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OF RANDOM MATRICES 


PER81 DIACONIS AND STEl'EN N. ElrANS 

AHSTRA~I . .Let 1% be a random r~x r~unitary matrix with distribution given 
by Haar measure on the unitary group. Using explicit monlerlt calculations, 
a general criterion is given for linear cornbinations of traces of powers of A(,, 
to converge to  a Gauss~an limit as n -. cm.By Fourier analysis, this result 
leads to central hrrlit theorems for the nleasure on the circle that  places a 
unit mass at  each of the eigenvalues of For exarnple, the integral of 
this nleasure against a function with suitably decaying Fourier coeficients 
converges to  a Gaussian limit without any normalisation Known central limit 
theorems for the number of eigenvalues in a circular arc and the logarithm of 
the characteristic polynomial of M ,  are also derived from the criterion. Similar 
results are sketched for Haar distributed orthogonal and symplectic matrices. 

For 71 E N,let be a random n x n unitary matrix with distribution given 
by Haar measure on the unitary group. The eigenvalues of 214, lie on the unit 
circle T of the conlplex plane C. Write E, for the rando~n measure on T that 
places a unit mass a t  each of the eigenvalues of A&. That is, if the eigenvalues are 
{ u , ~ ,. . . , unn), then En(f )  := JT f dZ, = C, f (u,,). The purpose of this paper is -
to study the asy~nptotic behaviom of the measures ;,as n 4 m. 

Note that if f : T -+ C has Fourier expansion f ( e 7 ' )  = Cjixfjr' jO, then 

where Tr denotes the trace and, for the moment, we are being informal about con- 
ditions urider which suck1 developments are valid. Questions about the asy~nptotic 
behaviour of c,(E,(,f,) - E[E,(f,)]) for a sequence of test functions {,f,} and se- 
quence of norming constants {c,} may therefore he placed in the larger framework 

of cpestions about the as?-mptotic behaviour of C F l ( a n ,TI.( M i )+ bn3 Tr ( M i ) )  
for arrays of complex constants {anj  : n E E,j E N) and {bnj : n E N,j E W).  
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In $3 we give a general criterion under which such sequences of linear com-
binations of traces converge in distribution to  normal. The inaiil tool is an exact 
computation of the joint mo~nents of the random variables Tr (1T4;) due to Diaconis 
and Shahshahani [DS94] that we recall in $2. 

An immediate consequence of this convergence criterion is that if f : T -+ R 
is a test function such that C j 1 f j  1 ' 1  jl < cc,then S,(f )  - E[Z,( f )] converges in 

distribution to  a centred normal random variable E(f )  with E[E(f)'] = xji f j  1 2 1  jl 
(see $5) a result which follows easily from those in [DS94], but which was made -

explicit in [Joh97]. We also consider the multivariate generalisation of this result for 
a collection of such test functions. These results are used to  show that the coinplex 
Poisson integrals of the measures E, converge to a Gaussian analytic function on 
the unit disk with interesting value distribution properties. 

Afore generally, we 1 isestablish in $4 that if the sequence {x:=-,f,2j)iEN 
slowly varying, then 

converges in distribution to  standard normal. 
In $13 we recover the results of [Wie98, SosOO] on the nu~nber of eigenvalues in a 

fixed arc. 'CVe show that if f is the indicator function of the set {eZe : 0 t [a,ij]}. 
then 

converges in distribution to  a complex standard normal random variable. (Recall 
that a complex random variable is said to  be standard complex normal if the real 
and imaginary parts are independent centred (real) normal random variables with 
common variance i.) Furthermore, we recover the multivariate extension of this 
result for several intervals in a manner that "explains" the intriguing covariance 
structure found in [Wie98] as a consquence of the Fourier expansions of the indicator 
functions of the intervals. 'CVe also consider the analogous asymptotics for the 
number of eigenvalues in arcs which shrink in length as the di~nension n increases. 

Our inethods also recover the results [HKOOO] (continued from those in [KSOO]) 
on the asymptotic normality of the suitably normalised logarithm of the charac- 
teristic polynomial of 214,. As remarked in [HKOOO], this result coupled with an 
application of the argument principle gives another "explanation" of the covariance 
structure of ['CVieS8]. 

The main virtue of our results on linear combinations of traces is their consid- 
erable generality and the fact that they follow from rather elementary method-of- 
moments arguments. They rely on a small amount of representation theory for the 
unitary group and avoid the use of analytic tools such as Szego-type theorems for 
Toeplitz determinants. The present paper deals with linear functionals of E, of the 
for~n  f (Q) =,(dB), but a similar development is possible for quadratic functionals 
of the form JJ f (0,&) E,(dQ) E,(d4) and higher order functionals. Also, om meth- 
ods are directly applicable to the orthogonal and symplectic groups, given that the 
requisite moment formulae have been obtained in [DS94] (the technical report of 
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A. Ram that was cited in IDS941 for the relevant representation thcory of these 
groups has now appeared as ;Ram95j - see also IRam971). Lye outline the relevant 
arguments in $8 

Theorem 2.1. a) Consider  a = ( a l , . . . .a k )  and b = (bl , . . . ,b k )  u ~ i t ha,, b, E 
(0. I... . ). Let  Z I ,  Z 2 , .  . . . Zk be independent  s t r~nda ld  co7,ple:l: nor.7,al rara-
d o m  oariables. T h e n  f o r  n. > ja,) V (c:=, j b 7 ) .  

b) For a n y  + I . k ,  

Proof.  Part (a) is Theorem 2 in IDS941 with a slightly different (and incorrect) 
condition on a .  b. Ehr the sake of completeness. we redo the proof in [DS94]. 

Define the siirlple power sum symrrletric function 11j to  be the symmetric function 

p j (z l . .  . . ,.c,,) = 1: + . . .  + ~ 3 , .Let 11 be the partition (Ia1,2 ' l , .  . . ,k n h )of the 
integer h' = lol  + 20.2 - . . . + kak arid set p,, = n,p: to  be the corresponding 
corrlpound power sum symmetric function. Associate jl with the con~jugacy class of 
the symmetric group on h' letters that consists of permutations with oj  I)' cycles 
for 1 5 j 5 k .  We have the expansion 

A r k '  

where the suirl is over all partitions of I<, the coefficient is the character of 
the irreducible representation of the sym~netric group associated with the partition 
X evaluated on the conjugacy class associated with the partition / I ,  and s~ is the 
Schur function corresponding to  the partition X (see 1.7.8 of /Mac79]). 

Given an n x 71 unitary matrix U , write sx(U) (resp. p,,(U)) for the function s~ 
(resp. pjL)applied to the eigenvalues of C.  Writing L(X) for the nu~nber of parts of 
the partition X (that is. the length of A ) ,  the functions I? H sx(I?) are irreducible 
characters of the unitary group when P(X) 5 n and sx(I?) = 0 othcrmise (see $11.1 
or [12it5X]). Thus 
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Set v = (lbl2 b 2 , . . . ,kbk)  and L = l b l  i2b2 + . . . + kbk  . 'CVe have 

= ~ K L  x $ z l ( l J ( X )< n) .  
X t K  

When II < n ,  all part'itions of K are necessarily of lengt'h a t  most n ,  and so, 
hy t,he second orthogonality relation for characters of the symmet'ric group (see 
Equation (4.2;5) of [Lit,58]), the rightmost term of (2.1) becomes 

which coincides with t,he claimed mixed moment of h Z j :  1 < j < k :  (see Lemma 
1 of [DS94]). 

Tilrning to part (b), we have from (2.1) that 

where ( j )  is the partition of j consisting of a single part of size j .  Now xtj)- 0 
unless X is a hook partit,ion (that is, a part,ition with at  most one part of size greater 
than I ) ,  in which case 

(see, for example, Exercise 4.16 in [FH91]). Since there are j An hook partitions of 
j of length at most n ,  part (b) follows. 0 

R ~ m a r k2.2. It is shown in [Rai97] that the eigenvalues of ilii for j > n are dis- 
tributed as n independent uniform random variables on T. 

3. LINEARCObIBINATIONS OF TRACES 

Theorem 3.1. Cons ider  a n  array o,f c o n ~ p l e x  constants  { a n j  : n E. W :  j E W ) .  
Suppose th.ere exists o2 such  tha t  

2lim ~ ~ a n 3 1 2 ( j ~ n )  = o . 
n-cx 

Su,ppose also tha t  there exists a sequence o,f positive integers {m, : n E W )  such, 
th,at 

lim mn/n= 0 
n-cx 



and 

lim a n j 2 ( jA n)  = 0 .  
n--00 j=ni,, +1 

T h e n  CE ,an3 Tr (12/1;2) conuerges in dzstrzbutzon as n + cc t o  02,where Z zs a 
complpr standard normal  random variable. 

Proof. R,ecall from Theorem 2.1 that E[Tr  (124i)] - 0 and E[Tr (A&;,) Tr (iZI;)] = 

fiJic(jA n). Consequently, the series CFla n j  'li.(A&;,) converges in L v o r  each n 

and limn.+, E[lCEnz,, urLjTr ( A f i , ) 1 "  = 0. 
It therefore suffices to show that 0-I CFlaan,Tr (A&;,) converges in distribution 

as n -i cc to a complex standard nornial random variable. Let Zo,Z1.2 2 , .. . be a 
sequence of independent complex standard normals. From Theorem 2.1 we know 
that' 

provided that cu7nn 5 n and $n, < n.  The result now follows by convergence of 
rnonlents for complex normal distributions and the assumption that m,/n -+ 0. 

A straightforward adaptation of the methods in the proof of Theorem 3.1 estab-
lishes the following result. The details are left to the reader. 

Theorem 3.2. Consider  arra,ys of complex constants {a,, : n E N,j E W} and 
{b,, : n E W, j N}. Suppose there ezist  02.r2. and 7 such that  

- -
2linl lbn,12(j A n )  = r + 

n-cc 

and 

Sz~~pposealso that  there exists a sequence of positi~:eintegers {?nn : n E. N }  such 
that  

lim n ~ , j n= 0 
n-oc 
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and 

Then x F 1 ( a n j  Tr (Mi,) + b n j  Tr (Mi)) conl;erges in distribution as n -+ o to 
X +iY,  where ( X ,  Y) is n pair of centred jointly normal real random variables u!ith, 

E[XY]= Sy. 

4. INTEGRATIONAGAINST FIJNCTIONS SATISFYING 

A FOURIER CONDITIONGROWTH 

It is immediate from Theorem 2.1 that for each k E N the random vector 
( Tr (&In), Tr (A{:), . . . , Tr. (A{;)) converges in distribution to (21, fizz,. . . ,&Zk) 
as n 4 x,where Z1. 2 2 , .  . . , Zk are independent standard complex normal ran- 
dom variables. Therefore, if f (Q) = f,eZ~' is a real-valued trigonometric 

polynomial. so that f-, = f , ,  then 

k --

= [A ~r 114 + f ,  ~r ( M i ) ]  
,=l 

converges in distrihution as n -i o to a centred normal with variance 

This observation suggests that En ( f )- E[En(f ) ]should converge to normal when 
f is no longer just a trigonometric polynomial but more generally when f is a real-~- 
valued function of the form f ( 0 )  = CjEz,fjezj' with CJEE,fjl 2 j < o.We find 
in the $5 that this is indeed the case (see Theorem 5.1). 

First, however, we establish a more general result that shows that even when 

it can still sometimes be the case that 

(=n,(f)-E[=n,(f)I)/'Var[%i(.f ) I  
is asymptotically normal. 
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Given ,f E L2(T)  (where we define L2(T) to  he the space of real-valued square-
integrable functions), write 

for the Fourier coefFicient's of f .  
Recall that a positive sequence {ck)kEN is said to  be slo*wly varying if 

(see [Fe171. BGT87j). 

that j k 
lfj12j)kcNTheorem 4.1. sz~~ppose  F L?(T) is szsch, tirat { c ~ = - ~  i s  S J O W I ~  

varying. T h e n  

converges i n  distribution t o  a standard normal random variable as n 4 oo. 

Proof. Note first of all for any Bore1 iubset A 2 'IT that the probability iJfn has 
at least one eigenvalue in A (that is, P{S,,jA) # 0)) is, hy symmetry, at most 
n& [A do. Therefore, E,(f) only depends on the LYT) eequivalence class of f .  
Similarly, we have that 

in probability, because 

in Lebesgue measure. Thus 

Set c,, = C;=-,, 1 f j 2  jl = 2 xy=lILl z j .  VL7e will apply Theorem 3.2 with 

a n j Z f J / &  and h n j = . f j / , , k ~ .  

Because is slowly varying, it is clear that there is a sequence of integers 
{ v L , ) , ~ ~  m, cm,limn-, m n / n  = 0, andsuch that lirn,,, = 

lim c7,L,, /en = 1.(4.1) 
n-cc 

Summing by parts, 
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Vote also that 

by Theorem 1 in 5VIII.9 of [Fe171]. 
Combining equations (4.1), (4.2), and (4.3) gives 

Thus the conditions of Theorem 3.2 hold with 

& y 2 = y = - 1 
2 +  

and this immediately leads to the result 

I 


Let Hz denote the space of functions f E L2(T) such that 

and define an inner product on Hz' hy 

Alternatively. H2' is the space of functions f E L ~ ( T )such that 

and, moreover. 

(see Equations (1.2.18) and (1.2.21) of [FOT94]). 
1 


The space H z  is an example of a Bessel-potential function space and it coincides 
1 I 

with the Besov space Bz,2, the Sobolev-Lebesgue space F2:2and the Lipschitz space 

A:,2 (see Equations (18) and (19) in $3.5.4 and Equation (13) in 53.5.1 of [ST87]). 
Finally, note that if we take the complex Poisson integral of f E L2(T),  namely 

1 



t'hen, lett'ing m denote Lebesgue measure on the disk ( 2  E C : /z/< 11, 

1 

Thus, f E If25 if and only if 

and 

I 

Theorern 5-1.If f l , .. . , , fk E H; 1~~ithE[EYL(fh)]= nJ , f j (Q)d0 = O for 1 5 h 5 
X:, then the random uectnr (E,,(fl), . . . ,E,(fk)) conuerges in distribution to o,jointly-norm.a,l,centred ra,ndom vector (Z(fl) ,  . . . , =(,fk)) luith E[Z(fh)Z(ft)]= ( f h .  f!)+. 

Proof. Employing the Crainkr-IVold device (see Tlieorem 2.9.5 of [Dm96]), it is 
enough to consider the case k = 1. In this case. howes-er, the result is immediate 
from Theorem 4.1. 

Remark 5.2. A funct,ion in iI$ need not be a.e. equal to  a continuous or even 
1 

bounded funct,ion (see 53.5.4 of [ST8'i]). However, note t,hat if f E H; , then, by 
(5.1) and hlarkov's inequality, the Lebesgue measure of tlie set {(Q,d) : l f (4)  -
,f(0) I > A1 sin((4 - h')/2) 1 )  converges to 0 as A -+ CQ. In particular, a funct,ion in 

1 

H; cannot have jump discontinuities. 
1 

Remark 5.3. It is immediate from (5.1) tliat if f E HL7 arid p : R 4 W is Lipschitz 

(that iq I . )  - p ( y )  5 K j r  - 111 for some constant K ) ,  then o0 f E H2'. 

Remark 5.4. The space H) equipped with t,heinner product (., .) is not'hing other 
t,han t,he Dirichlet space and Dirichlet form of tlie symmetric Cauchy process on 
the circle (see Example 1.4.2 of [FOT94]). (The symmetric Cauchy process on t'he 
circle is just the usual syrrirnetric Cauchy process on the line wrapped around t'he 
circle.) 

This observation can be used to deduce various features of the Gaussian process 

{Z(f )  : f E H2+,/ f = 01, several of which will be in a forthcoming paper of t'he 
authors. We merely point out for the moment that tliis fact has consequences for 

1 

t,he continuity properties of functions in Hz.Tliere is a natural notion of capacity 
1 

associated with (., .);, and any function in Hz2has a quasi-continuolls modification 

wit11 respect to  this capacit,y. That is, i f f  E Hz\ tlien t,hereexists y such that y = f 
a,.e. and for any 6 > 0 there is an open set G of capacity less than c such that g 
restricted to T\G is continuous (see Theorem 2.1.3 of jFOT941). We note that t,he 
capacity associated with (., .) 4 appearing in this definition can be replaced by the 
classical logarit,hmiccapacity on T. 
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Probai-)ilistically. quasi---continuity can be charact,erised as follows. Write ( X , .P") 
for thc synimc~tric Cauchy process on thc circle. A function g is quasi-continuous 
if there exists a sc:t X c T ssucli tliat Pr{3t > 0 : Xt  E AT}= 0 for all s E T and 

for all .J & AT. 
It is certainly not the case that quasi continuity is a sutficic~nt condition for 

1 

ineinbcrship in H;. Ehr exaniple, we know from abovc. that the indicator function 
I 


of an interval jcr, ri] with 0 < cr < ri < 27r is not in H; (t,his is also obvious 1)y 
direct ~ornput~atiorl of Fourier coefficients - see the proof of Theorem 6.1 below). 
Howel-er, l~ecause the Cauchy procc.ss does not liit points we liave 

PL{3t > O : X t  t {n,3 )  or Xt- E {cr, ri)) = 0 

for all .J > 0 and lience the indicator f~n~ct ion  is quasi continuous. 

Remurk 5.5. It  is immediate t,hat if f ;  g E Lm(T):I H2 + t'lien t,he product ,fg is also 
1 

in LX(T) n H,hritl i  1 1  f g l J ~  1 1  f JJmlJgiJ4 j i 4 .  This is a,n instance of a I + lJgJ]xJi,f 
standard fact for Dirichlet, forms (see Thcorein 1.1.2(ii) of [FOTgq), but it is also 

I 

imnlediatc. from (5.1). Tlie algebra Lm(T) H2 is known as tlre Krein algebra and 
appears in the study of Hankel operators (see $5.2 of [BS99]). 

Example 5.6. Consider the complex Poisson integral of the random measure Z,,, 
that is, the randoin analytic function F,,on {z E C : lzj < 1) given by 

The harinonic function %FT, has the measure En a? its "houndar~ value" in tlie 
scnsc tliat as 7 1. 1 tlic mcasurf, W F n ( 7  c '@)d0 converges weakly to En (that is, 
J f (0)%Fn (rr") d0 + J f ( 0 ) Z,,(dP) for all rcal valued continuous functions f )  
Note also that 

where 

x AT, (2) := det(JI, - z l )  

is the cliaractcristic polynomial of ill,, . 
It follows from Theorcni 5 1 that tlie finitc. dimensional distrii-jutions of F, - & 

converge to those of tlie randoin analytic function 

wliere Z1 ,  Z 2 . .  . . are i.i.d, st,andard complex normal randoin variables. Indeed, 
one can easily check tightness and act'ually show convergence in distribution in tlie 
space of continuous C-valued functions on {z E C : /z)< 1) equipped with the 
topology of uniform convergence on conipacts, but we leave tliis to tlie reader. 



Random analytic functions such as C hale been much studied (see. foi example. 
[Kahbs]) For example. let ~ ( r .  zeroes of 6(;)-h)  denote the m~nlber of b in 
{ a  E C : I Z < r }  Ehi K 2 0 set 

An eahv fourth niorrleilt calculation and Bore1 Cant elli ar gumcnt hhow:, t liat 

Therefore. b j  Tlieorein 1 of [Off721 and the reiiiarli-s after that re5lllt \ie haxe 

c'-(Ii-3r )  C, ( K .1 . )
lilil = liiii = 1a.s. 
7 . 1 1  log(&) ),illop,(&) 

Consequently, alirlost surely G t,altes every value in the coinplex plane infinitely 
often. In fact. G restricted to any sector of the unit disk allnost surely t,altes every 
value infinit~elj~ often (see Theorerll 2 of [ O f f 7 2 ] ) .In particlllar, alrllost sllrelp for each 
b t C every point of the circle T is a lirrlit point of t l ~ c  level set { z i  < 1 : G ( z )= b ) .  

FOI 0 < n < ,3 < 2~ n~riteLYr,(n.,3) for t h ~  of eigenvdl~le\ of !\I,,n u n ~ b ~ r  of 
the form f L H  wit11 B E [a.j] Thcit 15%\T,(a. i)= Z , , ( j )  n h ~ r ej is thc indic~~tol  
f~lnction of t l l ~  arc { c L H  B E [(I.  i ] )  Sot?  that E[LYr,(nk,i)]= r l (  i - n ) / " ~The 
following r ~ s ~ l l tis 111 [If 1~981 

Theorem 6.1. AA-l.s11 x,the ,fir~ite-dirrie?~.s~,or~~elldi.strihutior~s of the 1)rocessP.s 

con~ier:qe to tho.se of n, centred Gtrussinr~ a1roce.s.s { % ( a ,  J) : 0 < n < 3 < 277-1 with 
the co'tlclricl?~c.r str?~ct.ure 

1. if n = n1n,rrd = 3'. 

I2 '  ~ f n k = ( P 1 c l 7 L d 3 # : ~ ' .  

E [ z ( ( P ,,3)~ ( ( 1 ' .  = 4% ,3/., $ ) I  if a # a' n,nd ,3 = 

--:. <f . )=a ' .  

0 .  oil~erlcisr.  

Proof. Recall tliat the nldlcato~ f~inctloli of the n~terval [a.J] has the Fourier ex-
pansion 

The reslllt co~lld be est,ablished using Tileoreill 1.1.but it is somewhat more in- 
s t r~~ct , ivefroin the point of view of 1lnderstanding hon. the coxrariancc of % arises to 
proceecl bjr a direct appeal to 'I'heorem 3.2. 
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It suffices to  show for distinct 0 < pl,. . . ,cpi, < 27r that the real random vector 

converges in distribution to a vector of independent centred Gaussian random vari-
ables with cornmoil variance &. 

Employing the Cranier-Wold device, it suffices in turn to  show for real constants 
el.. . . . c k  that 

converges in distribution to  a centred normal random variable with variance 

We will appljr Theorem 3.2 with 

and 

It is elementarv that 

r1 
m, = -

log r~ 

1 " jAn 
-
- 0.

log r~ 

and an application of part (a) of Lemma 6.2 below shows that the conditions of 
Theorem 3.2 hold with 

easily leading to  the result. 

The following elementary result is used in the preceding proof and elsewhere. 

Lemma 6.2. a)  For 0 < 0 < 27r 
1 eijO 

1i1n - 7= 0 
n-30 log r~ j=l 3 

b) Ford > 0. 
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Proof. We only prove part (a).  The proof of part (b) is similar and is left to the 
reader. Sun~irling bx parts shows that it suffices to establish 

11 

but the expression inside the limit on the left-hand side is just 

We now consider the asynlptotics of the number of eigenvalues in an arc that  
shrinks with n. Fix a sequence of positlve constants {Kn: n E N). Ebr 0 6 
cu < p < x write ii7,(n,p) for the nurnber of eigenvalues of ,Il, of the form eZB 
with Q E [ a / K n , p / K n ] .  Clearly. one cannot expect normal limiting hehavioui if 
1= 0(:).but this turns out to be the onl~r restriction. 
Kn 

Theorern 6.3. Suppose that KrL4cc a r ~ dKn/r1 4 0 as n4x.As r~+x. th.e 
, f in i t ed inae~~~s io~~a l  of the processes dicstrib~utior~.s 

converge to those of a tentred Gausszan process { z ( a , P )  : 0 .< a < P < -x) ?rath 
the ro7~arzarlce structure 

1, z f a = a l a r ~ d 9 = 9 ~ ;  

$. z f a = a l  a n d p f  p', 
~ [ g ( a ,9 ) 2 ( a 1 ,Dl)] = if a #  a1a r ~ d p = P ' ;  

--;. 2 f D = a 1 ,  

0, otherwise. 

Proof. By tile same Fourier expansion used in the proof of Theorem 6.1, it suffices 
to show for distinct 0 < PI,.. . ,q k  < x that the real random vector 

converges in distribution to a random vector of the form (WO + Wl. WO+ W1.. . . . 
Wo + bVk) where bVo. . . . ,bVk are independent centred Gaussian randorn variables 
with cornrnon variance &. 

Enlployiiig the Clam6r-T;STold device, it suffices in turn to show for leal constants 
el .  . . . ,ck that 

27riJ-
1
 (.
 ce ( - 7-

j=1 
Tr (Ad,",) -- ~e l -e t ~  1Tr (~2Xi) 

j 

converges in distribution to a centred norrnal raiidoni variable with variance 
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We will apply Theorem 3.2 with 

and 
n 

mn = 
log(n/Kn) 

It is elementary that 

Note that 

= lim 1( 
Kn 12 ( e - z j ~ t l  / K ~- 1 e z j 9 t 1 1  /1<7x - 1 --

n+m log(n/Kn) j=I 1 j Kn 

by part (b) of Lemma 6.2. 
Thus the conditions of Theorem 3.2 hold with 

easily leading to  the result. 

Ren~ark6.4. The sort of covariailce structure for the limiting Gaussian process 
seen ia Theorems 6.1 and 6.3 was also reported for a different ensemble of random 
unitary matrices in [CL95]. 

We esselltially follow the notation and development given ia [HKOSOO] (see also 
[HKOOO]).For an n x rL ur1it)arymatrix U ;write 

xu(z )  := det (U - 21);  z E @, 

for the characteristic polyrlomial of U and set 

The zeroes of both xu and Cu are the eigenvalues of U and lie on the unit circle 
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Let log denote the usual branch of the logarithm defined on C \ { ~ JE C . 8 u  < O ) ,  

so that log(1 - = -C,=,xj 

Z J ~ Jfor II~I < 1. 15i.ite 1c1, . . . . w, for the eigenvalues 
1 1 )  

of l7 arid set 

for zE C\(UI{?cPt : 0 5 t < 1)).SO that Au(z) = log cu(z) mod 2r i .  Xote that 

for Izi > 1 
If z is a fixed point on the unit circle then. almost surely, z is not an elgerlvalue of 

l\Ir, and (z) is defined hloleover. if {7clh) is a fixed sequence with / IL 'L~> 1 for 
all k and llmL,, 7 c ~= z , then lirnkim AU(?cL)= Au(z). TVe know from Theorem 
2.1 that E[Tr  (Mi) ]  = 0 and E[Tr  ( M i )  Tr (JI;)] = 6 , ~(J A n). Therefore. 

X 

lilxi A,v,,(71):) = - 111n c-
1 ( I )  1 Tr (31;3) 

h - x j  k im  J 7 0 ;  = -Cr  zl 
,=1 3=1 

in L'. Con~equent~ly, 

The following appears in [HK000] (see also [KSOO]) and we refer the reader 
there for a discussion of the analogy between this result and Selberg's central lirviit 
theorem for the Riernann zeta filnction. 

Theorem 7.1. For disttnct points zl , . . . :zk on the unit circle, the randorn ?lectors 

conve'rge in dtstribtrtion as n 4 oc to a vector 4 independent com)plez standard 
normml random, variables. 

Proof. It suffices by the Cramkr--Wold device to show t>hat if e l ,  . . . .ck are corrlplex 
constants, then IFceAlti,, ( z e ) ) / m  converges in distribution t,o ( x e  l c ~12)' / 'z ,  
where Z is a complex standard nornlal randon1 variable. 

An argument similar to the one in the proof of Theorem 6.1 sho~vs that the 
conditions of Theorem 3.1 hold wit>h 

r2 

r7 jn  = -

log r2 ' 

and 

as required. 
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R e m a r k  7.2. Recalling the notat,iorl of $6,one can use the principle of the argument 
to  show t,hat 

(see, for example, [BI<OSOOj). Consequently, Theoreni 6.1 follows from Theoreni 
7.1. 

8. ORTHOGONALAND SYMPLECTIC MATRICES 

The rnethods used above in the context of the unitary group are directly appli- 
cable to  linear functionals of eigenvalues of Haar distributed randoni niatriccs in 
the orthogoiial and symplectic groups. The relevant monient formulae were estab- 
lished in [DS94]using the thesis worlc of Arun Rarn that has now been published in 
[Ram95, Rarn97j. We refer to these papers for background and details. Rather than 
completely redo the above developrnent in the orthogonal and symplectic settings, 
we just indicate how our methods extend by sketching the following analogue of 
Theorem 3.1. 

Theorem 8.1. Conszder a n  array of real constants  {n,, : n E W, j E W ) .  Suppose 
there ezasts LL and o2 such that  

lini C a,,.2j - p and lim C a i j(jA 211) = o2 
n i x  n 1 m

j=1 3=1 

Suppose also that  there exists a sequence of posi t i~ie  integers {rn, : rz E W) such  
that  

lim m n / n  = 0, 
72-30 

lirn 2 a,2, = 0, and lim C a $ ( j  A 2n) = 0. 
n - ~ 4  n-cc 

If &In i s  a Haar  distributed n x 7~ orthogonal matr ix ,  t h e n  C,"=,a,? Tr ( A q )  con-
verges in distribution as rL -+ cc t o  p + aZ ,  where Z i s  a real standard normal  
r a n d o m  variable. If hfn i s  a H a a r  distributed 2 r ~x 2n syrnplectic matr ix ,  t h e n  xEla,,, Tr (llli) converges in distribution as n + oc t o  -p  + o Z  

Proof. \Tie consider the orthogonal case, leaving the syinplectic case to  the reader. 
We begin with an analogue of Theorem 2.1. Consider non-negative integers 

al , . . . ,ak.  Let Z1,2 2 ,  . . . Z k  be independent standard normal random variables. 
Put  7, to  be 1 or 0 according t,o whether j is even or odd. Then 

and 

To establish (8.11,first recall frorn the proof of Theorem 2.1 that nf=,Tr (A4i)"r  
is the power suin synimetric function px applied to the eigenvalues of &In, where X 
is the partition ( lal ,2a2,. . . ,ka". Set K = l a l  + 2a2 + . . . + k a k .  
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The power sum synimetric functions may be expressed as linear cornhinations 
of the characters J, of the orthogonal group. These characters are indexed by 
partitions u with Young diagrams having at  rnost rj boxes in the first two columns 
(that is. u i  +u i  < I,.  where u' is the partition conjugate to u ) .  The change of basis 
coefficients are the characters of the Brauer algebra BK(n) .Froni pp. 186-187 of 
[Ram951 we have 

pA(zl, . . . , z n )= l { u ~ + u ~ S ~ ~ ~ } ~ ~ < , ~ ( ~ ) J ~ ( x l ~ ~ ~ ~C l x n ) ;  
,j=O vbK-23 

here for each partition 7 1  of K - is the 23, 0< 3 < j K / 2 ] .  the coefficient ~ 2 / K , ~ ( w )  
character of an irredi~cible representation of BK(r,) evaluated at a permutation w 
of K letters with cycle type A. 

Integrating over the orthogonal group and using orthogonality of characters 
shows that 

where 8 is t,he t,rivial partition. Observe that if K is odd, then E[px(A!fn)] = 0; 
whereas if K = 2n2 is even and n > 2 K ,  then Theorem 2.8 of [Ram971 gives 

where 

if a is odd. 
for j odd, f,(a) := 

(a  - 1 )!!, if a is even, 

Noting that 

co~npletesthe proof of (8 .1 ) .  
Turning to ( 8 . 2 ) ,Theorem 6.8 of [Ram951 provides an alternative expression for 

the simple power surns p, as linear combinations of the characters J,. There are 
several cases to consider. 

For 11 = 2r  + 1 odd the formulae in [Ram951 yield the following. If j < r ,  then 

whereas if j > r ,  then 

P, - 1{j is even ant1 r L (j+ 1 ) / 2 } + 
r-1 
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I\/lultiplying pj  and pk:  integrating over the orthogonal group, and using the orthog- 
onality of characters now yields (8.2). A very similar argument handles the case 
when n is even. 

The proof of the theorem is completed using the method of moments just as in 
Theoreni 3.1. 0 

Rernark 8.2. The identity (8.1) is a slightly corrected version of Theorem 4 in 
[DS94]. It is not clear how sniall rz can be to have equality of moments. For ex- 
ample, [Dia87] shows that E[Tr (A1n)a]= E[Zf]  for 0 < a < 2n + 1. The question 
rests on the semi-simplicity of B K ( n ) ,a matter which has not been fully resolved 
(cf. [FIW89. DWH991). 

We part,icularly thank Arun Ram for ext,ensive help. We thank Neil O'Connell 
for malting the preprints [HKOSOO] and [HKOOO] available to  us and for inviting 
us t,o a meeting at BRIMS sponsored by Hewlett-Packard and Microsoft where we 
received useful coniments on this work. 
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