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LINEAR FUNCTIONS ON THE CLASSICAL MATRIX GROUPS

ELIZABETH MECKES

Abstract. Let M be a random matrix in the orthogonal group On, dis-
tributed according to Haar measure, and let A be a fixed n × n matrix over
R such that Tr(AAt) = n. Then the total variation distance of the random

variable Tr(AM) to a standard normal random variable is bounded by 2
√

3
n−1

,

and this rate is sharp up to the constant. Analogous results are obtained for

M a random unitary matrix and A a fixed n × n matrix over C. The proofs
are applications of a new abstract normal approximation theorem which ex-
tends Stein’s method of exchangeable pairs to situations in which continuous
symmetries are present.

1. Introduction

Let Øn denote the group of n×n orthogonal matrices, and let M be distributed
according to Haar measure on Øn. Let A be a fixed n × n matrix over R, subject
to the condition that Tr (AAt) = n, and let W = Tr (AM). D’Aristotile, Diaconis,
and Newman showed in [4] that

sup
A:Tr (AAt)=n
−∞<x<∞

|P(W ≤ x) − Φ(x)| → 0

as n → ∞. Their argument uses classical methods involving sub-subsequences and
tightness, and cannot be improved to yield a theorem for finite n. Theorem 4
below gives an explicit rate of convergence of the law of W to the standard normal
distribution in the total variation metric on probability measures, specifically,

(1) dTV (�LW , N(0, 1)) ≤ 2
√

3
n − 1

for all n ≥ 2.
The history of this problem begins with the following theorem, first given rigorous

proof by Borel in [2]: let X be a random vector on the unit sphere Sn−1, and let
X1 be the first coordinate of X. Then P

(√
nX1 ≤ t

)
−→ Φ(t) as n → ∞, where

Φ(t) = 1√
2π

∫ t

−∞ e−
x2
2 dx. Since the first column of a Haar distributed orthogonal

matrix is uniformly distributed on the unit sphere, Borel’s theorem follows from
Theorem 4 by taking A =

√
n⊕0, where 0 is the n−1×n−1 matrix with all zeros.

Borel’s theorem was generalized in one direction by Diaconis and Freedman [8], who
proved the convergence of the first k coordinates of

√
nX to independent standard
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normal random variables in total variation distance for k = o(n); [8] also contains
a detailed history of this problem. This line of research was further developed in
[7], where a total variation bound was given between an r × r block of a random
orthogonal matrix and an r × r matrix of independent standard Gaussians, for
r = O

(
n1/3
)
. This was later improved by Jiang (see [12]) to r = O

(
n1/2
)
, which

he proved was sharp. In the same paper, Jiang also showed that given a sequence of
Haar distributed random matrices {Mn}, there is a sequence of Gaussian matrices
{Yn} with Yj defined on the same probability space as Mj such that if

εn = max
1≤i≤n

1≤j≤mn

∣∣√nMij − Yij

∣∣

with mn = O( n
log n ), then εn → 0 in probability as n → ∞. Thus an n × mn

block of a Haar distributed matrix can be approximated by a Gaussian matrix ‘in
probability’. Theorem 4 gives another sense in which a random orthogonal matrix
is close to a matrix of independent normals by giving a uniform bound of distance
to normal over all linear combinations of entries of M .

Another special case of Theorem 4 is A = I, so that W = Tr (M). Diaconis and
Mallows (see [5]) first proved that Tr (M) is approximately normal; Stein [15] and
Johansson [13] later independently obtained fast rates of convergence to normal of
Tr (Mk) for fixed k, with Johansson’s rates an improvement on Stein’s. In studying
eigenvalues of random orthogonal matrices, Diaconis and Shahshahani [9] extended
this to show that the joint limiting distribution of Tr (M), Tr (M2), . . . , Tr (Mk)
converges to that of independent normal variables as n → ∞, for k fixed.

The other source of motivation for theorems like Theorem 4 is Hoeffding’s com-
binatorial central limit theorem [11], which can be stated as follows. Let A = (aij)
be a fixed n × n matrix over R, normalized to have row and column sums equal
to zero and 1

n−1

∑
i,j a2

ij = 1. Let π be a random permutation in Sn, and let
W (π) =

∑
i aiπ(i). Then, under certain conditions on A, W is approximately

normal. Later, Bolthausen [1] proved an explicit rate of convergence via Stein’s
method. Note that if

Mij =

{
1, π(j) = i,

0, otherwise,

then W = Tr (AM), and so Hoeffding’s theorem is really a theorem about the
distribution of linear functions on the set of permutation matrices.

The unitary group is another source of many important applications; see, e.g.
[6]. In Section 4, the random variable Tr (AM) for A a fixed matrix over C and M a
random unitary matrix distributed according to Haar measure on Un is considered.
The main theorem of the section, Theorem 6, gives a bound on the total variation
distance of Re

[
Tr (AM)

]
to standard normal analogous to that of Theorem 4; this

can be viewed as a theorem about real-linear functions on Un. Corollary 7 shows
that in the limit, the complex random variable Tr (AM) is close to standard complex
normal. The methods used here cannot be used directly to prove the convergence
of Tr (AM) to the standard complex normal; they work for approximation of real-
valued random variables only. A version of the present methods in a multivariate
context is forthcoming in [3], which includes a rate of convergence for Corollary 7.
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Notation and conventions. The total variation distance dTV (µ, ν) between the
measures µ and ν on R is defined by

dTV (µ, ν) = sup
A

∣∣µ(A) − ν(A)|,

where the supremum is over measurable sets A. This is equivalent to

dTV (µ, ν) =
1
2

sup
f

∣∣∣∣
∫

f(t)dµ(t) −
∫

f(t)dν(t)
∣∣∣∣ ,

where the supremum is taken over continuous functions which are bounded by 1
and vanish at infinity; this is the definition used in what follows. The total variation
distance between two random variables X and Y is defined to be the total variation
distance between their distributions:

dTV (X, Y ) = sup
A

∣∣P(X ∈ A) − P(Y ∈ A)
∣∣ = 1

2
sup

f

∣∣Ef(X) − Ef(Y )
∣∣.

We will use N(µ, σ2) to denote the normal distribution on R with mean µ and
variance σ2.

2. An abstract normal approximation theorem

In this section, a general approach for normal approximation to random variables
with continuous symmetries is developed. The ideas which give rise to Theorem
1 below first appeared in Stein [15], where fast rates of convergence to Gaussian
(as n → ∞) were obtained for Tr (Mk), with k ∈ N fixed and M a random n × n
orthogonal matrix.

Theorem 1. Suppose that (W, Wε) is a family of exchangeable pairs defined on a
common probability space with EW = 0 and EW 2 = σ2. Suppose that there are
functions α and β with

E|α(σ−1W )| < ∞, E|β(σ−1W )| < ∞,

a random variable E, and a constant λ such that
(i)

1
ε2

E
[
Wε − W

∣∣W ] = −λW + o(1)α(W ),

(ii)
1
ε2

E
[
(Wε − W )2

∣∣W ] = 2λσ2 + Eσ2 + o(1)β(W ),

(iii)
1
ε2

E |Wε − W |3 = o(1),

where o(1) refers to the limit as ε → 0, with the implied constants deterministic.
Then

dTV (W, Z) ≤ 1
λ

E |E| ,

where Z ∼ N(0, σ2).

Remarks. (i) A straightforward computation using condition (i) shows that
the random variable E of condition (ii) has EE = 0.
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(ii) The factor of 1
ε2 in each of the three expressions above could be replaced

by a general function f(ε). In practice, Wε is typically constructed such
that Wε − W = O(ε). This makes it clear that f(ε) = 1

ε2 is the suitable
choice for condition (ii). It is less clear that f(ε) = 1

ε2 is the suitable choice
for condition (i). In the applications given here, while Wε − W = O(ε),
symmetry conditions imply that

E
[
Wε − W

∣∣W ] = O(ε2).

Before beginning the proof, some background on Stein’s method is helpful. The
following lemma is key.

Lemma 2 (Stein). Let Z ∼ N(0, 1). Then
(i) For all f ∈ C1

o (R),

E
[
f ′(Z) − Zf(Z)

]
= 0.

(ii) If Y is a random variable such that

E
[
f ′(Y ) − Y f(Y )

]
= 0

for all f ∈ C1
b (R), then �L(Y ) = �L(Z); i.e., Y is also distributed as a

standard Gaussian random variable.
(iii) For g : R → R with Eg(Z) < ∞ given, the function

(2) Uog(t) = et2/2

∫ t

−∞

[
g(x) − Eg(Z)

]
e−x2/2dx

is a solution to the differential equation

f ′(x) − xf(x) = g(x) − Eg(Z).

The lemma says that the standard Gaussian distribution γ on R is the unique
distribution with the property that

∫
R
(f ′(x)−xf(x))dγ(x) is always zero. The idea

of Stein’s method is that if W is a random variable such that E
[
f ′(W )−Wf(W )

]
is

always small, then the distribution of W is close to γ. There are several approaches
to bounding this quantity; the approach taken here is modelled on the method of
exchangeable pairs (see [14]). In any of the approaches, the following bounds on Uo

are useful.

Lemma 3 (Stein). Let Uo be the operator defined in equation (2). Then
(i) ‖Uog‖∞ ≤

√
π
2 ‖g − Eg(Z)‖∞ ≤

√
2π‖g‖∞.

(ii) ‖(Uog)′‖∞ ≤ 2‖g − Eg(Z)‖∞ ≤ 4‖g‖∞.
(iii) ‖(Uog)′′‖∞ ≤ 2‖g′‖∞.

With this background, the proof of Theorem 1 is straightforward.

Proof of Theorem 1. By considering σ−1W instead of W , we may without loss
assume that σ = 1. For g ∈ C∞

o (R) fixed, let f be the solution given in equation
(2) to the differential equation

f ′(x) − xf(x) = g(x) − Eg(Z).

Fix ε. By the exchangeability of (W, Wε),
0 = E [(Wε − W )(f(Wε) + f(W ))]

= E [(Wε − W )(f(Wε) − f(W )) + 2(Wε − W )f(W )]

= E
[
E
[
(Wε − W )2

∣∣W ] f ′(W ) + 2E
[
(Wε − W )

∣∣W ] f(W ) + R
]
,

(3)
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where R is the error in the derivative approximation. By Taylor’s theorem and
Lemma 3,

|R| ≤ ‖f ′′‖∞
2

|Wε − W |3 ≤ ‖g′‖∞|Wε − W |3,
and so by condition (iii),

lim
ε→0

1
ε2

E|R| = 0.

Dividing both sides of (3) by 2λε2 and taking the limit as ε → 0, conditions (i) and
(ii) yield

0 = E

[
f ′(W ) − Wf(W ) +

E

2λ
f ′(W )

]
= E

[
g(W ) − g(Z) +

E

2λ
f ′(W )

]
.

Rearranging and applying the bound on ‖f ′‖ from Lemma 3 yields∣∣Eg(W ) − Eg(Z)
∣∣ ≤ 2‖g‖∞

λ
E|E|.

Since C∞
o (R) is dense (with respect to the supremum norm) in the class of bounded

continuous functions vanishing at infinity, this completes the proof. �

3. The orthogonal group

This section is mainly devoted to the proof of the following theorem.

Theorem 4. Let A be a fixed n×n matrix over R such that Tr (AAt) = n, M ∈ Øn

distributed according to Haar measure, and W = Tr (AM). Let Z be a standard
normal random variable. Then for n > 1,

(4) d(W, Z)TV ≤ 2
√

3
n − 1

.

The bound in Theorem 4 is sharp up to the constant; consider the matrix A =√
n ⊕ 0 where 0 is the n − 1 × n − 1 matrix with all zeros. For this A, Theorem 4

reproves the following theorem, proved in [8] with slightly worse constant.

Theorem 5. Let x ∈
√

nSn−1 be uniformly distributed, and let Z be a standard
normal random variable. Then

dTV (x1, Z) ≤ 2
√

3
n − 1

.

It is shown in [8] that the order of this error term is correct.

Proof of Theorem 4. First note that one can assume without loss of generality that
A is diagonal: let A = UDV be the singular value decomposition of A. Then
W = Tr (UDV M) = Tr (DV MU), and the distribution of V MU is the same as the
distribution of M by the translation invariance of Haar measure.

Now define the pair (W, Wε) for each ε as follows. Choose H = (hij) ∈ Ø(n)
according to Haar measure, independent of M , and let Mε = HAεH

tM , where

Aε =

⎡
⎢⎢⎢⎢⎢⎣

√
1 − ε2 ε

−ε
√

1 − ε2 0
1

0
. . .

1

⎤
⎥⎥⎥⎥⎥⎦ ,
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thus Mε can be thought of as a small random rotation of M . Let Wε = W (Mε);
(W, Wε) is an exchangeable pair by construction.

It is convenient to rewrite Mε as follows. Let I2 be the 2× 2 identity matrix, let
K be the n × 2 matrix consisting of the first two columns of H, and let

C2 =
[

0 1
−1 0

]
.

Then

Mε = M + K
[
(
√

1 − ε2 − 1)I2 + εC2

]
KtM

= M + K

[(
−ε2

2
+ O(ε4)

)
I2 + εC2

]
KtM,

and so

(5) Wε − W = ε
[(

− ε

2
+ O(ε3)

)
Tr (AKKtM) + Tr (AKC2K

tM)
]
.

Now, the distribution of H is unchanged by multiplying a fixed row or column
by −1 and H is orthogonal, thus Ehijhk� = 1

nδikδj�. This implies that

E
[
KKt

]
=

2
n

In

and

E
[
KC2K

t
]

= 0;

combining this with (5) yields:

n

ε2
E
[
(Wε − W )

∣∣W ]
= −n

2
E
[
E
[
Tr (AKKtM)

∣∣M] ∣∣W ]+ n

ε
E
[
E
[
Tr (AKC2K

tM)
∣∣M] ∣∣W ]+ O(ε)

= −E
[
E
[
Tr (AM)

∣∣M] ∣∣W ]+ O(ε)

= −W + O(ε),

where the independence of M and H has been used to get the third line, and the
implied constants in the O(ε) here and in what follows may depend on n. Condition
(i) of Theorem 1 is thus satisfied with λ = 1

n .
Recall now that A is assumed to be diagonal. The second condition of Theorem

1 can also be verified using the expression in (5) as follows:
(6)
n

2ε2
E
[
(Wε − W )2

∣∣W ]
=

n

2
E
[
E
[
(Tr (AKC2K

tM))2
∣∣M] ∣∣W ]+ O(ε)

=
n

2
E

⎡
⎢⎢⎣∑

i,j

∑
i′ �=i
j′ �=j

mi′imj′jaiiajjE
[
(hi1hi′2 − hi2hi′1)(hj1hj′2 − hj2hj′1)

∣∣M]
∣∣∣∣∣∣∣∣
W

⎤
⎥⎥⎦

+ O(ε),
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where the conditions on i′ and j′ are justified as the expression inside the expecta-
tion is identically zero when either i = i′ or j = j′.

Standard techniques are available for computing the mixed moments of entries
of H; see e.g. [10], section 4.2. Using these techniques and the independence of M
and H gives that for i′ 
= i and j′ 
= j,

(7)

E
[
(hi1hi′2 − hi2hi′1)(hj1hj′2 − hj2hj′1)

∣∣M]
= E [(hi1hi′2 − hi2hi′1)(hj1hj′2 − hj2hj′1)]

=
2

n(n − 1)

[
δijδi′j′ − δij′δji′

]
;

putting this into (6) yields

n

2ε2
E
[
(Wε − W )2

∣∣W ]
=

1
n − 1

∑
i,j

∑
i′ �=i
j′ �=j

mi′imj′jaiiajj

[
δi′j′δij − δij′δji′

]
+ O(ε)

=
1

n − 1

⎡
⎣∑

i

a2
ii

[
(M tM)ii − m2

ii

]
−
∑

i,i′ �=i

(MA)ii′(MA)i′i

⎤
⎦+ O(ε)

=
1

n − 1

[
n −
∑

i

a2
iim

2
ii −
[
Tr ((MA)2) −

∑
i

a2
iim

2
ii

]]
+ O(ε)

= 1 +
1

n − 1
[
1 − Tr ((AM)2)

]
+ O(ε),

thus

(8) lim
ε→0

1
ε2

E
[
(Wε − W )2

∣∣W ] =
2
n

+
2

n(n − 1)
[
1 − Tr ((AM)2)

]
,

and so

(9) E =
2

n(n − 1)
[
1 − Tr ((AM)2)

]
.

Finally, (5) gives immediately that

E
[
|Wε − W |3

∣∣W ] = O(ε3).

It remains to bound nE|E|. Let
∑′

stand for summing over distinct indices.

E
[
Tr ((AM)2)

]
= E

⎡
⎣∑

i,j

aiiajjmijmji

⎤
⎦

=
1
n

∑
i

a2
ii = 1,(10)
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and

E
[
(Tr ((AM)2))2

]
= E

⎡
⎣
⎛
⎝∑

i,j

aiiajjmijmji

⎞
⎠
⎛
⎝∑

k,l

akkallmklmlk

⎞
⎠
⎤
⎦

=
∑

i,j,k,l

aiiajjakkall

[
n + 1

(n − 1)n(n + 2)
[
δijδkl

(
1 − δik

)
+ δikδjl

(
1 − δij

)

+δilδjk

(
1 − δij

)]
+

3
n(n + 2)

I(i = j = k = l)
]

=
n + 1

n(n − 1)(n + 2)

⎛
⎝∑′

i,k

a2
iia

2
kk +

∑′

i,j

a2
iia

2
jj +

∑′

i,j

a2
iia

2
jj

⎞
⎠

+
3

n(n + 2)

∑
i

a4
ii.

Now, ∑′

i,j

a2
iia

2
jj =

∑
i

a2
ii(n − a2

ii) = n2 −
∑

i

a4
ii.

Applying the above gives

E
[
(Tr ((AM)2))2

]
=

3(n + 1)n2

(n − 1)n(n + 2)
− 3(n + 1)

(n − 1)n(n + 2)

∑
i

a4
ii +

3
n(n + 2)

∑
i

a4
ii

≤ 3 +
6

(n − 1)(n + 2)
.

(11)

Putting these estimates into Theorem 1 gives:

(12) dTV (W, Z) ≤
2
√

2 + 6
(n−1)(n+2)

(n − 1)
.

Noting that 6
(n−1)(n+2) ≤ 1 for n ≥ 3 and that the bound in Theorem 4 is trivially

true for n = 2 completes the proof. �

4. The unitary group

Now let M ∈ Un be distributed according to Haar measure, let A be an n × n
matrix over C, and let W = Tr (AM). In [4] it was shown that if M = Γ + iΛ
and A and B are fixed real diagonal matrices with Tr (AAt) = Tr (BBt) = n,
then Tr (AΓ) + i Tr (BΛ) converges in distribution to a standard complex normal
random variable. This implies in particular that Re (W ) converges in distribution
to N

(
0, 1

2

)
. The main theorem of this section gives a rate of this convergence in

total variation distance.
A more natural question might be the convergence of W to a standard complex

random variable. As this is a multivariate problem, Theorem 1 cannot be applied.
A multivariate version of Theorem 1 is forthcoming in [3], which also includes a
rate of convergence of W to a standard complex Gaussian random variable.
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Theorem 6. With M , A, and W as above, let Wθ be the inner product of W with
the unit vector making angle θ with the real axis. Then

(13) dTV

(
Wθ, N

(
0,

1
2

))
≤ c

n

for a constant c which is independent of θ.

The constant c is asymptotically equal to 2
√

2; for n ≥ 8 it can be taken to be
4.

Proof. To prove the theorem, first note that it suffices to consider the case θ = 0,
that is, to prove that

dTV

(
Re (W ), N

(
0,

1
2

))
≤ c

n
.

The theorem then follows as stated since the distribution of W is invariant under
multiplication by any complex number of unit modulus. Also, A can again be
assumed diagonal with positive real entries by the singular value decomposition.

The proof is almost identical to the orthogonal case. Let H ∈ Un be a random
unitary matrix, independent of M , and let Mε = HAεH

∗M , where Aε is as in the
orthogonal case.

Let I2 be the 2 × 2 identity matrix, let K be the n × 2 matrix consisting of the
first two columns of H, and let C2 be as before. Then

Wε − W = Tr
((

−ε2

2
+ O(ε4)

)
AKK∗M + εAKC2K

∗M

)

= ε
[(

− ε

2
+ O(ε3)

)
Tr (AKK∗M) + Tr (AKC2K

∗M)
]
.(14)

Let W r = Re (W ) and W r
ε = Re (Wε). As in the orthogonal case, to verify the

conditions of Theorem 1, various mixed moments of the entries of H are needed.
The relevant unitary integrals can also be found in [10], section 4.2. They imply in
particular that

E [(KK∗)ij ] =
2
n

δij ,(15)

E [(KC2K
∗)ij ] = 0,(16)

thus

(17) lim
ε→0

n

ε2
E
[
W r

ε − W r
∣∣W ] = −W r;

condition (i) is satisfied with λ = 1
n . Also by (14),

lim
ε→0

n

2ε2
E[(W r

ε − W r)2
∣∣W ]

= lim
ε→0

n

2
E

[
(Re (Tr (AKC2K

∗M)))2
∣∣W]

=
n

4
Re E

⎡
⎣∑

i,j,k,l

aiimjiakkmlk(hi1hj2 − hi2hj1)(hk1hl2 − hk2hl1)

+ aiimjiakkmlk(hi1hj2 − hi2hj1)(hk1hl2 − hk2hl1)

∣∣∣∣∣∣W
⎤
⎦ .

(18)
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Using the formulae from [10], it is straightforward to show that

E[(hi1hj2 − hi2hj1)(hk1hl2 − hk2hl1)]

= −2δilδjk(1 − δij)
(n − 1)(n + 1)

+
2δijδk�(1 − δik)
(n − 1)n(n + 1)

− 2I(i = j = k = l)
n(n + 1)

(19)

and
(20)

E
[
(hi1hj2hi2hj1)(hk1hl2 − hk2hl1)

]
=

2 (δikδjl(1 − δij))
(n − 1)(n + 1)

− 2 (δijδkl(1 − δik))
n(n − 1)(n + 1)

+
2I(i = j = k = l)

n(n + 1)
.

Recall that
∑′

i,j

stands for summing over all pairs (i, j) where i and j are distinct.

Putting (19) and (20) into (18) and using the independence of M and H gives:

lim
ε→0

n

2ε2
E
[(

W r
ε − W r

)2∣∣W ]

=
n

2(n − 1)(n + 1)
Re E

⎡
⎣ ∑

i,j,k,�

aiimjiakkm�k (−δi�δjk(1 − δij)

+
1
n

δijδk�(1 − δik) −
(

n − 1
n

)
I(i = j = k = �)

)

+
∑

i,j,k,�

aiimjiakkm�k (δikδj�(1 − δij)

− 1
n

δijδk�(1 − δik) +
(

n − 1
n

)
I(i = j = k = l)

)∣∣∣∣W
]

=
n

2(n − 1)(n + 1)
Re E

⎡
⎣−∑′

i,j

aiiajjmijmji +
1
n

∑′

i,k

aiiakkmiimkk

−
(

n − 1
n

)∑
i

a2
iim

2
ii +

∑′

i,j

a2
ii|mji|2

− 1
n

∑′

i,k

aiiakkmiimkk +
n − 1

n

∑
i

a2
ii|mii|2

∣∣∣∣∣W
]

=
n

2(n − 1)(n + 1)
Re E

[
−
(

Tr ((AM)2) −
∑

i

(AM)2ii

)

+
1
n

(
W 2 −

∑
i

(AM)2ii

)
−
(

n − 1
n

)∑
i

(AM)2ii

+
∑

i

a2
ii(1 − |mii|2)
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− 1
n

(
|W |2 −

∑
i

a2
ii|mii|2

)

+
n − 1

n

∑
i

a2
ii|mii|2

∣∣∣∣∣W
]

=
1
2

+
1

2(n − 1)(n + 1)

+
n

2(n − 1)(n + 1)
Re E

[
−Tr ((AM)2) +

W 2 − |W |2
n

∣∣∣∣W
]

.

Condition (2) of Theorem 1 is thus satisfied with

nE =
1

2(n − 1)(n + 1)
+

n

2(n − 1)(n + 1)
Re E

[
−Tr ((AM)2) +

W 2 − |W |2
n

∣∣∣∣W
]

.

(21)

It remains to estimate nE|E|. First,

E
∣∣Tr ((AM)2)

∣∣ = E

√∑
i,j,k,l

aiiajjmijmjiakkallmklmlk

≤
√∑

i,j,k,l

aiiajjakkallE [mijmjimklmlk]

=

√√√√ 2n2

(n − 1)(n + 1)
− 2

(n − 1)n(n + 1)

(∑
i

a4
ii

)

≤
√

2 +
1

n2 − 1
,

using the formulae of [10] to evaluate the integrals.
Next,

E|W |2 = E

⎡
⎣∑

i,j

aiiajjmiimjj

⎤
⎦

=
1
n

∑
i

a2
ii

= 1.

Putting these estimates into (21) proves the theorem. �

Theorem 6 yields the following bivariate corollary, which can also be seen as a
corollary of the main unitary lemma of [4].

Corollary 7. For each n, let Mn be a random n× n unitary matrix, An an n× n
matrix over C with Tr (AnA∗

n) = n, and Wn = Tr (AnMn). Then the distribution of
Wn converges to the standard complex normal distribution in the weak-star topology.

Proof. The result follows immediately from Theorem 6 by considering the charac-
teristic function of Wn. �
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