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Abstract: This paper presents the state of the art of the statistical modelling as applied to plant 
breeding. Classes of inference, statistical models, estimation methods and model selection are 
emphasized in a practical way. Restricted Maximum Likelihood (REML), Hierarchical 
Maximum Likelihood (HIML) and Bayesian (BAYES) are highlighted. Distributions of data 
and effects, and dimension and structure of the models are considered for model selection and 
parameters estimation. Theory and practical examples referring to selection between models 
with different fixed effects factors are given using the Full Maximum Likelihood (FML). An 
analytical FML way of defining random or fixed effects is presented to avoid the subjective or 
conceptual usual definitions. Examples of the applications of the Hierarchical Maximum 
Likelihood/Hierarchical Generalized Best Linear Unbiased Prediction (HIML/HG-BLUP) 
procedure are also presented. Sample sizes for achieving high experimental quality and 
accuracy are indicated and simple interpretation of the estimates of key genetic parameters are 
given. Phenomics and genomics are approached. Maximum accuracy under the truest model is 
the key for achieving efficacy in plant breeding programs. 

Keywords: model selection, fixed or random, comparisons with different fixed effects, 
HIML/HG-BLUP, FML, statistical inference. 

 
 
 

Statistical modelling and 
estimation methods 

Statistical and genetical modelling of 
experimental data plays a fundamental role in 
genetic improvement. Of particular importance 
are the precise and accurate estimation or 
prediction of individual genetic values and the 
inference about genetic control of the traits 

(variance components, broad and narrow sense 
heritabilities, repeatability, correlations and 
genotype × environment interaction). These guide 
all other activities, mainly selection and crossing. 
All these should be done under the truest or more 
correct model. High accuracy and precision 
provide efficiency, which together with the right 
model selection warrant the efficacy of the 
breeding program. Efficiency means to do right 
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(with precision and accuracy) the things, while 
efficacy means to do the right thing (the one that 
should be done, aiming to get the desired result). 

At least, four classes of statistical inference 
(Frequentist Least Square, Restricted Maximum 
Likelihood, Hierarchical Maximum Likelihood 
and Bayesian) and five estimation methods: 
Least Square (LS), Restricted Maximum 
Likelihood/Best Linear Unbiased Prediction 
(REML/ BLUP), Iterative Weighted Least 
Squares-REML/BLUP (IWLS-REML/BLUP), 
Bayesian Markov Chain Monte Carlo (BMCMC) 
and IWLS-Hierarchical Maximum Likelihood/ 
Hierarchical Generalized BLUP (IWLS-HIML/ 
HG-BLUP), are useful in genetics and breeding, 

according to type and distribution of data and 
effects, leading to the following classes of 
models: Linear Fixed Model (LFM), Linear 
Mixed Model (LMM), Generalized Linear 
Mixed Model (GLMM), Bayesian Random 
Model (BRM) and Hierarchical Generalized 
Linear Mixed Model (HGLMM) (Table 1). 

All models are mixed because all contain a 
mean and a residual variance. Searle (1971) 
wrote “in point of fact, of course, all models 

having both mean and error terms are mixed 

models because the mean is a fixed effect and the 

errors are random”. Then simplified 
denominations of the models are Linear, 
Generalized, Hierarchical and Bayesian. 

Table 1. Data distributions, classes of models, estimation methods and statistical inference classes as applied 
to genetics and breeding. 

Class of data 
Class of 
model 

Type of data and distribution 
Estimation 
method* 

Class of 
Inference 

Phenotypic, 
genomic, 
phenotypic 
plus genomic 

LFM Balanced and continuous (Normal) LS 
Frequentist 

Least Square 

LMM Continuous (Normal) REML/BLUP 
Residual 
Maximum 
Likelihood 

GLMM 
Continuous (Normal), exponential 

family for the residual (discrete and 
continuous) 

IWLS-REML/BLUP 
Residual 
Maximum 
Likelihood 

HGLMM 
Continuous (Normal), exponential 

family for any random factor 
(discrete and continuous) 

IWLS-HIML/HG-
BLUP 

Hierarchical 
Maximum 
Likelihood 

BRM Discrete and continuous (any) BMCMC Bayesian 

HG-BLUP and BLUP: they are also a conditional mode (COND-MOD) estimator. * Variance/Mean parameters. 

Traditionally, three classes of approaches 
have been used for statistical inference: 
frequentist (Pearsonian), likelihood (Fisherian) 
and Bayesian. According to these approaches, 
the confidence/ credibility intervals for 
unobservable variables can be: Fisher’s fiducial 
(fixed interval, for fixed unknowns), frequentist 
(random interval, for fixed unknowns), and 
Bayesian (fixed interval, for random unknowns). 
Recently, a fourth approach, hierarchical 
likelihood, has emerged as a way of unifying the 
three classes of approaches (Lee et al., 2017). 

Generally, the variables associated with 
traits are classified as fixed or random. Fixed 
variables are denoted “parameters” and no 
assumptions are made about their distributions. 
Random variables are assumed to be sampled 
from a probability distribution with known 
parameters. Estimates obtained by the Maximum 
Likelihood and Bayesian methods must be 
located in the parametric space, since if outside 
of that space such estimates have zero likelihood. 
This is not guaranteed by the Least Square 
estimators. For continuous variables, likelihood 
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is computed as the statistical density of the 
conditional distribution to the data sample. The 
statistical density f(y), for a continuous variable 
y, is defined as the ordinate of the distribution 
function (accumulated) for a given value of y. 

The Least Square method has limitations to 
handle with unbalanced data. Then, the Linear 
Mixed Models (LMMs) for variables with 
continuous Normal distribution were developed 
by Henderson (1952; 1973; 1975) and are 
implemented via BLUP and estimation of 
variance components by REML (so called 
Residual, Restricted or Reduced Maximum 
Likelihood) developed by Patterson and 
Thompson (1971) and Thompson (1973). 
Generalized Linear Mixed Models (GLMMs) 
were developed by Nelder and Wedderburn 
(1972) to deal with discrete variables. Lee and 
Nelder (1996) extended the BLUP approach to a 
broad class of statistical models with random 
effects, called Hierarchical Generalized Linear 
Mixed Models (HGLMMs). H stands for 
Hierarchical, Stratified or Structured. 

In GLMMs it is assumed that the residuals 
may not have a Normal distribution, but the other 
random effects of the model follow the Normal 
distribution. However, this assumption is not 
always appropriate. An example is the situation in 
which the data follow the Poisson distribution and 
the link function specified for the residuals is 
Logarithmic. In this case, a more appropriate 
assumption for the other random factors is a 
Gamma distribution with a Logarithmic link 
function. Models in which a probability 
distribution and a link function can be specified 
for each random factor in the model belong to the 
HGLMMs class. Since random factors are not 
always hierarchically classified, an alternative 
name for HGLMMs is Stratified Generalized 
Linear Mixed Models (SGLMMs). A BLUP 
predictor for HGLMMs was presented by Lee and 
Ha (2010). For non-Normal HGLMMs, linear 
BLUP may not be efficient. The authors presented 
a combination of BLUP with Tweedie dispersion 
models based on Exponential distribution. 

After initial works by Robertson (1955), 
Ronningen (1971) and Dempfle (1977), Gianola 
and Fernando (1986) proposed the Bayesian 

estimation for models of genetic evaluation. In 
addition to the Normal distribution adopted for 
the random effects (g) in the classical linear 
mixed model and for the likelihood of the vector 
of observations (y), the Bayesian approach 
requires assignments for the a priori distributions 
of the fixed effects and components of variance. 

The attribution of non-informative or 
uniform a priori distributions for the fixed effects 
and components of variance is a way of 
characterizing an a priori vague knowledge 
about the referred effects and components. Thus, 
the estimation of the fixed and random effects of 
the Fisherian model, using the Bayesian 
approach, can be performed as long as non-
informative prior is assigned for the fixed effects, 
Normal prior for the random effects and Normal 
likelihood for the vector of observations. 

Using non-informative a priori distributions 
for the fixed effects and components of variance, 
the modes of the a posteriori marginal 
distributions of the components of variance 
correspond to the estimates obtained by REML. 
The paper by Gianola and Fernando (1986) was 
an important publication before the MCMC era. 
At that time the application of Bayesian methods 
was technically arduous and required advanced 
computational techniques. Beginning in 1990, 
statisticians introduced MCMC methods (Gelfand 
and Smith, 1990) and this marks the start of a new 
era for analysis in quantitative genetics. MCMC is 
especially well suited for implementing Bayesian 
models by sampling-based approaches to 
calculating marginal densities. 

On the other hand, Fisherian estimation of 
Bayesian models can be performed via 
HGLMMs, with computational advantages (less 
time and trivial convergence criterion). 
HGLMMs can be fitting using their Hierarchical 
Likelihood (HL), which is an extension of the 
joint likelihood used by Henderson and consists 
of a joint density for observations and random 
effects. The estimates of fixed and random 
effects are derived from the maximization of HL 
and produce direct extensions of Henderson’s 
mixed model equations. The components of 
variance are estimated by maximizing the 
adjusted HL profile, which is a direct extension 
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of REML. In this way, HGLMMs extends the 
familiar BLUP theory used in genetics to a 
broader class of models. 

The class of Hierarchical Generalized 
Linear Mixed Models (HGLMMs) are fitted via 
Hierarchical Maximum Likelihood (HIML) by 
the Iterative Weighted Least Squares (IWLS) 
algorithm. This methodology allows 
predictions by the Hierarchical Generalized 
BLUP method (HG-BLUP) for random effects 
and estimates fixed effects by the Hierarchical 
Generalized Best Linear Unbiased Estimation 
method (HG-BLUE). The components of 
variance are estimated via HIML. This recently 
developed statistical approach for estimation, 
prediction, inference and model selection is 
very appealing. 

Exploring the hierarchical nature of HL, 
models for the variance components of the 
dispersion parameters can be added one by one. 
A broad class of distributions can be used to 
model both the response variable and the random 
effects, a fact that increases the flexibility of the 
modeling. HL can also be used to derive model 
selection tools. The conditional Akaike 
Information Criterion (cAIC) is analogous to the 
Deviance Information Criterion (DIC) used in 
Bayesian statistics. 

The HGLMM methodology allows also 
specifying y with probability distributions other 
than the traditional Normal, Binomial, Poisson 
and Negative Binomial. This can be relevant for 
several practical applications. For example, 
growth traits (diameter and height) in tree species 
are better described by the Weibull distribution 
than by Normal. Additionally, in this case, the 
assignment of a Gamma distribution (belonging 
to the family of Eulerian distributions) to y may 
be even more efficient, since Weibull is a 
particular case of the Generalized Gamma 
(Percontini et al., 2014). 

The option of fitting the various factors of 
random effects under different distribution 
assumptions is of great interest and can be done 
via HGLMMs, that is, the definition of these 
distributions does not need to be confined only to 
the Normal distribution. This option can lead to 

greater predictive and selection efficiency, 
especially in plant breeding, in which the models 
include many factors of random effects. 

The LS method does not promote the 
regularization (shrinkage) of the estimation 
process (Resende et al., 2014) and does not allow 
to consider the correlation between levels or 
effects belonging to the various factors, for 
example, it does not consider the correlation 
between levels of the effects of the treatments 
factor. On the other hand, REML, BAYES and 
HIML allow to consider these correlations.  

In terms of the treatments factor, when it has 
a genetic connotation (comparison of individuals, 
for example), the correlation matrix between the 
levels of the factor’s effects can be uncorrelated 
(diagonal D, which can be an identity I in the case 
of random effects or a null matrix in the case of 
fixed effects) or correlated given by three types of 
information: genealogical (correlation matrix A), 
genomic (correlation matrix G) and both 
simultaneously (correlation matrix H). 

In terms of the animal and plant breeding, 
genetic selection can be carried out via: phenomic 
selection (genetic values predicted based on 
genealogy and phenotypes); genomic selection 
(genetic values predicted based on marker 
genotypes and phenotypes); geno-phenomic 
selection (genetic values predicted based on 
marker genotypes, phenotypes and genealogy, by 
the single step procedure via H matrix). 

Additionally, a multivariate or a structured 
correlation matrix (longitudinal, spatial, 
curvilinear) can be imposed on treatment factors 
(𝐼 ⊗ 𝑀, 𝐴 ⊗ 𝑀, 𝐺 ⊗ 𝑀, 𝐻 ⊗ 𝑀; where M is a 
matrix that describes the correlation structure) or 
other random effects, like residual. The 
combination of these four (LS, REML, BAYES 
and HIML) estimation methods with the four 
types of correlation matrix (assuming 
Multivariate Normal distribution of individual 
observations) provides the thirteen general types 
of statistical approaches used in genetic analyses, 
as shown in Table 2. Within these approaches, 
the following models can be fitted: Univariate, 
Multivariate, Longitudinal, Spatial, Curvilinear, 
Competitional and Survival. 
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Table 2. Estimation methods of variance parameters, correlation matrices and statistical models used in genetic 
analyses. 

Estimation method 
of variance 
parameters 

Correlation matrix 
Model 

D A G H 

LS 
D-LS 

(ANOVA) 
- - - Univariate, Multivariate 

REML D-REML A-REML G-REML H-REML 

Univariate, Multivariate, 
Structured, Longitudinal, Spatial, 

Curvilinear, Competitional, 
Censored (Survival) 

HIML D-HIML A-HIML G-HIML H-HIML 

Univariate, Multivariate, 
Structured, Longitudinal, Spatial, 

Curvilinear, Competitional, 
Censored (Survival) 

BAYES 
D-

BAYES 
A-

BAYES 
G-

BAYES 
H-

BAYES 

Univariate, Multivariate, 
Structured, Longitudinal, Spatial, 

Curvilinear, Competitional, 
Censored (Survival) 

 

Estimation and prediction 
of components of means via 

Conditional Modes (COND-MOD) 

Lee and Nelder (2004) see the analysis 
process as consisting of two main activities: 
selection of the model in order to find models 
with good and parsimonious fitting, and predict-
tion of the quantities of interest using the selected 
models taking into account their uncertainties. 
Thus, inferences about marginal responses or 
individual subjects belong to the prediction 
phase. Then, the conditional model is the basic 
model and any conditional model (individual 
prediction) leads to a specific marginal model 
(prediction in the mean or average). 

The distinction between prediction and 
estimation was first reported by Lane and Nelder 
(1982). Prediction is a different purpose than 
estimation. Estimation forms the basis of predict-
tions. Estimation and prediction are not the same 
except by chance. Lee and Nelder define predict-
tion when future (unobserved) observations are 
“estimated” and estimation when random effects 
are “estimated” in data already observed. It is an 
estimation of unknowns in a vector v, which 
become fixed when the y data are observed, 
although possibly changing in future samples. 
Therefore, in this case, BLUE of the random 
parameters is said instead of BLUP. An 
unobservable future observation is not fixed 
given the data. 

In the model for v in 𝑌𝑖𝑗𝑘 = 𝑢 + 𝑣𝑖𝑗 + 𝜉𝑖𝑗𝑘, 
in which 𝑣𝑖𝑗 = 𝑔𝑖 + 𝑔𝑒𝑖𝑗 and 𝑌𝑖𝑗𝑘 and 𝜉𝑖𝑗𝑘 are the 
observation and random error, the desire to use 
marginal predictions (�̂� + 𝑔�̂� or �̂� + 𝑔�̂� + 𝑔𝑒..̅̅ ̅̂̅ , for 
example) it is not a reason for not using 
conditional models. Inferences will usually be 
richer if conditional models are used. Care 
should be taken when comparing parameter 
estimates by different models. The conditional 
prediction (�̂� + 𝑔�̂� + 𝑔𝑒𝑖𝑗̂ , for example) provides 
confidence interval of a prediction for a potential 
observation given individual risk factors (𝑔𝑒𝑖𝑗̂ ). 
This aspect is unique in conditional modeling and 
has wide application.  

The HL uses modes and curvature to make 
inferences about unobservables. The term 
“Conditional Modes” (COND-MOD) is prefer-
ble to the name BLUP because it better captures 
reality and makes more sense in generalized and 
nonlinear contexts and in Non-Linear Hierarchi-
cal Models in which the values of random effects 
that would be estimated, would be BLUP if they 
were linear (that is, linear functions of 
observations) and unbiased. But, there is no clear 
attribute where they are best. For a Generalized 
Linear Mixed Model or a Non-Linear Mixed 
Model these estimates are not BLUP (Harville, 
2008; Witkovský, 2012). 

The BLUPs of a Generalized Linear Mixed 
Model provide the Conditional Modes of random 
effects, rather than BLUPs or Best Linear 
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Unbiased Predictors. They are the modes that 
maximize the density function of the random 
effects conditional in the variance-covariance 
parameters and in the data, that is, given the 
observed data and for fixed (known) values of the 
parameters. For the particular case of a Linear 
Mixed Model, these modes are also BLUPs 
(Resende et al., 2018). 

Historically the term hierarchical was often 
used as a synonym for nested. However, it has 
been recognized within the linear model 
community that mixed and random effects 
models (nested or not) can be seen as hierarchical 
(in the sense of stratification). As random factors 
are not always hierarchically classified, an 
alternative term for HGLMM is Stratified or 
Structured Generalized Linear Mixed Model 
(SGLMM). These are also COND-MOD and also 
include Non-Linear Models. 

An advantage of the mode estimator over 
the sample mean is that it allows the selection of 
the best model instead of the average model. Ma 
and Jorgensen (2007) advocate against the use of 
modal estimates for random effects and proposed 
the use of the Orthodox BLUP method under 
averages. However, Lee and Ha (2010) showed 
that the mode estimation of the HL function via 
HG-BLUP provides both better statistical 
precision and maintenance of the declared level 
of coverage probability, better than the Orthodox 
BLUP method. 

Estimation and prediction via HIML/ 
HG-BLUP with simultaneous fitting of 
the mean and dispersion parameters 

Lee and Nelder (2006) introduced the class 
of Double HGLMM (DHGLMM) in which 
random effects can be specified in both the mean 
and dispersion components. DHGLMMs allows 
modeling of the mean and variance of the 
variance components of random effects and resi-
dual dispersion parameters. Thus, for example, 
the model for residual variance includes both 
effects, fixed and random, on a logarithmic scale. 

The distributions for the variance 
components are not restricted to the Inverse Chi-
Square (as generally adopted in the Bayesian 

approach of conjugated distributions) but are also 
derived from the Gamma distribution with its 
various derived distributions. This also leads to 
greater flexibility in modeling. Generalized 
Linear and Hierarchical Generalized Linear 
Models allow variables distributed in the 
exponential family (Normal, Gamma, Poisson, 
Binomial) and allow a non-linear link between 
the observation and the linear predictor. 

The REML is a special case of a Genera-
lized Linear Model with Gamma‐distributed 
“data” (𝑦 − 𝑋𝑏)2 (Thompson, 2019). Extension 
to the multivariate case of sums of squares and 
cross products distributed as Wishart distribution 
can also be used to model data. For heritabilities, 
which are defined in the parametric space 
between 0 and 1, the best distribution is Beta, 
which is also defined in the space between 0 and 
1 and then best describes the process. 

Models with mean and variance 
components in the dispersion 

In genetic improvement, the heterogeneity 
of the residual variance within families can be 
identified using a structural model for the 
variances via a Linear Log Model (Resende, 
2007a). A functional form can also be used, such 
as variance proportional to a power function of 
the mean. This latter approach will be considered 
below using models with mean and variance 
components in the dispersion. 

Dispersion modeling is important in 
statistics, for example, in the Heteroscedastic 
Linear Model 𝑦~𝑁[𝑋𝛽, exp(𝑋𝑣𝑎𝑟𝛽𝑣𝑎𝑟)], which 
requires REML for unbiased estimation of fixed 
effects on variance (𝛽𝑣𝑎𝑟). BLUP generally refers 
to estimated genetic values for the average 
(𝑣𝑚𝑒𝑑). The model 𝑦 = 𝑋𝛽𝑚𝑒𝑑 + 𝑍𝑣𝑚𝑒𝑑 + 𝑒, 

traditionally assumes homoscedastic residuals, 
that is, 𝑒~𝑁(0, 𝐼𝜎𝑒2). But selection can lead to an 
increase in residual variance. Thus, a model with 
residual variance heterogeneity can be recom-
mendded (Sorensen and Waagepetersen, 2003), 
with residuals with the following distribution:  
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𝑒~𝑁[0, 𝑒𝑥𝑝(𝑋𝑣𝑎𝑟𝛽𝑣𝑎𝑟 + 𝑍𝑣𝑎𝑟𝑣𝑣𝑎𝑟)], 

or equivalently 𝑒~𝑁[0, 𝑒𝑥𝑝(𝑋𝑣𝑎𝑟 𝛽𝑣𝑎𝑟 ) 𝑒𝑥𝑝(𝑍𝑣𝑎𝑟 𝑣𝑣𝑎𝑟)], 

and genetic values are estimated for the variance 
(𝑣𝑣𝑎𝑟), according to model  𝑦𝑣𝑎𝑟 = 𝑋𝑣𝑎𝑟𝛽𝑣𝑎𝑟 + 𝑍𝑣𝑎𝑟𝑣𝑣𝑎𝑟 + 𝑒𝑣𝑎𝑟 . 

Then the uniformity of the trait in the 
population can be increased by the selection of 
individuals with lower estimated genetic values 

for the residual variance. Thus, to obtain 
uniformity, the ideal is to select individuals with 
lower genetic values 𝑣𝑣𝑎𝑟  estimated for variance 
and higher 𝑣𝑚𝑒𝑑  estimated for the mean. The 
correlation 𝑐𝑜𝑟(𝑣𝑚𝑒𝑑, 𝑣𝑣𝑎𝑟) can also be 
estimated and, if negative, indicates that 
selection by 𝑣𝑚𝑒𝑑  already leads to greater 
uniformity (lower 𝑣𝑣𝑎𝑟). If positive, selection 
must be based on both 𝑣𝑚𝑒𝑑 and 𝑣𝑣𝑎𝑟, and then 
methods are needed to estimate both 
simultaneously. One example using the Gamma 
distribution in an experiment with Eucalyptus 
clones is presented below.  

Heritabilities of the mean and dispersion components in the Gamma distributed data. 

Variation Source 

Components of variance (cv) 
of the mean 

Components of variance (cv) 
of the dispersion 

cv 𝒆𝒄𝒗 cv 𝒆𝒄𝒗 

Clones -3.332 0.036 -2.101 0.122 

Residual -2.879 0.056 -2.879 0.056 

Total - 0.092 - 0.179 𝒉² (heritabilities) - 0.39 - 0.69 

 
 

It can be seen that the residual variance 
between clones is under genetic control with 
heritability of 0.69. Breeding traditionally uses 
only the distribution of the mean (components of 
means or first moments 𝑔𝑖) and does not use 
variance distribution (𝑣𝑣𝑎𝑟). But both can be used 
simultaneously, via (𝑔𝑖𝑗𝑚𝑎𝑥 = 𝑔𝑖 + 3.09√𝑣𝑣𝑎𝑟𝑖) 
which 𝑔𝑖𝑗𝑚𝑎𝑥 indicates the maximum genotypic 
value of an individual j in the family i (Resende, 
2015). In this case, the interest lies in 
greater �̂�𝑣𝑎𝑟 and a proposition of the MEAN-
DISP method of selection can be done, which 
uses both the mean and dispersion. 

This index can be used for reselection 
within families or populations. In this case, 
blocks of families are settled in new experiments 
for the identification of superior exceptional 
individual (Resende and Barbosa, 2006). 

The number of plants per family k can be 
given by 𝑛𝑘 = (𝑔𝑖𝑗𝑚𝑎𝑥 𝑔𝑘𝑙𝑚𝑎𝑥⁄ )200, where 200 
is the adequate number of individuals in the 
family of the best individual obtained according 
to the distribution of the maximum as given by 
Escobar et al. (2018). 

Dimension and structure of models 

Regarding to the dimension and structure 
of models, they can be classified in Univariate, 
Multivariate, Curvilinear, Structured and Censo-
red, with the structures as in the Table 3. 

It can be seen (Table 3) that Random Re-
gression approaches are the full basis of genomic 
selection. This means that SNP prediction can be 
accomplished by Ridge, Bayesian and Lasso 
Random Regressions. This allowed the evolution 
of genetic predictions from family and progeny, 
to individual and gene (SNP) levels. According 
to the generic model 𝑦 = 𝑋𝑏 + 𝑒, where y is the 
response variable and X is a matrix of the marker 
covariates, a comparison between the LS, RR 
(Ridge Regression) and Lasso methods is 
presented below. It can be seen that the RR 
solution contains in addition to the LS solution 
the regularization parameter 𝜆, which imposes 
shrinkage according to the process called 
Tikhonov regularization, which is a Gaussian 
process comprising 𝑛 stochastic processes. If the 
Lasso1 solution is negative, then the regression 
coefficient is declared as 0; if the Lasso2 solution 
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is positive, then the regression coefficient is also 
declared as 0. Table 4 shows the main modelling 
applied to multivariate data in genetic improve-

ment. Concerning to the types of factors and 
effects, the models can be classified as in the 
Table 5. 

Table 3. Dimension in space and structure of models. 

Dimension in Space Structure 

Univariate 
Several factors (plots, blocks, common environment, repeatability and 
genotype × environment interaction), several experimental and genetic 
designs, several reproductive and propagation systems 

Multivariate Unstructured, AMMI, PCAMM, FAMM 

Curvilinear Random Regression, Cubic Spline, B-Spline, P-Spline, Fourier Series 

Structured 
Spatial, Temporal, Longitudinal, Competitional (social interaction) Repeated 
Measures, Autoregressive, Compound Symmetry, Exponential, Spherical, 
Ante-Dependence, Path Structural Equations 

Censored Survival, Longevity, Precocity 

 Subtypes 

Random Regression 

Legendre polynomials (Random Regression); Segmented Polynomials (Cubic, 
B and P Splines); Ordinary Polynomials (Reaction Norms); Fractional 
Polynomials Autoregressive; Ridge Regression (genomics); Bayesian 
Regression (genomics); Lasso Regression (genomics) 

AMMI: Additive Main Effects and Multiplicative Interactions; FAMM: Factor Analytical Mixed Model; PCAMM: Principal Components 
Analysis Mixed Model. 

Comparison between the LS, RR (Ridge Regression) and Lasso methods. 

Method LS RR Lasso 

Estimator of b �̂�𝐿𝑆 = (𝑋′𝑋)−1𝑋′𝑌 �̂�𝑅𝑅 = (𝑋′𝑋 + 𝜆)−1𝑋′𝑌 

�̂�𝐿𝑎𝑠𝑠𝑜1 = (𝑋′𝑋)−1𝑋′𝑌 − 𝜆, 

if the LS solution is positive 
 �̂�𝐿𝑎𝑠𝑠𝑜2 = (𝑋′𝑋)−1𝑋′𝑌 + 𝜆, 

if the LS solution is negative 

Table 4. Modelling applied to multivariate data. 

Multivariate data Modelling 

Multivariate Unstructured Multivariate; Principal Components; Latent Factors 

Multi-Environment 
Centered Principal Components (AMMI); Latent Factor Analytical 
Mixed Model (FAMM); Random Regression via Reaction Norms 
(curvilinear) 

Incremental Repeated 
Measures 

Compound Symmetry; Autoregressive; Structured Ante-Dependence 
(SAD) 

Longitudinal Repeated 
Measures 

Curvilinear (Random Regression via Legendre Polynomials, via Type B 
Segmented Polynomials (Spline), via Fourier Series) 

Spatial Data 
Separable Autoregressive Models AR1 x AR1; Exponential 
Geostatistical Model; Spherical Geostatistical Model 

Time Series 
Moving Averages (MA)Models; Autoregressive Models; ARMA Models; 
ARIMA Models; Kalman Filter (BLUP), Fourier Series 
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Table 5. Types of factors or effects and effects classes. 

Factors or Effects 

Genetical 

Residual 

Permanent 

Common Environment (plot) 

Maternal 

Contemporary Group (block) 

Macroenvironment (site) 

Genotype ×Environment Interaction 

Effects classes 

Fixed 

Random 

Fixed Covariables 

Polynomial Equations Covariables 
 

Pioneering papers in Brazil on each 
kind of analytical model and 

estimation procedure 

Combining all the information presented in 
Tables 1, 2, 3, 4 and 5, several analytical methods 
and estimation procedures were produced. Some 
pioneer papers in Brazil on each of these 
situations, particularly those on mixed linear 
modelling in plant breeding, are presented in 
Table 6, with the aim of showing how the practical 
use and the complexity of models have evolved. 

Resende et al. (1990) and Resende (1991) 
presented some theory of the deriving of optimal 
selection indexes, involving various sources of 
information and comment on combined selection 
indexes involving data of individuals and their 
relatives. These indexes (Resende and Higa, 
1994) are BLUP for the case of balanced data, as 
demonstrated by Resende and Fernandes 
(1999a). Combined selection indexes were first 
proposed by Lush (1945) for animals, by Wright 
(1962) for allogamous plants and by Weber 
(1982) for autogamous plants. 

From 1990 to 2000 all the fundamental 
principles and methodology were approached, 
including Multivariate, Bayesian, Random 
Regression and Generalized Models for discrete 
data. Also, software’s in Fortran were developed. 
From 2001 to 2006, due to the availability of 
higher computational power, it was possible to use 
more complex models and to fill details of the 
methods. From 2007 on, genomic selection came 
into vogue, after the advent of high density SNP 
(Single Nucleotide Polymorphism) genotyping. 

Also, HGLMMs started to gain attention. 

Hypothesis tests, goodness of fit, 
parsimony and model selection 

The hypothesis tests regarding fixed and 
random effects in the context of mixed models as 
well as the criteria for comparing models are 
presented in Table 7. 

Hypothesis tests for fixed effects 

Under REML estimation, Wald’s W 
statistic has been recommended for testing fixed 
effects (Kenward and Roger, 1997). W for small 
samples is approximated by an F distribution. 
Thus, although other statistics can be introduced 
for the fixed effects test, Wald’s statistic is 
attractive because it accurately reproduces the 
Analysis of Variance for balanced designs. If 
the variance components are estimated by Full 
Maximum Likelihood (FML), two nested 
models with different structure of fixed effects 
and with the same structure of random effects, 
can be compared via LRT (Gumedze and 
Dunne, 2011). 

Hypothesis tests for random effects 
and criteria for model comparison 

The comparison of hierarchical or nested 
models, with the same fixed effects structure, can 
be performed by Likelihood Ratio Test (LRT) or 
Deviance Analysis, Akaike Information Criterion 
(AIC) and Bayesian Information Criterion (BIC). 
The comparison of non-hierarchical models, but 
with the same fixed effects structure, must be done 
using the AIC and BIC procedures. 
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Table 6. Some pioneering papers in Brazil on each kind of model and estimation procedure applied to genetic 
improvement. 

Subject / References 
Starting 

year 

LMM - REML/BLUP – Univariate: Resende et al. (1993;1996;1999a,b; 2001a); Resende and 
Fernandes (2000); Duarte and Vencovsky (2001); Bueno Filho and Vencovsky (2000) 

1993 

Development of the Selegen REML/BLUP Software: Resende et al. (1994; 1999a); Resende 
(2007b) 

1993 

LMM- REML/BLUP - Unstructured Multivariate: Resende et al. (1994; 1999a,b); Resende 
(1999) 

1994 

Accuracy and experimental quality: Resende (1995); Resende and Duarte (2007) 1995 

LMM - REML/BLUP - Curvilinear-Longituninal Random Regression: Resende (1997; 
1999a,b); Resende et al. (2001b) 

1997 

BRM - Bayesian Random Models: Resende (1997; 1999a,b); Resende (2000b); Resende et 
al. (2001c) 

1997 

GLMM - IWLS-REML/BLUP for Discrete Data: Resende (2000a); Resende (2002) 2000 

Use of ASReml Software: Resende (2000a) 2000 

LMM - REML/BLUP - Structured - Autoregressive, Spatial: Resende and Sturion (2001; 
2003); Resende (2002); Duarte and Vencovsky, 2005) 

2001 

LMM - REML/BLUP - Curvilinear –Splines: Resende and Sturion (2001); Resende et al. 
(2006) 

2001 

LMM - REML/BLUP - Structured - Social Competition: Resende and Thompson (2003); 
Resende et al. (2005) 

2003 

LMM - REML/BLUP - Multivariate Factor Analytical: Resende and Thompson (2003, 2004) 2003 

LMM - REML/BLUP - Spatial Multivariate: Resende and Thompson (2003); Resende et al. 
(2006) 

2003 

Indices BLUP MHPRVG (Harmonic Mean of the Relative Performance of the Genetic 
Values) for adaptability plus stability, called Resende_indexes by Olivoto and Lúcio 
(2020) in a package in R: Resende (2004; 2007a) 

2004 

GWS - Genomic Wide Selection (RR-BLUP; G-BLUP; BAYES A, B, C and Cpi; Lasso, 
Blasso): Resende (2007a); Resende et al. (2008); Grattapaglia and Resende (2011); Resende 
et al. (2012a,b); Resende Jr. et al. (2012) 

2007 

HGLMM - HIML/HG-BLUP: Resende (2007a); Resende et al. (2014); Resende et al. (2018) 2007 

BLUP –Autogamous (Genealogy; SIPPPG): Nunes et al. (2008); Resende et al. (2015; 2016) 2008 

BLUP-Annual Allogamous: Viana et al. (2010; 2011a,b) 2010 

Survival and Censored data: Resende et al. (2012), Resende et al. (2014), Santos et al. 
(2015; 2016) 

2012 

BLUP – Autogamous, Perennials, Clonal and Seminal propagation: Viana and Resende 
(2014) 

2014 

Table 7. Hypothesis tests for fixed and random effects and criteria for model comparison. 

Hypothesis Tests Effect 
Asymptotic 
Distribution 

Calculation 

F Fixed and random F 𝐹 = (𝜎𝑡𝑟𝑒𝑎𝑡𝑚𝑒𝑛𝑡2 + 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2 ) 𝜎𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙2⁄  

WALD n small = F Fixed F 𝑊 = �̂�2 𝑉𝑎𝑟(�̂�)⁄  

WALD n large = LRT Fixed Chi-Squared 𝑊 = �̂�2 𝑉𝑎𝑟(�̂�)⁄  

Likelihood-Ratio Test (LRT) Random Chi-Squared 𝐿𝑅𝑇 = (−2𝐿𝑜𝑔𝐿)𝑝+1 − (−2𝐿𝑜𝑔𝐿)𝑝 

Akaike Information 
Criterion (AIC) 

Random KL 𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 2𝑝 

Bayesian Information 
Criterion (BIC) 

Random - 
𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 𝑝𝐿𝑜𝑔(𝑑), 

where 𝑑 = 𝑁 − 𝑟(𝑥) 

Bayes Factor (BF) Random - 𝐵𝐹12 ≈ 𝑒𝑥𝑝[− (1 2)⁄ ∆12] 
DIC-Bayesian Random - Sampling by MCMC 

C-AIC-HL Random - - ∆12= 𝐵𝐼𝐶1 − 𝐵𝐼𝐶2; KL: Kullback Leibler discrepancy; DIC-Bayesian: Bayesian Deviance Information Criterion; C-AIC-HL: conditional AIC 
of the Hierarchical Likelihood; 𝜃:is the parameter;𝑑: degrees of freedom; 𝑝: number of parameters; 𝑟(𝑋): rank of the incidence matrix 𝑋.  
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Likelihood-Ratio Test (LRT) 

The significance of the difference in the fit 
of different nested models can be tested using the 
LRT, defined by  𝐿𝑅𝑇 = (−2𝐿𝑜𝑔𝐿)𝑝−1 − (−2𝐿𝑜𝑔𝐿)𝑝. 

So, it suffices to compare the difference 
between deviances (−2𝐿𝑜𝑔𝐿) of the model with 
the highest number of parameters - model with 

the lowest number of parameters, associated with 
two fitted models, with the value of the 
probability density function (Table of 𝜒2) for a 
given number of degrees of freedom and error 
probability. The number of degrees of freedom is 
defined by the difference, between models, in the 
number of estimated parameters (fixed effects + 
components of variance). For models with the 
same fixed effects structure, it suffices to 
consider the difference in the number of 
components of variance. 

The lower the deviance of a model, the 
lower the residuals of the model and the better 
the model. It is possible to have a negative 
deviance. Deviance is derived from a likelihood, 
which derives from Probability Density Func-
tions (PDF). Evaluated at a certain point in the 
parametric space, the PDF may have a density 
greater than 1 due to small standard deviation or 
lack of variation. Likelihoods greater than 1 lead 
to negative deviances and are even adequate 
(Hall, 2014). The important thing is that the 
difference between deviances of two models is a 
positive value. 

For testing close to the limit of the 
parametric space, Stram and Lee (1994) suggest 
a correction by multiplying the P value associa-
ted with 𝜒12 by 0.5, that is, suggest the use of a 
distribution 𝜒0.52 . In this case (mix of distributions 
with 1 and 0 degrees of freedom), the tabulated 
Chi-Square value for the 5% significance level is 
2.79. 

Akaike Information Criterion (AIC) 

When two nested models are fitted, the one 
with more parameters has the highest 𝐿𝑜𝑔𝐿 and 
the lowest deviance (−2𝐿𝑜𝑔𝐿). However, this is 

not necessarily the best model. This means that 
you cannot directly compare −2𝐿𝑜𝑔𝐿 when the 
number of parameters varies between models. In 
addition to the LRT, another criterion for the 
selection of models is the AIC, which penalizes 
the likelihood by the number of fitted 
independent parameters. 

The AIC is given by 𝐴𝐼𝐶 = −2𝐿𝑜𝑔𝐿 +2𝑝, where p is the number of estimated 
parameters. Lower AIC values reflect a better 
overall fit. Thus, the AIC values are calculated 
for each model and the one with the lowest one 
(in at least 2 units, according to Cavanaugh and 
Neath, 2019) is chosen as the best model. There 
is an asymptotic equivalence between the choice 
of models according to the AIC criteria and 
cross-validation (Stone, 1977; Fang, 2011). 

The AIC is related to the concepts of 
Kullback-Leibler information and Maximum 
Likelihood. Kullback-Leibler information is a 
physics concept for measuring the difference 
between the model (approximation of reality) and 
reality (data generation process). Akaike (1974) 
realized that the Log of the likelihood of a model is 
an estimator of the Kullback-Leibler information, 
however biased. And this bias is equal to the 
number of parameters in the model. Then, he 
defined the AIC as the deviance plus twice the 
number of model parameters. As the objective is to 
minimize the loss of information, the model with 
the smallest (in at least 2 units) AIC has the most 
support in the data. If the models show differences 
between AIC less than 2, the one with the lowest 
number of parameters must be selected. 

The first term of the AIC can be interpreted 
as a model goodness of fit measure and the 
second term as a penalty. Thus, in the case where 
models with the same number of parameters are 
compared, it is necessary to compare only −2𝐿𝑜𝑔𝐿 by the LRT. The advantage of AIC is 
that comparisons are not limited to models with 
a hierarchical structure of factors, a feature that 
makes AIC a generic tool for model selection. It 
can be used, for example, to compare models 
with errors showing different distributions. 
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The AIC can also be used to compare 
models based on different probability 
distributions for the trait: for example, Normal 
versus Gamma, Poisson versus Negative Bino-
mial. If the models in the candidate collection are 
based on different distributions, then all of the 
terms in each likelihood must be retained when 
the values of AIC are compared, including 
constants that are not data dependent. This 
property of AIC is useful in applications where 
an appropriate distribution must be determined 
for the trait, in addition to the model size and 
structure. For this reason, AIC is ideally suited to 
generalized linear modeling applications 
(Cavanaugh and Neath, 2019). Three examples 
are presented below. 

The DHGLM package (Lee and Noh, 2018) 
in R presents the components of variance (cv) on 
the logarithmic scale. Thus, negative values for 
the estimates can occur. Then, it is necessary to 
use the antilogarithm or exponentiation (𝑒𝑐𝑣 =2.7183𝑐𝑣) to obtain estimates on the natural scale. 
The analysis of y as Normal led to heritability 
higher than that provided by the Gamma 
distribution. However, statistically, in terms of 
lower value for cAIC, the Normal model was 

shown to have a poorer fit (𝑐𝐴𝐼𝐶 = 1470.57) 
than the Gamma model (𝑐𝐴𝐼𝐶 = 1447.39), 
suggesting that the Gamma model is better. The 
AIC can be used to compare non-nested models 
with different distribution assumptions, but with 
the same fixed effects structure. 

The analyses of y as Normal or Gamma led 
to the same heritabilities. As the cAIC was lower 
for the Gamma, this distribution is statistically 
selected. In fact, the diameter follows the 
Weibull distribution (special case of the Gamma 
distribution) (Rennolls et al., 1985) and not the 
Normal. It can be seen that the analysis of y as 
Binomial and Logit as link function led to greater 
heritability than y taken as Normal. 

The AIC cannot be used to compare 
models based on different transformations of the 
outcome trait: for example, Log versus Square 
Root. Then, this criterion cannot be used to select 
an optimal transformation.The objective of a 
good criterion is to identify the fitted candidate 
model that is closest to the generating model in 
the sense of Kullback-Leibler information. AIC 
provides an asymptotically unbiased estimator of 
the expected Kullback discrepancy (Cavanaugh 
and Neath, 2019). 

Example 1. Analysis of simulated data (y) using HGLMM with Normal and Gamma distributions. 

Source of Variation HGLMM-cv 𝒆𝒄𝒗 HGLMM-cv 𝒆𝒄𝒗 

Genotype 3.641 38.130 -3.514 0.030 

Plot 1.314 3.721 -5.405 0.004 

Residual 3.019 20.471 -3.958 0.019 

Total - 62.322 - 0.053 𝒉𝟐 (heritability) - 0.61 - 0.56 

Distributions Normal Gamma 

Example 2. Analysis of stem diameter in Acacia(y) using HGLMM with Normal and Gamma distributions. 

Source of Variation HGLMM-cv 𝒆𝒄𝒗 HGLMM-cv 𝒆𝒄𝒗 

Genotype -4.097 0.017 -5.129 0.006 

Plot -2.962 0.052 -4.183 0.015 

Residual -1.426 0.240 -2.212 0.109 

Total - 0.308 - 0.131 𝒉𝟐 (heritability) - 0.05 - 0.05 

Distributions Normal Gamma 
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Example 3. Analysis of survival data (0 and 1) in Acacia using HGLMM with Binomial data, Logit link 
function (Logistic distribution for the error or variable in latent scale) and Normal for random genotype and 
plot effects. 

Source of Variation HGLMM-cv 𝒆𝒄𝒗 HGLMM-cv 𝒆𝒄𝒗 

Genotype -5.498 0.004 -2.016 0.133 

Plot -4.664 0.009 -1.501 0.223 

Residual -1.761 0.172 0 1 

Total - 0.185 - 1.356 𝒉𝟐 (heritability) - 0.02 - 0.10 

Distributions Normal Binomial 

 
 

Bayesian Information Criterion (BIC) 

Another approach is BIC (Schwarz, 1978), 
which is given by 𝐵𝐼𝐶 = −2𝐿𝑜𝑔𝐿 + 𝑝𝐿𝑜𝑔 (𝑑), 

where 𝑑 = 𝑁 − 𝑟(𝑋) is the number of degrees of 
freedom of the residual; N is the total number of 
observations and 𝑟(𝑋) is the rank of the incidence 
matrix (X) of the fixed effects. The BIC is 
calculated for each model and the one with the 
lowest value (in at least 2 units, according to 
Neath and Cavanaugh, 2012) is chosen as the best 
model. It can also be used when the models have 
no hierarchical structure. However, the models 
must have the same fixed effects structure. 
Logically all LRT, AIC and BIC depend on the 
same basic quantity −2𝐿𝑜𝑔𝐿 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒. 

The AIC and BIC have the same goodness-
of-fit term, but the penalty terms differ on the 
manner in which the dimension p is incorporated: 
BIC employs a complexity penalization of 𝑝𝐿𝑜𝑔(𝑑) as opposed to 2p. As a result, BIC tends 
to choose more parsimonious fitted models than 
those selected by AIC. The differences in 
selected models may be pronounced in large-
sample scenarios (Cavanaugh and Neath, 2019). 

Bayes Factor (BF) 

In the Bayesian framework, the analogous 
to LRT, AIC, SEP (Standard Error of Prediction) 
and Confidence Interval, are the BF, Bayesian 
DIC, Standard Deviation-MCMC (SD-MCMC) 
and Bayesian Credible Interval (BCI), 

respectively. Other option to BCI is the Highest 
Posterior Density (HPD). 

The Bayes Factor for comparing models 1 
and 2 can be approximated by 𝐵𝐹12 ≈ 𝑒𝑥𝑝 [−(1 2⁄ )∆12], 

where ∆12= 𝐵𝐼𝐶1 − 𝐵𝐼𝐶2 (Neath and 
Cavanaugh, 2012). The strength of evidence in 
terms of BF can equivalently be stated in terms 
of BIC. Consider a comparison between models 
1 and 2, as quantified by the BIC difference ∆12, 
being the model 2 with the smaller value of BIC. 
As BIC approximates a transformation of a 
model’s posterior probability, one can perform 
model evaluation by transforming BIC back to a 
probability (Neath and Cavanaugh, 2012). 
Significant effects have a 𝐵𝐹 < 0.01, or 𝐿𝑜𝑔𝑒𝐵𝐹 < 0, which provide decisive evidence 
against the model that considered an effect equal 
to zero. Additionally, no significant difference is 
detected with 𝐵𝐹 > 1. 

Good modelling must also take into 
account two relevant statistical principles: 
hierarchy and sparsity. According to the 
hierarchical principle the terms of lower order 
(main factors and double interactions) are 
generally more important than those of larger 
order (triple interaction, etc.). Higher order 
interaction generally contributes little to the 
explanation of a phenomenon and should not be 
included in the model. Sparsity refers to 
statistical parsimony, according to which few 
terms explain most of the information and the 
model must be kept as simple as possible. 
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Comparison and selection between 
statistical models with different factors 
of fixed and random effects via REML 

and Full ML (FML) 

In the generic model 𝑦 = 𝑋𝑏 + 𝑍𝑔 + 𝑒, 

where y is the vector of the data, b is the vector 
of the fixed effects, g is the vector of the random 
effects, e is the vector of residuals; X and Z are 
the incidence matrices for b and g, respectively; 
and 𝑉 = 𝑉𝑎𝑟(𝑦) is the variance-covariance 
matrix of the vector of data y. 

The difference between the deviances of 
two models with different fixed effects does not 
provide an adequate statistical test for random 
effects. This is due to the fact that the Residual 
Likelihood (function of 𝑦 − 𝑋𝑏) is maximized 
and not the likelihood of the original data 
(function of y, the Full Likelihood). Residual 
Likelihood (RL) refers to the likelihood of data 
after projection into the residual space and, 
therefore, two different models regarding fixed 
effects refer to two different projections and, 
consequently, correspond to different datasets (as 
if they were different variables) in which the 
same random factors are estimated. 

In the REML method, only the portion of 
the likelihood that is invariant to the fixed 
effects (specified in vector b) is maximized. 
Thus, the components of variance are estimated 
without being affected by the fixed effects of the 
model and the degrees of freedom referring to 
the estimation of the fixed effects are 
considered, producing unbiased estimates. The 
REML method divides the data into two parts: 
contrasts of fixed effects; and error contrasts 
(that is, all contrasts with zero expectation) 
which contain information only about the 
components of variance. Only the contrasts of 
errors [full residuals (𝑦 − 𝑋𝑏)] are then used to 
estimate the components of variance, since they 
contain all available information about the 
variance parameters. This is done by projecting 
the data into the residual space or vector space 

of the error contrasts. The projected data has 
LogL given by: −2𝑅𝐿 = [𝑁 − 𝑟(𝑋)]𝐿𝑜𝑔2𝜋 − 𝐿𝑜𝑔|𝑋′𝑋| +𝐿𝑜𝑔|𝑋′𝑉−1𝑋| + 𝐿𝑜𝑔|𝑉| + (𝑦 − 𝑋�̂�)′𝑉−1(𝑦 −𝑋�̂�), 

where N is the number of observations and 𝑟(𝑋) 
is the rank of the fixed effects incidence matrix. 
The variance components are then estimated by 
maximizing the logarithm of the RL function of 
the projected data (Resende, 2007a; Resende et 
al., 2014). The LogL of the original data (Full 
Likelihood) is given by: −2𝐹𝐿 = 𝑁𝐿𝑜𝑔2𝜋 + 𝐿𝑜𝑔|𝑉| + (𝑦 − 𝑋𝑏)′𝑉−1(𝑦 − 𝑋𝑏). 

The RL function has additional terms in 
relation to Full Likelihood (FL). The only 
additional relevant term for the estimation of 
variance components is 𝐿𝑜𝑔|𝑋𝑉−1𝑋|, which 
effectively removes the degrees of freedom used 
in estimating fixed effects. This difference 
between RL and FL exactly reflects the 
difference between REML and ML (Resende, 
2007a; Resende et al., 2014). Ignoring the 
constant terms, we have 𝑅𝐿 = −(1 2⁄ )𝐿𝑜𝑔|𝑋𝑉−1𝑋| − (1 2⁄ )𝐿𝑜𝑔|𝑉| − (1 2⁄ )(𝑦 − 𝑋�̂�)′𝑉−1(𝑦 − 𝑋�̂�)  

and 𝐹𝐿 = −(1 2⁄ ) 𝐿𝑜𝑔|𝑉| − (1 2⁄ )(𝑦 − 𝑋𝑏)′𝑉−1(𝑦 − 𝑋𝑏). 

For the comparison between models with 
different fixed effects structures, FL should be 
used, which can then be computed from REML by 𝐹𝐿∗ = 𝑅𝐿 − (1 2⁄ ) 𝐿𝑜𝑔|(𝑋𝑉−1𝑋)−1| (Verbyla, 
2019). It follows the tests of random and fixed 
effect factors in some situations (S), where FL is 
Full Likelihood and RL is Residual Likelihood. 
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Random effect factors testing 

S1 

Random effects (g) in nested 
models, with the same fixed 

effects and the same distribution 
for y: LRTRL, AICRL, BICRL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 

Model 2: 𝑦 =  𝑋𝑏 +  𝑒’ 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔𝑅𝐿 𝐿𝑅𝑇𝑅𝐿 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 2 –  𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 1 

S2 

Random effects (g) in non-nested 
models with the same fixed effects 

and the same distribution for y: 
AICRL, BICRL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒, 
with relationship matrix A for example 

Model 2: 𝑦 =  𝑋𝑏 +  𝑍𝑔’ +  𝑒’, 
with relationship matrices G or H for example 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝑅𝐿 

S3 

Random effects (g) in nested 
models with different fixed effects 
and same distribution for y: AICFL, 

BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 

Model 2: 𝑦 =  𝐽𝑢 +  𝑒’ 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 

S4 

Random effects (g) in non-nested 
models with different fixed effects 

and same distributions for y: 
AICFL, BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒, 
with relationship matrix A for example 

Model 2: 𝑦 =  𝐽𝑢 +  𝑍𝑔’ +  𝑒’, 
with relationship matrices G or H for example 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 

S5 

Random effects (g) in nested 
models, with the same fixed 

effects and different distributions 
for y: LRTRL, AICRL, BICRL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 

Model 2: ϒ =  𝑋𝑏 +  𝑒’ 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝑅𝐿 𝐿𝑅𝑇𝑅𝐿 = 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 2 –  𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑚𝑜𝑑𝑒𝑙 1 
 

Fixed effects factor testing 

S6 

Fixed effects in nested models 
with different fixed effects, same 

random effects and same 
distributions for y: LRTFL, 

AICFL, BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 
Model 2: 𝑦 =  𝐽𝑢 +  𝑍𝑔 +  𝑒’ 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 𝐿𝑅𝑇𝐹𝐿  =  𝐷𝑒𝑣2 –  𝐷𝑒𝑣1 

S7 

Fixed effects in nested or not 
models, with different fixed 

effects, different random effects 
and same distributions for y: 

LRTRL, AICFL, BICFL 

Model 1: 𝑦 =  𝑋𝑏 +  𝑍𝑔 +  𝑒 
Model 2: 𝑦 =  𝐽𝑢 +  𝑒’ 𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 =  −2𝐿𝑜𝑔 𝐹𝐿 𝐿𝑅𝑇𝐹𝐿 =  𝐷𝑒𝑣2 –  𝐷𝑒𝑣1 

 
 

Definition of fixed or random effects 
by analytical approach using FML 

An analytical approach can be used to 
define fixed or random effects. An experimental 
example evaluating genotypes (g) in a complete 
block design, with five replicates single-tree 
plots is shown below. The following criteria are 
considered: LRT (item 1), AIC (item 2), BIC 
(item 3) and BF (item 4). 

Three types of effects were compared for 
the block effects (b): null (CRD - Completely 
Randomized Design), random (CBD-R-Comple-

tely Block Design-Random) and fixed (CBD-F-
Completely Block Design-Fixed). In the model 
for phenotypes (y), u is the general mean and e is 
the vector of random errors. The quantities vc and 
fe are the numbers of variance components and 
of fixed effects, respectively. 

Results are presented for REML and FML 
(Full Maximum Likelihood). FML is the adequate 
approach to be used for comparing these models 
with different fixed effects of blocks. In the case 1 
we conclude that the best approach (CBD-F-
FML) is to consider the block effects as fixed 
(lower deviance of 626.8).If the REML approach 



FPBJ - Scientific Journal 

 

 

p. 136 

were to be considered the selected approach 
(CBD-R-REML) would be take the block effects 
as random (lower deviance of 646.29). That would 
lead to the wrong inference for block effects and 
wrong choice of the model. This emphasizes the 
importance of using the new FML approach. The 
same procedure can be used also for the genotype 
effects. 

Using the AIC criterion (case 2) the same 
(block as fixed effects) conclusions can be made. 
The best model and effects assigned are provided 
by the FML approach. The lower AIC is 649.5. For 
the BIC criterion (case 3) a different (block as ran-
dom effects) conclusion was inferred. The lower 
BIC was 669.0, as provided by FML approach.  

For the BF criterion (case 4) we can see 
that, for the FML approach, all BF contrasts were 
significant. So, all models differ one from 
another. And the best model choice is as inferred 
by the BIC criterion, which is to take block 
effects as random. The BIC criterion may be the 
best choice as it provides a statistical formal test 
(BF) for the effects. 

The conclusion for this example is to take 
block as random effects. Such a choice comes 
from (item 3) the fact that BIC model 2 shows 
lower value than that for BIC model 1 and BIC 
model 3, with difference between them higher 
than 2; and these differences were significant by 
the BF test (item 4). 

 

1 DEV Design Model DEV Number of parameters 

REML-DEV 

CRD-REML y=Xu+Zg+e 672.37 2 vc 

CBD-R-REML y=Xu+Zg+Wb+e 646.29 3 vc 

CBD-F-REML y=Xb+Zg+e 654.13 2 vc + 5fe 

FML-DEV 

CRD-FML y=Xu+Zg+e 666.1 2 vc 

CBD-R-FML y=Xu+Zg+Wb+e 641.5 3 vc 

CBD-F-FML y=Xb+Zg+e 626.8 2 vc + 5fe 
 

2 AIC Design Model AIC Number of parameters 

REML-AIC 

CRD-REML y=Xu+Zg+e 678.4 2 vc 

CBD-R-REML y=Xu+Zg+Wb+e 654.3 3 vc 

CBD-F-REML y=Xb+Zg+e 668.1 2 vc + 5fe 

FML-AIC 

CRD-FML y=Xu+Zg+e 672.1 2 vc 

CBD-R-FML y=Xu+Zg+Wb+e 649.5 3 vc 

CBD-F-FML y=Xb+Zg+e 640.8 2 vc + 5fe 
 

3 BIC Design Model BIC N-r(X) Number of parameters 

REML-BIC 

CRD-REML y=Xu+Zg+e 693.0 975-1 2 vc 

CBD-R-REML y=Xu+Zg+Wb+e 673.8 975-1 3 vc 

CBD-F-REML y=Xb+Zg+e 702.3 975-5 2 vc 

FML-AIC 

CRD-REML y=Xu+Zg+e 686.7 975 2 vc + 1fe 

CBD-R-REML y=Xu+Zg+Wb+e 669.0 975 3 vc + 1fe 

CBD-F-REML y=Xb+Zg+e 675.0 975 2 vc + 5fe 
 

4 Bayes 
Factor (BF) 

Design Model ∆ ∆̂ 𝒎 = −(𝟏 𝟐⁄ ) 𝑩𝑭 ≈ 𝒆𝒙𝒑(𝒎) 

REML-BIC 

CRD-REML y=Xu+Zg+e BIC1-BIC2 19.2 -9.6 7 x 10-5 

CBD-R-REML y=Xu+Zg+Wb+e BIC3-BIC2 28.5 -14.25 6 x 10-7 

CBD-F-REML y=Xb+Zg+e BIC1-BIC3 -9.3 4.65 104. 6 

FML-BIC 

CRD-FML y=Xu+Zg+e BIC1-BIC2 17.7 -8.85 1 x 10-4 

CBD-R-FML y=Xu+Zg+Wb+e BIC3-BIC2 6.0 -3 5 x 10-2 

CBD-F-FML y=Xb+Zg+e BIC1-BIC3 11.7 -5.85 2.9 x 10-3 
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Accuracy comparison between 
Bayesian and Fisherian statistical 

models 

The Bayesian accuracy could be estimated 
by using the same formula used in likelihood 
analyses, using the squared SD-MCMC instead 
of PEV. However, that approach is not perfect. 
For balanced dataset the accuracy of all 
individuals should give the same value. Using 
one example with 39 families, the Bayesian 

accuracy ranged from 0.43 to 0.70, with average 
of 0.68, mode of 0.70 and range of 0.27. 

In this analysis the degrees of freedom (df) 
for prior distributions of variance components was 
2 (which gives non-informative priors and then 
reproduces the REML analysis) and there was 
convergence (by the Geweke criterion) for all 
estimated genetic values and variance components, 
after using the MCMCglmm package (Hadfield, 
2010) in R. Results are shown below. 

 

Accuracy REML/BLUP MCMC0.002 MCMC1 MCMC2 MCMC4 MCMC7 

Minimum 0.67 Negative 0.33 0.43 0.49 0.54 

Mean 0.67 0.66 0.67 0.68 0.68 0.68 

Mode 0.67 0.69 0.70 0.70 0.69 0.69 

Maximum 0.67 0.70 0.70 0.70 0.70 0.70 

Mean error 0.00 0.04 0.03 0.03 0.02 0.02 

Standard deviation 0.00 0.06 0.05 0.05 0.03 0.02 

Range 0.00 - 0.27 0.27 0.21 0.15 

0.002, 1, 2, 4 and 7: degrees of freedom. 

 

The REML/BLUP and BLUP under 
MCMC estimates of variance parameters 

(MCMC/BLUP) analyses gave the results 
shown below. 

Parameter 
REML/ 
BLUP 

MCMC/ 
BLUP0.002 

MCMC/ 
BLUP1 

MCMC/ 
BLUP2 

MCMC/ 
BLUP4 

MCMC/ 
BLUP7 

Deviance 640.62 640.73 640.67 640.67 640.67 640.67 

AIC 646.62 646.73 646.67 646.67 646.67 646.67 

Genetic variance 0.033 0.029 0.034 0.034 0.035 0.029 

h2 0.046 0.040 0.046 0.047 0.048 0.040 

c2 0.095 0.097 0.093 0.094 0.095 0.098 

SEP 0.135 0.130 0.136 0.136 0.137 0.137 

PEV 0.018 0.017 0.018 0.019 0.019 0.019 

Accuracy 0.670 0.645 0.673 0.678 0.679 0.680 

Bias 1.66 1.68 1.65 1.65 1.65 1.65 

0.002, 2, 4 and 7: degrees of freedom. 

 

For degrees of freedom (df) equal to 1, 2, 4 
and 7 very close results were obtained for 
accuracy, AIC, bias and other parameters. The 
advantage of estimating Bayesian accuracy like 
this is the unique value obtained for accuracy of 
all individuals. MCMC/BLUP analyses can also 
be used for searching for better priors that could 
produce better results in terms of accuracy, i.e., 
allowing testing for informative priors. 

This was tried, and the results showed 
that, in this case, using REML variance 
components as prior, no informative prior could 
be find other than that with 2 degrees of 
freedom. The results showed accuracies 
estimates of 0.65, 0.67, 0.68 and 0.68, for 
degrees of freedom 0.002, 1, 4 and 7, 
respectively. The last three values are very close 
to the 0.67 obtained with REML/BLUP. 
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This approach (MCMC/BLUP) is 
recommended for calculating accuracies in 
Bayesian analyses. The rationale for using this is 
the search for a Genuine BLUP in place of 
Empirical BLUP. Genuine BLUP is achieved 
when the parameters of the true model are known 
and used. In such a case, the Empirical BLUP 
would be replaced by the Genuine one. Genuine 
BLUP is unbiased, precise and has maximum 
accuracy. One way of seeking for that is the 
evaluation of the traditional BLUP machinery 
(Henderson mixed model equations) under 
parameters obtained by other approaches that can 
allow accessing the true model closely (Harville, 
2008; Witkovský, 2012). MCMC/BLUP produces 
both adequate accuracy and opportunity to test of 
new prior distribution. It is also the only way to 
estimate corrected values for accuracy. 

The approach of using the Bayesian 
standard deviation of the estimated breeding 
values to get accuracy, provides incorrect 
estimates for accuracy of every individual. And 
with 0.002 df even negative value of accuracy 
was obtained. 

Another approach for computing the 
Bayesian accuracy was proposed by Resende et 
al. (2012a; 2014) and applied by Volpato et al. 
(2019) showing coherent and consistent results. 
The formula is given by 𝑟�̂�𝑔 = 1 − 𝑠(𝑔) 𝑔⁄ , 
where 𝑠(𝑔) is the standard deviation of the 
estimated genetic value 𝑔. Other alternative is to 
use 𝑟�̂�𝑔 = 1 − 𝑠(𝑔) 𝜎𝑔⁄ , where 𝜎𝑔 is the squared 
root of the Bayesian estimate of the genetic 
variance, which is constant for all individuals in 
the population. 

Genomic selection 
Genomic Wide Selection (GWS) or 

genomic selection (GS) was proposed by 
Meuwissen et al. (2001) as a way to increase 
efficiency and accelerate the genetic 
improvement. GWS emphasizes the simultaneous 
prediction (without the use of significance tests 
for individual markers) of the genetic effects of 
thousands of genetic DNA markers (SNP) 
dispersed throughout the genome of an organism, 
in order to capture the effects of all loci (both of 
small and large effects) and explain all the genetic 

variation of a quantitative trait. Meuwissen et al. 
(2001) developed the SNP-BLUP procedure using 
the method RR-BLUP, BayesA and BayesB. The 
Ridge-Regression (RR) was already used by 
Whittaker et al. (2000) for marker selection. Haley 
and Visscher (1998) had already suggested the 
name genomic selection for selection in a whole 
genome scale. 

An ideal method for SNP effects estimation 
in GWS should include three attributes: accom-
modate the genetic architecture of the trait in 
terms of genes of small and large effects and their 
distributions; regularize the estimation process in 
the presence of multicollinearity and a larger num-
ber of markers than individuals, using shrinkage 
estimators; perform the selection of covariables 
(markers) that affect the trait under analysis. 

The main problem with GWS is the 
estimation of a large number of effects from a 
limited number of observations and also the 
collinearities arising from the linkage 
disequilibrium between the markers. Shrinkage 
estimators deal with this appropriately, treating 
the effects of markers as random variables and 
estimating them simultaneously (Resende, 
2007a; Resende, 2008; Azevedo et al., 2015). 

If the effects of markers are taken as fixed, 
it is not possible to consider the covariance 
between effects of markers. With a high density 
of markers, more than one marker will be in 
linkage disequilibrium with a segregating QTL. 
This will result in covariance between marker 
effects. Most markers will have no effect on a 
trait. Thus, the estimated effects of these empty 
markers will be false. This problem is greater in 
the case that the markers are considered to have 
fixed effects, because in that case, these pseudo 
effects will not be shrunk towards zero. 

The traditional Quantitative Genetics rely 
on random mating population. Nowadays, with 
the availability of SNP markers, random mating 
does not need to be assumed, because breeders 
can track the transmission of chromosomal 
segments. Another assumption is linkage equili-
brium in the breeding population. Once linkage 
among markers is accounted for in the G 
relationship matrix in RR-BLUP, this circumvent 
the need to assume linkage equilibrium. 
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The main methods for GWS are based on 
Random Regression and can be divided into three 
major classes: explicit, implicit and dimensionally 
reduced regression. In the first class, the methods 
RR-BLUP, Lasso, BayesA and BayesB, among 
others, stand out. In the class of implicit regression, 
the method RKHS (Reproducing Kernel Hilbert 
Spaces) is most popular and is a semi-parametric 
method. Among the regression methods with 
dimensional reduction, stand out the Independent 
Components, Partial Least Squares and Principal 
Components. Two new non-parametric approaches 
for GWS were proposed by Resende (2015) and 
Lima et al. (2019a,b). These methods are called 
triple categorical regression (TCR) and Delta-p and 
proved to be efficient. 

The explicit regression methods are 
divided into two groups: (i) penalized estimation 
methods (RR-BLUP, Lasso); (ii) Bayesian esti-
mation methods (BayesA, BayesB, fast BayesB, 
BayesCπ, BayesDπ, Bayesian regression, 
BayesR, BayesRS, Blasso, IBlasso and others). 
The best and most effective in practice are RR-
BLUP (via G-BLUP single step) and BayesB 
(Mrode et al., 2010; Mrode, 2014; Visscher et al., 
2006; 2008; 2010). Each method without 
covariate selection has its similar with covariate 
selection. Thus, there are the pairs without and 
with selection: BayesA - BayesB; BRR - 
BayesCπ; Blasso - IBlasso. 

The RR-BLUP is an equivalent model to G-
BLUP, which is the BLUP method at individual 
level with the genealogical relationship matrix A 
changed to a genomic relationship matrix G. The 
equivalence between these two methods was 
given by Habier et al. (2007) and also by Van 
Raden (2008). The G-BLUP and RR-BLUP are 
equivalent when the number of QTL is large and 
no major QTL is present. The use of the matrix G 
based on markers was already used by Bernardo 
(1994), Nejati-Javaremi et al. (1997) and 
Fernando (1998). 

A single-step BLUP using simultaneously 
phenotypic, genotypic and genealogical informa-
tion, called H-BLUP single-step, was proposed by 
Misztal et al. (2009), using an H matrix composed 
by the A and G matrices. The idea of the H-BLUP 
was already given by Fernando (1998). 

The cut-off point for including a marker in 
the analysis can be given by 𝑀𝐴𝐹 = (1 2𝑁⁄ )1 2⁄ ; 
this comes from the standard deviation of a 
proportion, given by(𝑝𝑞)1 2⁄ (2𝑁)1/2⁄ , where N 
is the number of genotyped individuals, meaning 
that the lower N the greater needed to be the MAF 
for accurate estimation of the marker effect 
(Resende, 2015). 

A refinement of genomic selection can be 
achieved by using QTNs instead of SNPs. The 
evolution of genomic technology is predictable 
and the causal mutation of a genetic variation at 
the nucleotide level (QTN) could be accessed in 
the near future. Thus, genomic selection can be 
improved by the direct use of QTNs instead of 
SNPs. 

The use of QTNs will bring the following 
advantages (Weller, 2016): GWS will not depend 
on the linkage disequilibrium as the QTN will be 
accessed directly and not via markers, this will 
increase the durability of the genomic prediction, 
which will also be useful in the long run; the 
genomic prediction may have validity 
(transferability) across different populations and 
species in the same genus; the genomic 
prediction will use specific QTNs for each trait, 
unlike G-BLUP via SNPs, which uses the same 
G relationship matrix for all traits; the multiple-
trait selection indexes will directly weight the 
QTNs and not the phenotypic traits; genomic 
selection may use a smaller number of 
generations (only the last ones) for the 
composition of G matrix, this will bring greater 
genetic gain and less mass of data to be 
processed; the allele frequencies of the QTNs 
will be accessed directly and not via linkage 
disequilibrium with SNPs. 

Analytical statistics 
In general, a complete statistical analysis 

encompasses the following activities: the model 
selection; the estimation/prediction of components 
of means (genotypic values); the estimation of 
components of variance (genotypic variability); the 
application of hypothesis tests; the inferences on 
accuracy (square root of the reliability of the selec-
tion); the inferences on bias; and the inferences on 
estimation/prediction precision (Resende, 2007b). 
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For example, in the context of mixed models, 
performing these activeties involves BLUP 
predicttion, REML estimation, deviance analysis, 
computation of prediction accuracy and prediction 
error variance, respectively. In the REML/BLUP 
procedure, the bias is assumed to be null, as these 

estimators/predictors belong to the class of the Best 
Linear Unbiased Estimators/Predictors (BLUE/ 
BLUP). In the scientific articles, the results from 
these activities should be interpreted and discus-
sed. In the genetics area the following route can 
be followed. 

 

Model selection 

The best biological/statistical model should be selected by comparing several 
candidate models, based on information criteria, disparity measures or statistical 
distances between probability distributions or models (contrasts between data 
generating and candidate models). This activity is the first one and is essential, 
meaning that the best individual cannot be selected from the wrong model. 
Commonly used information criteria are the Kullback-Liebler (KL), Akaike (AIC) 
and Bayesian (BIC, which is related to the Bayes Factor). 

Hypothesis tests 
Inferences on significance of the genetic variability (σg2), by the deviance analysis 
(LRT) or F test from Analysis of Variance in the balanced case. 

Variance 
components 

Their proportions allow inferences on genetic control, heritabilities, repeatability, ge 
interaction, correlations between traits and coefficients of variation. 

Components of 
means 

They provide information on genetic values and genetic gain with selection. 

Precision of the 
prediction 

PEV (prediction error variance), from which we can calculate the relation PEV σg2⁄  
(with parameter space between 0 and 1) and also the value of F = σg2 PEV⁄ . This 
comes from the squared accuracy estimator rĝg2 = 1 − (PEV σg2⁄ ) = 1 − (1 F⁄ ). For 
a fixed effects model, rĝg2 = 1 − (1 F⁄ ) has a connotation of an adjusted 
determination coefficient, which is similar to a broad sense heritability at genotype 
mean level (reliability). 

Accuracy of the 
prediction 

Correlation between predicted and true genotypic values, with parameter space 
between 0 and 1. 

Bias of the 
prediction �̂� 

given as a function of the regression [β(y, ŷ)] of data y on ŷ, where β = 1 is the ideal 
and indicates no contribution of the angular coefficient β to bias. In this sense, 
comparisons of the models should be based on the modulus of [1 − β(y, ŷ)]. 

 

Genotype selection 
The genetic selection should be based on 

BLUE, BLUP, HG-BLUE, HG-BLUP or 
COND-MOD in the context of the random and 
mixed effects models. For the selection of 
genotypes in the context of fixed effects models, 
multiple comparison should be done by the 
Newman-Keuls test and not by Tukey. The 
Newman-Keuls test has much higher power and 
type I error rates similar to the Tukey test. Thus, 
the t-test, Duncan and Tukey, widely used in 
Brazil, are not the most recommended and should 
only be used with cautions. The Newman-Keuls 
test, little used in Brazil, is highly recommended 
in view of the favorable rates of type I error, the 
relative high power and the intermediate rigor. 
Thus, it can be used without much care. In reality, 

this test has been widely used (in detriment of the 
others) by the French researchers and also in 
perennial plant improvement in African 
countries. French literature adopts the Newman-
Keuls test as a standard in place of Tukey test. 
Example of calculus is presented in Resende 
(2002; 2007a). 

Apart from this, the statistical machinery 
for doing all the analyses is the mixed model 
methodology by REML/BLUP, HIML/HG-
BLUP and Bayesian estimation (Blasco, 2001; 
Sorensen and Gianola, 2002; Resende et al., 
2014; 2018). The Selegen REML/BLUP 
Software (Resende, 2016), ASReml Software 
(Gilmour et al., 2015), Echidna Mixed Model 
Software (Gilmour, 2019) and some R packages 
(R Development Core Team, 2018) can be used. 
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In genetics, studies on diversity (genetic 
relationship coefficients, inbreeding coefficients, 
effective population size (𝑁𝑒), entropy, genetic 
distances and multivariate clusters) complement 
the inferences (Resende, 2015). 

Sample size and accuracy 
in plant breeding 

Experimental quality and 
selective accuracy 

The quality of the genotypic evaluation 
should preferably be inferred based on accuracy 
(𝑟�̂�𝑔). In balanced experiments, Snedecor’s F 
statistics can also be used, as shown in the table 
presented by Resende and Duarte (2007). Being 𝑟�̂�𝑔 = (1 − 1 𝐹⁄ )1 2⁄ , the mathematical expres-

sion that relates the appropriate values of F to the 
required accuracy, is given by: 𝐹 =1 (1 − �̂��̂�𝑔2 )⁄ . To achieve an accuracy of 90%, an 

F value equal to 5.26 must be pursued. Thus, this 
should be a reference value in experiments for 
evaluating VCU tests. This value is independent 
of the species and trait evaluated and can be 
considered as a standard value for any species. 
This statistic contemplates, simultaneously, the 
coefficient of experimental variation (𝐶𝑉𝑒), the 
number of replications (n) and the coefficient of 
genotypic variation (𝐶𝑉𝑔). The expression 𝐹 =1 + (𝑛𝐶𝑉𝑔2 𝐶𝑉𝑒2⁄ ) shows this. Although 

traditionally used to evaluate experimental 
quality, the coefficient of experimental variation 
alone is not adequate for this. The three 
parameters are necessary, because the accuracy 
depends on them simultaneously, as can be seen 
by the alternative expression  �̂��̂�𝑔 = {1 [1 + (𝐶𝑉𝑒2 𝐶𝑉𝑔2⁄ ) 𝑛⁄ ]⁄ }1 2⁄

. 

For the selection process in breeding 
programs, accuracy values above 70% should be 
pursued. This is equivalent to F values 
approximately greater than 2. Therefore, F 
values less than 2 provide low selective accuracy. 

Another statistic commonly calculated in 
the context of genotypic evaluation, as proposed 

by Vencovsky (1987), is the coefficient of 
relative variation (𝐶𝑉𝑟 = 𝐶𝑉𝑔 𝐶𝑉𝑒⁄ ). By fixing the 

number of replications or individuals per 
treatment, the 𝐶𝑉𝑟 magnitude can be used to infer 
about the accuracy and precision in the genotypic 
evaluation. With 𝑛 =  2, a 𝐶𝑉𝑟 > 1 provides 
high accuracy. 

In terms of individual (perennials) or plot 
(annuals) h², F is given by 𝐹 =1 + 𝑛ℎ2 (1 − ℎ2)⁄ , and 𝐹 = 5.2632 is achieved, 
for example, with 𝑛 = 6.39, for ℎ2 = 0.4. It can 
be inferred that with ℎ2 = 0.4, and 𝑛 = 6  
provides high accuracy. 

Required sample sizes for 
treatments effects detection 

High reliability and accuracy can be 
achieved by using adequate number of 
replications or individuals (n) per treatment and 
of repeated measures (m). This should be 
determined according to the heritability (ℎ2) and 
repeatability (𝜌) of the traits. The quantities n and 
m can be given by 𝑛 = 𝑟�̂�𝑔2 (1 − ℎ2) [ℎ2(1 − 𝑟�̂�𝑔2 )]⁄  

and 𝑚 = 𝑟𝑓𝑓2 (1 − 𝜌) [𝜌(1 − 𝑟�̂�𝑓2 )]⁄ , 

where 𝑟�̂�𝑔2  and 𝑟�̂�𝑓2  are the reliabilities (squared 

accuracy) of genetic and phenotypic values, 
respectively. For a trait with ℎ2 = 0.20 and 𝜌 =0.40, n should be 4 and 17, and m should be 2 
and 7, for a targeted accuracy of 70% and 90%, 
respectively. The number of replications can also 
be given by 𝑛 = (𝐹 − 1)(1 − ℎ2) ℎ2⁄ , where F 
is 5.26 for a desired accuracy value of 𝑟�̂�𝑔 =0.90 (Resende and Duarte, 2007). 

Statistical books provide the general 
expression to calculate the required sample size 

(n) which is 𝑛 = [(𝑧𝛼 + 𝑧𝛽)2𝜎𝐷2] 𝛿2⁄ , where 𝑧𝛼 and 𝑧𝛽 are values of the accumulated 
distributions function of type I (α) and type II (β) 
errors, under unilateral hypothesis tests; 𝜎𝐷2 is the 
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variance of the difference between two treat-
ments means; and 𝛿 is the size of the real 
difference between two means which are 
intended to be declared as significant. 

The quantity (1 − 𝛽) is the probability 
(power) that the experiment shows a significant 
difference between treatments means. Powers of 
80% and 90% are common and adequate in 
practice. The variance of 𝜎𝐷2 is function of the 
residual variance (given as a function of 1 − ℎ2) 
and 𝛿2can be taken as the squared contrast 
between one effect and the zero point of mass 
(given as a function of ℎ2). Wearden (1959) used 
something similar to this. Comparing 𝑛 =(𝑧𝛼 + 𝑧𝛽)2(1 − ℎ2) ℎ2⁄  with 𝑛 =(𝐹 − 1)(1 − ℎ2) ℎ2⁄  given before, we have (𝐹 − 1) = (𝑧𝛼 + 𝑧𝛽)2 = 𝑁𝐶𝑃, which is the non-

centrality parameter. Values of (𝑧𝛼 + 𝑧𝛽)2
 were 

given by Snedecor and Cochran (1967) as below: 

(𝟏 − 𝜷) 
Unilateral tests (𝒛𝜶 + 𝒛𝜷)𝟐

 
significance level  

0.01 0.05 0.1 

0.80 10.0 6.2 4.5 

0.90 13.0 8.6 6.6 

0.95 15.8 10.8 8.6 
 

With 𝛼 = 5% and 𝛽 = 90%, 𝑁𝐶𝑃 = 8.6 and 𝐹 = 9.6. So, 𝑟�̂�𝑔2 = 0.90 and 𝑟�̂�𝑔 = 0.95; with 𝛼 = 5% and 𝛽 = 80%, 𝑁𝐶𝑃 = 6.2 and 𝐹 =7.2. So, 𝑟�̂�𝑔2 = 0.86 and 𝑟�̂�𝑔 = 0.93; and with 𝛼 = 5% and 𝛽 = 80%, 𝑁𝐶𝑃 = 4.5 and 𝐹 =5.5. So, 𝑟�̂�𝑔2 = 0.82 and 𝑟�̂�𝑔 = 0.91. In this way, 

an accuracy of 90% is associated with α equal to 
10% and β equal to 80%, among other 
combinations of α and β. A summary of these 
results is presented in Table 8. 

Table 8. Significance level and power of t test associated with required accuracy levels of 0.90, 0.93 and 0.95. 

Accuracy 
(𝒓�̂�𝒈) 

𝒓�̂�𝒈𝟐  Significance 
(Type I Error: α) 

Confidence 
(1-α) 

Power 
(1-𝛽) 

Type II 
Error (𝛽) 

F test 

0.91 0.82 0.10 0.90 0.80 0.20 5.5 

0.93 0.86 0.05 0.95 0.80 0.20 7.2 

0.95 0.90 0.05 0.95 0.90 0.10 9.6 

 

It can be seen that to perform an 
experiment with desired power of the F-test of 
0.90 and significance of 0.05 we should seek for 
an accuracy of 0.95. In this case, the probability 
of detecting a true difference among genotypes is 
0.90, when the significance level is set at 0.05. 
There is a closeness between accuracy and 
confidence level, as expected. Also, a relation 
between power and coefficient of determination 
(𝑟�̂�𝑔2 ) seems to hold, for such high accuracy 
values. The coefficient of determination is also 
called proportional reduction of error and is more 
a measure of coincidence proportion, hits or 
rightness (Linder, 1951). 

Sample size for genomic 
selection 

Genomic data are especially useful for 
genomic selection (GS), which allow selecting at 
plantlet stage aiming genetic gain in the adult 
stage (Resende et al., 2008; Grattapaglia and 
Resende, 2011). With GS: 

𝑟�̂�𝑔2 = 𝑛ℎ2 (𝑛ℎ2 + 𝑛𝑄𝑇𝐿)⁄ = 𝑛ℎ2 (𝑛ℎ2 + 𝑀𝑒) =⁄ 𝑛ℎ2 (𝑛ℎ2 + 2𝑁𝑒𝐿)⁄ =𝑛ℎ2 (𝑛ℎ2 + 𝐿 𝐹⁄ )⁄ , 

where n is the number of genotyped and 
phenotyped individuals, L is the genome size (in 
Morgans) species, Me is the effective number of 
chromosome segments, Ne is the population 
efective number and F is the inbreeding 
coefficient of the population. For a desired 𝑟�̂�𝑔2 , ℎ2 and 𝑛𝑄𝑇𝐿, n can be determined. 

Classification and interpretations 

Classification of the accuracy magnitudes 
is given in Table 9. Accuracy is linked to trait 
heritability. A classification of additive 
heritability and accuracy in terms of magnitude 
and their associations is presented in Table 10 
(Resende, 1997). 
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Table 9. Adequate values of the Snedecor F statistics, for the genetic effects (cultivars), aiming to achieve a 
certain accuracy, and the categories of required precision in the genotypic evaluation. 

Accuracy 
Accuracy 
categories 

F value Accuracy 
Accuracy 
categories 

F value 

0.99 Very high 50.2513 0.65 Moderate 1.7316 

0.975 Very high 20.2532 0.60 Moderate 1.5625 

0.95 Very high 10.2564 0.55 Moderate 1.4337 

0.90 Very high 5.2632 0.50 Moderate 1.3333 

0.85 High 3.6036 0.40 Low 1.1905 

0.80 High 2.7778 0.30 Low 1.0989 

0.75 High 2.2857 0.20 Low 1.0417 

0.70 High 1.9606 0.10 Low 1.0101 

Source: (Resende and Duarte, 2007). 

Table 10. Individual additive heritability (ℎ𝑎2), accuracy for individual selection (𝑟�̂�𝑎), maximum possible 
accuracy for BLUP using also the family mean (𝑟�̂�𝑎 𝑚𝑎𝑥), classification of magnitudes of individual additive 
heritability (ℎ𝑎2  classification) and classification of accuracy magnitudes for selection of individuals 
(𝑟�̂�𝑎 classification). 𝒉𝒂𝟐 𝒓�̂�𝒂 𝒓�̂�𝒂 𝒎𝒂𝒙 𝒉𝒂𝟐 classification 𝒓�̂�𝒂 classification 

0.01 0.10 0.51 
Low 0.01 ≤ ℎ𝑎2 ≤ 0.15 

Low 0.10 ≤ 𝑟�̂�𝑎 ≤ 0.40 
0.10 0.32 0.55 

0.15 0.39 0.58 

0.20 0.45 0.61 
Moderate 0.15 < ℎ𝑎2 < 0.50 

Moderate 0.40 < 𝑟�̂�𝑎 < 0.70 
0.30 0.55 0.66 

0.40 0.63 0.71 

0.50 0.71 0.76 
High 0.50 ≤ ℎ𝑎2 < 0.80 

High 0.70 ≤ 𝑟�̂�𝑎 < 0.90 
0.60 0.77 0.80 

0.70 0.84 0.85 

0.80 0.89 0.90 Very high ℎ𝑎2 ≥  0.80 
Very high 𝑟�̂�𝑎 ≥  0.90 0.90 0.95 0.95 

Source: (Resende, 1997). 

 

It is verified that, with ℎ𝑎2 > 0.50, there is 
practically no advantage in the use of family 
information and the selection based only on 
individual information already provides a high 
accuracy (𝑟�̂�𝑎 > 0.70). Even for traits with low 
additive heritability, the use of information from 
relatives (more information) allows to increase 
the selective accuracy of the class from low to 
moderate. This fact highlights the importance of 
working with more elaborate selection methods. 

Classification of magnitudes of 
repeatability estimates 

In general, the classification of the 
repeatability coefficients in terms of magnitude 
can be performed by comparing the permanent 

phenotypic gain to be obtained considering one 
measurement (𝐺1) with that to be obtained 
assuming m measurements (𝐺𝑚), by the ratio 𝐺1 𝐺𝑚 = {[1 + (𝑚 − 1)𝜌] 𝑚⁄ }1 2⁄⁄ . 

Considering the 𝑚 = 2 for 𝐺𝑚, the 
classifications for repeatability are as follows: 
high repeatability: 𝐺1 𝐺𝑚 ≥ 0.90⁄ →𝜌 ≥ 0.60; 
medium repeatability: 0.80 < 𝐺1 𝐺𝑚⁄ <0.90→0.30 <  < 0.60;and low repeatability: 𝐺1 𝐺𝑚⁄ ≤ 0.80→ ≤  0.30. 

Classification of the magnitudes of the 
genetic correlation coefficients 

A classification of the magnitudes of the 
genetic correlation coefficients can be obtained 
by taking thirds of the values of the parametric 
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space that extends from -1 to 1. Thus, we have 
the following classification: 

Positive 
scale values 

Negative 
scale values 

Classification 

0.0 to 0.33 0.0 to 0.33 Low 

0.34 to 0.66 0.34 to 0.66 Medium 

0.67 to 1.0 0.67 to 1.0 High 

Correlations must be interpreted not only 
based on their significance, but mainly based on 
their magnitudes. The classes shown above are 
valid for genetic and phenotypic correlations 
between traits and also for correlation of the 
same variable across environments. In the latter 
case, the low, medium and high classes for 
correlations should also be interpreted as 
genotype × environment interaction high, 
medium and low, respectively. The low-class 
correlation denotes high interaction and, in 
addition, that the interaction is of the complex 
type (arising from the lack of correlation between 
genotypes across environments). 

In the bivariate context, the correlation 
coefficient between orders, or Spearman 
correlation between two variables, is not strongly 
influenced by extreme pairs. Thus, it is robust in 
relation to Pearson’s linear correlation coefficient. 
A large difference in magnitude between these two 
types of correlation coefficient can reveal the 
presence of extreme pairs of variables. However, a 
high Spearman correlation does not necessarily 
indicate that the relationship between two variables 
is linear. Spearman’s correlation between two 
variables, markedly higher than Pearson’s 
correlation, may indicate a non-linear relationship 
between these variables. As an example, two 
variables X and Y, where Y is given by 𝑌 = 𝑋2, will 
present a Pearson correlation value close to 0, but a 
Spearman correlation value equal to 1. 

Coefficient of variation 

In experimental statistics, the genetic 
variability inherent to the experiment can be 
measured by the coefficient of genetic variation 
(𝐶𝑉𝑔), which informs about the possibility of 
improvement and the evolution of the trait in the 
population. This measure is scaled and, therefore, 
comparable between variables. The coefficient of 

phenotypic variation, when greater than 100% 
indicate the presence of outliers. 

Weights in selection index 

For constructing selection index, 
phenotypic traits should be heritable (ℎ2 > 0.10), 
adequately scaled and scored and correlated with 
the breeding objective. Traits can be combined in 
super-variables or in selection indexes describing 
the breeding objective. An efficient alternative for 
calculating the economic weights 𝑤𝑖 refers to the 
use of genetic correlations between each trait i and 
the objective trait j of the improvement (𝑟𝑔𝑖𝑗). In 

this case, 𝑤𝑖 is given by  𝑤𝑖 = 𝑟𝑔𝑖𝑗 ∑ 𝑟𝑔𝑖𝑗𝑛𝑖=1⁄ , 

that is, it is equivalent to the correlation as a 
proportion of the sum of the correlations 
involving the n variables and the objective trait. 

Genotype x environment 
interaction and genotype correlation 

across environments 

The genotype correlation across 
environments (𝑟𝑔𝑒) can be expressed 
alternatively according to the proportion 𝑃 =𝜎𝑔𝑒2 𝜎𝑔2⁄ , by means of  𝑟𝑔𝑒 = 𝜎𝑔2 (𝜎𝑔2 + 𝑃𝜎𝑔2) = 1 (1 + 𝑃)⁄⁄ . 

With 𝑃 = 0.5, we have 𝑟𝑔𝑒 = 0.67, which is a 
high value of genetic correlation. 

Thus, it can be inferred that when the ratio 
of the variance of the interaction/genetic variance 
free from interaction is less than 0.5, the 
interaction is not problematic for the breeder, as 
it will lead to a high correlation. When 𝑃 > 0.5, 
the interaction can be problematic for the 
breeder, implying losses of gain with indirect 
selection (selection in one place aiming at gain in 
another). There is also the equality  𝑃 = 𝜎𝑔𝑒2 𝜎𝑔2⁄ = (1 − 𝑟𝑔𝑒) 𝑟𝑔𝑒⁄ , 

where (1 − 𝑟𝑔𝑒) is the lack of correlation. 
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