
1726 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 47, NO. 10, OCTOBER 2002

Linear Filtering for Bilinear Stochastic Differential
Systems With Unknown Inputs

Alfredo Germani, Costanzo Manes, and Pasquale Palumbo

Abstract—This note investigates the problem of state estimation for bi-
linear stochastic multivariable differential systems in presence of an addi-
tional disturbance, whose statistics are completely unknown. A linear filter
is proposed, based on a suitable decomposition of the state of the bilinear
system into two components. The first one is a computable function of the
observations while the second component is estimated via a suitable linear
filtering algorithm. No a priori information on the disturbance is required
for the filter implementation. The proposed filter is robust with respect to
the unknown input, in that the covariance of the estimation error is not af-
fected by such input. Numerical simulations show the effectiveness of the
proposed filter.

Index Terms—Bilinear systems, linear filtering, state estimation,
unknown-input systems.

I. INTRODUCTION

In many fields of applications, the mathematical model describing
the dynamic relationships among the state variables, the inputs and the
measurements is given by the following nonlinear stochastic differen-
tial system, described by the Ito equations:

dx(t) =A(t)x(t)dt+B(t)du(t) + B1(x(t); dW (t))

t � t0

dy(t) =C(t)x(t)dt+D(t)du(t) + B2(x(t); dW (t))

x(t0) = x0 (1)

wherex(t) 2 n is the state,u(t) 2 p is the unknown input,
y(t) 2 q is the measured output,W (t) 2 b is a Wiener process with
respect to some increasing family of� algebras, namelyfFt; t � t0g,
referred to a probability space(
; F ; P );A(t); B(t); C(t); D(t)are
matrices of suitable dimensions andB1; B2 are bilinear forms (see [1],
[3], [4], [20]–[23], and [26] for more details on discrete and contin-
uous-time bilinear systems and filtering problems related to them).

The unknown inputu(t) in system (1) may model the presence of
an additive noise with noa priori statistical informations (deterministic
disturbance). The unknown-input can be used also to describe uncer-
tainties in the system equations, for instance derived from linearization
errors, or it can be used to modelfailure systems.Among applications,
unknown-inputs systems are of great interest in the geophysical and
environmental framework, as shown in [19].

This note investigates the problem of estimating the state of a time-
varying bilinear stochastic differential system, affected by additive dis-
turbances that involve both the state and measurement equations. Noa
priori knowledge is assumed on the disturbances.

A great deal of literature is available in the field of filtering a
discrete-time stochastic linear system with unknown inputs: a first
recursive algorithm, consisting of an optimization technique can be
found in [19], where Kitanidis developed an unbiased Kalman filter
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by minimizing the trace of the error covariance matrix. This technique
has been recently parameterized [10] [18] to extend previous results.
Many contributes treat the loss of information by modeling the
unknown-input system as a descriptor system and then applying a
previously developed filtering algorithm for this class of systems
(see [6]–[8], [11], [17], and [27]). Other contributions (see [5], [12],
[13], and [24]) take inspiration from an algorithm, also used for the
construction of unknown-input observers, which is able to remove
the influence of the disturbance by a clever use of the measurement
process. In [15], Hsieh proposes a robust two-stage Kalman filter
[14], optimal with respect to the minimum variance, which is shown
to be equivalent to the one of Kitanidis [19].

Unfortunately, neither the descriptor system nor the decoupling
approach can be directly applied to the continuous-time case, in that
they would require the knowledge of the noisy output derivatives.
An hypothesis that in the stochastic framework can not be assumed.
On the contrary in the deterministic linear continuous-time case, a
wide literature is available that treats all the cases of interest (e.g.,
[9] and the references therein).

This work investigates the problem of defining a robust linear filter
for stochastic bilinear differential systems forced by completely un-
known inputs. In particular, a suitable class of estimators is introduced
and the minimum variance filter in this class is computed.

The sections are structured as follows. In Section II, the class of the
system to be filtered is defined. In Section III, the filtering algorithm is
proposed. Some simulation results given in Section IV show the effec-
tiveness of the proposed algorithm.

II. BILINEAR SYSTEMS WITH UNKNOWN INPUTS

Let (
; F ; P ) be a probability space andfFt; t � t0g be a family
of nondecreasing sub-� algebras ofF . As is well known, a bilinear
stochastic differential system in the Ito formulation is described by the
equations

dx(t) =A(t)x(t)dt+B(t)du(t) +

b

k=1

(Nk(t)x(t) + Fk(t))

� dWk(t)

x(t0) =x0

dy(t) =C(t)x(t)dt+D(t)du(t) +

b

k=1

(Mk(t)x(t) +Gk(t))

� dWk(t) (2)

with x(t) 2 n the state of the system,u(t) 2 p an additive un-
known input,y(t) 2 q the measured output,x0 a random variable
with mean valuem0 = mx(t0) = [x0], and covariance matrix	0 =
	x(t0) = Cov(x0), Wk(t) thekth component of a standard Wiener
process(W (t); Ft); W (t) 2 b, and the matricesA(t); Nk(t) 2
n�n,B(t) 2 n�p, C(t); Mk(t) 2

q�n,D(t) 2 q�p, Fk(t) 2
n�1, Gk(t) 2 q�1. Moreover, it will be assumed thatD(t) is

full-column rank,8 t � t0.
For the sequel, let the matricesT1(t), T2(t) defined as

T1(t) = (DT (t)D(t))�1DT (t) 2 p�q (3)

while T2(t) is chosen in such a way thatR(TT
2 (t)) = N (DT (t)). In

other wordsT2(t) 2 (q�p)�q is a matrix with(q � p) independent
rows that constitute a basis for the left null space ofD(t). MatrixT2(t)
allows to define the postprocessed output, useful for the sequel

dz(t) = T2(t)dy(t): (4)
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With respect to the outputz(t), the bilinear stochastic system (2) can
be represented in the robust form (independent of the unknown input)
given by the following lemma.

Lemma 1: The bilinear stochastic differential system described by
(2) can be rewritten as

dx(t) =A(t)x(t)dt+ B(t) dy(t) +
b

k=1

(Nk(t)x(t) + Fk(t))

� dWk(t)

x(t0) =x0

dz(t) = C(t)x(t)dt+
b

k=1

(Mk(t)x(t) + Gk(t))dWk(t) (5)

with

A(t) =A(t)�B(t)T1(t)C(t) 2 n�n

B(t) =B(t)T1(t) 2
n�q

Nk(t) =Nk(t)�B(t)T1(t)Mk(t) 2
n�n

Fk(t) =Fk(t)�B(t)T1(t)Gk(t) 2
n�1

C(t) =T2(t)C(t) 2 (q�p)�n

Mk(t) =T2(t)Mk(t) 2
(q�p)�n

Gk(t) =T2(t)Gk(t) 2
(q�p)�1

: (6)

Proof: Note first that, by definition, the matricesT1(t) andT2(t)
are such thatT1(t)D(t) = Ip andT2(t)D(t) = O(q�p)�p. From
these, it follows:

T1(t) dy(t) =T1(t)C(t)x(t)dt+ du(t) + T1(t)

b

k=1

� (Mk(t)x(t) +Gk(t))dWk(t) (7)

dz(t) =T2(t)dy(t)

=T2(t)C(t)x(t)dt+ T2(t)

b

k=1

� (Mk(t)x(t) +Gk(t))dWk(t): (8)

This last equation gives back the new measure equation, while
eliminating du(t) from the state equation of (2) by (7), the thesis
immediately follows.

Remark 2: The structure (5) for the bilinear system with unknown
inputs is obtained by suitably exploiting the information brought by
the output on the unknown inputs. The “new” measurement process
z(t) is, in some sense, what remains after all information available on
the unknown input has been exploited, and constitutes the “remaining”
part of the output that can be used for filtering. Moreover, as a kind of
confirmation, it is worth noting that the new measure equation vanishes
if q = p, so it follows that the filtering approach presented in this work
requiresq > p. �

III. T HE LINEAR FILTERING ALGORITHM

In this section, the new measurement vectorz(t) defined in (4) is
used to develop a state estimator for system (5). In order to properly
take into account the presence of the original outputy(t) as a forcing
term in the state equation (5), a suitable decomposition of the system
is required, as given by the following proposition.

Proposition 3: The system (5) can be written in the split form

x(t) =xd(t) + xs(t)

dz(t) = dzs(t) + C(t)xd(t)dt (9)

where

dxd(t) =A(t)xd(t)dt+ B(t) dy(t)

xd(t0) = [x0]

dxs(t) =A(t)xs(t)dt+

b

k=1

(Nk(t)(xd(t) + xs(t)) + Fk(t))

� dWk(t) (10)

xs(t0) =x0 � [x0]

dzs(t) = C(t)xs(t)dt+
b

k=1

(Mk(t)(xd(t) + xs(t)) + Gk(t))

� dWk(t): (11)

Proof: The proof is readily obtained by direct computation.
Remark 4: Proposition 3 shows the decomposition of the system

statex(t) in two terms:xd(t) is the totally observed component and
xs(t) is the partially observed zero-mean component endowed with
the new measurement processzs(t) from timet0 up to timet. �

Remark 5: It must be stressed that the evolution of (10) completely
determined by the measurements does not depend onxs(t) whereas,
on the contrary, (11), forced also by the evolution of the totally known
xd(t), admits the representation

dxs(t) =A(t)xs(t)dt+

b

k=1

Nk(t)xs(t) + ~Fk(t) dWk(t)

xs(t0) =x0 � [x0]

dzs(t) = C(t)xs(t)dt+
b

k=1

Mk(t)xs(t) + ~Gk(t) dWk(t)

(12)

where

~Fk(t) =Fk(t) +Nk(t)xd(t) 2
n�1

~Gk(t) =Gk(t) +Mk(t)xd(t) 2
(q�p)�1

: (13)

�
The aforementioned remarks suggest the following.
Definition 6: A state estimator for the class of bilinear stochastic

differential systems with unknown inputs is said to be input insensitive
if its structure does not depend explicitly on the unknown input.�

Throughout this note,x?d(t) will denote the processxd(t) evaluated
on the measured output pathy(t). Moreover, the superscript? will in-
dicate all the processes that include a dependence onxd(t) when com-
puted on the detected pathx?d(t). For instance, the processesxs andzs
defined by (12) with substitution ofxd with x?d will be denotedx?s and
z?s , respectively.

According to its definition (10), the best estimate ofxd(t), given
the observations, is indeedxd(t) itself. Therefore, taking into account
the decomposition (9), a possible estimator ofx(t) can be obtained by
adding toxd(t) an estimate of its notFY

t -measurable part,xs(t). A
way to define such estimate is through the best linear estimate of the
processx?s(t) given the observationz?s . This approach is summarized
in the following definition.

Definition 7: The classP of estimators is defined as the set of all
input-insensitive state estimators~x(t) such that

~x(t) = xd(t) + ~x?s(t) (14)

where ~x?s(t) is any estimate of the processx?s(t) among all the
F
Z

t -measurable functions. AP-estimator is any state estimator in
the classP . �

As is well known, the optimal choice for~x?s(t) is given by
[x?s(t)jF

Z

t ], whose computation in general can not be obtained
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through algorithms of finite-dimension. Nevertheless, from an ap-
plicative point of view, it is useful to look for finite-dimensional
approximations of the optimal filter, that is estimates described by
stochastic differential equations of the form

d�(t) = f(�(t))dt+ g(�(t))dz?s (t)

~x?s(t) =h(�(t)) (15)

wheref�(t); t � t0g is a process taking its values on a finite-dimen-
sional space. The finite-dimensional system (15) is an optimal linear
filter for the random processx?s(t) if

~x?s(t) = �[x?s(t)jLt(z
?
s )] (16)

where�[�jLt(z
?
s )] denotes the projection onto the spaceLt(z

?
s ) lin-

early spanned by the family of random variablesfz?s (� ); t0 � � � tg.
It follows that the state estimator

xd(t) + �[x?s(t)jLt(z
?
s )] (17)

is aP estimator, and in the following it will be denoted as theoptimal
P-linear estimatorfor (2).

Remark 8: It can be readily proved that the optimalP-linear esti-
mator (17) is unbiased. Actually, anyP-estimator of the type (14) with
~x?s(t) 2 Lt(z

?
s ) is unbiased. �

The computation of�[x?s(t)jLt(z
?
s )] for the bilinear system (12)

forced byx?d can be done following the approach in [4].
Theorem 9: Let	x (t) = Cov(x?s(t)) be the covariance matrix of

x?s(t), whose evolution is given by the following equations:

_	x (t) =A(t)	x (t) + 	x (t)AT (t)

+

b

k=1

Nk(t)	x (t)NT
k (t) + ~F?

k (t) ~F
?T
k (t)

	x (t0) =	0 (18)

where ~F?
k (t) = Fk(t) + Nk(t)x

?
d(t) and ~G?k(t) = Gk(t) +

Mk(t)x
?
d(t). Moreover, letR?(t) be the square matrix defined as

follows:

R
?(t) =

b

k=1

Mk(t)	x (t)MT
k (t) + ~G?k(t)G

?T
k (t) : (19)

Then, the optimal linear estimate of the statex?s(t) of (12), is given by

d~x?s(t) =A(t)~x
?
s(t)dt+

b

k=1

~F?
k (t) ~G

?T
k (t) + P

?(t)CT (t)

� R?(t)�1(dz?s (t)� C(t)~x?s(t)dt)

~x?s(t0) = 0 (20)

whereP ?(t) = Cov(x?s(t) � ~x?s(t)) is the error covariance matrix,
given by the following equations:

_P ?(t) =A(t)P ?(t) + P
?(t)AT (t) +R

?(t)

�
b

k=1

~F?
k (t) ~G

?T
k (t) + P

?(t)CT (t)

� R?(t)�1
b

k=1

~F?
k (t) ~G

?T
k (t) + P

?(t)CT (t)

T

P
?(t0) =	0 (21)

provided thatR?(t) is positive–definite8 t � t0.
Proof: The proof is just a straightforward extension to the time

varying case of the proof of [4, Th. 4.4].
Remark 10: Note that a sufficient condition for the positive defi-

niteness of matrixR?(t) defined in (19) is the nonsingularity of

b

k=1

~G?k(t)G
?T
k (t): (22)

�
Now, the optimalP-linear state estimator for system (2) can be pre-

sented.
Theorem 11: Under the same hypotheses of Theorem 9, according

to (17), the optimalP-linear estimate of the bilinear stochastic differ-
ential system (2) is given by the following algorithm:

d~x(t) =A(t)~x(t) dt+ B(t)dy(t)

+

b

k=1

~F?
k (t)G

?T
k (t) + P

?(t)CT (t)

� R?(t)(dy?(t)� C(t)~x(t) dt)

~x(t0) = [x0] (23)
_P ?(t) =A(t)P ?(t) + P

?(t)AT (t) +R
?(t)

�
b

k=1

~F?
k (t)G

?T
k (t) + P

?(t)CT (t)

� R?(t)

b

k=1

~F?
k (t)G

?T
k (t) + P

?(t)CT (t)

T

P
?(t0) =	0: (24)

where

G
?
k(t) =Gk(t) +Mk(t)x

?
d(t)

R?(t) =T
T
2 (t)R

?�1(t)T2(t) (25)

andR?(t) is given by (19), defined in Theorem 9.
Proof: Taking into account the decomposition (9) in Proposition

3 and (17) of the optimalP-linear estimate, (23) ford~x(t) is obtained
by addingdxd(t) from (10) andd~x?s(t) from (20).

Remark 12: Note that ifB = On�p andD = Oq�p in system
(2), the problem reduces to the filtering of a stochastic bilinear system
without unknown inputs. The linear and polynomial optimal solutions
of the filtering problem for this class of systems are reported in [4]. On
the other hand, whenNk, Mk , Fk, Gk are zero matrices the system
reduces to a deterministic linear one. Some solutions of the state-ob-
servation problem for this class of systems can be found in [9] and the
references therein. �

Remark 13: The estimator presented in Theorem 11 can be regarded
as the optimal linear filter whenxd is not a random variable, but is
the output of (10) driven by the “detected path”y(t). Therefore, the
presented filter in some sense is designed considering the detected path
y(t) as a deterministic input to (2), once that is rewritten in the split
form (9). In this framework the filter in some sense is designed for the
“open-loop” system and then it is used in “closed-loop,” becausey(t)
is in fact the output of system (9). Note that the optimal filter for an
open-loop system, when used for state estimation of the closed-loop
system, gives back the optimal filter for the closed-loop system, and
therefore is efficient. This result, recently presented in [2], strongly
suggests the conjecture that the proposed algorithm is indeed efficient
in the class ofP-linear estimators. The formal proof of this assertion
would require the extension of the results given in [2] to suboptimal
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Fig. 1. The unknown input.

Fig. 2. The true and estimated states: first component.

Fig. 3. The true and estimated states: second component.

filtering. This is indeed not an easy task, and is the object of a current
research work. �

Fig. 4. The true and estimated states: third component.

IV. NUMERICAL SIMULATIONS

This section presents simulation results on a bilinear system whose
state and measurement equations are forced by a standard Wiener
process. A scalar unknown input is also considered on the system. The
matrices in (2), in whichp = b = 1, n = 3, q = 2, are the following:

A =

�4 0:1 0

0 �3 �1

0:4 0 �5

B =

1

0:5

�1:5

C =
1 0:5 �2

1 1 �0:2
D =

1

0
(27)

N =

�1 0 0:1

0 �2 0

0 0:4 0:5

F =

�1

1:2

�2

M =
0 �0:5 �1

0 �2 0
G =

1

0:5
: (28)

The simulation results here reported are obtained with the unknown
input plotted in Fig. 1. Figs. 2–4 present the comparison between the
real and the estimated state for each state component. The good be-
havior of the optimalP-linear filter can be appreciated.
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Observer Linearization by Output-Dependent Time-Scale
Transformations

M. Guay

Abstract—In this note, we study the problem of observer linearization
for single-output dynamical systems in the presence of output-dependent
time-scaling changes. An alternative algorithm for the solution of the ob-
server linearization problem is introduced. The algorithm employs an ex-
terior calculus approach that provides a simple procedure for the solution
of the observer linearization problem by means of an output dependent
time-scale transformation.

Index Terms—Linearization, observers, time scaling.

I. INTRODUCTION

The problem of the equivalence of a nonlinear observable systems to
observers with linear error dynamics has been studied extensively in the
literature. The single-output problem was first proposed and solved in
[2] and [6]. The multi-output problem was later considered in [7], [13],
[14] and, more recently, in [5], [15], and [11]. In this note, we propose
and solve the problem of observer linearization for single-output
dynamical systems by means of an output-dependent time-scale
transformation and a state-space diffeomorphism. An exterior calculus
approach is used to develop an alternative computational procedure
for observer linearization of locally observable nonlinear systems.
The approach is closely related to the orbital feedback linearization
problem solved in [4] and [9].

The note is organized as follows. Some preliminary information
is provided in Section II. In Section III, the linearization procedure
is presented and the solution of the observer linearization problem
by means of output dependent time-scale transformations is given. A
three-dimensional example is presented in Section IV to demonstrate
the application of the technique. Brief conclusions are presented
in Section V.

II. PRELIMINARIES

The class of systems of interest in this note is that of observable
single-output nonlinear systems of the form

_x = f(x)

y =h(x) (1)

wheref(x) is a smooth vector field defined in a subset ofn, h(x) is
a smooth function ofx 2 M �

n. The measurable output is given
by y 2 .

The observer linearization problem treated in this note can be stated
as follows.

Problem Statement 2.1: Observer Linearization by Output-
Dependent Time-Scaling Transformation:Find a smooth time-scale
transformation(h) > 0 with

dt

d�
= (h) (2)
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