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Abstract

We derive linearized theories from nonlinear elasticity theory for mul-
tiwell energies. Under natural assumptions on the nonlinear stored energy
densities, the properly rescaled nonlinear energy functionals are shown to
Γ-converge to the relaxation of a corresponding linearized model. Mini-
mizing sequences of problems with displacement boundary conditions and
body forces are investigated and found to correspond to minimizing se-
quences of the linearized problems. As applications of our results we dis-
cuss the validity and failure of a formula that is widely used to model
multiwell energies in the regime of linear elasticity. Applying our conver-
gence results to the special case of single well densities, we also obtain a
new strong convergence result for the sequence of minimizers of the non-
linear problem.

1 Introduction and overview

Consider an elastic body occupying a reference configuration Ω ⊂ R
d, d ∈ N,

subject to some deformation y : Ω → R
d. Assuming the body is hyperelastic,

the stored energy of such a deformation can be written in terms of a stored
energy function W :

energy of y =

∫

Ω
W (x,∇y(x)) dx. (1)

If y(x) = x+ εu(x) is given in terms of a small displacement εu and Ω is such
that the energy of y is minimized for y(x) = x, then Taylor-expanding (1) and
rescaling by ε−2 we find the energy formula of linear elasticity

linearized energy of u =
1

2

∫

Ω
∇2

2W (x, Id)(∇u(x)) dx

in the limit ε → 0. Frame indifference of W implies that the quadratic form
∇2

2W (x, Id) in fact only depends on the linear strain e(u) = 1
2 ((∇u)T + ∇u)

rather than the full gradient ∇u.
Although standard, this relation between nonlinear (finite) elasticity theory

and its linear (infinitesimal) counterpart has been given a precise meaning only
recently by Dal Maso, Negri and Percivale (cf. [11]). Assuming in particular
that W is minimized precisely at SO(d), they prove that the functional of
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linear elasticity arises as a Γ-limit of the properly rescaled nonlinear functionals
and that minimizers of boundary value problems converge to minimizers of the
linearized problem.

In this paper we will more generally allow for a family Wε of stored energy
densities with multiple energy wells, i.e., whose set of minimizers is of the form

SO(d)U1(ε) ∪ . . . ∪ SO(d)UN (ε).

(For the sake of simplicity we will concentrate on homogeneous energy densi-
ties, i.e., Wε not explicitly depending on x, with wells of equal height. However,
we will indicate all the necessary steps to treat the more general case.) Those
energies are important when modeling materials with different ‘variants’, i.e.,
preferred strains represented by the wells SO(d)Ui(ε), that occur, e.g., in the
martensitic phase of shape memory alloys (see, e.g., [6] for more details). Note
that in this case the stored energy is not only non-convex, but not even quasi-
convex in general. Consequently such materials tend to build microstructures in
order to assume energetically favorable configurations. We wish to understand
the limiting behavior of (minimizers of) the properly rescaled energy functionals

ε−2

∫

Ω
Wε(Id + ε∇u).

If Ui(ε) = Id+ εUi, U
T
i = Ui, and ∇2Wε(Ui(ε)) → ai, a formal linearization

at the energy wells leads to the commonly used energy functional of the form

1

2

∫

Ω
min

i
〈ai(e(u) − Ui), (e(u) − Ui)〉 . (2)

This ‘well minima formula’ is usually referred to as the energy functional of
the KRS-theory, named after Khachaturyan, Roitburd and Shatalov (cf. [15,
16, 21, 22, 17]). Note that the integrand is non-quadratic for more than one
well, so the limiting theory actually is only geometrically linear. Kohn shows in
[18] that (2) formally arises from nonlinear elasticity by Taylor-expansion and
proper rescaling of an energy density of the form

Wε(F ) = min
i
W (i)

ε (F ), (3)

W
(i)
ε minimized at Id + εUi, where it has constant Hessian ai. In general – as

noted by Ball and James [5] – a functional as in (2) is expected to describe
deformations that are close not only to the identity mapping but also to the
different energy wells. Bhattacharya compares the nonlinear and linear theories
in [7]. We also refer to [7] and the references therein and to the more recent ar-
ticle [3] by Ball for a detailed account of the material science and mathematical
literature for multiwell energies.

We will adopt the point of view that has proved very successful recently in
a variety of problems in elasticity theory involving the derivation of effective
theories, which consists of an ansatz free study by Γ-convergence of various
scalings of the energy functional. This is particularly suited for multiwell prob-
lems where minimal energies may not be attained and fine mixtures of phases
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have to be considered instead (see [4]). Assuming quadratic growth of the en-
ergy densities at our energy wells, however, the appropriate energy regime for
deformations as considered by Ball and James in [5] would be

∫

Ω
Wε(Id + ε∇u) ≪ ε2.

This leads to compatibility restrictions on the resulting linear displacement
gradients as we will show in Corollary 2.8.

In order to obtain a linearized theory without these restrictions (i.e., which
corresponds to the classical energy scaling of linear elasticity), we will consider
energies that scale quadratically in ε. In this regime, however, formula (2) can
be justified only under additional assumptions on the limiting behavior of the
nonlinear energy densities Wε.

Let us briefly comment on the choice of the various small parameters that
enter the energy functional. In order that the system be described by a (geo-
metrically) linear model, the energy wells have to be sufficiently close to each
other. Otherwise a linearized displacement field cannot properly connect strains
belonging to different wells. This introduces a small parameter ε, in terms of
which the typical distance between energy wells is measured. Now the physically
interesting regime is when the displacements scale with the same parameter ε.
This is precisely the regime where the limiting linear strain ‘feels’ the effect of
the different energy wells. (If ∇y − Id converges to 0 more slowly than ε, then
different wells could not be resolved in the linearized regime anymore: in (2),
e.g., this would lead to U1 = . . . = UN = Id. Also from the point of view of the
applications, a linearized theory is not expected to apply on scales much larger
than the distance between the energy wells. If, on the other hand, |∇y − Id| is
much smaller than ε, then one would effectively only try to linearize at one par-
ticular well. Moreover, mathematically this would immediately lead to a loss of
compactness, spoiling the convergence of the variational minimum problems.)
The third small parameter is given by the energy scaling of the problem, which
also determines the scaling of the loading term. Assuming quadratic growth of
the energy density away from the wells, the appropriate scaling is given by ε2.
In fact, due to the multiwell structure of the energy densities, also energies of
order ≪ ε2 appear to be interesting. As mentioned above, we briefly discuss
these scalings in Corollary 2.8.

More generally than in (1) we will consider the energy functionals

∫

Ω
Wε(Id + ε∇u) +

∫

Ω
ε2lu, u = g on ∂Ω∗,

including some loading term scaling with ε2, for displacements subject to bound-
ary conditions on the Dirichlet boundary ∂Ω∗ ⊂ ∂Ω. We state our main results
in Section 2. Assuming that the rescaled nonlinear stored energy densities con-
verge to some function V on the symmetric d× d matrices in a suitable sense,
we prove in Theorem 2.1 and Proposition 2.2 that the equicoercive family of
rescaled nonlinear energies Eε Γ-converges L2-strongly and H1-weakly to the
relaxation Erel of the linearized functional E with density V . (See Section A in
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the appendix for a review of the definitions and some properties of quasicon-
vexity, quasiconvexity on linear strains, Γ-convergence and relaxation.) More
precisely, the Γ-limit yields a geometrically linearized theory in terms of an
integral functional of the linear strain. The limiting energy density V , how-
ever, will in general not be quadratic, i.e., the limiting energy functional is still
nonlinear.

This in particular implies that the minimal energy values of Eε converge
to the minimal energy of E . For multiwell energies with Erel 6= E , however, a
limiting deformation, i.e., a limit of a low energy sequence, will in general only
be a weak H1-limit. In addition it will not be a minimizer of the linear problem
E but only of the relaxed functional Erel as in the presence of multiple phases
the material is expected to develop microstructure so as to reduce energy. In
order to capture this effect we will also study the recovery sequences, i.e., those
approximating sequences that have the correct energetic limit, and prove in
Theorem 2.3 that they are also recovery sequences for the relaxation of E . A
Young measure interpretation is given in Corollary 2.5. As a consequence we
obtain a complete picture of the convergence of minimum problems including
the convergence of minimizing energy deformations in Theorem 2.4.

We conclude this section with two little corollaries on the convergence of the
relaxed energy densities and on the previously mentioned restrictions at lower
energy scalings. Furthermore we discuss extensions to more general situations,
in particular to wells that are only locally minimizing and to non-homogeneous
energy densities.

Before proving all this in Section 4, we will focus on two applications in
Section 3. Firstly we will revisit the single well case considered in [11]. Here we
have Erel = E and our methods give in fact a stronger convergence result for low
energy sequences under less restrictive growth assumptions on the energy den-
sity as compared to [11]. Secondly we will investigate in detail two examples to
which our converge scheme applies. We reconsider Kohn’s well minima example
and show that (2) correctly describes the corresponding linearized regime. The
second example, however, in spite of being a natural candidate for a nonlinear
multiwell energy which – compared to the first example – even has the advan-
tage of being smooth, does not fit into the framework of KRS-theory. We will
show that even the relaxation of its linearized limit can be different from the
the relaxed KRS-functional.

2 Main results

Suppose that F 7→ Wε(F ), F ∈ R
d×d, is a family of frame indifferent mul-

tiwell energies with wells at SO(d)U1(ε), . . . , SO(d)UN (ε) for some Ui(ε) =
UT

i (ε) > 0. Here Ui(ε) are the local minimizers of Wε among positive sym-
metric matrices with energies Wε(Ui(ε)) = 0, which by assumption shall satisfy
Ui(ε) = Id + εUi + o(ε) for some U1, . . . , UN . We also suppose that Wε is
measurable, continuous in an ε-independent neighborhood of Id, and scales
quadratically at the energy wells in the direction perpendicular to infinitesimal
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rotations, more precisely, for Uε := SO(d)U1(ε) ∪ . . . ∪ SO(d)UN (ε) we have

Wε(F ) ≥ cdist2(F,Uε) (4)

for all F ∈ R
d×d and some c > 0 independent of ε. In addition we will require

that the Wε satisfy the orientation preserving condition

Wε(F ) = ∞ whenever det(F ) ≤ 0. (5)

This assumption is physically reasonable and mathematically convenient in the
proofs of Section 4 but can in fact be dropped as we will see at the end of that
section.

Example. By frame indifference we can express Wε(F ) = W̃ε(
1
2 (F TF − Id))

in terms of the Green–St. Venant tensor 1
2(F TF − Id). An admissible family

of energy densities Wε arises, e.g., by a suitable rescaling of some fixed W̃ :
Suppose W̃ ≥ 0 is a continuous function on the symmetric matrices, mini-
mized at Ai with W̃ (Ai) = 0, i = 1, . . . ,N , and such that W̃ (F ) ≥ c|F − Ai|2
for some c > 0 if F is close to Ai (which holds, e.g., if the second deriva-
tive ∇2W̃ (Ai) of W̃ at Ai exists and is positive definite). In addition assume
that lim inf |F |→∞ |F |−1W̃ (F ) > 0. Set W̃ε(A) := ε2W̃ (1

ε
A) and define Wε by

Wε(F ) = W̃ε(
1
2 (F TF − Id)).

ThenWε satisfies all our requirements: Ui(ε) is given by εAi = 1
2 (U2

i (ε)−Id),
whence Ui(ε) = Id + εAi +O(ε2) and so Ui = Ai. Also, for |F | ≤ C,

Wε(F ) = W̃ε

(

1

2
(F TF − Id)

)

≥ cmin
i
ε2
∣

∣

∣

∣

1

2ε
(F TF − Id) −Ai

∣

∣

∣

∣

2

=
c

4
min

i

∣

∣F TF − U2
i (ε)

∣

∣

2 ≥ c′ min
i

∣

∣

∣

√
F TF − Ui(ε)

∣

∣

∣

2

≥ c′ min
i

dist2(F, SO(d)Ui(ε))

for suitable c, c′ > 0. Here we have made use of the inequality |
√
G −

√
H| ≤

C|G −H| for all positive G,H ∈ R
d×d
sym whenever H lies in a sufficiently small

neighborhood of Id, which follows elementary from the growth and local Lip-
schitz properties of G 7→

√
G. The claim now follows from W̃ > 0 on {|F | ≥ C}

for suitable C and the growth assumption on W̃ at ∞.

Let Ω ⊂ R
d be a bounded Lipschitz domain. In order to derive a linearized

theory we will in particular investigate minimum problems for the energy func-
tionals

Eε(u) := ε−2

∫

Ω
Wε(Id + ε∇u) −

∫

Ω
lu, (6)

subject to some boundary data u = g on the Dirichlet boundary ∂Ω∗ ⊂ ∂Ω
and some loading l, in their limit as ε → 0. Our main aim is to derive a good
condition that guarantees convergence of the minimum energy and of (almost)
minimizers of Eε. (Note that the infimum of Eε might not be attained.) In fact
we would like to identify a corresponding linear problem of the form

E(u) :=

∫

Ω
V (e(u)) −

∫

Ω
lu, u = g on ∂Ω∗ (7)
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with V : R
d×d
sym → R to be determined from Wε.

For given Wε let Vε : R
d×d
sym → R be the rescaled energy

Vε(F ) := ε−2Wε(Id + εF ).

We will see that under suitable assumptions on the convergence of Vε – which
are, in particular, satisfied in Kohn’s model – a linear limit exists that is natu-
rally linked to a corresponding linear model.

Our main Γ-convergence result is the following. Let g ∈ W 1,∞(Ω,Rd) be
some boundary data and l ∈ L2(Ω,Rd) some loading. For a closed subset ∂Ω∗
of ∂Ω with Hd−1(∂Ω∗) > 0 consider the functionals E , Eε : H1

g,∂Ω∗

→ [0,∞]

defined in (7) and (6), where H1
g,∂Ω∗

denotes the closure of {v ∈W 1,∞(Ω,Rd) :

v = g on ∂Ω∗} in H1(Ω,Rd).

Theorem 2.1 Suppose Vε → V uniformly on compacta and V satisfies the
growth condition V (F ) ≤ α(1 + |F |2) for some constant α ∈ R. Then Eε Γ-
converges to the relaxation Erel : H1

g,∂Ω∗

→ [0,∞) of E given by

Erel(u) :=

∫

Ω
QeV (e(u)) −

∫

Ω
lu

with respect to both the strong L2- and the weak H1-topology on H1
g,∂Ω∗

.

Here QeV denotes the quasiconvexification on linear strains of V . See Sec-
tion A in the appendix for a definition of quasiconvexity on linear strains and
Γ-convergence. Also note that by fame indifference, the convergence assump-
tion on Vε is of course equivalent to asking that ε−2Wε(Id + ε·) converges to

V ( (·)T +(·)
2 ) uniformly on compacta of R

d×d.
Theorem 2.1 is complemented by the following compactness result:

Proposition 2.2 The functionals Eε are equicoercive with respect to the strong
L2-topology and the weak H1-topology.

In general, minimizers of Eε and E do not exist, which leads us to the study
of low energy sequences. Also, for multiwell energies V , the minimizers of the
relaxed functional Erel may not be unique. So in terms of the convergence of the
displacements u, we can only hope for subsequential convergence. Especially
for incompatible wells for which QeV is non-convex, we cannot expect strong
convergence of low energy sequences as energy minimization requires fine phase
mixtures, i.e., the formation of microstructure, in general. In this case, the
relevant information on the linearized displacements is encoded in the recovery
sequences, i.e., those approximations that give the correct energy in the linear
limit. The following theorem shows that recovery sequences are indeed ‘relaxing’
sequences of the corresponding linear problem.

Theorem 2.3 Suppose the assumptions of Theorem 2.1 are satisfied. If uε is
a recovery sequence for u, i.e., uε → u in L2 and Eε(uε) → Erel(u), then

lim
ε→0

E(uε) = Erel(u).
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As a consequence of Theorem 2.1, Proposition 2.2 and Theorem 2.3 we
obtain the following convergence result for our nonlinear-to-linear variational
limit:

Theorem 2.4 Suppose the assumptions of Theorem 2.1 are satisfied. Then the
minimal energy converges, i.e.,

lim
ε→0

inf
v∈H1

g,∂Ω∗

Eε(v) = inf
v∈H1

g,∂Ω∗

E(v) = min
v∈H1

g,∂Ω∗

Erel(v).

Moreover, if uε is a low energy sequence of Eε, i.e.,

Eε(uε) = inf
v∈H1

g,∂Ω∗

Eε(v) + o(1),

then uε is also a minimizing sequence for E, i.e.,

lim
ε→0

Eε(uε) = lim
ε→0

E(uε) = inf
v∈H1

g,∂Ω∗

E(v).

Furthermore, there exists a subsequence that converges to some u ∈ H1
g,∂Ω∗

(weakly in H1 and hence strongly in L2), and u is a minimizer of Erel.

Note that this sheds some new light also on the single well case. This will
be detailed in Paragraph 3.1.

The formation of microstructure is often quantified in terms of the Young
measures induced by the gradients of low energy sequences. (See, e.g., [20] for
basic results on (gradient) Young measures.)

Corollary 2.5 Suppose the assumptions of Theorem 2.1 are satisfied. Let (νx)
be a (W 1,2-) gradient Young measure induced by a recovery sequence uε for
some u in H1

g,∂Ω∗

. If (νe
x) denotes the image measure under the transformation

R
d×d → R

d×d
sym, F 7→ 1

2(F T + F ), then

Erel(u) =

∫

Ω

∫

R
d×d
sym

V (F ) dνe
x(F ) dx −

∫

Ω
lu dx.

In particular, if uε is a low energy sequence for Eε, this equals infv∈H1
g,∂Ω∗

E(v).

So indeed low energy, resp., recovery, sequences induce gradient Young measures
that represent the correct microstructure to relax the corresponding linearized
problem.

In the simplest setting with affine boundary data and zero loading this
implies convergence of the relaxed energy densities.

Corollary 2.6 Suppose the assumptions of Theorem 2.1 are satisfied. Then
for all F ∈ R

d×d,

lim
ε→0

ε−2QWε(Id + εF ) = QeV

(

F T + F

2

)

.
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Remark 2.7 Assuming a uniform standard 2-growth assumption for Wε, it
is not hard to modify the proof of Theorem 2.1 to see that Eε Γ-converges

to Erel whenever ε−2QWε(Id + ε·) → QeV
(

(·)T +(·)
2

)

pointwise. However, our

assumptions in Theorem 2.1 in terms of the convergence properties of Vε itself
will be much easier to check in applications (see Section 3) and do not exclude
physically interesting cases in which Wε equals infinity on some subset of R

d×d

away from SO(d), e.g., for gradients F that do not satisfy det(F ) > 0.

The following Corollary 2.8 implies that at energy scales ≪ ε2 the limiting
strain is constrained to a proper subset of R

d×d
sym. In particular it shows that

a strain Id + εF can only be compatible with the energy wells at SO(d)Ui(ε),

i.e. yield zero energy, in the limit ε→ 0 if the linear strain F T +F
2 is compatible

with {U1, . . . , UN}.

Corollary 2.8 Suppose there is a sequence uε with uε(x) = Fx for x ∈ ∂Ω
such that, for l = 0,

lim inf
ε→0

Eε(uε) = 0.

Then F T +F
2 ∈ Qe

p{U1, . . . , UN} = Qe
p{U1, . . . , UN} for all p ∈ [1,∞).

Before we prove these results in the next section let us revisit the example
discussed at the beginning of this section.

Example. Assume Wε arises from some fixed function W̃ as described in the
example on page 5. It is not hard to see that Vε → W̃ uniformly on compact
subsets of R

d×d
sym. So if in addition W̃ is quadratically bounded from above, then

the assumptions of Theorem 2.1 are satisfied. In this case our results show that
W̃ gives an energy density of the linearized problem.

Remark 2.9 The results of this section can be extended in several ways:

(i) Except for Corollary 2.8, the condition that Wε be minimal precisely at
Ui(ε) can be relaxed. In fact, one only needs that

Wε(F ) ≥ cdist2(F, SO(d)) − Cε2 (8)

for all F ∈ R
d×d and some c, C > 0 independent of ε. In particular,

energy wells may have different heights ε2wi scaling with ε2.

(ii) More generally, the main results remain true for x-dependent families of
energies. Suppose Wε : Ω×R

d×d → (−∞,∞] is a frame indifferent family
of measurable functions such that (8) with Wε(F ) replaced by Wε(x, F )
holds for a.e. x and all F . If Vε → V uniformly on Ω×K for all compact
subsets K of R

d×d
sym and V is continuous and satisfies a 2-growth condition

V (x, F ) ≤ C(1 + |F |2), then Theorems 2.1, 2.3, 2.4, Proposition 2.2 and
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Corollary 2.5 and, if (4) holds, Corollary 2.8 are true for

Eε(u) = ε−2

∫

Ω
Wε(x, Id + ε∇u(x)) dx −

∫

Ω
l(x)u(x) dx,

E(u) =

∫

Ω
V (x, e(u)(x)) dx −

∫

Ω
l(x)u(x) dx,

Erel(u) =

∫

Ω
QeV (x, e(u)(x)) dx −

∫

Ω
l(x)u(x) dx,

where QeV (x, ·) is the quasiconvexification on linear strains of V (x, ·) for
fixed x.

(iii) The orientation preserving assumption (5) is not necessary.

3 Applications

In this section we will discuss applications of our main convergence results.
Motivated by our results in the previous paragraphs we will call a family of
energy densities Wε admissible if the conditions specified at the beginning of
Section 2 are satisfied. If Vε → V uniformly on compact subsets of R

d×d
sym and

V satisfies a 2-growth assumption from above, then we will say that V is their
linear limit. In this case Theorems 2.1, 2.3, 2.4, Proposition 2.2 and Corollaries
2.5, 2.6, 2.8 apply, so in fact V is an energy density for the geometrically
linearized theory.

We first consider the special case of a limiting single well energy. This
case has been studied previously by Dal Maso, Negri and Percivale in [11].
However, we obtain a stronger convergence result for the deformations under
weaker growth assumptions than in [11].

Next we investigate two examples which are natural models for multiwell
energies and to which our general theorems apply. In both cases we obtain a
formula for the linearized energy, in particular, we identify the linear limits V (1)

and V (2), respectively. Only one of them (the nonlinear energy considered by
Kohn in [18]) is in agreement with the well minima formula (2). The second
linear limit V (2) thus gives a non-pathological counterexample to (2). We will
discuss a two-well example showing that although V (1) and V (2) might agree at
the energy wells up to the second order, in general QeV (1) 6= QeV (2). So in fact
also the corresponding relaxed functionals (E(1))rel and (E(2))rel are different. In
particular, the minimal energies of the limiting functional are model-dependent.

3.1 The single well

Suppose Wε = W is independent of ε, where W ≥ 0 is a frame indifferent single
well energy such that

W (F ) ≥ cdist2(F, SO(d)) for all F ∈ R
d×d, W (F ) = 0 iff F ∈ SO(d) (9)

and such that W is C2 in a neighborhood of SO(d). Then clearly Vε =
ε−2Wε(Id + ε·) converges to V = ∇2W (Id) uniformly on compacta. Note that
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by our assumptions the quadratic form ∇2W (Id) vanishes on antisymmetric
matrices and is positive definite on R

d×d
sym. In particular, V is uniformly strictly

convex on R
d×d
sym . But then QeV = V and hence, by strict convexity on lin-

ear strains and Korn’s inequality, it follows that the minimizer of the limiting
functional E = Erel is unique (cf. Kirchoff’s uniqueness theorem).

More generally assume that Wε is an admissible family of energy densities
with linear limit V . In addition suppose that V : R

d×d
sym → R is uniformly strictly

quasiconvex on linear strains, i.e., there exists γ > 0 such that
∫

Ω
V (F + e(v)) ≥

∫

Ω
(V (F ) + γ|e(v)|2) ∀F ∈ R

d×d
sym , v ∈ C∞

c (Ω,Rd). (10)

In addition to the results of Section 2 we have the following

Theorem 3.1 Suppose the assumptions of Theorem 2.1 are satisfied and V

satisfies (10).

(i) Let uε be a low energy sequence of Eε. Then – up to subsequences – uε

converges strongly in H1 to a minimizer u of E = Erel. So if the minimizer
u is unique, the whole sequence uε converges strongly.

(ii) If uε is a recovery sequence for u ∈ H1
g,∂Ω∗

, then uε → u strongly in H1.

Remark 3.2 As noted above, uniqueness of the minimizer of E follows, e.g.,
if V is strictly convex. Another instance is given when g = F · is affine on
∂Ω∗ = ∂Ω and l = 0. Since by density (10) holds for all v ∈ H1

0 , Korn’s
inequality immediately implies that the unique minimizer is the affine function
x 7→ Fx itself.

The proof is a typical convexity argument (compare Section 3.C in [12]).

Proof. By quasiconvexity of V we have E = Erel. If uε is a low energy sequence,
then, by Theorem 2.4, uε ⇀ u in H1 for a subsequence where u is a minimizer
of E and E(uε) → E(u). On the other hand, a recovery sequence for an element
u ∈ H1

g,∂Ω∗
has bounded energy and satisfies E(uε) → E(u) by Theorem 2.3.

So in order to prove (i) and (ii), it suffices to show that uε ⇀ u in H1 and
∫

Ω V (e(uε)) →
∫

Ω V (e(u)) imply uε → u in H1.

If 0 ≤ γ̃ ≤ γ, then Ṽ with Ṽ (F ) = V (F ) − γ̃|F |2 is quasiconvex on linear
strains. Choosing γ̃ > 0 so small that Ṽ satisfies a growth condition −C ≤
Ṽ (F ) ≤ C(1 + |F |2), we deduce from lower semicontinuity

∫

Ω
V (e(u)) − γ̃|e(u)|2 =

∫

Ω
Ṽ (e(u)) ≤ lim inf

ε→0

∫

Ω
Ṽ (e(uε))

= lim
ε→0

∫

Ω
V (e(uε)) − γ̃ lim sup

ε→0

∫

Ω
|e(uε)|2.

So lim supε→0 ‖e(uε)‖2
L2 ≤ ‖e(u)‖2

L2 and therefore weak convergence e(uε) ⇀
e(u) in L2 improves to strong convergence e(uε) → e(u) in L2. By Korn’s and
Poincaré’s inequalities we obtain uε → u in H1. �

The adaption to x-dependent Wε is straightforward if the constants c in (9)
and γ in (10) can be chosen independently of x.

10



3.2 Validity and failure of the well minima formula

If Wε is given as the minimum over quadratic single well energies as in (3)
(also cf. [18]), then the results of Section 2 lead in fact to a justification of
the linear functional in the well minima formula (2). Let Wi,ε, i = 1, . . . ,N ,
be admissible single well energies minimized, respectively, at SO(d)Ui(ε) with
∇2Wi,ε(Ui(ε)) = ai on symmetric matrices and Wi,ε(Ui(ε)) = ε2wi (see Remark
2.9). So

Wi,ε(F ) =
1

2

〈

ai

(√
F TF − Ui(ε)

)

,
√
F TF − Ui(ε)

〉

+ ε2wi

+ o

(

∣

∣

∣

√
F TF − Ui(ε)

∣

∣

∣

2
)

and ai is positive definite on R
d×d
sym . Assume that the last summand on the

right-hand side comprising the higher order contributions to Wi,ε divided by
∣

∣

∣

√
F TF − Ui(ε)

∣

∣

∣

2
converges to 0 uniformly in ε as

√
F TF − Ui(ε) → 0. Define

W
(1)
ε by

W (1)
ε (F ) = min

i
Wi,ε(F ).

Proposition 3.3 W
(1)
ε is admissible and has a linear limit V (1) : R

d×d
sym → R

given by

V (1)(F ) = min
i

[

1

2
〈ai (F − Ui) , F − Ui〉 + wi

]

.

Proof. W
(1)
ε is an admissible family of energy functions since

dist2(F, SO(d)) ≤ dist2(F,Uε) + Cε2 = min
i

dist2
(√

F TF, SO(d)Ui(ε)
)

+ Cε2

≤ min
i

∣

∣

∣

√
F TF − Ui(ε)

∣

∣

∣

2
+ Cε2 ≤ CW (1)

ε (F ) + Cε2.

Then, since

lim
ε→0

ε−2Wi,ε(Id + εF ) =
1

2

〈

ai

(

F T + F

2
− Ui

)

,
F T + F

2
− Ui

〉

+ wi

uniformly on compact subsets of R
d×d, also V

(1)
ε converges uniformly on com-

pact subsets of R
d×d
sym to V (1). Clearly V (1) satisfies the growth condition

V (1)(F ) ≤ α(1 + |F |2) for a suitable constant α ∈ R. �

This proves that in fact

u 7→
∫

Ω
V (1)(e(u)) =

∫

Ω
min

i

[

1

2
〈ai (e(u) − Ui) , e(u) − Ui〉 + wi

]

is the functional of linear elasticity induced by the nonlinear functional u 7→
∫

ΩWε(∇u). More generally than in the preceding example, we see that the well

11



minima formula (2) is justified, whenever Vε → mini

[

1
2〈ai(· − Ui), · − Ui〉 + wi

]

uniformly on compacta, since the latter function clearly has quadratic growth.

Our next example deals with smooth energy densities. Suppose Ui(ε) =

Id + εUi and W
(2)
ε is given by

W (2)
ε (F ) =

ε2

2

∏

i

ρi

(

ε−1
(√

F TF − Ui(ε)
))

if det(F ) ≥ 0, where the ρi : R
d×d
sym → [0,∞) are smooth functions such that,

for some constants c2 > c1 > 0 and positive definite ai, ρi(F ) = 〈aiF,F 〉 if

|F | ≤ c1, ρi(F ) > 0 if |F | ≥ c1 and α|F | 2
N ≤ ρi(F ) ≤ β|F | 2

N for |F | ≥ c2 for

some α, β > 0. If det(F ) < 0 let W
(2)
ε (F ) = ∞. Note that ∇2W

(2)
ε (Ui(ε)) =

∏

j 6=i ρj(Ui − Uj)ai on symmetric matrices.

Proposition 3.4 W
(2)
ε is admissible. It has a linear limit V (2) : R

d×d
sym → R

given by

V (2)(F ) =
1

2

∏

i

ρi (F − Ui) .

Proof. Since the energy wells are separated by a distance ≥ c ε for some c > 0,
it is not hard to see that we have

dist2(F,Uε) ≤ CWε(F ).

Vε is given by

ε−2Wε(Id + εF ) =
1

2

∏

i

ρi

(

ε−1

(

√

(Id + εF )T (Id + εF ) − Ui(ε)

))

=
1

2

∏

i

ρi

(

F T + F

2
− Ui

)

+O(ε)

converging uniformly on compact subsets of R
d×d
sym to V (2) which obviously has

quadratic growth. �

In the following example will show that even in the simplest case where
Wε is an isotropic double well potential with two incompatible wells, (2) might
yield the wrong (relaxed) limiting energy.

If V (1), derived from W
(1)
ε as in Proposition 3.3, is given by

V (1)(F ) = min

{

1

2
〈a(F − U1), (F − U1)〉, 〈a(F − U2), (F − U2)〉

}

,

where a is isotropic with bulk modulus κ and shear modulus µ, i.e.,

aF = κ tr(F )Id + 2µ

(

F − 1

d
tr(F )Id

)

,

12



U1 − U2 = η Id for some η > 0 and d ≥ 2, then we infer from Proposition 4.4
and Theorem 3.1 in [18] that the quasiconvexification on linear strains of V (1)

satisfies

QeV (1)(F ) = min
θ∈[0,1]

{

θ

2
〈a(F − U1), (F − U1)〉

+
1 − θ

2
〈a(F − U2), (F − U2)〉 −

θ(1 − θ)cη2

2

}

where c = κ2d3

κd+2(d−1)µ . In particular, if µ = 1
2 and κ = 2µ

d
= 1

d
, then a is the

identity tensor, c = 1 and it is elementary to see that, for η = 1,

QeV (1)(tU1 + (1 − t)U2)

=











dt2

2 , if t ≤ 1
2 − 1

2d
,

d(d−1)
2 t(1 − t) − (d−1)2

8 , if 1
2 − 1

2d
≤ t ≤ 1

2 + 1
2d
,

d(1−t)2

2 , if t ≥ 1
2 + 1

2d
.

Note that QeV (1) still has double-well structure and, in particular,

QeV (1)

(

U1 + U2

2

)

=
d− 1

8
. (11)

Now suppose W
(2)
ε is given by

W (2)
ε (F ) =

ε2

2
ρ
(

ε−1
∣

∣

∣

√
F TF − U1(ε)

∣

∣

∣

)

ρ
(

ε−1
∣

∣

∣

√
F TF − U2(ε)

∣

∣

∣

)

,

where Ui(ε) = Id + εUi and the smooth function ρ(t) equals t2 for |t| ≤ 1
4 , is

positive for t 6= 0 and scales linearly near ∞. Assume moreover that ρ(
√
d) = 1

and ρ(
√

d
2 ) < 1

2 . Note that, for V
(2)
ε = ε−2W

(2)
ε (Id + ε·), ∇2V

(2)
ε (Ui) is the

identity tensor on symmetric matrices as for V (1) above. But by Proposition
3.4 the linear limit is given by

V (2)(F ) =
1

2
ρ (|F − U1|) ρ (|F − U2|)

and

QeV (2)

(

U1 + U2

2

)

≤ V (2)

(

U1 + U2

2

)

=
1

2
ρ2

(∣

∣

∣

∣

U2 − U1

2

∣

∣

∣

∣

)

<
1

8
.

Comparing with (11), we find that indeed QeV (1) 6= QeV (2).

4 Proofs of the main results

4.1 Compactness

With the help of the geometric rigidity result of Friesecke, James and Müller
(cf. [13]), Dal Maso, Negri and Percivale prove compactness of finite energy
sequences for a single-well energy in [11]. The adaption to our multiwell set-up
is straightforward, and we refer to [11] for the largest part of the proof. In the
following, C denotes a generic constant, which is independent of ε but whose
value might change from line to line.
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Proposition 4.1 Suppose (uε) is a sequence in H1
g,∂Ω∗

(Ω,Rd). Then

‖∇uε‖2
L2 ≤ CEε(uε) + C

∫

∂Ω∗

|g|2 dHd−1 + C‖l‖L2‖uε‖L2 +C.

Proof. Define Iε : L2(Ω,Rd) → [0,∞] by

Iε(v) :=

{

ε−2
∫

ΩWε(Id + ε∇v), if v ∈ H1
g,∂Ω∗

,

∞, otherwise.
(12)

By (4), there exist rotations Rε(x) and indices i(x) such that
∫

Ω
|Id + ε∇uε(x) −Rε(x)Ui(x)(ε)|2 dx ≤ Cε2Iε(uε).

Since by assumption |Ui(ε)− Id| ≤ Cε for all i, it follows from |Id + ε∇uε(x)−
Rε(x)Ui(x)(ε)|2 ≤ 2|Id + ε∇uε(x) −Rε(x)|2 + 2|Rε(x) −Rε(x)Ui(x)(ε)|2 that

∫

Ω
|Id + ε∇uε(x) −Rε(x)|2 dx ≤ Cε2(1 + Iε(uε)).

Now the geometric rigidity result in [13] yields constant rotations Rε such that
∫

Ω |Id + ε∇uε(x) −Rε|2 dx ≤ C
∫

Ω |Id + ε∇uε(x) −Rε(x)|2 dx and hence
∫

Ω
|Id + ε∇uε −Rε|2 ≤ Cε2(1 + Iε(uε)). (13)

As shown in the proof of Proposition 3.4 in [11], this implies that
∫

Ω
|∇uε|2 ≤ C(1 + Iε(uε)) +C

∫

∂Ω∗

|g|2 dHd−1,

which proves the claim. �

Proof of Proposition 2.2. Immediate from Proposition 4.1 and Poincaré’s in-
equality. �

For later use we also state the following variant of Proposition 4.1, which
can be proved using a refinement of the main geometric rigidity result (see
Proposition 5 in [14]).

Lemma 4.2 Suppose (uε) is a sequence in H1
g,∂Ω∗

(Ω,Rd) such that ε−2dist2(Id+

ε∇uε,Uε) is equiintegrable. Then also |∇uε|2 is equiintegrable.

Proof. As above note that

dist2(Id + ε∇uε, SO(d)) ≤ C(ε2 + dist2(Id + ε∇uε,Uε)),

whence ε−2dist2(Id + ε∇uε, SO(d)) is equiintegrable. The refined geometric
rigidity in [14] yields constant rotations Rε such that also ε−2|Id + ε∇uε −Rε|2
is equiintegrable. As in the proof of Proposition 3.4 in [11] we see that
∫

Ω
|Id −Rε|2 ≤ Cε2

∫

Ω
(1 + ε−2dist2(Id + ε∇uε,Uε)) + Cε2

∫

∂Ω∗

|g|2dHd−1

and thus |Id −Rε| ≤ Cε. It follows that |∇uε|2 is equiintegrable. �

14



4.2 Γ-convergence

Theorem 2.1 follows from a combination of the compactness result in Propo-
sition 4.1 and the approximation result for quasiconvex functions in Lemma
A.3.

Proof of Theorem 2.1. Define Iε as in (12). Since v 7→
∫

Ω lv is a continu-
ous functional on L2 and, by Proposition 4.1, bounded energy sequences are
bounded in H1, it suffices to show that the L2-Γ-limit of Iε is given by

Irel(v) :=

∫

Ω
QeV (e(v)).

Suppose uε → u in L2(Ω,Rd). To prove the lower bound we may without
loss of generality assume that uε is a sequence such that Iε(uε) is bounded and
hence, thanks to Proposition 4.1, ‖∇uε‖L2 ≤ C for some suitable constant C,
whence uε ⇀ u in H1

g,∂Ω∗
. By frame indifference,

ε−2

∫

Ω
Wε(Id + ε∇uε) = ε−2

∫

Ω
Wε

(

√

(Id + ε∇uε)T (Id + ε∇uε)

)

= ε−2

∫

Ω
Wε (Id + εe(uε) + f(ε∇uε)) =

∫

Ω
Vε

(

e(uε) + ε−1f(ε∇uε)
)

,

where the error term f(F ) =
√

(Id + F )T (Id + F )− Id− F T +F
2 can be bounded

by

|f(F )| ≤ Cmin{|F |, |F |2}. (14)

Noting that, for a matrix A ∈ R
d×d, dist(A,SO(d)) ≥ |

√
ATA − Id| (with

equality if det(A) > 0), due to our assumptions on Wε we have

Vε

(

F T + F

2
+ ε−1f(εF )

)

= ε−2Wε(Id + εF )

≥ c ε−2dist2(Id + εF, SO(d)) − C ≥ c ε−2

∣

∣

∣

∣

√

(Id + εF )T (Id + εF ) − Id

∣

∣

∣

∣

2

− C

= c

∣

∣

∣

∣

F T + F

2
+ ε−1f(εF )

∣

∣

∣

∣

2

− C.

Let δ > 0 and choose ψk approximating the quasiconvex envelope QUδ of Uδ :
F 7→ V (F T +F

2 ) + δ|F |2 as in Lemma A.3. Since Vε → V uniformly on compact
subsets of the symmetric matrices and ψk grows linearly at ∞, we can therefore
find ε(k) > 0 such that, for all ε ≤ ε(k),

Vε

(

F T + F

2
+ ε−1f(εF )

)

+ δ
∣

∣F + ε−1f(εF )
∣

∣

2

≥ ψk

(

F + ε−1f(εF )
)

− 1

k
.

(15)
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It follows that
∫

Ω
Vε

(

e(uε) + ε−1f(ε∇uε)
)

≥
∫

Ω
ψk

(

∇uε + ε−1f(ε∇uε)
)

−
∫

Ω
δ
∣

∣∇uε + ε−1f(ε∇uε)
∣

∣

2 − 1

k

≥
∫

Ω
ψk (∇uε) −

∫

Ω

∣

∣ψk (∇uε) − ψk

(

∇uε + ε−1f(ε∇uε)
)
∣

∣− Cδ‖∇uε‖2
L2 −

1

k

by (14).
For any M > 0, the second term on the right-hand side can be estimated by

splitting the integrand into two parts according to |∇uε| > M or |∇uε| ≤M :
∫

Ω

∣

∣ψk (∇uε) − ψk

(

∇uε + ε−1f(ε∇uε)
)
∣

∣

≤
∫

Ω
χ{|∇uε|>M}

(

|ψk (∇uε)| +
∣

∣ψk

(

∇uε + ε−1f(ε∇uε)
)∣

∣

)

+

∫

Ω
χ{|∇uε|≤M}

∣

∣ψk (∇uε) − ψk

(

∇uε + ε−1f(ε∇uε)
)
∣

∣

(16)

Now let η > 0 be arbitrary. Since for suitable constants ãk, b̃k we have ψk(F ) ≤
ãk|F | + b̃k, using (14) and the fact that (∇uε) is bounded in L2 and hence
equiintegrable we find that for all ε the first integral on the right-hand side of
(16) is bounded from above by

∫

Ω
χ{|∇uε|>M}

(

2ãk |∇uε| + ãk

∣

∣ε−1f(ε∇uε)
∣

∣+ 2b̃k

)

≤
∫

Ω
χ{|∇uε|>M}

(

Cãk |∇uε| + 2b̃k

)

< η,

whenever M = M(k, η) is chosen large enough. Now choosing ε sufficiently
small we can bound the second term on the right-hand side of (16) by η, too,
since on {|∇uε| ≤ M} we have |ε−1f(ε∇uε)| ≤ CεM2 by (14) and ψk, being
quasiconvex and finite valued, is continuous.

Summarizing, we have shown that for each k

lim inf
ε→0

ε−2

∫

Ω
Wε(Id + ε∇uε) ≥ lim inf

ε→0

∫

Ω
ψk (∇uε) − Cδ − 1

k
. (17)

Since by quasiconvexity of ψk the functional v 7→
∫

Ω ψk(∇v) is weakly lower
semicontinuous on W 1,1 and since ψk(F ) → QUδ(F ) as k → ∞, it follows that

lim inf
ε→0

Iε(uε) ≥
∫

Ω
QUδ(∇u) −Cδ

by monotone convergence. Now note that the quasiconvex hull of F 7→ V (F T +F
2 )

clearly satisfies QV (F ) ≤ V (F T +F
2 ) ≤ Uδ(F ), whence QUδ(F ) ≥ QV (F ). So

finally sending δ → 0, we obtain that indeed

lim inf
ε→0

Iε(uε) ≥
∫

Ω
QV (∇u) =

∫

Ω
QeV (e(u)).
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It remains to provide a recovery sequence for given u ∈ H1
g,∂Ω∗

. As the

limiting functional is continuous with respect to the strong H1-topology, by a
general density argument in the theory of Γ-convergence we may assume that
u ∈ W

1,∞
g,∂Ω∗

. Suppose that, for given δ > 0, we can choose uδ ∈ W 1,∞(Ω; Rd)

with uδ − u ∈ H1
0 and ‖uδ − u‖L2 ≤ δ such that

∫

Ω
V (e(uδ)) ≤

∫

Ω
QeV (e(u)) + δ. (18)

Then, setting uε = uδ for all ε, as before we find

ε−2

∫

Ω
Wε(Id + ε∇uε) =

∫

Ω
Vε(e(uε) + ε−1f(ε∇uε)).

Since ∇uε takes values in a compact subset of matrices, Vε → V uniformly on
compacta and thus V is continuous, we find by (14) that this converges to

lim
ε→0

Iε(uε) =

∫

Ω
V (e(uδ)) ≤ Irel(u) + δ.

Now choosing a diagonal sequence as δ → 0 we obtain a recovery sequence for
u, which finishes the proof.

It remains to prove (18). Let γ > 0. Since V satisfies a 2-growth assumption
from above, the constant sequence of functionals

v 7→
{ ∫

Ω V (e(v)) + γ|∇v|2, if v − u ∈ H1
0 ,

∞, otherwise,

L2-Γ-converges to their lower semicontinuous envelope

v 7→
{

∫

ΩQ
[

V
(

(·)T +(·)
2

)

+ γ| · |2
]

(∇v), if v − u ∈ H1
0 ,

∞, otherwise,

by Theorem A.4. In particular, there exists uγ,δ with uγ,δ − u ∈ H1
0 and

‖uγ,δ − u‖L2 ≤ δ such that

∫

Ω
V (e(uγ,δ)) + γ|∇uγ,δ|2 ≤

∫

Ω
Q

[

V

(

(·)T + (·)
2

)

+ γ| · |2
]

(∇u) +
δ

2
. (19)

Let F ∈ R
d×d. Since V (A) ≥ c|A|2 − C for all A ∈ R

d×d
sym, it follows from

Korn’s inequality (see, e.g., [23]) that

∫

Ω
|∇v|2 ≤ C

∫

Ω
|e(v)|2 + C|F |2 ≤ C

∫

Ω
V (e(v)) + C|F |2

for all v ∈ H1 with v(x) = Fx on ∂Ω. But then

∫

Ω
V (e(v)) + γ|∇v|2 ≤ (1 + Cγ)

∫

Ω
V (e(v)) +Cγ|F |2,
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so taking the infimum over all v such that x 7→ v(x) − Fx lies in C∞
c leads to

Q

[

V

(

(·)T + (·)
2

)

+ γ| · |2
]

(F ) ≤ (1 + Cγ)QeV

(

F T + F

2

)

+ Cγ|F |2. (20)

By (19) we therefore have
∫

Ω
V (e(uγ,δ)) ≤

∫

Ω
(1 + Cγ)QeV (e(u)) + Cγ +

δ

2
.

Now choosing γ sufficiently small and approximating uγ,δ in H1 with a W 1,∞

function that satisfies the same boundary values finally gives us uδ satisfying
(18). �

Remark 4.3 The above proof of Equation (18) is already half the proof of
the version of Theorem A.4 for linear strains. Indeed, if V satisfies a standard
2-growth condition on R

d×d
sym, then the constant sequence of functionals

v 7→
{ ∫

Ω V (e(v)), if v − u ∈ H1
0 ,

∞, otherwise,

L2-Γ-converges to their lower semicontinuous envelope

v 7→
{ ∫

ΩQ
eV (e(v)), if v − u ∈ H1

0 ,

∞, otherwise.

The remaining part of the proof of this relaxation result is straightforward:
Just note that, in order to prove the Γ-liminf inequality, one may assume that
∫

Ω V (e(vn)) < C for a sequence vn → v in L2 and hence that vn is bounded in
H1 by Korn’s inequality. Now use Theorem A.4 similarly as before to conclude
the proof.

4.3 Convergence of almost minimizers

Proof of Theorem 2.3. Let uε be a recovery sequence for u. We have to show
that

lim
ε→0

E(uε) = Erel(u), (21)

equivalently, that each sequence ε = εk converging to 0 has a subsequence such
that (21) holds. By continuity of the loading term we may replace E by I as in
the previous proofs. Furthermore, we may assume that Iε(uε) is bounded and
uε ⇀ u in H1

g,∂Ω∗

.

We first claim that, for Aε := e(uε) + ε−1f(ε∇uε), |Aε|2 is equiintegrable.
Suppose this were not the case. Then

lim sup
ε→0

∫

|Aε|≥M

|Aε|2 ≥ γ > 0

for all M and a suitable γ and – upon passing to a subsequence – we can replace
the lim supε→0 by lim infε→0.
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Let ψk as in the proof of Theorem 2.1 and define ψ̃k by

ψ̃k(F ) = ψk(F ) +
c

2
χ{|F T +F |≥2Rk}

∣

∣

∣

∣

F T + F

2

∣

∣

∣

∣

2

,

where c is the constant from (4). If Rk is sufficiently large, we may replace
ψk by ψ̃k in (15) in the proof of Theorem 2.1, which (as in the derivation of
Equation (17)) yields

lim inf
ε→0

ε−2

∫

Ω
Wε(Id + ε∇uε)

≥ lim inf
ε→0

(
∫

Ω
ψk(∇uε) − Cδ − 1

k
+

∫

Ω

c

2
χ{|Aε|≥Rk}|Aε|2

)

≥
∫

Ω
ψk(∇u) − Cδ − 1

k
+ lim inf

ε→0

c

2

∫

{|Aε|≥Rk}
|Aε|2.

Continuing as in the proof of Theorem 2.1, we see that

lim inf
ε→0

ε−2

∫

Ω
Wε(Id + ε∇uε) ≥

∫

Ω
QeV (e(u)) +

cγ

2
.

But uε is a recovery sequence, hence γ = 0 in contradiction to our assumption.
In particular, this proves that

ε−2dist2(Id + ε∇uε, SO(d)) = ε−2|Id + εe(uε) + f(ε∇uε) − Id|2 = |Aε|2

is equiintegrable. By Lemma 4.2 this in turn implies that also |∇(uε)|2 is
equiintegrable and we can conclude the proof as follows.

For each M > 0,
∫

Ω
QeV (e(u)) = lim

ε→0
ε−2

∫

Ω
Wε(Id + ε∇uε) = lim

ε→0

∫

Ω
Vε(Aε)

≥ lim sup
ε→0

∫

{|∇uε|≤M}
Vε(Aε) = lim sup

ε→0

∫

{|∇uε|≤M}
V (e(uε))

since Vε → V uniformly on compacta and Aε−e(uε) → 0 uniformly on {|∇uε| ≤
M} by (14). Since M was arbitrary, by the 2-growth assumption on V and the
equiintegrability of |e(uε)|2 we therefore obtain that

∫

Ω
QeV (e(u)) ≥ lim sup

ε→0

∫

Ω
V (e(uε)).

Since by lower semicontinuity also
∫

ΩQ
eV (e(u)) ≤ lim infε→0

∫

Ω V (e(uε)), we
finally get that

∫

Ω
QeV (e(u)) = lim

ε→0

∫

Ω
V (e(uε)).

�

For later use we note that the proof shows that in fact |∇uεk
|2 is equiinte-

grable for every sequence εk → 0.
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Proof of Theorem 2.4. Suppose that uε is a low energy sequence. By Theorem
2.1 and Proposition 2.2 we have

lim
ε→0

Eε(uε) = min
v∈H1

g,∂Ω∗

Erel(v) ≤ inf
v∈H1

g,∂Ω∗

E(v)

and uε ⇀ u in H1
g,∂Ω∗

up to subsequences, where u is a minimizer of Erel. It
remains to show that

lim
ε→0

Eε(uε) = lim
ε→0

E(uε).

Passing to a suitable subsequence of an arbitrary subsequence, we may
assume that uε ⇀ u in H1, where u is a minimizer of Erel. By the first part
of the proof we have Eε(uε) → Erel(u), i.e., uε is a recovery sequence for u. By
Theorem 2.3 we therefore obtain that indeed E(uε) → Erel(u). �

Proof of Corollary 2.5. Suppose (νx) is induced by the subsequence ∇uεk
,

εk → 0. By Theorem 2.3 we have

Erel(u) = lim
εk→0

E(uεk
) = lim

εk→0

∫

Ω
V (e(uεk

)) −
∫

Ω
lu.

As shown in the proof of Theorem 2.3, V (e(uεk
)) is equiintegrable, whence

V (e(uεk
)) ⇀ V̄ in L1(Ω), where V̄ (x) =

∫

R
d×d
sym

V (F ) dνe
x(F ). So

Erel(u) =

∫

Ω
V̄ (x) −

∫

Ω
lu.

Note that if uε is a low energy sequence, then u is a minimizer of Erel. �

4.4 Relaxed densities and compatibility

Proof of Corollary 2.6. Let F ∈ R
d×d, ∂Ω∗ = ∂Ω and g(x) = Fx, l = 0. On

the one hand, we clearly have that

inf
v∈H1

g,∂Ω∗

Eε(v) ≤ inf
v−F ·∈C∞

c

Eε(v) = ε−2QWε(Id + εF )|Ω|,

and so

lim inf
ε→0

ε−2QWε(Id + εF )|Ω| ≥ inf
v∈H1

g,∂Ω∗

E(v)

by Theorem 2.4. Since V satisfies a 2-growth condition from above, the latter
expression is equal to QeV (F T +F

2 )|Ω|.
On the other hand, choosing u with u−F · ∈ C∞

c such that, for given η > 0,

∫

Ω
V (e(u)) ≤ QeV

(

F T + F

2

)

|Ω| + η|Ω|,

we see as in the proof of Theorem 2.1 that the constant sequence uε = u satisfies
∫

Ω
ε−2Wε(Id + ε∇uε) →

∫

Ω
V (e(u)) .
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It follows that

lim sup
ε→0

ε−2QWε(Id + εF )|Ω| ≤ lim sup
ε→0

∫

Ω
ε−2Wε(Id + ε∇uε)

≤
∫

Ω
V (e(u)) ≤ QeV

(

F T + F

2

)

|Ω| + η|Ω|.

Since η > 0 was arbitrary, the claim is proved. �

Proof of Corollary 2.8. Define W̃ε by W̃ε(F ) := cdist2(F,Uε) (resp., +∞ if
det(F ) ≤ 0). If c > 0 is sufficiently small, then 0 ≤ W̃ε ≤Wε by (4) and so

lim inf
ε→0

ε−2

∫

Ω
W̃ε (Id + ε∇uε) = 0. (22)

On the other hand, if A ∈ R
d×d
sym, then

Ṽε(A) := ε−2W̃ε(Id + εA) = c ε−2dist2 (Id + εA,Uε)

= c min
i

|A− Ui|2 +O(ε)

with an error term O(ε), which can be chosen uniformly on compact subsets of
R

d×d
sym. By Theorem 2.4 and (22) we therefore get

0 = lim
ε→0

ε−2

∫

Ω
W̃ε (Id + ε∇uε) ≥ inf

u−F ·∈H1
0

∫

Ω
QeṼ (u) = QeṼ

(

F T + F

2

)

≥ 0

(23)

for Ṽ : R
d×d
sym → [0,∞), Ṽ (F ) := c mini |F − Ui|2 = cdist2(F, {U1, . . . , UN})

(satisfying a 2-growth condition from above). The claim now follows from
Theorem A.1. �

4.5 Extensions

It is easy to see that – except for Corollary 2.8 – assumption (4) may be replaced
by the weaker condition (8). The extension to x-dependent Wε, however, is not
so straightforward. In the following we provide the necessary modifications of
the previous proofs.

Propositions 4.1 and 2.2 are clear. To prove Theorem 2.1 note first that
Lemma A.3 can be replaced by

Lemma 4.4 Suppose ψ : Ω×R
m×n → R is a Carathéodory function such that

ψ(x, ·) is quasiconvex for a.e. x satisfying the growth condition

α|F |p − β ≤ ψ(x, F ) ≤ β|F |p + β for a.e. x ∈ Ω and all F ∈ R
m×n

for some p > 1 and constants α, β > 0. Then there are Carathéodory functions
ψj : Ω×R

m×n → R, quasiconvex in the second variable for a.e. x, such that, for
a.e. x, ψj(x, ·) ≤ ψj+1(x, ·), ψj(x, ·) → ψ(x, ·) pointwise as j → ∞ and there
exist aj, bj ∈ R independent of x such that

|ψj(x, F )| ≤ aj|F | + bj .
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Proof. This follows by fixing the first variable and quasiconvexifying in the
second (as in Theorem A.4): We can apply the proof of Lemma 4.1 in [19],
where it is shown that for fixed x one can take

ψj(x, F ) := Q[min{j(1 + | · |), ψ(x, ·)}](F ).

�

Now (17) can be seen as before. In order to estimate
∫

Ω χ|∇uε|≤M |ψk(x,∇uε)−
ψk(x,∇uε + ε−1f(ε∇uε))| one uses that the integrand converges to 0 as ε→ 0
boundedly in x.

When constructing the recovery sequence, in particular when proving (20),
we can start from V (x0, A) ≥ c|A|2 − C for fixed x0 ∈ Ω and follow the same
arguments to see that

Q

[

V

(

x0,
(·)T + (·)

2

)

+ γ| · |2
]

(F ) ≤ (1 + Cγ)QeV

(

x0,
F T + F

2

)

+ Cγ|F |2

for all x0 ∈ Ω. The remaining parts of the proof do not need to be modified.
In the proof of Theorem 2.3 we find as before that

∫

Ω
QeV (x, e(u)) ≥ lim sup

ε→0

∫

{|∇uε|≤M}
Vε(x,Aε).

By the uniform convergence Vε → V on Ω ×K for compact K we may replace
Vε by V . Now, using the Scorza-Dragoni Theorem, for each η > 0 we find a
compact subset Kη of Ω such that V is uniformly continuous on {(x, F ) : x ∈
K, |F | ≤M + 1} and |Ω \Kη| ≤ η. It follows that

∫

Ω
QeV (x, e(u)) ≥ lim sup

ε→0

∫

Kη∩{|∇uε|≤M}
V (x, e(uε)).

Again by the equiintegrability of e(uε) we can deduce that
∫

Ω
QeV (x, e(u)) ≥ lim sup

ε→0

∫

Ω
V (x, e(uε)).

The reverse inequality follows as before.
The proof of Theorem 2.4 remains unchanged. For Corollary 2.5 it suffices

to note that V (·, e(uεk
)) is equiintegrable and so V (·, e(uεk

)) ⇀ V̄ in L1(Ω),
where V̄ (x) =

∫

R
d×d
sym

V (x, F ) dνe
x(F ), since V is a Carathéodory function (see

e.g. [2]). Also the extension to x-dependent Wε for Corollary 2.8 is clear if (4)
holds.

We finally briefly describe what needs to be changed in the preceding proofs
if condition (5) is dropped. In the proof of Theorem 2.1 let Dε := {x ∈ Ω :
det(Id + ε∇uε) ≤ 0}. Noting that on Dε we have dist(·, SO(d)) ≥ γ for some
γ > 0, instead of (17) we first arrive at

lim inf
ε→0

ε−2

∫

Ω
Wε(Id + ε∇uε)

≥ lim inf
ε→0

(

γ ε−2|Dε| +
∫

Ω\Dε

ψk (∇uε)

)

−Cδ − 1

k
.
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Iε(uε) being bounded, this implies that |Dε| → 0 as ε → 0 and this in turn
yields (17) by the boundedness of uε in H1 and the linear growth of ψk at ∞.
For the existence of a recovery sequence one can use Theorem 2.1 for W̄ε with
W̄ε(F ) = Wε(F ) if det(F ) > 0 and W̄ε(F ) = ∞ otherwise.

Similarly, in the proof of Theorem 2.3 we obtain

lim inf
ε→0

ε−2

∫

Ω
Wε(Id + ε∇uε)

≥ lim inf
ε→0

(

γ

∫

Dε

ε−2dist2(Id + ε∇uε, SO(d)) +

∫

Ω\Dε

ψk (∇uε)

− Cδ − 1

k
+

∫

Ω\Dε

c

2
χ{|Aε≥Rk}|Aε|2

)

.

Now using that uε is a recovery sequence for u and that

lim
k→∞

lim inf
ε→0

∫

Ω\Dε

ψk (∇uε) −
1

k
≥ Irel(u)

as shown above, we deduce that |Aε|2χΩ\Dε
is equiintegrable. For the same

reason we have that

lim inf
ε→0

∫

Dε

ε−2dist2(Id + ε∇uε, SO(d)) = 0.

Passing to a suitable subsequence we therefore get that

ε−2dist2(Id + ε∇uε, SO(d))

= χDεdist2(Id + ε∇uε, SO(d)) + χΩ\Dε
ε−2|Id + εe(uε) + f(ε∇uε) − Id|2

= χDεdist2(Id + ε∇uε, SO(d)) + χΩ\Dε
|Aε|2

is equiintegrable. Similarly as before we deduce that
∫

Ω
QeV (e(u)) ≥ lim sup

ε→0

∫

{|∇uε|≤M}\Dε

V (e(uε))

for each M . So the claim follows as before since |Dε| → 0 as ε→ 0.

A Appendix: Quasiconvexity and Γ-convergence

In this appendix we collect some notation used throughout the rest of the paper
and we recall some results on quasiconvexity and Γ-convergence that are needed
in the main part of this paper.

A.1 Quasiconvexity

Recall that a function f : R
m×n → R on them×nmatrices is called quasiconvex,

if

f(F ) ≤ −
∫

U

f(F + ∇u)
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for all u ∈ C∞
c (U ; Rm) (or, equivalently, u ∈ W

1,∞
0 (U ; Rm)), where U is a

domain in R
n and −

∫

U
denotes the averaged integral 1

|U |
∫

U
. The quasiconvexifi-

cation (or quasiconvex hull) of a function f : R
m×n → R is given by

Qf := sup{g : g ≤ f, g is quasiconvex}.

It turns out that

Qf(F ) = inf
u∈C∞

c (U ;Rd)
−
∫

U

f(F + ∇u)

(see, e.g., [9]).
If m = n = d and f is only defined on the space R

d×d
sym of symmetric matrices,

following [24] we call f quasiconvex on linear strains if, for each F ∈ R
d×d
sym ,

f(F ) ≤ −
∫

U

f (F + e(u))

for all u ∈ C∞
c (U ; Rd) (resp., u ∈ W

1,∞
0 (U ; Rd)), where e(u) = 1

2((∇u)T + ∇u)
denotes the linear strain. (I.e., if its extension F 7→ f(F T +F

2 ) to all of R
d×d

is quasiconvex in the usual sense.) Correspondingly, the quasiconvex hull on
linear strains of f is

Qef(F ) = sup{g(F ) : g ≤ f, g is quasiconvex on linear strains}

= inf
u∈C∞

c (U ;Rd)
−
∫

U

f (F + e(u)) .

The quasiconvex hull of a closed subset K of R
m×n is defined as

QK = {F ∈ R
m×n : f(F ) ≤ sup

G∈K

f(G) for all quasiconvex f}.

If Qp, 1 ≤ p < ∞, denotes the set of non-negative quasiconvex functions f
satisfying a p-growth estimate 0 ≤ f(F ) ≤ C(1 + |F |p) for some C = C(f),
then the strong p-quasiconvex hull of K is defined to be

QpK = {F ∈ R
m×n : f(F ) ≤ sup

G∈K

f(G) for all f ∈ Qp}.

The weak p-quasiconvex hull of K is defined by

QpK = {F ∈ R
m×n : Qdistp(F,K) = 0},

where F 7→ Qdistp(F,K) is the quasiconvexification of the p-distance function
F 7→ distp(F,K) (see, e.g., [26]).

Analogously we define the spaces Qe
p and the hulls Qe

pK and Qe
pK by replac-

ing R
m×n by R

d×d
sym , ‘quasiconvex’ by ‘quasiconvex on linear strains’ and Qdistp

by Qedistp (cf. [24]).
Obviously we have the inclusions

QK ⊂ QpK ⊂ QpK and QeK ⊂ Qe
pK ⊂ Qe

pK.

The following result is due to Zhang (see Prop. 2.5 in [25] and Theorem 4 in
[24]).
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Theorem A.1 Suppose K ⊂ R
m×n, resp., R

d×d
sym, is compact, then

QK = QpK = QpK, resp., Qe
pK = Qe

pK = Qe
1K

for all 1 ≤ p <∞.

Remark A.2 It appears to be unknown if, for compact K ⊂ R
d×d
sym, the weak

and strong p-quasiconvex envelopes on linear strains are in fact equal to QeK.

We close this paragraph with the following approximation result for quasi-
convex functions due to Kristensen (cf. [19]).

Lemma A.3 Suppose ψ : R
m×n → R is a quasiconvex function satisfying the

growth condition

α|F |p − β ≤ ψ(F ) ≤ β|F |p + β ∀ F ∈ R
m×n

for some p > 1 and constants α, β > 0. Then there are quasiconvex ψj :
R

m×n → R such that ψj ≤ ψj+1, ψj → ψ pointwise as j → ∞ and there exist
aj , rj > 0, bj ∈ R such that

ψj(F ) = ψ∗∗
j (F ) = aj |F | + bj if |F | ≥ rj,

where ψ∗∗
j denotes the convex envelope of ψj .

A.2 Γ-convergence and relaxation

A sequence of functionals Fε : M → [−∞,∞] on a metric space M is said to
Γ-converge to some functional F : M → [−∞,∞] if the following conditions
are satisfied:

(i) (‘lim inf-inequality’) If uε → u in M , then

lim inf Fε(uε) ≥ F(u).

(ii) (‘recovery sequence’) For every u ∈ M there exists a sequence uε → u in
M such that

limFε(uε) = F(u).

(See [10] for general information about Γ-convergence).
We recall some standard results on the relaxation of integral functionals

(see, e.g., [8, 1]) in a form most suitable for our purposes. Let Ω be an open
subset of R

n and suppose f : Ω × R
m×n → R is a Carathéodory function,

i.e., measurable in the first variable and continuous in the second, satisfying a
standard p-growth estimate

α|F |p ≤ f(x, F ) ≤ β(1 + |F |p) ∀x ∈ Ω, F ∈ R
m×n
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with p > 1 for some α, β > 0. Define the functional F : W 1,p(Ω,Rm) → [0,∞)
by

F(u) =

∫

Ω
f(x,∇u).

If ϕ ∈ W 1,p(Ω,Rm) is some boundary data, we define the functional Fϕ :
W 1,p(Ω,Rm) → [0,∞] by

Fϕ(u) =

{

F(u), if u− ϕ ∈W
1,p
0 (Ω,Rm),

∞, otherwise.

Theorem A.4 The sequentially weakly lower semicontinuous envelopes of F
and Fϕ on W 1,p(Ω,Rm) are given, respectively, by

F rel(u) =

∫

Ω
Qf(x,∇u) and (Fϕ)rel(u) =

{

F rel(u), if u− ϕ ∈W
1,p
0 ,

∞, otherwise.

Here Qf(x, ·) is a Carathéodory function equal to the quasiconvex envelope of
f(x, ·) for a.e. x.

In fact, the constant sequences Fε ≡ F and Fϕ
ε ≡ Fϕ Γ-converge to F rel

respectively (Fϕ)rel with respect to the strong Lp-topology and the weak W 1,p-
topology.
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