such as $S^{\prime}(t),$ $B^{\prime}(t)$ , etc.

The space $Y\subset X$ is assumed to be common to the two systems.

Then there exists the evolution operator $U^{\prime}$ for the new system, and we
construct the associated kernel $W^{\prime}$ as above. The mild solution of $(E^{f})$ is
given by $u^{\prime}=U^{\prime}(\delta\otimes\phi^{\prime}\oplus f^{f})$ .

The purpose of this section is to estimate $u^{\prime}-u$ uniformly in X- and $Y$ .

norms, where $u=U(\delta\otimes\phi\oplus f)$ is the solution of (E). The following are our
main results. For notation see \S \S 4 and 8.

THEOREM III. Let $\phi\in Y,$ $f\in L(Y),$ $\phi^{\prime}\in X$, and $f^{\prime}\in L(X)$ . Then

(10.1) $\Vert|u^{f}-u\Vert|_{\infty,X}\leqq K^{\prime}[\Vert\phi^{\prime}-\phi\Vert_{X}+\Vert|f^{\prime}-f\Vert|_{1,X}+\Vert|(A^{\prime}-A)u\Vert|_{1,X}]$ ,

where $K^{\prime}$ is a conslant dependjng only on the primitive constants for $A^{f}$ , and
$A^{f}-A$ is regarded as a multiplicatiOn operator on $C(Y)$ to $L(X)$ ; note that
$u\in C(Y)$ by Theorem II, (b).

THEOREM IV. Let $\phi,$ $\phi^{\prime}\in Y$ and $f,$ $f^{f}\in L(Y)$ . Then

(10.2) $\Vert|u^{\prime}-u\Vert|_{\infty,Y}\leqq K^{\prime}(\Vert\phi^{f}-\phi\Vert_{Y}+\Vert|f^{f}-f_{1}|\Vert_{1,Y})$

$+K^{f}(\Vert[S^{\prime}(0)-S(0)]\phi\Vert_{X}+\Vert|(S^{f}-S)f\Vert|_{1,X})+K^{\prime}\Vert|(S‘-S)u\Vert|_{\infty,X}$

$+K^{\prime}\Vert|[(B^{\prime}-C^{\prime})-(B-C)]Su\Vert|_{1,X}+K^{\prime}\Vert|(U‘-U)[\delta\otimes\psi\oplus g]\Vert|_{\infty,X}$ ,

where $K^{\prime}$ is a constant depending only on the primitive constants for $A^{f},$ $and_{f}$

(10.3) $\psi=S(O)\phi\in X$ , $g=Sf+(C-B)Su\in L(X)$ .

PROOF OF THEOREM III. We start from the well-known identity

(10.4) $U^{\prime}(t, r)y-U(l, r)y=-\int_{\gamma}^{t}U^{\prime}(t, s)[A^{\prime}(s)-A(s)]U(s, r)yds$ ,

where $y\in Y$. As usual (10.4) may be deduced by differentiating and inte-
grating $U^{\prime}(t, s)U(s, r)y$ in $s$ (see [1]). Setting $r=0$ and $ y=\phi$ gives
$(U‘-U)(\delta\otimes\phi)=-U^{\prime}(A^{\prime}-A)U(\delta\otimes\phi)$ . Setting $y=f(r)$ and integrating in $r$

gives $(U^{f}-U)f=-U^{\prime}(A^{\prime}-A)Uf$. Hence

(10.5) $(U^{\prime}-U)(\delta\otimes\phi\oplus f)=-U^{\prime}(A‘-A)u$ .

On the other hand we have

(10.6) $u^{f}-u=U^{\prime}[\delta\otimes(\phi^{\prime}-\phi)\oplus(f^{\prime}-f)]+(U^{\prime}-U)(\delta\otimes\phi\oplus f)$ .
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(10.1) follows from (10.5) and (10.6); we can take $K^{f}=\Vert|U^{\prime}\Vert|_{\infty,X}$ .
PROOF OF THEOREM IV. Since

(10.7) II $u^{\prime}-u\Vert|_{\infty,Y}\leqq\Vert|S^{\prime- 1}\Vert|_{\infty,X,Y}\Vert|S^{f}(u^{\prime}-u)\Vert|_{\infty,X}$ ,

it suffices to estimate the right member of (10.7). We compute $S^{f}(u^{\prime}-u)$ as
follows. Using (5.5) in the form $SU=WS$, we obtain

(10.8) $S^{f}(u^{f}-u)=(S-S^{\prime})u+S^{f}u^{f}-Su$

$=(S-S^{f})u+W^{\prime}S^{\prime}[(\delta\otimes\phi^{f}\oplus f^{\prime})-(\delta\otimes\phi\oplus f)]$

$+W^{f}(S^{\prime}-S)(\delta\otimes\phi\oplus f)4(W^{f}-W)S(\delta\otimes\phi\oplus f)$ .

Taking the $\Vert|\Vert|_{\infty,X}$ -norm of the first three terms in the last member leads to

the first three terms of (10.2); note, for example, that

$\Vert|W^{\prime}S^{\prime}[\cdots]\Vert|_{\infty,X}\leqq\Vert|W^{\prime}\Vert|_{\infty,X}\Vert|S^{\prime}[\cdots]\Vert|_{1,X}\leqq\Vert|W^{\prime}\Vert|_{\infty,X}\Vert S^{f}\Vert_{\infty,Y,X}\Vert|\cdots\Vert|_{1,Y}$ .

To estimate the last term of (10.8), we use the identity

(10.9) $W^{f}-W=(1+U^{\prime}D^{f})^{-1}[(U^{f}-U)-(U^{\prime}-U)DW-U^{f}(D^{f}-D)W]$ ,

which is an immediate analog of (6.4) due to (5.6). The contribution of the

last term in $[]$ of (10.9) to $(W^{f}-W)S(\delta\otimes\phi\oplus f)$ is equal to $-(1+U^{f}D^{\prime})^{-1}U^{\prime}(D^{f}$

$-D)Su$ , since $WS(\delta\otimes\phi\oplus f)=SU(\delta\otimes\phi\oplus f)=Su$ . Since $(1+U^{\prime}D^{f})^{-1}U^{f}$ can be

estimated in terms of the primitive constants for $A^{\prime}$ , it leads to the fourth

term on the right of (10.2). Similarly, the remaining terms contribute
$K^{\prime}\Vert|(U^{f}-U)(1-DW)S(\delta\otimes\phi\oplus f)\Vert|_{\infty,X}$ , which is easily seen to equal the last

term of (10.2) (again use $WS=SU$ ).

REMARK. We do not deduce explicit estimates for $(d/dt)(u^{f}-u)$ here, but

it can be done easily by using (E), $(E^{f}),$ $(10.1)$ , and some additional assump-

tions on $A^{f}$ .

\S 11. Convergence theorems.

In this section we prove some convergence theorems for the solutions

of evolution equations.

Suppose we have a sequence of equations in $X$ :

$(E^{n})$ $du^{n}/dt+A^{n}(t)u^{n}=f^{n}(t)$ , $0\leqq t\leqq T$ , $u^{n}(0)=\phi^{n}$ ,

$n=1,2,$ $\cdots$ Suppose the $A^{n}$ satisfy conditions $(i^{\prime}),$ $(ii^{\prime\prime\prime})$ , (iii) uniformly in $n$ ,

by which we mean that the primitive constants for them can be chosen
independent of $n$ . We use the obvious notation like $S^{n},$ $B^{n},$ $C^{n},$ $M^{n},$ $\beta^{n}$ , etc.

Again the space $Y$ is assumed to be common to all $A^{n}$ .
The associated evolution operators $U^{n}$ then exist, and we can compute

the mild solutions $u^{n}=U^{n}(\delta\otimes\phi^{n}\oplus f^{n})$ of $(E^{n})$ . We ask when $u^{n}$ converges
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to the solution $u=U(\delta\otimes\phi\oplus f)$ of (E).

THEOREM V. In addition to the above assumptions, suppOse that

(11.1) $A^{n}(t)\rightarrow A(t)$ strongly in $B(Y, X)$ for $a$ . $e$ . $t\in I$ .

(11.2) $\int_{i\sigma}\Vert A^{n}(t)\Vert_{Y,X}dt\rightarrow 0$ as $|E|\rightarrow 0$ , uniformly in $n$ .

Then we have

(11.3) $U^{n}(t, s)\rightarrow U(l, 6)$ strongly in $B(X)$ , uniformly in $t,$ $ s\in\Delta$ .

THEOREM Va. If in addilion $\phi^{\prime l}-,$ $\phi$ in $X$ and $f^{n}\rightarrow f$ in $L(X)$ , lhen $u^{n}\rightarrow u$

in $C(X)$ .
THEOREM VI. In addition $lo$ the $a\backslash sumption\backslash s$ of Theorem $V,$ suPpose that

(11.4) $B^{n}(t)-C^{n}(t)-\rightarrow B(t)-C(t)$ strongly in $B(X)$ for $a$ . $e$ . $t\in I$ .

(11.5) $\int_{E}^{*}\Vert B^{n}(t)-C^{n}(t)\Vert_{X}dt\rightarrow 0$ as $|E|\rightarrow 0$ , uniformly in $n$ .

(11.6) $S^{n}(t)\rightarrow S(l)$ strongly in $B(Y, X)$ , uniformly in $t\in I$ .

Then we have

(11.7) $U^{n}(l, s)\rightarrow U(t, s)$ strongly in $B(Y)$ , uniformly in $t,$ $ s\in\Delta$ .

THEOREM VIa. If in addition $\phi^{n}\rightarrow\phi$ in $Y$ and $f^{n}\rightarrow f$ in $L(Y)$ , then $u^{n}\rightarrow u$

in $C(Y)$ .
REMARK. If we assume (11.4) and (11.5) for $B^{n}$ and $C^{n}$ separately, (11.6)

is automatically satisPed if $S^{n}(0)\rightarrow S(0)$ strongly in $B(Y, X)$ . This is due to

the fact that $S^{n}$ satisfies the differential equation $dS^{n}/dt=C^{n}(t)S^{n}$ and simi-
larly for $S$ .

PROOF. For $y\in Y$ we see from (10.4) that

(11.8) $\Vert(U^{n}-U)(t, r)y\Vert_{X}\leqq K^{n}\int_{I}\Vert(A^{n}-A)(s)U(s, r)y\Vert_{X}ds$ ,

where we again suppose that $U$ has been trivially extended to $I\times I$. Since
$K^{n}=\Vert|U^{n}\Vert|_{\infty,X}$ is uniformly bounded, the right member of (11.8) tends to $0$

uniformly in $t,$ $r$ ; the proof is similar to the one for (6.7) and depends on
the Vitali convergence theorem based on (11.2). Since $Y$ is dense in $X$,

Theorem V follows.

Then Theorem Va follows from (10.6).

To prove Theorem VI, it suffices to show that $W^{n}(t, s)\rightarrow W(t, s)$ strongly

in $B(X)$ , uniformly in $t,$ $s$ . This can be done using (10.9) and again imitating

the proof of Lemma 4.
Then Theorem VIa follows from (10.8) and (10.7).
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\S 12. Yosida approximation.

As a simple application of the convergence theorems, we shall prove the

convergence of the Yosida $aPProximation$ .
Suppose $A=\{A(t)\}$ satisfies the assumptions of Theorem I. For simplicity

we assume in addition that $\beta(t)=\beta$ is constant (so that $A$ is stable) and that

(B) holds for every $t\in I$ with $\Vert B(t)\Vert_{X}\leqq b=const$ . We may further assume
$\beta=0$ without loss of generality.

Under these conditions we can define the Yosida approximation $(E^{n})$ to
(E), $n=1,2,$ $\cdots$ , with

(12.1) $A^{n}(t)=A(t)[1+n^{-1}A(t)]^{-1}\in B(X)$ , $t\in I$ .

Then it is not difficult to prove the following results.

1 $A^{n}$ is stable with stability constants $\{M, 0\}$ .
$2^{o}$ $S(t)A^{n}(t)S(t)^{-1}=A^{n}(t)+B^{n}(t)$ , with

$\Vert B^{n}(t)\Vert_{X}\leqq M^{2}b(1-n^{-1}Mb)^{-1}$ , $n>Mb$ .

3’ $A^{n}$ : $I\rightarrow B(Y, X)$ is norm-continuous.
$4^{\Phi}$ For each $t\in I$, we have $A^{n}(t)\rightarrow A(t),$ $ n\rightarrow\infty$ , strongly in $B(Y, X)$ , with

$\Vert A^{n}(t)\Vert_{Y,X}\leqq\Vert A(t)\Vert_{Y,X}(1-n^{-1}Mb)^{-1}$ , $n>Mb$ .
$5^{o}$ For each $t\in I$, we have $B^{n}(t)\rightarrow B(t),$ $ n\rightarrow$ oo, strongly in $B(X)$ .
It follows from $1^{\circ}$ to $3^{Q}$ that $A^{n}$ satisfies the assumptions of Theorem I

uniformly in $n$ , with $S$ independent of $n$ , so that the associated evolution
operator $U^{n}$ exists. Then $2^{o},$ $4^{O}$ , and $5^{Q}$ show that Theorems V and VI are
applicable. Thus we conclude that $U^{n}(f, s)\rightarrow U(t, s)$ holds strongly in $B(X)$

as well as $B(Y)$ , uniformly in $t,$ $ s\in\Delta$ .
REMARK. The proof given above depends on the existence of $U$ , which

has been proved by other means. It is an open question whether or not $U$

can be constructed directly as the limit of the $U^{n}$ . Since $A^{n}(t)\in B(X)$ is
strongly continuous in $t$ (as is easily proved), $U^{n}$ can be constructed by an
elementary method. Thus a direct construction of $U$ via $U^{n}$ is highly desir-

able. It seems that this is possible if $X$ and $Y$ are reflexive (cf. Yosida [7]

and Hackman [5]); we plan to study this problem in another publication.

\S 13. Concluding remark.

It seems that the estimate (10.2) is the most useful one in this paper; it
contains more information than the convergence theorem VIa, for example.

(10.2) is useful even for some nonlinear evolution equation (E) in which $A(t)$

and $f(t)$ depend on the unknown $u(t)$ itself. Suppose we have another such
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equation (E) and want to estimate $u^{f}-u$ by using (10.2). Here $\Vert|f^{\prime}-f|\Vert 1,Y$ on
the right-hand side may be estimated in terms of the unknown quantity
$\Vert|u^{f}-u\Vert|_{\infty,Y}$ . If the latter aPpears with a sufficiently small coefficient (which

may occur if $T$ is sufficiently small), it can be absorbed into the left-hand

side. The same remark applies to other terms on the right that involve the

unknowns $u$ and $u^{\prime}$ . Applications of (10.2) to nonlinear evolution equations

will be discussed elsewhere.

Appendix.

Here we prove some lemmas regarding stongly measurable vector- and

operator-valued functions that are used in the text. In particular, we con-
sider approximation of such functions by Riemann step functions. In what

follows all functions are defined on a finite closed interval $I$ of real numbers.

Let $S$ be any set. A function $g:I\rightarrow S$ is a step function if there is a
finite partition $\{I_{k}\}_{k=1,\cdots,m}$ of $I$ into subintervals such that $g$ takes a constant

value $c_{k}$ on $I_{k}$ for each $k$ . We shall express this by

(A1) $g=\{I_{k}, c_{k} ; k=1, \cdots , m\}$ or simply $g=\{I_{k}, c_{k}\}$ .

Given a function $f:I\rightarrow S$ , the step function (A1) will be called a Riemann

step function associated with $f$ (or simply for f) if $c_{k}=f(t_{k})$ for some $t_{k}\in I_{k}$ ,

$k=1,$ $\cdots$ $m$ .
LEMMA Al. Let $X$ be a Banach space, and let $f:I\rightarrow Xa$ . $e$ . be strongly

measurable. Then there exists a sequence of Riemann step functions $f_{n}=$

$\{I_{nk}, f(t_{nk})\},$ $n=1,2,$ $\cdots$ , for $f$ such that $\sup_{k}|I_{nk}|\rightarrow 0$ and $f_{n}\rightarrow f$ pOintwise $a$ . $e$ .

If $f$ is strongly integrable, then we can achieve that $f_{n}\rightarrow f$ also in $L^{1}(I, X)$ .
PROOF. By definition $f$ can be approximated pointwise $a$ . $e$ . by a sequence

of simple functions. Hence it is easy to see that there is a sequence of step

functions $g_{n}=\{I_{nk}, x_{nk}\}$ satisfying the requirements of the lemma except

that $g_{n}$ may not be Riemann for $f$. We shall modify $g_{n}$ to obtain Riemann
step functions $f_{n}$ .

Fix $n$ for the moment. For each $k$ , choose $t_{nk}\in I_{nk}$ such that

$\Vert x_{nk}-f(t_{nk})\Vert\leqq\inf_{s\subset I_{nk}}\Vert x_{nk}-f(s)\Vert+n^{-1}$

Then $f_{n}=\{I_{nk}, f(t_{nk})\}$ is a Riemann step function for $f$.
We shall show that $\{f_{n}\}$ satisfies the requirements. For any $t\in I$ where

$f(t)$ is defined and any $n$ , there is $I_{nk}$ such that $t\in I_{nk}$ . Then

$\Vert f(t)-f_{n}(f)\Vert\leqq\Vert f(t)-x_{nk}\Vert+\Vert x_{nk}-f(t_{nk})\Vert$

$\leqq\Vert f(t)-x_{nk}\Vert+\inf_{s\in I_{nk}}\Vert x_{nk}-f(s)\Vert+n^{-1}$

$\leqq 2\Vert f(t)-x_{nk}\Vert+n^{-1}=2\Vert f(t)-g_{n}(t)\Vert+n^{-1}\rightarrow 0a$ . $e$ .
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If $f$ is integrable, we have also $g_{n}\rightarrow f$ in $L^{1}$ -norm. Hence $f_{n}\rightarrow f$ in $L^{1}$-norm
too.

LEMMA A2. Let $X,$ $Y$ be Banach sPaces, with $X$ seParable, and let $ B:I\rightarrow$

$B(X, Y)a$ . $e$ . be strongly measurable. Then there exists a sequence of Riemann
step functions $B_{n}=\{I_{nk}, B(t_{nk})\},$ $n=1,2,$ $\cdots$ , such that $\sup_{k}|I_{nk}|\rightarrow 0,$

$B_{n}(t)\rightarrow B(t)$

strongly and $\Vert B_{n}(t)\Vert\rightarrow\Vert B(t)\Vert$ for $a$ . $e$ . $t$ . If $\Vert B(t)\Vert$ is integrable in $t$ , we can
also achieve that $\Vert B_{n}(\cdot)\Vert\rightarrow\Vert B(\cdot)\Vert$ in $L^{1}(I)$ and $B_{n}(\cdot)x\rightarrow B(\cdot)x$ in $L^{1}(I, Y)$ for
each $x\in X$.

PROOF. The assumption means that $B(t)x$ is strongly measurable in $t$

for each $x\in X$. Since $X$ is separable, it follows that $ b(t)=\Vert B(t)\Vert$ is measur-
able in $t$ . Let $\{x_{j}\}$ be a fundamental subset of $X$ ; we may assume that
$\Sigma_{j}\Vert x_{j}\Vert\leqq 1$ . Let $Y^{\prime}=l(Y)$ be the l-space of Y-valued sequences regarded as
a real Banach space, and set

(A2) $f(t)=b(t)\oplus\{B(t)x_{j}\}\in R\oplus Y^{f}$

Since $b$ is measurable and each $B(\cdot)x_{j}$ is strongly measurable, it is easy to

see that $f:I\rightarrow R\oplus Y^{\prime}$ is strongly measurable.

According to Lemma Al, $f$ can be approximated pointwise $a$ . $e$ . by a
sequence of Riemann step functions $f_{n}=\{I_{nk}, f(t_{nk})\}$ . If we define the cor-
responding steP functions $b_{n}=\{I_{nk}, b(t_{nk})\},$ $B_{n}=\{I_{nk}, B(t_{nk})\}$ for $b,$ $B$ respec-

tively, we have

$f_{n}(t)=b_{n}(t)\oplus\{B_{n}(t)x_{j}\}$ , $ b_{n}(l)=\Vert B_{n}(t)\Vert$ .

Since $f_{n}\rightarrow fa$ . $e.$ , we have $b_{n}(t)\rightarrow b(t)$ and $B_{n}(t)x_{j}\rightarrow B(t)x_{j}$ for all $i$ for $a$ . $e$ . $t$ .
Since $\Vert B_{n}(t)\Vert=b_{n}(t)$ is bounded in $n$ for such $t$ and since $\{x_{j}\}$ is fundamental

in $X$ , it follows that $B_{n}(t)\rightarrow B(t)$ strongly for such $t$.
If $ b(t)=\Vert B(t)\Vert$ is integrable in $t$ , the same is true of $f$ because

$\Vert f(t)\Vert=b(t)+\sum_{j}\Vert B(t)x_{j}\Vert\leqq b(t)+\Vert B(t)\Vert=2b(t)$ .

By Lemma Al, we may thus assume that $f_{n}\rightarrow f$ in $L^{1}$ -norm too. Then $b_{n}\rightarrow b$

and $B_{n}(\cdot)x_{j}\rightarrow B(\cdot)x_{j}$ also in $L^{1}$ -norm. Since $\Vert B_{n}(\cdot)\Vert=b_{n}$ is bounded in $n$ in
$L^{1}$ -norm, it follows that $B_{n}(\cdot)x\rightarrow B(\cdot)x$ in $L^{1}$-norm for each $x$.

REMARK. Lemmas Al and A2 can be extended to simultaneous aPproxi-

mation by Riemann step functions of several vector- and operator-valued

functions. By “simultaneous” we mean that the $I_{nk}$ and $t_{nk}$ are common to

all approximating step functions. The proof is immediate by applying Lemma

A2 to appropriate direct sums.
LEMMA A3. Let $X,$ $Y$ be Banach spaces, with $X$ separable, and let $ B:I\rightarrow$

$B(X, Y)$ be strongly measurable. Then

(1) There is a separable subspace $Y_{0}$ of $Y$ such lhat $B(l)X\subset Y_{0}$ for $a$ . $e$ . $i$.
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(2) For each $\epsilon>0$ , there is a closed subset $E$ of I such that $|I-E|<\epsilon$

and $B$ is strongly continuous on $E$ .
PROOF. We use the notation of the proof of Lemma A2. Since each $B_{n}$

is finitely-valued, the union of the $B_{n}(t)X$ for all $t$ and all $n$ spans a separa-

ble subspace $Y_{0}$ of $Y$. Since $B_{n}(t)x\rightarrow B(t)x$ for $a$ . $e$ . $t$ for all $x\in X$, we have
$B(t)X\subset Y_{0}$ for $a$ . $e$ . $t$ . This proves (1).

For each $j,$ $B_{n}(\cdot)x_{j}$ is piecewise continuous and converges as $n\rightarrow\infty a$ . $e$ .
to $B(\cdot)x_{j}$ . Hence it is easy to see, using Egoroff’s theorem, that there is a
closed set $E_{1}\subset I$ with $|I-E_{1}|<\epsilon/2$ such that for each fixed $j$ , the $B_{n}(\cdot)x_{f}$ are
continuous and uniformly convergent on $E_{1}$ . Their limit $B(\cdot)x_{f}$ is continuous

on $E_{1}$ . On the other hand, there is a closed set $E_{2}\subset I$ with $|I-E_{2}|<\epsilon/2$

such that $b$ is bounded on $E_{2}$ . Since the $B(\cdot)x_{j}$ are continuous and $\Vert B(\cdot)\Vert=b$

is bounded on $E=E_{1}\cap E_{2}$ , it follows that $B(\cdot)x$ is continuous on $E$ for each
$x\in X$. Since $|I-E|<\epsilon$ , we have proved (2).

LEMMA A4. Let $A:I\rightarrow B(X, Y)$ and $B:I\rightarrow B(Y, Z)$ be strongly measur-
able, where $X,$ $Y$ , and $Z$ are arbitrary Banach spaces. Then $BA:I\rightarrow B(X, Z)$

is strongly measurable.

PROOF. Let $x\in X$ . We have to show that $B(\cdot)A(\cdot)x;I\rightarrow Z$ is strongly

measurable. Since $f=A(\cdot)x:I-,$ $Y$ is strongly measurable, there is by Lemma

Al a sequence $\{\int_{n}\}$ of Riemann step functions for $f$ such that $f_{n}(t)\rightarrow f(t)$ for
$t\in I-N_{1}$ , where $N_{1}$ is a null set. Let $Y_{0}$ be the subspace of $Y$ spanned by

all the values of the $f_{n}$ ; $]^{r_{1)}}$ is separable since each $f_{n}$ is finitely-valued.

Tben $f(t)\in Y_{0}$ for $l\in I-N_{1}$ .
According to Lemma A2, there is a sequence of Riemann step functions

$B_{n}$ : $I\rightarrow B(Y_{0}, Z)$ for $1\neq|Y_{0}$ such that $B_{n}(t)\rightarrow B(t)$ strongly in $B(Y_{0}, Z)$ for $ t\in$

$I-N_{2}$ , where $N_{2}$ is a null set. Since $f_{n}(I)\subset Y_{0},$ $B_{n}(\cdot)f_{n}(\cdot):I\rightarrow Z$ is a well-

defined step function and $B_{n}(t)f_{n}(t)\rightarrow B(t)f(t)$ for $I-N_{1}-N_{2}$ . Hence $B(\cdot)f(\cdot)$ is
strongly measurable, as required.
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