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Abstract 

LiDAR is considered as an effective technology for digitizing the real scene at a very high-resolution and in a short 
time. However, the resolution of the LiDAR is not sufficient to identify and evaluate the façade surface features like 
edges and cracks. Generally, photographs provide a better interpretation of the linear characteristics. The comple-
mentary benefits of each allow exploring valuable spatial information with different surface detail levels. The paper 
introduces a flexible image-based approach for linear feature extraction from LiDAR point cloud. Initially, the algo-
rithm converts the point clouds into a structured depth image to reduce the complexity and computation time. 
Using transformation matrix and camera calibration parameters, the visible point clouds are perceptively projected 
into color image space using co-linearity equations. The result depth channel is sampled with the interpolation 
process and added to the color channels to compute (RGBD) layers. The edges and linear features of the surface are 
initially extracted using the optical 2D imagery and subsequently, each pixel of the linear features can be projected 
directly into 3D space. Due to the various acquisition positions of the laser and color images, the issue of occlusion is 
resolved using the visibility algorithm. Applying the methodology, experimental results from the Treasury Monument 
of Jordan’s ancient Petra City, indicate that the developed approach provides adequate contour points for better 
interpretation and quantification of weathering processes and dangerous cracking. 3D Modeling these features can 
also reduce data size, facilitating surface inspection and analysis with simpler models.
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Introduction
In the preservation of architectural heritage, struc-
tural health is assessed by measuring and monitoring 
deformed structural elements, cracks and fissures. Map-
ping these features is still often performed using a direct 
sketch based on visual observations, while the open-
ings are measured using traditionally contact tools. The 
tool’s applications depend on accessibility and provide 
only discrete point measurements, instead of a continu-
ous record of the damage dimension throughout the 
area concerned [1, 2]. Recent developments in the field 
of photogrammetry and LiDAR have provided an oppor-
tunity for cost-effective, reliable detection and measure-
ment of structure details [3].

The digital camera in photogrammetry produces 
photographs that are obtained with adequate overlap. 
With its automatic matching processes based on struc-
ture from motion, the importance of the image-based 
approach is becoming a quite common in the 3D herit-
age community [4, 5]. Their products are primarily use-
ful for navigating objects. Nevertheless, the image-based 
approach may have limitations where large and complex 
object need to be obtained with precise and high-resolu-
tion modeling [6]. For such practical projects, reliability 
of the optical active sensor (Laser scanner) workflow is 
still much higher, although time-consuming and costly. 
The popularity of laser scanner in the documentation of 
heritage sites results from its ability to acquire millions of 
3D points accurately and within a short time. The scan-
ner technology has advantages related to the high level 
of automation in data measurement including the geom-
etry and texture information [7]. Generally, when using 
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LiDAR information for any potential application, there 
are primary challenges. The data set consists of millions 
of points with attributes of geometry and radiometry. The 
generated points are a collection of discrete records of 
data and do not have semantic information. The LiDAR 
system also acquires noise information in the scene and 
outdoor applications [8]. Processing such big datasets is 
difficult for different applications where a high-level of 
abstraction is needed such as object recognition, facade 
classification and feature extraction. 3D models need to 
be segmented semantically for such implementations to 
allocate, visualize, manage and handled those features. 
Modeling these features can further reduce the data vol-
ume, allowing for further analysis [9].

This study aimed at evaluating the feasibility of com-
bined images and LiDAR data for façade features 
detection and measurement. In particular the 3D rep-
resentation of the crack propagation and geometrical 
formation. The approach acquires LiDAR data and 2D 
images independently, the images collected at optimal 
position and time for capturing the surface details. The 
transformation of 3D LiDAR point clouds to 2D struc-
tured depth images enables the implementation of exist-
ing computer vision algorithms developed for 2D color 
images. The depth map will be produced for every 2D 
image, resulting in an additional D-channel to the color 
(RGB) image channels. The algorithm is implemented on 
experimental data collected from the Treasury of Petra 
Ancient city in Jordan.

Briefly, the following key contributions were provided 
by this paper:

• Novel image-based feature extraction approach from 
point cloud, robustly defined linear surface features, 
and significantly reduces the amount of data that can 
be viewed and fluently interact in 3D.

• The approach provides better interpretation of spa-
tial growth of weathering forms and severe façade 
cracks.

• The suggested solution is flexible as it acquires point 
clouds and images separately, allowing the high visual 
quality of the scene features to be optimized in time 
and place.

• The proposed algorithm simplified data manipulation 
and primitive extraction since the processing of 2D 
depth and color images requires minimal computa-
tional power.

The paper is structured according to the following: a 
brief overview of relevant work is presented in “Related 
works” section. The data collection, pre-processing and 
problem statement are discussed in “Data collection 
and pre-processing” section. The methodology of the 

suggested solution is discussed in “Methodological work” 
section. The experimental results are discussed in “Dis-
cussion” section. “Conclusion” section addresses the con-
clusions and future work.

Related works
Prior works on LiDAR segmenting based primarily on the 
geometric characteristics provided with the point cloud 
data such as local surface normal’s or curvature. Identi-
fying local attributes depends on whether point cloud is 
defined as a structured depth image or a non-structured 
set point. The massive amount of unstructured 3D-point 
cloud and the high cost of neighborhood identification 
pose a challenge to the segmentation process [10]. The 
depth image is equivalent to the point cloud, but pixels 
encode distance or depth co-ordinates. Working with 
depth images makes neighborhood search solutions sim-
pler to manipulate which can significantly reduce the 
computation complexity [11].

In general, 3D point segmentation approaches in 
the literatures are mainly categorized as region-grow-
ing, model-based, edge detection, and image-based 
approaches. The selection of suitable methods of segmen-
tation relies on the type of image and applications [12]. 
Region growing is most common because it has a high-
level understanding of the image component. In practice, 
two issues relate to the region-growing technique: the 
first issue is seed selection; the seed point is the reference 
for expanding the regions, their selection is very critical 
for segmentation success. The second is the selection of 
similarity criteria, where a fixed formula is required to 
contain the neighboring growth pixels and the suitable 
constraints to prevent the growth process [13]. Habib 
and Lin [14] introduced a region-growing method that 
uses the kd-tree data structure to distinguish point and 
pole-like surface features in point cloud. The segmenta-
tion method of Dimitrov and Golparvar-Fard [15] used a 
multi scale scheme to distinguish the features; curvatures 
are estimated at each 3D point followed by seed selec-
tion and regional growth processes. Che and Olsen [16] 
proposed multi-scale technique; the Normal Variation 
Analysis procedure is used in the first step to identify 
edge points, to achieve better segmentation performance, 
the points are then clustered on a smooth surface using 
a region-growing process. Vo et al. [17] suggested cloud 
point segmentation using adaptive growing Octree area. 
The algorithm has two steps based on the coarse to fine 
process method. First the major segments are extracted 
using octree-based voxelized representation. Then the 
results passed through refinement process. The chal-
lenges will appear in case of 3D complex scene which 
has irregular sampling point and different object types. 
Although the outcome of region growing techniques is 
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reasonable, they have a common problem with over-seg-
mentation, complexity and expensive computation. More 
challenges are the choice of the initial seed points and the 
number of object surfaces [18].

Model-based approaches, however, use well-known 
basic geometrics for grouping purposes, such as planes, 
sphere and other pre-defined shapes. The points with the 
same numerical representation are grouped together as 
one segment. Both the Random Sample Consensus and 
Hough Transforms (HT) are two widely used algorithms. 
RANSAC selects minimum arbitrarily and iteratively sets 
to identify the best parameters to suit the candidate’s 
mathematical model. The parameters will then be tested 
to determine the best fit model agreement. A modified 
RANSAC segmentation algorithm has been proposed by 
Li et al. [19]. The 3D Hough transformation is an expan-
sion of the well-known (2D) Hough transformation used 
to distinguish image lines. The principle depends on the 
transformation of the 3d points into the parameter space 
before the detection of planes or cylinders and primitive 
spheres [20]. The main limitation of these approaches is 
in the structural context of complex shapes, details can-
not always be modeled into easily recognizable geometric 
forms [21].

Comparatively to the region growing method in the lit-
erature, a few works present edge detection techniques 
in 3D point clouds, Lin et al. [22] developed strategy of 
LiDAR segmentation applied directly on the acquired 
point clouds. The point clouds are first split into facets 
by sorting the local k-means into carefully selected seeds. 
The extracted facets provide sufficient information to 
determine the linear characteristics of the local planar 
region. Huang and Brenner [23] used the curvature val-
ues for extracting the borders in the irregular mesh, for 
complex shape objects, multi level scheme is proposed 
to enhance the results. Many other algorithms in edge 
detection converted the LiDAR point clouds into depth 
image representation in order to structure the point 
cloud. The pixels in the image denotes the depth values 
of the object from the LiDAR, the values are stored in the 
pixels as a real number values. Generally, depth image 
edge detection techniques have three basic primitive 
edge types, step, crease, and roof edges. Step edges are 
corresponding to in-depth discontinuities, crease edges 
are congruent with normal surface discontinuities, where 
the roof edges are characterized by the discontinuity 
of curvature. Miyazaki et  al. [24] proposed a line based 
approach to extract planar regions from an anisotropic 
distribution points. The approach splits the cloud input 
point into scanning lines, and then the algorithm selects 
segments that best represent the point sequence of each 
scanning line. Generally, most of the edge work algo-
rithms are constrained to images of high quality. Others 

are complex with numerous parameters and cannot guar-
antee closed boundaries [25].

Many approaches turn to use image color informa-
tion provided by the scanner for LiDAR data segmenta-
tion. The image-based approaches have two key benefits. 
First, computational 2D image processing is often more 
effective than processing objects in 3D. Second, signifi-
cant imaging techniques such as edge detection can be 
applied in the 2D color images before projection back to 
TLS data [26, 27]. Awadallah et al. [28] used high satellite 
images as a solution to segment and extract surfaces from 
sparse noisy point clouds. Awrangjeb et  al. [29] used 
multispectral orthoimagery information for automatic 
extraction of different roof surfaces form the LiDAR. 
Zhan et  al. [30] presented algorithm for façade details 
segmentation using the colorimetrical similarity with the 
spatial information, the main challenges are problems 
in measurement noise, scaling issues, and coordinate 
system definition. Nex and Rinaudo [31] proposed seg-
mentation and feature extraction approach using LiDAR 
data and muti-image matching. The approach starts 
using reference image acquired from the same position 
of LiDAR in order to avoid occlusion problem. After the 
edge extracted by Canny operator, the dominates points 
of each image are projected onto LiDAR data, then they 
were back project to each collected images. Then muti-
image matching algorithm using SIFT operator is used to 
reconstruct the edges again in 3D space. Mahmoudabadi 
et al. [32] apply image segmentation algorithm to differ-
ent input layers including the color and intensity data. 
Such output segments are projected back to the point 
cloud to make the modeling more effective. Dinç et  al. 
[33] proposed segmentation methods for RGB image and 
depth image based on Kinect. Because the kinect cam-
era can capture images of color and depth at the same 
time, normally expect that they are overlapped perfectly 
without registration. Most of the previous methods used 
images already registered in the point cloud. Despite 
the fact that most TLS devices have an internal camera, 
ideal photographic image conditions may not match with 
LiDAR’s location. In addition, in the real outdoor scene, 
photographic images suffer from variations in light. This 
leads to image disturbance that affects the results of seg-
mentation. Moreover, the RGBD sensors are widely used 
in indoor environments as they are constrained by their 
close range. The segmentation of the plane is the main 
task of RGBD data [34, 35].

Data collection and pre‑processing
Petra treasury
Data that has been used for our investigations were col-
lected from the ancient city of Petra of Jordan. Petra 
city was the Nabataean empire capital between 400 
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B.C and A.D 106. The Nabateans were originally a tribe 
of Arabian nomads who settled in the Shara moun-
tains, at a crossroads of trade routes. Petra city has 
many fascinating monumental of the ancient world 
with an outstanding quality of the architecture. Pet-
ra’s temples, theaters, tombs, and other monuments 
extend through 45 km2. The architectures were carved 
into rose-colored sandstone cliffs. The ancient Petra 
city is a UNESCO World Heritage Site since 1986. It 
was selected as one of the New Seven Wonders of the 
World in 2007. However, throughout recent years, the 
majority of Petra structures have degraded at a rapid 
pace. The World Monument Fund therefore placed 
Petra on the list of the one hundred most endangered 
monument assemblies in the world. The city is suffer-
ing from weathering and erosion problems. Problems 
arise from the monuments’ highly porous inorganic 
materials, and their uncontrolled environment. This 
weathering refers to potential salt damage as the princi-
pal factor on the monument’s stone structure [36]. The 
annual rainfall of Petra is very low but comes within a 
very short period of time. Water erosion therefore is a 
very active agent in this area. Hydrological structures in 
the city indicate the Nabateans were aware of the ero-
sion problem. They established ceramic pipes along the 
basement and monumental faces to protect them from 
floodwaters. Moreover, horizontal surfaces were filled 
with several morter strata to minimize the impact of 

running water [37]. Unfortunately, the Nabatean water 
system at the site is now the major cause of water ero-
sion. For most of the sites in ancient Petra there was no 
effective weathering monitoring. This is because of the 
lack of referential archival information on the weather 
damage in the past [38].

After a traveler enters Petra through Al-Siq, an impres-
sive 2-km crack in the mountain, the first façade to be 
seen is the Treasury, depicted in Fig.  1. The Treasury 
or “Al-Khaznehas”, as it is commonly called, is the most 
recognized monument of Petra, its original purpose is 
unknown and the name Al-Khasneh, as it is called by 
the Arabs, means the tax house. Others have mentioned 
it was probably a tomb for one of the Nabataean Kings. 
The treasury façade is remarkably well preserved with 
40  m high. Its location in confined space between the 
mountains has protected the treasury from weathering 
and erosion problems. The façade of Treasury has differ-
ent classical elements including pediment, columns with 
Corinthian capitals, Friezes, and entablature. It consists 
of one primary chamber and three antechambers all have 
been carved out of the rock. Recent environmental moni-
toring of Al-Khazneh indicates serious recession and 
weathering processes of the chamber walls as depicted 
in Fig. 1; this is due to many weathering forms including 
interior relative humidity, salt content, large numbers of 
visitors, and insufficient care and lack management and 
conservation. A large-scale survey study is needed to 

Fig. 1 Treasury monument of Petra city, the second image illustrates the chamber wall recessions
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provide a comprehensive data analysis of monument sta-
tus monitoring and assessment [39].

Field investigation
For our investigation, terrestrial Laser Scanner Mensi 
GS100 has been used to collect the surface point cloud. 
The scanner distance measurement range between 2 
and 100 m with an accuracy of 3 mm for 50 m distance 
range. The Time of Flight scanner has an acquisition 
speed of 5000 points per second. The scanner has a cali-
brated camera with 768 × 576 pixel resolution, used for 
mapping the color to the corresponding point meas-
urements. Since such complex 3D structures cannot 
be completely covered from one single station without 
occlusions, different points of view are needed. The prob-
lem of choosing the viewpoint positions for such a mon-
ument represents an important phase of the survey as 
the mountainous environment surrounding Al-Khasneh 
limits possible sensor stations. Altogether, the five scans 
resulted in nearly 5 million points obtained. In addition 
to the external survey, a 360° scan had been taken from 
a station inside the Al-Khasneh, resulting in 19 million 
points. The scans collected contain enough overlap-
ping regions to allow subsequent registration. A non-
redundant surface representation is constructed after 
registration, in which each part of the measured object 
is identified only once. The scanned data acquired for the 
Treasury monument facade and the left chamber of the 
monument is depicted in Figs.  2 and 3. The model has 
3.3 million points with a 2 mm ground resolution. A Fuji 

S1 Pro camera has collected additional close-up images, 
which provide a resolution of 1536 × 2034 pixels with a 
focal length of 20 mm.

Problem statement
Although a large number of surface points and triangles 
are identified in the 3D model created by the laser scan-
ner, outlines such as edges and cracks are lost beyond the 
resolution of the available laser information. Modeling 
these features can further reduce data sizes, allowing for 
advanced analysis of simplified models instead of bulkier 
point clouds. While many current cloud segmentation 
approaches have been shown to effectively segment TLS 
data, complex real-scene implementations still have sig-
nificant shortcomings and challenges. Existing methods 
of segmentation require curvature and normal estima-
tion before data analysis and grouping. Despite a num-
ber of solutions to adaptive neighborhood description, 
curvatures approximation on edges or rough surfaces 
such as the historic building can still be unreliable [40]. 
In order to clarify this problem in our data, we apply a 
mean curvature segmentation algorithm proposed by 
Alshawabkeh et  al. [41]. The proposed algorithm effi-
ciently estimate the mean curvature value at each sam-
pled pixel using convolution distinct sizes of windows 
running across the image in only one direction. The algo-
rithm classifies the edge points based on selected thresh-
old values of the mean curvature. Using multiple-scale 
masks allows for reliability in estimating curvature val-
ues in the presence of noise problems, particularly in real 

Fig. 2 3D point cloud and meshed model of the treasury facade
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scene environments. The findings of the experiment are 
shown in Fig. 4. Various mask sizes and threshold values 
are used, but the small surface features are still missing, 
the clear edges are only detected.

Theoretically, photographs have high resolution radio-
metric information and provide better interpretation and 
extraction of linear features than range data. The use of 
multiple data sources makes it possible to create different 
levels of detail. Integrating data into the processing chain 
at an earlier stage would help make information extrac-
tion more efficient. LiDAR device has already built-in 
camera, but ideal image conditions may not match with 
LiDAR’s location. Thus, such images frequently may not 
sufficient for detecting the surface details and surface 
weathering decay that is required for heritage applica-
tions. In fact, large time intervals between the scans will 
lead to different light conditions and shadows in outdoor 
activities leads to poor homogeneity and color jump. 
These problems can interfere with the resulting image-
based segmentation approaches, which depend mainly 
on image quality. Tend to have high-quality pictures that 
contain important details will help the process. Images 
can be collected at different times and positions from 
laser scanning in order to have the best coloring required 
for the segmentation process.

Methodological work
The paper presents a new approach to cloud-based 
image feature extraction. The technique begins with the 
use of various images to capture surface features at the 
optimum time and location. The unstructured 3D point 

cloud is then converted into a series of 2D depth maps. 
The depth map is a discrete grid structure of the same 
pixel  size as the RGB images. For this purpose, Camera 
configuration (translation and rotation) parameters are 
defined between the origin of the camera and the origin 
of the scanner. The removal of model occlusions is mainly 
due to the fact that images are not taken from the same 
perspective. Visibility detection is used in our method 
to ensure that only visible points are projected into the 
produced depth grid. Lastly, after the edge extracted in 
the color image by the Canny operator, each segment’s 
points are mapped back to the LiDAR data to get their 3d 
coordinates.

Data structuring
It is necessary to structure the irregular LiDAR data and 
define the relationship between point clouds to efficiently 
process and compute large 3D point cloud segmentation. 
LiDAR sensors provide raw data based on the number of 
rows and columns and the laser sensor’s horizontal reso-
lution. Their depth component’s spatial resolution is con-
siderably lower than that of the RGB component. While 
LiDAR sensors are not achieving cameras resolution. 
The solution of projecting RGB image into 3D data will 
be down-sampling operation, as it means you’re missing 
details. Alternatively, in our approach depth values are 
mapping to RGB image since there is a need for a high 
correlation between depth image and color image to get 
good geometric estimation in edges and smooth regions. 

Fig. 3 3D point cloud and meshed model of the left Treasury chamber
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The proposed algorithm uses interpolation between pixel 
points to up-sample the lower resolution depth image.

The two data sources should refer to the same spatial 
position in order to generate the depth map in the given 
RGB view. It is possible to achieve co-alignment param-
eters using some corresponding tie point in the overlap 
region. The relative transformation between the cam-
era’s projection center and the scanner center consists of 
parameters for translation and rotation (Tx, Ty, Tz, ω ɸ 
ƙ). These parameters describe the relationship between 
the coordinate systems of the ground and image, as 
shown in Fig.  5. Registration usually performed in two 

methods; a pair-wise manual or automated pair-wise. The 
automated methods are usually carried out using feature-
based approaches [42]. But registration is still a manually 
driven process in realistic projects involving large and 
complex datasets. Throughout our method, homologous 
points are manually defined between both the 3D data 
and the 2D image.

The camera’s configuration parameters are used to 
translate point clouds to a structured depth image using 
central perspective transformation. The equations of 
co-linearity (Eq.  1) are used in our approach to project 
LiDAR points into ground plan grids; the depth grid 

Fig. 4 Depth image segmentation with different mean curvature threshold values, small surface features such as cracks and roughness are not 
identified correctly
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has the same RGB pixel size. Parameters included in the 
equations are: image coordinates: xa , ya object coordi-
nates: XA , YA , ZA exterior orientation parameters: Xo , Yo , 
Zo , r11 − r33, interior orientation parameters: xp , yp , c.

Because of the different laser and image data acqui-
sition position, depth images will contain occlusion 
information where an object or parts of it are not vis-
ible due to another object closer to the camera block-
ing the view. The concept of the problem of occlusion 
is shown in Fig. 6. Adequate concept of visibility is used 
in our approach to filter the hidden LiDAR points. The 
algorithm suggests that the visible point is closest to the 
center of the image perspective, while the other overlap-
ping points are considered occluded points in the current 
view of the image. The algorithm compares the estimated 
depth values for each LiDAR point to the available depth 

(1)

xa = xp − c
r11(XA − Xo)+ r21(YA − Yo)+ r31(ZA − Zo)

r13(XA − Xo)+ r23(YA − Yo)+ r33(ZA − Zo)

ya = yp − c
r12(XA − Xo)+ r22(YA − Yo)+ r32(ZA − Zo)

r13(XA − Xo)+ r23(YA − Yo)+ r33(ZA − Zo)

buffer values. The final grid will only process and project 
the point clouds that could be visible in the camera field.

In general, the following steps will briefly describe the 
RGB-D algorithm:

1. A corresponding empty grid matrix with the same 
pixel size is identified for each RGB image.

2. The information of the depth value associated with 
each grid in the matrix using the co-linearity equa-
tions.

3. Hidden points are filtered to draw only the visible 
points in this grid.

4. To estimate values in the empty grids, the nearest 
neighbor interpolation with a specific threshold is 
used.

5. The indexing grid structure and the color image gen-
erate an RGBD image.

The accuracy of the depth values is dependent on the 
transformation parameters and the laser scan ground 
sampling distance. The LiDAR data was collected with 
an average resolution of 2 mm for our test scene. Differ-
ent RGB close-up images were collected for the Treasury 
monument’s chamber. The transformation of point cloud 
in the RGB image domain and the depth values of two 
different images are shown in Figs. 7 and 8.

Feature extraction
The routine uses one of the most popular and reli-
able edge detection algorithms of 2D image process-
ing, Canny Edge Detection [43]. This is since its results 
are much useful for the 2D contour calculation. Differ-
ent lower threshold values are examined to detect the 
facade details and the most appropriate threshold val-
ues are selected. Through its index value, each pixel in 
the segmented binary image has its 3D value from the 

Fig. 5 Pose estimation problem

Fig. 6 Filtering hidden points to draw the visible surfaces
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corresponding depth image. The procedure is imple-
mented and evaluated on two different color images from 
two different positions. From the results shown in Fig. 9, 
it can be seen that almost all facade details are detected 
in 3D representation.

Discussion
Model size increases at a higher rate than developments 
in computer hardware and software, thus reducing the 
potential for an easy interaction with a huge 3D model, 
especially with the growing demand for 3D content shar-
ing. The ideal solution should produce completely 3D 
geometries of the related features with simple protocols 
to allow non-technical users in handling such process-
ing methods. In this case, it is appropriate to segment 3D 
models to allocate the information needed to be depicted, 
visualized and queried to each extracted feature. In this 
article, we proposed a solution based on the RGBD data 
that combines color and depth information for 3D fea-
ture extraction. The images generated by RGBD have 
rich colored geometric datasets that allow various levels 
of detail to be developed. Compared to other 3D point 
algorithms, our algorithm simplified data manipulation 
and primitive extraction, since minimum computational 
power is needed for the 2D images. The aforementioned 
methods [22–25] have a high calculation costs incurred 
in the neighborhood search for any large-scale LiDAR 

Fig. 7 Mapping 3D point cloud on the corresponding image

Fig. 8 RGB-D channels for different pose images



Page 10 of 13Alshawabkeh  Herit Sci            (2020) 8:28 

Fig. 9 3D linear features extracted from two different pose images

Fig. 10 The 3D contour points of the extracted features are projected in the corresponding image



Page 11 of 13Alshawabkeh  Herit Sci            (2020) 8:28  

application. The methods require curvature and normal 
estimation, but for small surface features such as with the 
historic building façade, curvature approximations are 
still inaccurate.

In other hand, the existing methods that use color 
information during the data processing, depends on 
a camera fixed from the same viewpoint of the 3D 
system in order to capture color and depth images 

Fig. 11 Mapping the 3D features on different RGB images and the meshed laser model
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simultaneously [26, 31–33]. These photographic images 
may suffer from scene-wide variations in lighting, such as 
shadows that are common throughout the outdoor scene. 
Furthermore, the scanner location and distance from 
the scene may not be sufficient for the camera to cap-
ture the require fine surface information. The proposed 
method in this study solves such challenges by collecting 
the point clouds and images separately, allowing optimal 
time and position for the high visual quality of the scene 
features. The results provide satisfactory 3D contour 
points that represent the location of the facade edges and 
linear features as depicted in Fig.  10. The 3D edge fea-
tures are accurately mapped into the corresponding 2D 
images. Figure  11 shows the flexibility mapping of the 
3D extracted features into different 2D images and the 
3D meshed through reverse central projective transfor-
mation. The results allow better data understanding and 
weathering forms quantification. Automatic detection 
of the continuous extent of material displacements with 
digital measurements will reduce cost of field inspections 
and increase safety. In addition, the method significantly 
reduces the amount of information that can be displayed 
and interact fluently with the obtained 3D model from 
3.3 million to 148 thousand.

Conclusion
The integration of photogrammetric and LiDAR data 
has shown a significant promise in extracting the sur-
face features from dense 3D point cloud data on the real 
scene façade. In heritage applications, automatic detec-
tion of the continuous extent of material displacements 
with digital measurements will reduce cost of field 
inspections and increase safety. The presented algo-
rithm utilizes the intensity values of the color images 
with the LiDAR data to automatically detect and quan-
tify façade linear features. Given an unstructured point 
cloud as input, a structured depth channel is sampled 
and projected to the color channels to compute (RGBD) 
layers. The linear features of the surface are initially 
extracted using the optical 2D imagery and subse-
quently, each pixel of the linear features is projected 
directly into 3D space. The proposed solution is flex-
ible as it acquires point clouds and images separately, 
allowing the high visual quality of the scene features to 
be optimized in time and place. Experimental results 
from real data are used to evaluate the performance 
of the proposed methodology. The approach robustly 
defines façade features and provides better interpreta-
tion of spatial growth of weathering forms and severe 
cracks. Additionally, modeling these features signifi-
cantly reduces the amount of data that can be viewed 
and fluently interact in 3D, allowing for surface analysis 
with simpler models. It is expected that the extracted 

features can be used in future researches to evalu-
ate and monitor the architectural buildings structure. 
Although the current version of C++ algorithms does 
not yet run in real time, during improved application it 
is expected to be implemented in real time.

Abbreviations
LiDAR: Light detection and ranging; RGBD: Red, green, blue, and depth.
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