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LINEAR FUNCTIONALS OF EIGENVALUES
OF RANDOM MATRICES
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ABSTRACT. Let My, be a random m X n unitary matrix with distribution given
by Haar measure on the unitary group. Using explicit moment calculations,
a general criterion is given for linear combinations of traces of powers of M,
to converge to a Gaussian limit as n — oo. By Fourier analysis, this result
leads to central limit theorems for the measure on the circle that places a
unit mass at each of the eigenvalues of M,. For example, the integral of
this measure against a function with suitably decaying Fourier coefficients
converges to a Gaussian limit without any normalisation. Known central limit
theorems for the number of eigenvalues in a circular arc and the logarithm of
the characteristic polynomial of M,, are also derived from the criterion. Similar
results are sketched for Haar distributed orthogonal and symplectic matrices.

1. INTRODUCTION

For n € N, let M,, be a random n x n unitary matrix with distribution given
by Haar measure on the unitary group. The eigenvalues of M, lie on the unit
circle T of the complex plane C. Write =, for the random measure on T that
places a unit mass at each of the eigenvalues of M,,. That is, if the eigenvalues are
{Vn1,... ,vnn}, then E,(f) == [} fdE, = >_; f(vnj). The purpose of this paper is
to study the asymptotic behaviour of the measures =, as n — oo.

Note that if f: T — C has Fourier expansion f(e?) = e f;€9%, then

o0 o0

Enlf) =nfo+ ) fi Tr(ME) + > f-j Tr (M),
Jj=1 J=1

where Tr denotes the trace and, for the moment, we are being informal about con-

ditions under which such developments are valid. Questions about the asymptotic

behaviour of ¢, (2, (f») — E[E.(f.)]) for a sequence of test functions {f,} and se-

quence of norming constants {c,} may therefore be placed in the larger framework

of questions about the asymptotic behaviour of Y772, (an; Tr (M) + bn; Tr (M3))
for arrays of complex constants {an; : n € N, j € N} and {b,; : n € N, j € N}.
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2616 PERSI DIACONIS AND STEVEN N. EVANS

In §3 we give a general criterion under which such sequences of linear com-
binations of traces converge in distribution to normal. The main tool is an exact
computation of the joint moments of the random variables Tr (M) due to Diaconis
and Shahshahani [DS94] that we recall in §2.

An immediate consequence of this convergence criterion is that if f : T — R
is a test function such that >, I£51213] < oo, then E,(f) — E[E,(f)] converges in

distribution to a centred normal random variable Z(f) with E[E(f)?] = > | £l
(see §5) — a result which follows easily from those in [DS94], but which was made
explicit in [Joh97]. We also consider the multivariate generalisation of this result for
a collection of such test functions. These results are used to show that the complex
Poisson integrals of the measures =, converge to a Gaussian analytic function on
the unit disk with interesting value distribution properties.

More generally, we establish in §4 that if the sequence {Z’;:_k |Fi1%5  een s
slowly varying, then

En(f) ~ E[En(f)]
5= f314l

converges in distribution to standard normal.

In §6 we recover the results of [Wie98, Sos00] on the number of eigenvalues in a
fixed arc. We show that if f is the indicator function of the set {e* : 6 € [, 8]},
then

converges in distribution to a complex standard normal random variable. (Recall
that a complex random variable is said to be standard complex normal if the real
and imaginary parts are independent centred (real) normal random variables with
common variance %) Furthermore, we recover the multivariate extension of this
result for several intervals in a manner that “explains” the intriguing covariance
structure found in [Wie98] as a consquence of the Fourier expansions of the indicator
functions of the intervals. We also consider the analogous asymptotics for the
number of eigenvalues in arcs which shrink in length as the dimension n increases.

Our methods also recover the results [HKOO00] (continued from those in [KS00])
on the asymptotic normality of the suitably normalised logarithm of the charac-
teristic polynomial of M,,. As remarked in [HKOO0], this result coupled with an
application of the argument principle gives another “explanation” of the covariance
structure of [Wie98].

The main virtue of our results on linear combinations of traces is their consid-
erable generality and the fact that they follow from rather elementary method—of—
moments arguments. They rely on a small amount of representation theory for the
unitary group and avoid the use of analytic tools such as Szegé—type theorems for
Toeplitz determinants. The present paper deals with linear functionals of Z,, of the
form [ f(0) =, (df), but a similar development is possible for quadratic functionals
of the form [[ f(6,$) E,(d0) E,(d¢) and higher order functionals. Also, our meth-
ods are directly applicable to the orthogonal and symplectic groups, given that the
requisite moment formulae have been obtained in [DS94] (the technical report of
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A. Ram that was cited in [DS94] for the relevant representation theory of these
groups has now appeared as [Ram95] — see also [Ram97]). We outline the relevant
arguments in §8.

2. MOMENTS OF TRACES

Theorem 2.1. a) Consider a = (a1,... ,ax) and b = (b1,... ,bg) with a;,b; €
{0,1,...}. Let Z1,Za,...,Zy be independent standard complex normal ran-
dom variables. Then for n > (Zle jaj) Vv (25:1 Jbs),

b;

B | T (T 012" (e (vd))
j=1

= o ﬁj%“ﬂ'! =k ﬁ (\/321)(” (\/3Z7'>bj
g=1 j=1

b) For any j, k,
E | T (M2) Tr (MF)] = 85 A m).

Proof. Part (a) is Theorem 2 in [DS94] with a slightly different (and incorrect)
condition on a,b. For the sake of completeness, we redo the proof in [DS94].

Define the simple power sum symmetric function p; to be the symmetric function
pi(x1,. .., 2n) = @} + -+ + 2. Let u be the partition (191,2% ... k%) of the
integer K = lai + 2ag + -+ + kax and set p, = []; p';j to be the corresponding
compound power sum symmetric function. Associate p with the conjugacy class of
the symmetric group on K letters that consists of permutations with a; j—cycles
for 1 < j < k. We have the expansion

Pu= ) Xush

ARK

where the sum is over all partitions of K, the coefficient Xi\t is the character of
the irreducible representation of the symmetric group associated with the partition
A evaluated on the conjugacy class associated with the partition u, and s, is the
Schur function corresponding to the partition A (see 1.7.8 of [Mac79]).

Given an n X n unitary matrix U, write s)(U) (resp. p,(U)) for the function sx
(resp. p,) applied to the eigenvalues of U. Writing £(\) for the number of parts of
the partition A (that is, the length of A), the functions U > s, (U) are irreducible
characters of the unitary group when £(A) < n and s,(U) = 0 otherwise (see §11.1
of [Lit58]). Thus

E [sx(Mn)sﬂ(Mn)] = 51 (EN) < ),
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Set v = (1%1,2% ... k%) and L = 1b; + 2by + - - - + kby, . We have

T (e 0y (e or)”

j=1

~E [p, (M0)p, (V)]

| (o) (g 0m)

=0KkrL Z Xax31(E(N) < n).
MK

(2.1)

When K < n, all partitions of K are necessarily of length at most n, and so,
by the second orthogonality relation for characters of the symmetric group (see
Equation (4.2;5) of [Lit58]), the rightmost term of (2.1) becomes

k k
OO Hjaja,j! = Oub Hjajaj!,

i=1 j=1

which coincides with the claimed mixed moment of /7 Zi,1<j <k, (see Lemma
1 of [DS94)).
Turning to part (b), we have from (2.1) that

BT (M) Tx (MS)}=]kZ|xn]1 ) <n),

where (j) is the partition of j consisting of a single part of size j. Now XE\].) =0
unless )\ is a hook partition (that is, a partition with at most one part of size greater
than 1), in which case

= (1
(see, for example, Exercise 4.16 in [FH91]). Since there are j An hook partitions of

j of length at most n, part (b) follows. O

Remark 2.2. Tt is shown in [Rai97] that the eigenvalues of M for j > n are dis-
tributed as n independent uniform random variables on T.

3. LINEAR COMBINATIONS OF TRACES

Theorem 3.1. Consider an array of complex constants {an; : n € N, j € N}.
Suppose there exists o such that

o0
. 2/ 2
lim > an;*(5 An) = 0.
i=1
Suppose also that there exists a sequence of positive integers {m, : n € N} such
that

lim m,/n =20
n—oo
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and
o0
. 2/ .
Jim > lans (G An) =0.
j=mn+1

Then 3777, anj Tr (M}) converges in distribution as n — oo to o Z, where Z is a
complex standard normal random variable.

Proof. Recall from Theorem 2.1 that E[Tr(M7)] = 0 and E[Tr (M}) Tr (M})] =
d;jk(j An). Consequently, the series 377, an; Tr (M) converges in L? for each n
and limn—eo E[| 3272, 1 an; T (M3)[?] = 0.

It therefore suffices to show that o=" 77" ap; Tr (M) converges in distribution
as n — oo to a complex standard normal random variable. Let Zy, Z1, Z,... be a
sequence of independent complex standard normals. From Theorem 2.1 we know
that

a B
My, Moy
E (0 an Tr (M) b 4 an; Tr (M)
=1 =1
m. @ m 'B
=E | anViZ; > anViZ;
j=1 j=1
[ 1/2 o 1/2 B
My M
=E Z |an;|%j Zo Z an;|?J Zo ,
=1 =1

provided that am, < n and fm, < n. The result now follows by convergence of
moments for complex normal distributions and the assumption that m,,/n — 0. O

A straightforward adaptation of the methods in the proof of Theorem 3.1 estab-
lishes the following result. The details are left to the reader.

Theorem 3.2. Consider arrays of complex constants {an; : n € N, j € N} and
{bn; :n €N, j € N}. Suppose there exist o2, 72, and 7y such that

(e @)
. 2/ - 2
nlgr;ozllanjl (G An)=o?
=

o0
: 2 2
Jim D b P( An) =77,
=1
and
o0
nh—>n;o Z anjbnj(j A n) = .
j=1
Suppose also that there exists a sequence of positive integers {my : n € N} such
that

lim m,/n=0
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and
Tm ST (ang? + buyl?)(j Am) = 0.
J=mnt1

Then E?i1(anj Tr (M) + by; Tr (M3)) converges in distribution as n — oo to
X +1Y, where (X,Y) is a pair of centred jointly normal real random variables with

1
—(02 +72 4+ 2R7),

E[X? = ;

1
IE[YQ] = 5(02 +72 - 2Ry),
and
E[XY] = Sv.
4. INTEGRATION AGAINST FUNCTIONS SATISFYING
A FOURIER GROWTH CONDITION

It is immediate from Theorem 2.1 that for each k € N the random vector
(Tr (M), Tr(M?2),..., Tr (MF)) converges in distribution to (Z1, V2%, ... , VkZy)
as n — oo, where Zy,Zs, ..., Zy are independent standard complex normal ran-
dom variables. Therefore, if f(0) = Z?z_k fjeijo is a real-valued trigonometric

polynomial, so that f_ = f then
En(f) = EEn(f)] = En(f) — nfo

(3 T Mg+ F; T (M)

[(RF) R T (M) — (SF)(S Tr (M)

Il
{1]

I
Mw

5. 1

J

=2
1

Il

J

converges in distribution as n — oo to a centred normal with variance

k
42[ RE?+ JOHR] = 3 151
j=—k

—

This observation suggests that Z,(f) — E[Z,(f)] should converge to normal when
f is no longer just a trigonometric polynomial but more generally when f is a real-
valued function of the form f(0) = 3., f;€9? with >jen |£i1215] < oo. We find
in the §5 that this is indeed the case (see Theorem 5.1).

First, however, we establish a more general result that shows that even when

S APl =
JEL
it can still sometimes be the case that

is asymptotically normal.
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Given f € L*(T) (where we define L?(T) to be the space of real-valued square—
integrable functions), write

~ 1 .
= [ e7f(0)dh, jeZ
fimgr [es0)d0, jez,
for the Fourier coefficients of f.
Recall that a positive sequence {ck }xen is said to be slowly varying if

. Clak
lim ZLAk)
k—oo Ck

=1, A>0,
(see [Fel71, BGT8T)).

Theorem 4.1. Suppose that f € L*(T) is such that {Z?z_k 1£i1%7 }ken is slowly
varying. Then

En(f) — E[En (/)]
Y 1F121l

converges in distribution to a standard normal random variable as n — oo.

Proof. Note first of all for any Borel subset A C T that the probability M, has
at least one eigenvalue in A (that is, P{Z,(A) # 0}) is, by symmetry, at most
ny= [, df. Therefore, Z,(f) only depends on the L*(T) equivalence class of f.
Similarly, we have that

En(f) = lim }: fi€9° 2,,(d6)

k— o0

in probability, because

hm Z fe”e

]——k

in Lebesgue measure. Thus

) o A
Enlf) =D fi T M+ f Te M3
j=1
Set cn = >0, 1F51215] = 2375 |/j124. We will apply Theorem 3.2 with

an; = f3/Ven and  bn; = f;/v/en-

Because {cp Inen is slowly varying, it is clear that there is a sequence of integers
{mn}nen such that lim, o, m, = 0o, lim,—co my/n = 0, and

(4.1) lim ¢, /cn = 1.
n-—0o0

Summing by parts,

(o)

1 1 1
4.2 2 E F? = E 11— C = 2 : , i
*2) |f]| j:n(cj+1 C]) j+ 1 ) K iGG+1) cnn +1

j=n+1 J
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Note also that

oo
n 1
(4.3) lim — > ¢j— =1
e jG+1)
by Theorem 1 in §VIIL.9 of [Fel71].
Combining equations (4.1), (4.2), and (4.3) gives

oo
dim 37 (ol o gl AR) = 0.
j=my+1

Thus the conditions of Theorem 3.2 hold with

1
2 _ 2: = -
o =T 0 27

and this immediately leads to the result. O

1
5. INTEGRATION AGAINST FUNCTIONS IN Hg

Let HQ% denote the space of functions f € L?(T) such that

1713 = S 1A < oo,

jez
1
and define an inner product on Hy by

(f,9)1 = figslil.

JEZ

Alternatively, HQ% is the space of functions f € L?(T) such that

S T

and, moreover,

_ 1 (f(¢) — f(6)) (9(d) — 9(0))
{(f,9)4 = 153 // o (—;—‘3) do de
(see Equations (1.2.18) and (1.2.21) of [FOT94)).
1
The space H is an example of a Bessel-potential function space and it coincides
1 1
with the Besov space By ,, the Sobolev-Lebesgue space Fy, and the Lipschitz space
AQ%,2 (see Equations (18) and (19) in §3.5.4 and Equation (13) in §3.5.1 of [ST87]).
Finally, note that if we take the complex Poisson integral of f € L?(T), namely
1 e + 2
PH:) = o [ Soref(6) a8

T or ) eif — 2

0o
=fo+2) fi7, |7 <1,

Jj=1
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then, letting m denote Lebesgue measure on the disk {z € C: |z| < 1},

/[de dz :/ 21 4Z|f|2 202001 pdp
0
=27r2|fj| 7.

JEZ
Thus, f € HQ% if and only if
/’dpf m(dz) < o0,
and
1 dPf(z) dPg(z) 1

<f’g>%_% dz dz m(dz)’ f’g€H2'
Theorem 5.1. If f1, ..., fu € Hi with B[S, (fu)] =n [ f;(0)dd =0 for 1 <h <
k, then the random vector (Z,(f1), - .. , En(fx)) converges in distribution to a jointly

normal, centred random vector (2(f1),...,E(fr)) with E[Z(f2)E(fe)] = (fr) fo) s

Proof. Employing the Cramér-Wold device (see Theorem 2.9.5 of [Dur96]), it is
enough to consider the case kK = 1. In this case, however, the result is immediate
from Theorem 4.1. O

1
Remark 5.2. A function in H5 need not be a.e. equal to a continuous or even

bounded function (see §3.5.4 of [ST87]). However, note that if f € H2% , then, by

(5.1) and Markov’s inequality, the Lebesgue measure of the set {(6,9) : |f(¢) —

f(0)] > Alsin((¢p — 6)/2)|} converges to 0 as A — oo. In particular, a function in
1

HZ cannot have jump discontinuities.

Remark 5.3. It is immediate from (5.1) that if f € HQ% and ¢ : R — R is Lipschitz
1
(that is, |¢(z) — p(y)| < K|z — y| for some constant K), then ¢o f € Hy .

Remark 5.4. The space HQ% equipped with the inner product (-, -) 1 is nothing other
than the Dirichlet space and Dirichlet form of the symmetric Cauchy process on
the circle (see Example 1.4.2 of [FOT94]). (The symmetric Cauchy process on the
circle is just the usual symmetric Cauchy process on the line wrapped around the
circle.)

This observaltion can be used to deduce various features of the Gaussian process
{E(f): f € HE, [ [ = 0}, several of which will be in a forthcoming paper of the
authors. We merely point out for the moment that this fact has consequences for

1
the continuity properties of functions in H5 . There is a natural notion of capacity
1
associated with (-, -)%, and any function in H3 has a quasi-continuous modification
1
with respect to this capacity. That is, if f € Hg , then there exists g such that g = f
a.e. and for any € > 0 there is an open set G of capacity less than e such that g
restricted to T\G is continuous (see Theorem 2.1.3 of [FOT94]). We note that the
capacity associated with (-, ) 1 appearing in this definition can be replaced by the
classical logarithmic capacity on T.
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Probabilistically, quasi-continuity can be characterised as follows. Write (X, P*)
for the symmetric Cauchy process on the circle. A function g is quasi-continuous
if there exists a set N C T such that P*{3¢ > 0: X; € N} =0 for all z € T and

IP’m{lifItlg(Xs) = g(X;) and li%xtlg(Xs) =g(X¢-), VE>0}=1

for all x ¢ N.
It is certainly not the case that quasi-continuity is a sufficient condition for

1
membership in H} . For example, we know from above that the indicator function

1
of an interval [a, 5] with 0 < o < § < 27 is not in H? (this is also obvious by
direct computation of Fourier coefficients — see the proof of Theorem 6.1 below).
However, because the Cauchy process does not hit points we have

P?{3t>0:X; € {o,8} or X3 € {a,0}} =0

for all z > 0 and hence the indicator function is quasi-continuous.

Remark 5.5. 1t is immediate that if f,g € L°°('JI‘)ﬂH2%, then the product fg is also
in L>(T) N HZ% with [|fg]ly < Hf“ongH% + ||g||oo||f”% This is an instance of a
standard fact for Dirichlet forms (see Theorem 1.4.2(ii) of [FOT94]), but it is also
immediate from (5.1). The algebra L>(T)N H2% is known as the Krein algebra and
appears in the study of Hankel operators (see §5.2 of [BS99)).

Example 5.6. Consider the complex Poisson integral of the random measure Z,,,
that is, the random analytic function F,, on {z € C: |z| < 1} given by

19 P
F.(z2) = —~1~/—_—'.— n(d6)

o | e —z 7
et ZTr M)z
27T

The harmonic function RF;, has the measure Z, as its “boundary value” in the
sense that as 7 T 1 the measure RF,(re??)df converges weakly to =, (that is,
[FO)RE,(re?®)dd — [ f(0)Z,(df) for all real-valued continuous functions f).
Note also that

1 X, (2)  n

™ X]\,[n( ) 27!"

Fo(z) =

where
X, (z) = det(M,, — zI)
is the characteristic polynomial of M,,.

It follows from Theorem 5.1 that the finite dimensional distributions of F,, — 5
converge to those of the random analytic function

1 & ,
15z, <t
j=1

where Z1,Z,,... are i.i.d. standard complex normal random variables. Indeed,
one can easily check tightness and actually show convergence in distribution in the
space of continuous C-valued functions on {z € C : |z| < 1} equipped with the
topology of uniform convergence on compacts, but we leave this to the reader.
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Random analytic functions such as G have been much studied (see, for example,
[Kah85]). For example, let ¢(r,b) denote the number of zeroes of G(z) — b in
{ze€C:|z] <r}. For K >0 set

T b
C*(K,r) = sup/ Egf—’—)ds
pl<kJL S8
and
" (s, b
Cu(K,r):= inf Mdé

b|<K J1 S
2

An easy fourth moment calculation and Borel-Cantelli argument shows that

o0

. 1

lim(1 — 2§ i Z2%r% = = as.

;{111( T) '1] i 4as
=

Therefore, by Theorem 1 of [Off72] and the remarks after that result we have
C*(K,r) _ C.(K,r)

lim 2 = Jim L
A1t log(+5) it log(:X)

1—r 1—7r

Consequently, almost surely G takes every value in the complex plane infinitely
often. In fact, G restricted to any sector of the unit disk almost surely takes every
value infinitely often (see Theorem 2 of [Off72]). In particular, almost surely for each
b € C every point of the circle T is a limit point of the level set {|z] < 1: G(z) = b}.

6. NUMBER OF EIGENVALUES IN AN ARC

For 0 < o < 8 < 27 write N, (o, ) for the number of eigenvalues of M,, of
the form e with 6 € [, 3]. That is, N,(c, 3) = Z,(f) where f is the indicator
function of the arc {e¥ : @ € |o, 8]}. Note that E[N, (o, 3)] = n(B — «)/2r. The
following result is in [Wie98].

Theorem 6.1. As n — oo, the finite-dimensional distributions of the processes
Nn(a7 ) — E[Nn(a’ﬁ)]
1logn ’

converge to those of a centred Gaussian process {Z(a, ) : 0 < a < B < 27} with
the covariance structure

0<a<pf<2n,

L, dfa=ad and f=7,

L fa=o and B £,
ElZ(0,8)2(c/, 8 =41, ifata andf=p,

-1 iB=d,

0, otherwise.

Proof. Recall that the indicator function of the interval [, 3] has the Fourier ex-
pansion
1 X el _ =i 1 & etiB _ pija
- e 4 - -

1 iy
O — (8 — - - i R L
I C R ; j o ; FE
The result could be established using Theorem 4.1, but it is somewhat more in-
structive from the point of view of understanding how the covariance of Z arises to
proceed by a direct appeal to Theorem 3.2.
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It suffices to show for distinct 0 < ¢y, ..., < 27 that the real random vector
k
1 [ etive ) el ————
—_— Tr (M) — Tr (M3,
s |30 (5 o - S m o)
- =1

converges in distribution to a vector of independent centred Gaussian random vari-

ables with common variance gr3.
Employing the Cramér—Wold device, it suffices in turn to show for real constants

ci,...,C, that
1 X eiipe ) et ———————
P—— Te (M) — Tr (M3,
sy | o | 20 T - S O

converges in distribution to a centred normal random variable with variance
e .
272
¢

We will apply Theorem 3.2 with

e“"’ljlpé

1
- c ,
g 2miv/logn Z ¢ J

J4

eij‘Pe

1
b = i = — e 3 Cs—,
nj = fng 2m\/10gn2 ¢ J

14

and
n

Min = logn’

It is elementary that

1 = AN
— > 5h=q

& Jj=mn+1 J
and an application of part (a) of Lemma 6.2 below shows that the conditions of
Theorem 3.2 hold with

1
72__7-2._” —_ § C2
47(2 7 &

easily leading to the result. O
The following elementary result is used in the preceding proof and elsewhere.

Lemma 6.2. a) For0<0 <2
1 - ei?

li = 0.
n1—>r£>1<> logn Jz———:l J

b) For 6 >0,
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Proof. We only prove part (a). The proof of part (b) is similar and is left to the
reader. Summing by parts shows that it suffices to establish

but the expression inside the limit on the left-hand side is just
Lexp(i(n + 1)) — exp(if)
n exp(i6) — 1

O

We now consider the asymptotics of the number of eigenvalues in an arc that
shrinks with n. Fix a sequence of positive constants {K,, : n € N}. For 0 <
o < B < oo write Ny, (a, ) for the number of eigenvalues of M,, of the form e*
with 0 € [a/K,,B/K,]. Clearly, one cannot expect normal limiting behaviour if
Kin = O(L), but this turns out to be the only restriction.

Theorem 6.3. Suppose that K,, — oo and K,/n — 0 asn — 0o. Asn — 0o, the
finite-dimensional distributions of the processes

Np(a, B) = E[Nn (e, B)]
%\/log(n/Kn) ’

conwerge to those of a centred Gaussian process {Z(o,8) : 0 < a < B < oo} with
the covariance structure

0<a< f<oo,

1, ifa=a and f=70,
o L fa=d and £ 0,
E[Z(a,8)Z(c/,0)] =< %, ifa#d and B=7,
_%7 Zfﬂ = alv
0, otherwise.

Proof. By the same Fourier expansion used in the proof of Theorem 6.1, it suffices

to show for distinct 0 < ¢1,...,¢r < 0o that the real random vector
k
1 > <€»—im/Kn —1 e/ Bn
L[y (o - )
271 log(n/Kn) ]:Zl J " J (=1

converges in distribution to a random vector of the form (Wy + Wy, Wy + W1, ...,
Wo + Wy) where Wy, ... , Wy are independent centred Gaussian random variables
with common variance 57—1;

Employing the Cramér—Wold device, it suffices in turn to show for real constants
Cly... ,Ck that

X p—iive/Kn _ q . ijpe/Kn _ | ——ue
e | D | ) - S )
2miy/log(n/Kn) \ 4 = J J
converges in distribution to a centred normal random variable with variance

571}—2(%: s+ Z corcer).

VA !en
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We will apply Theorem 3.2 with

1 e~ Hwe/Kn _ 1
Anj = X ZCZ ; )
2miv/log(n/Ky) < J
etive/Kn _ 1
bpi = Qi = c - ,
e w/log (n/K,) Z ‘
and
B n
log(n/Ky)
It is elementary that
o0
log n/K =
Note that
1 n (e—ijcpg//Kn — 1) (eijw”/Kn _ 1>
lim —————— - - jAn
n—oco log(n/Kny) ; J j GAn)
1 n L L K., 1
— lim <e~zJ<py/Kn _ 1) (ezmu/Kn _ 1) -n
n—co log(n/Ky) 2 J Kn

1 n/Kn ‘SD : '(p . 1
— —tPert __ tpprrt -
nhm ———————log(n/K ] / (e 1) (e 1) ; dt

1, if po # e,
2, if o = e,

by part (b) of Lemma 6.2.
Thus the conditions of Theorem 3.2 hold with

P =7= ch + Z cocer |,
e/ e//
easily leading to the result. O

Remark 6.4. The sort of covariance structure for the limiting Gaussian process
seen in Theorems 6.1 and 6.3 was also reported for a different ensemble of random
unitary matrices in [CL95].

7. ASYMPTOTICS FOR THE CHARACTERISTIC POLYNOMIAL

We essentially follow the notation and development given in [HKOS00] (see also
[HKOO00]). For an n x n unitary matrix U, write

xu(z) :=det(U - zI), z€C,
for the characteristic polynomial of U and set
1 1
Cu(z) :=det(I — ;U) = (—;)”XU(Z), z#0.

The zeroes of both xy and (y are the eigenvalues of U and lie on the unit circle.
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Let log denote the usual branch of the logarithm defined on C\{v € C : v < 0},
so that log(1 —v) = — 3772, v/ /j for |v| < 1. Write wy, ... ,w, for the eigenvalues

of U and set
— _ W
Ay (z) == ;log (1 p; )
for z € C\(U,{wet : 0 <t < 1}), so that Ay(z) = log(y(z) mod 27i. Note that

o 1 Tr (U7
Ao == 3
Jj=1
for |z| > 1.
If z is a fixed point on the unit circle then, almost surely, z is not an eigenvalue of
M, and A, (2) is defined. Moreover, if {wy} is a fixed sequence with |wy| > 1 for
all k and limy_, oo wi = 2, then limg o0 Ay (wg) = Ay (2). We know from Theorem

2.1 that E[Tr (M})] = 0 and E[Tr (MJ) Tr (M})] = §,x(5 An). Therefore,

(o] 5 (o] y
: , 1T (M) 1 Tr (M)
Jdim Aag, (we) = = lim } 55— 50 = =3 S —5
J=1 J=1
in L?. Consequently,

01 Tr (M
M) = - 3 TG
=17

The following appears in [HKOO00] (see also [KS00]) and we refer the reader
there for a discussion of the analogy between this result and Selberg’s central limit
theorem for the Riemann zeta function.

Theorem 7.1. For distinct points z4,. .. , zi on the unit circle, the random vectors

\/liﬂ(AM" (z1),--+  Anr, (21))

converge in distribution as n — oo to a vector of independent complex standard
normal random variables.

Proof. Tt suffices by the Cramér—Wold device to show that if ¢q, ... , ¢k are complex
constants, then 3, ceAnr, (20))/v/Iogn converges in distribution to (3, [e|?)'/?Z,
where Z is a complex standard normal random variable.

An argument similar to the one in the proof of Theorem 6.1 shows that the
conditions of Theorem 3.1 hold with

s — >ecez?
" i /logn
n
My, =
" logn’

and
ot =3 lel?,
¢

as required. O
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Remark 7.2. Recalling the notation of §6, one can use the principle of the argument
to show that

Nae, ) ~ EINu (@, B)] = =3 (Aar, () ~ Aa, (@)

(see, for example, [HKOSO00]). Consequently, Theorem 6.1 follows from Theorem
7.1.

8. ORTHOGONAL AND SYMPLECTIC MATRICES

The methods used above in the context of the unitary group are directly appli-
cable to linear functionals of eigenvalues of Haar distributed random matrices in
the orthogonal and symplectic groups. The relevant moment formulae were estab-
lished in [DS94] using the thesis work of Arun Ram that has now been published in
[Ram95, Ram97]. We refer to these papers for background and details. Rather than
completely redo the above development in the orthogonal and symplectic settings,
we just indicate how our methods extend by sketching the following analogue of
Theorem 3.1.

Theorem 8.1. Consider an array of real constants {a,; : n € N, j € N}. Suppose
there exists . and o such that

oo oo
. _ ; 2 (s _ 2
nh—{%o E 1 Gno; = jb  and nlLrgo E 1 ay,;(J A 2n) =0".
]: J=

Suppose also that there exists a sequence of positive integers {m, : n € N} such
that

lim m,/n =0,

n-—0o0
[e9) [o9)
. . . 2 /. _
nan;o Z lan2j| =0, and nh_)n;o ‘ Z (7 A2n) = 0.
J=ma+1 j=mn+1

If My, is a Haar distributed n x n orthogonal matriz, then 372, an; Tr (MJ) con-
verges in distribution as n — oo to u + oZ, where Z is a real standard normal
random variable. If M, is a Haar distributed 2n x 2n symplectic matriz, then
Yoy @nj Tr (M) converges in distribution as n — 0o to —p+oZ

Proof. We consider the orthogonal case, leaving the symplectic case to the reader.

We begin with an analogue of Theorem 2.1. Consider non-negative integers
a1,...,a5. Let Z1,Z5,...Z be independent standard normal random variables.
Put n; to be 1 or 0 according to whether j is even or odd. Then

k k k
81  E|[[mm)s | =k |[[(Viz; +0)¥|, n=2) ja,
j=1 j=1 j=1
and
(8:2) E [(Tx (M) —n;) (Tr (Mg) —nk)] = ;x(5 A 2n).

To establish (8.1), first recall from the proof of Theorem 2.1 that H;?:l Tr (M7)%
is the power sum symmetric function py applied to the eigenvalues of M,,, where A
is the partition (1%1,2%2 ... k%). Set K = laj + 2as + - - + kag.
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The power sum symmetric functions may be expressed as linear combinations
of the characters [, of the orthogonal group. These characters are indexed by
partitions v with Young diagrams having at most n boxes in the first two columns
(that is, v +v4 < n, where v/ is the partition conjugate to v). The change of basis
coefficients are the characters of the Brauer algebra By (n). From pp. 186-187 of
[Ram95] we have

LK/2]
pal@L, ) = > D> MY+ v < ndxken (@)@, 2n);
=0 vkK—2j

here for each partition v of K —2j, 0 < j < [K/2], the coefficient x% ,(w) is the
character of an irreducible representation of Bk (n) evaluated at a permutation w
of K letters with cycle type A.

Integrating over the orthogonal group and using orthogonality of characters
shows that

Elpa(Mn)] = x5 o (@),

where () is the trivial partition. Observe that if K is odd, then E[px(M,)] = 0;
whereas if K = 2m is even and n > 2K, then Theorem 2.8 of [Ram97] gives

k
Xgm,n(w) = H fj(a'j)a
j=1
where

for j odd, f;(a):

Il

{0, if a is odd,

(a =D, if a is even,

la/2]
for j even, f;(a):= Z (é)@s—l)!!js.

s=0
Noting that
fi(a;) =K [(\ijj + ﬂj)“"]
completes the proof of (8.1).
Turning to (8.2), Theorem 6.8 of [Ram95] provides an alternative expression for
the simple power sums p; as linear combinations of the characters [,. There are

several cases to consider.
For n = 2r + 1 odd the formulae in [Ram95] yield the following. If j < r, then

(r=DA(G-1)
p; = 1{j is even} + Z (=D j=e,10);

£=0
whereas if j > r, then
r—1
pj=1{jisevenand r > (j +1)/2} + Z(“l)gf(j_gyle)
£=0

(F=1)A(2r-1)

D D G N (TR T e

l=r
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Multiplying p; and py, integrating over the orthogonal group, and using the orthog-
onality of characters now yields (8.2). A very similar argument handles the case
when n is even.

The proof of the theorem is completed using the method of moments just as in
Theorem 3.1. O

Remark 8.2. The identity (8.1) is a slightly corrected version of Theorem 4 in
[DS94]. It is not clear how small n can be to have equality of moments. For ex-
ample, [Dia87] shows that E[Tr (M,)*] = E[Z{] for 0 < a < 2n + 1. The question
rests on the semi-simplicity of Bg(n), a matter which has not been fully resolved
(cf. [HW89, DWH99]).
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