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LINEAR GROUPS WITH THE MAXIMAL CONDITION

ON SUBGROUPS OF INFINITE CENTRAL DIMENSION

L. A. Kurdachenko and I. Ya. Subbotin

Abstract

Let A a vector space over a field F and let H be a subgroup
of GL(F, A). We define centdimF H to be dimF (A/CA(H)). We
say that H has finite central dimension if centdimF H is finite
and we say that H has infinite central dimension otherwise. We
consider soluble linear groups, in which the (ordered by inclusion)
set of all subgroups having infinite central dimension satisfies the
maximal condition.

Introduction

Let F be a field, A a vector space over F . The group GL(F, A) of
all automorphisms of A and its distinct subgroups (the linear groups)
are the oldest subjects of investigation in Group Theory. The investi-
gation of the case when A has finite dimension over F was the initial
natural step. In this case, every element of GL(F, A) (a non-singular
linear transformation) defines a non-singular n×n-matrix over F where
n = dimF A. Thus, for the finite-dimensional case the theory of linear
groups is exactly the theory of matrix groups. That is why the theory of
finite dimensional linear groups is one of the best developed in Algebra.
However, in the case when dimF A is infinite, the situation is completely
different. The study of this case requires some essential additional re-
strictions. The circumstances here are similar to those that appeared in
the early period of development of the Infinite Group Theory. One of the
most fruitful approaches here is the application of finiteness conditions
to the study of infinite groups. The celebrated problem of O. Yu. Šmidt
regarding an infinite group with all proper subgroups finite has deter-
mined in many respects the further development of the theory of groups
with finiteness conditions (see, for example, [CS]). The following two
valuable generalizations follow from this: the problem of S. N. Chernikov
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on groups with the minimal condition on subgroups, and the problem
of R. Baer on groups with the maximal condition on subgroups. These
problems have been solved under some natural restrictions related to
generalized solubility. However, in the general case, these problems have
no solution yet. Moreover, A. Yu. Ol’shanskĭı [OA, Chapter 9] has con-
structed a series of his brilliant examples showing that, in general, the
description of Schmidt’s groups is an extremely complicated problem.
We shall consider a similar problem for linear groups.

As you would expect, we are trying to employ the finiteness conditions
to the study of infinite dimensional linear groups. More precisely, we
want to investigate such classes of linear groups that can be extracted
by applying finiteness conditions on some systems of infinite dimensional
subgroups. At the beginning we need to clarify the concepts of infinite
dimensional and finite dimensional linear groups. If dimF A is finite, then
everything is clear. If dimF A is infinite, then there are several different
approaches. For instance, we can consider the following one. If H is a
subgroup of GL(F, A), then H really acts on the factor-space A/CA(H).
We say that H has finite central dimension, if dimF (A/CA(H)) is finite.
In this case dimF (A/CA(H)) will be called the central dimension of the
subgroup H and will be denoted centdimF (H).

At the risk of being overly pedantic, we remark that it is crucial
that H is a subgroup of a particular general linear group. It is easy to
construct embeddings of a group H in two general linear groups such
that H has finite central dimension when it is viewed as a subgroup of
the first group, and has infinite central dimension as a subgroup of the
second group. Consequently, we may not speak of “the class of groups of
finite central dimension”. In order to avoid such kind of misunderstand-
ings connecting with different linear representations we fix from now the
concrete field F , the concrete vector space A over F , and will consider
only subgroups of GL(F, A).

Let H has finite central dimension, then A/CA(H) is finite dimen-
sional. Put C = CH(A/CA(H)); then, clearly, C is a normal sub-
group of H and H/C is isomorphic to some subgroup of GLn(F ) where
n = dimF (A/CA(H)). Each element of C acts trivially in every factor
of series 〈0〉 ≤ CA(H) ≤ A, so that, C is an abelian subgroup. More-
over, if charF = 0, then C is torsion-free; if charF = p > 0, then C
is an elementary abelian p-subgroup. Hence, in general, the structure
of H is defined by the structure of an ordinary finite dimensional linear
group H/C.

A group G ≤ GL(F, A) is called a finitary linear group if for each
element g ∈ G the factor-space A/CA(g) has finite dimension. Finitary
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groups are a linear analogy of the FC-groups (the groups with finite
conjugacy classes). The theory of finitary linear groups is developed
rather intensively and became rich with many interesting results (see,
for example, the survey [PR]). This is a good example of effectiveness
of finiteness conditions in the study of infinite dimensional linear groups.
Some other approaches that also based on the use of finiteness conditions
in infinite dimensional (near to irreducible) linear groups have been re-
alized in [KS1], [KS2].

Let G ≤ GL(F, A) and let Licd(G) be the set of all subgroups of G
having infinite central dimension. As the first expected step we will
consider such linear groups G close to finite dimensional, in which the
set Licd(G) is “very small” in some particular sense. According to the
above analogy with the groups with finiteness conditions, the following
problems logically arise:

• the study of linear groups in which every proper subgroup has finite
central dimension (a linear analogy of the Šmidt’s problem);

• the study of linear groups, in which the set of all subgroups having
infinite central dimension satisfies the minimal condition (a linear
analogy of the Chernikov’s problem);

• the study of linear groups, in which the set of all subgroups having
infinite central dimension satisfies the maximal condition (a linear
analogy of the Baer’s problem).

The first and the second problems have been solved for the locally
soluble linear groups in the paper [DEK].

We say that a group G ≤ GL(F, A) satisfies the condition Max-id, if
the family Licd(G) ordered by inclusion satisfies the maximal condition.

In the current paper we investigate the soluble linear groups G sat-
isfying Max-id. The general case immediately splits into the following
two cases:

• the case of groups which have no finite sets of generators; and
• the case of finitely generated groups.

The first case is described in the following two theorems.

Theorem A (Theorem 2.6). Let G ≤ GL(F, A) and suppose that G is
a soluble group satisfying Max-id. If G has infinite central dimension
and G/[G, G] is not finitely generated, then G satisfies the following
conditions:

(1) A has a finite series of FG-submodules

〈0〉 = C0 ≤ C1 = C ≤ C2 · · · ≤ Cn = A
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such that dimF (A/C) is finite and Cj+1/Cj is a simple FG-module
for every j, 0 ≤ j ≤ n − 1, Q = G/CG(C) is a Prüfer q-group.

(2) H = CG(C1) ∩ CG(C2/C1) ∩ · · · ∩ CG(Cn/Cn−1) is a nilpotent
normal subgroup of G; moreover, if charF = 0, then H is torsion-
free; if charF = p > 0, then H is a bounded p-subgroup.

(3) G/H ≤ Q×S1×· · ·×Sn−1 where Q is a Prüfer q-group, q 6= charF ,
S1, . . . , Sn−1 are finite-dimensional irreducible linear groups. In
particular, G has the normal subgroups H ≤ R ≤ V such that
G/V is finite, V/R is a Prüfer q-group, q 6= charF , centdimF (R) is
finite, R/H is finitely generated and V/H is abelian.

(4) C has an FG-submodules B =
⊕

n∈N Bn where each Bn is a simple
FG-submodules having finite F -dimension such that C(ωFG) ≤ B.

Here ωFG denote the augmentation ideal of the group ring FG.

Theorem B (Theorem 2.9). Let G ≤ GL(F, A) and suppose that G is a
soluble group satisfying Max-id. If G has infinite central dimension and
G is not finitely generated, then G has a normal subgroup S such that
G/S is abelian-by-finite and finitely generated but S/[S, S] is not finitely
generated.

The case of finitely generated soluble linear groups satisfying Max-id
is described in the following two theorems. In their study we will heavily
use the following subgroup.

Let G ≤ GL(F, A). Put

FD(G) = {x ∈ G/〈x〉 has finite central dimension}.

Further we will see that FD(G) is a normal subgroup of G.
Let G be a group, H be a subgroup of G, and U be an H-invariant

subgroup of G. We say that a subgroup U satisfies the condition Max-H,
if the family of all H-invariant subgroups of U , ordered by inclusion,
satisfies the maximal condition.

Theorem C (Theorem 2.10). Let G ≤ GL(F, A), and suppose that
G is a finitely generated soluble group satisfying Max-id. If G has infi-
nite central dimension but centdimF (FD(G)) is finite, then the following
conditions hold:

(1) G has a normal subgroup U such that G/U is polycyclic.

(2) There is a number m ∈ N such that A(x − 1)m = 〈0〉 for each
x ∈ U ; in particular, U is nilpotent.

(3) If charF = 0, then U is torsion-free, if charF = p > 0, then U is
a bounded p-subgroup.
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(4) If 〈1〉 = Z0 ≤ Z1 ≤ · · · ≤ Zm = U is the upper central series
of U , then Zj +1/Zj is a noetherian Z〈g〉-module for each element
g ∈ G \ FD(G), 0 ≤ j ≤ m− 1. In particular, U satisfies Max-〈g〉
for each element g ∈ G \ FD(G).

Theorem D (Theorem 2.12). Let G ≤ GL(F, A), and suppose that G is
a finitely generated soluble group satisfying Max-id. If both centdimF (G)
and centdimF (FD(G)) are infinite, then G has a normal subgroup L
satisfying the following conditions:

(1) G/L is abelian-by-finite.

(2) L ≤ FD(G), and L has an infinite central dimension.

(3) L/[L, L] is not finitely generated.

(4) L satisfies Max-〈g〉 for each element g ∈ G \ FD(G).

Finally, in the last part of the article, we consider the structure of
soluble linear groups satisfying Max-id for some specific kinds of fields
which make the structure of such groups more transparent. The following
two results illustrate this situation.

Theorem E (Theorem 3.8). Let G ≤ GL(F, A) and suppose that G is a
soluble group satisfying Max-id. Suppose that G is not finitely generated.
Then in each of the following cases G has finite central dimension:

(1) F is a field satisfying the following conditions: the Sylow q-subgroup
of U(F ) is finite and non-identity for each prime q, and the Sylow
2-subgroup has order at least 4.

(2) F is a field of characteristic p > 0 such that the periodic part
of U(F ) is finite.

(3) F is a finitely generated field.

(4) F is a finite field extension of the p-adic field Qp.

(5) F is a finite field extension of a field L where L is the field of
rational functions over a finite extension of Q.

Here U(F ) denotes the multiplicative group of a field F .

Theorem F (Theorem 3.9). Let G ≤ GL(F, A) and suppose that G is
a soluble group satisfying Max-id. Suppose that G is finitely generated.
Then in each of the following cases the finitary radical of G has finite
central dimension:

(1) F is a field satisfying the following conditions: the Sylow q-subgroup
of U(F ) is finite and non-identity for each prime q, and the Sylow
2-subgroup has order at least 4.
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(2) F is a field of characteristic p > 0 such that the periodic part
of U(F ) is finite.

(3) F is a finitely generated field.

(4) F is a finite field extension of the p-adic field Qp.

(5) F is a finite field extension of a field L where L is the rational
functions field over a finite extension of Q.

1. Preliminary results

Lemma 1.1. Let G ≤ GL(F, A).

(i) If L ≤ H ≤ G and centdimF (H) is finite, then centdimF (L) is
also finite.

(ii) If H and L have finite central dimension, then centdimF (〈H, L〉)
is likewise finite.

In fact, if centdimF (H) is finite, then CA(H) has a finite codimension.
Thus if L is a subgroup of H , then CA(L) ≥ CA(H); so that, CA(L) has
finite codimension too. If H and L have finite central dimension, then
the both subspaces CA(H) and CA(L) have finite codimension. It follows
that dimF (A/(CA(H)CA(L)) is finite too.

Corollary 1.2. Let G ≤ GL(F, A). Then the set

FD(G) = {x ∈ G/〈x〉 has finite central dimension}

is a normal subgroup of G.

In fact, by Lemma 1.1 FD(G) is a subgroup. Let x ∈ FD(G), g ∈ G.
Since CA(xg) = CA(x)g, CA(xg) also has finite codimension.

Note that G = FD(G) if and only if G is a finitary linear group.
Therefore the subgroup FD(G) is called the finitary radical of a linear
group G.

Lemma 1.3. Let G ≤ GL(F, A) and suppose that G satisfies Max-id.

(i) If H is a subgroup of G, then H satisfies Max-id.

(ii) If H1 < H2 < · · · < Hn < · · · is a chain of subgroup, then each
subgroup Hn has finite central dimension.

(iii) If H has infinite central dimension, then an ordered by inclusion
set L[H, G] of all subgroups containing H, satisfies the maximal
condition.

(iv) Either every finitely generated subgroup of G has finite central di-
mension or G is a finitely generated group. In particular, if G is
not finitely generated, it is a finitary linear group.
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Proof: (i) is obvious. To prove (ii) we note that there is a number d
such that every subgroup Hn has finite central dimension for n ≥ d. By
Lemma 1.1 the subgroups H1, . . . , Hd−1 have also finite central dimen-
sional; and (iii) is also obvious.

Finally, we will prove (iv). Suppose that G has no finite sets of gen-
erators. Let L be a finitely generated subgroup of G. Then G \ L 6= ∅.
Let a1 ∈ G \ L, L1 = 〈L, a1〉. Since L1 is finitely generated, G 6= L1;
that is, G \ L1 6= ∅. Using the similar arguments, we can construct a
strictly ascending series L < L1 < · · · < Ln < · · · of finitely gener-
ated subgroups. By Lemma 1.1 every subgroup Ln has finite central
dimensional, in particular, centdimF (L) is also finite.

Corollary 1.4. Let G be a group satisfying Max-id, H a subgroup of G,
and K a normal subgroup of H. If H/K does not satisfies the maximal
condition, then K has finite central dimension.

Corollary 1.5. Let G be a group satisfying Max-id, H a subgroup of G
and K a normal subgroup of H. If H/K = Drλ∈Λ(Hλ/K) where Hλ 6=K
for every λ ∈ Λ, and the set Λ is infinite, then K has finite central
dimension.

Corollary 1.6. Let G be a group satisfying Max-id, H a subgroup
of G and K an H-invariant subgroup of G. If centdimF (H) is infi-
nite and H ∩ K satisfies the maximal condition for subgroups, then K
satisfies Max-H.

Proof: If K satisfies Max (the maximal condition for all subgroups), then
all is proved. Therefore, suppose that K has a strictly ascending series

L1 < · · · < Ln < · · ·

of H-invariant subgroups of K. Consider the ascending chain

HL1 ≤ · · · ≤ HLn ≤ · · · .

Suppose that there exists a positive integer m such that HLm = HLn

for all n ≥ m. Since H ∩K satisfies Max, there exists a positive integer t
such that H ∩ Lt = H ∩ Ln for all n ≥ t. Let d = max{m, t} and n ≥ t.
The inclusion Lt ≤ Ln implies

Ln = Lt(H ∩ Ln) = Lt(H ∩ Lt) = Lt.

This fact contradicts to our assumption concerning the chain {Ln |n∈N}.
This contradiction shows that the chain {HLn | n ∈ N} is strictly
ascending. It follows that there exists a positive integer k such that HLt

has finite central dimension. By Lemma 1.1 centdimF (H) is finite.
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Lemma 1.7. Let G be a group satisfying Max-id, H a subgroup of G
and K a normal subgroup of H. If centdimF (K) is infinite, then H/K
satisfies the maximal condition. In particular, if H is locally (soluble-by-
finite), then H/K is polycyclic-by-finite.

Lemma 1.8. Let G ≤ GL(F, A) and suppose that G satisfies Max-id.
Suppose also that L and H are subgroups of G satisfying the following
properties:

• L = Drλ∈ΛLλ where Lλ is a non-identity H-invariant subgroup
of L for every λ ∈ Λ; and

• H ∩ L ≤ Drλ∈MLλ.

If the set Γ = Λ M is infinite, then the subgroup H has finite central
dimension.

Proof: Since Γ is infinite, it has an infinite ascending chain

Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γn ⊆ · · ·

of infinite subsets. Since H ∩ Drλ∈ΛLλ = 〈1〉, we come to an ascending
chain of subgroups

〈H, Lλ | λ ∈ Γ1〉 < 〈H, Lλ | λ ∈ Γ2〉 < · · · < 〈H, Lλ | λ ∈ Γn〉 < · · · .

There is a number d such that the subgroup 〈H, Lλ | λ ∈ Γd〉 has
finite central dimension. By Lemma 1.1 H also has finite central di-
mension.

Lemma 1.9. Let G ≤ GL(F, A) and suppose that G satisfies Max-id.
Let H and Q be subgroups of G satisfying the following conditions:

• Q is a normal subgroup of H; and
• H/Q = B/Q × C/Q.

If the subgroups B/Q and C/Q do not satisfy the maximal condition,
then the subgroup H has finite central dimension.

Proof: Since H/B ∼= C/Q, it does not satisfies Max. Corollary 1.4 yields
that centdimF (B) is finite. By the same reasons centdimF (C) is finite.
Since H = BC, Lemma 1.1 implies that H has finite central dimension
as well.

Corollary 1.10. Let G ≤ GL(F, A) and suppose that G satisfies Max-id.
Let H and Q are the subgroups of G satisfying the following conditions:

• Q is a normal subgroup of H; and
• H/Q = Drλ∈Λ(Lλ/Q) where Lλ 6= Q for every λ ∈ Λ.

If the set Λ is infinite, then centdimF (H) is finite.
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Proof: There are two subsets Γ and ∆ of Λ with the following properties:
Γ∪∆ = Λ, Γ∩∆ = ∅, Γ, ∆ are infinite. It follows that Γ (respectively ∆)
has an infinite ascending chain

Γ1 ⊆ Γ2 ⊆ · · · ⊆ Γn · · · (respectively ∆1 ⊆ ∆2 ⊆ · · · ⊆ ∆n ⊆ · · · )

of infinite subsets. Put U/Q = Drλ∈Λ(Lλ/Q), V/Q = Drλ∈Λ(Lλ/Q).
Then we obtain two ascending chains of subgroups

〈Lλ | λ ∈ ∆1〉 < 〈Lλ | λ ∈ ∆2〉 < · · · < 〈Lλ | λ ∈ ∆n〉 < · · ·

and

〈Lλ | λ ∈ Γ1〉 < 〈Lλ | λ ∈ Γ2〉 < · · · < 〈Lλ | λ ∈ Γn〉 < · · · .

It follows that the groups U/Q and V/Q do not satisfy Max. Since H/Q=
U/Q × V/Q, Lemma 1.9 gives that H has finite central dimension.

Lemma 1.11. Let G be a soluble subgroup of GL(F, A) and suppose that
G satisfies Max-id. Then G/FD(G) is polycyclic.

Proof: Let 〈1〉 = D0 ≤ D1 ≤ · · · ≤ Dn = G be the derived series of G.
If G is not finitely generated, then Lemma 1.3 yields that G = FD(G).
Suppose that G is finitely generated. Then G/Dn−1 is finitely gen-
erated. If Dj+1/Dj is finitely generated for each j, 0 ≤ j ≤ n − 1,
then G is polycyclic. Therefore, we may assume that there is a num-
ber m ∈ N such that G/Dm is polycyclic and Dm/Dm−1 is not finitely
generated. In particular, Dm is not finitely generated and Dm ≤ FD(G)
by Lemma 1.3.

2. The general structure of the soluble linear groups
satisfying Max-id

Recall that a group G is said to be quasicyclic or a Prüfer p-group,
where p is a prime, if G = 〈an | ap

1 = 1, an + 1p = an, n ∈ N〉. A
group G is said to be a Chernikov group, if G has a normal subgroup of
finite index, which is decomposed into a direct product of finitely many
Prüfer groups.

Lemma 2.1. Let G ≤ GL(F, A) and suppose that G satisfies Max-id. If
G has infinite central dimension and G 6= [G, G] = D, then either Gab =
G/D is finitely generated or it has a finitely generated subgroup S/D
such that G/S is a Prüfer p-group for some prime p.

Proof: Suppose that G/D is not finitely generated. Let T/D be the
periodic part of G/D. Choose in Q = G/T a maximal Z-independent
set of elements {uλ | λ ∈ Λ}. Then the subgroup U = 〈uλ | λ ∈ Λ〉
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is free abelian, U = Drλ∈Λ〈uλ〉, and Q/U is periodic. Assume that
the set Λ is infinite. Since a free abelian group is projective (see, for
example, [FL, Theorem 14.6]), U has a subgroup Y such that U/Y is
a direct product of countable many copies of Prüfer p-groups. Then
Q/Y = U/Y × W/Y for some subgroup W (see, for example, [FL,
Theorem 21.2]), thus Q/W is a direct product of countable many copies
of Prüfer p-groups. Corollary 1.10 yields that, in this case, centdimF (G)
is finite. This contradiction shows that Λ is finite, i.e. r0(Q) is finite.

Let V/D be a preimage of a subgroup U in G/D. Then by the se-
lection of U the factor-group (G/D)/(V/D) ∼= G/V is periodic. If the
set Π(G/V ) of primes which occur as orders of elements of G/V is in-
finite, then by Corollary 1.10 centdimF (G) is finite. Hence, (G/V ) is
finite. We denote by Sp/V a Sylow p-subgroup of G/V for each prime p
and put

ϑ = {p | p ∈ Π(G/V ) and Sp/V is infinite}.

Lemma 1.9 implies that ϑ = {p}. Put P/V = Drq 6=pSq/V . Then G/P ∼=
Sp/V is infinite and P/V is finite. If we suppose that (G/P )/(G/P )p

is infinite Corollary 1.10 implies that centdimF (G) is finite. It shows
that (G/P )/(G/P )p is finite. It follows that Sp/V = Cp/V × Kp/V
where Kp/V is finite, Cp/V is a divisible p-subgroup [KL2, Lemma 3].
Lemma 1.9 implies that Cp/V is a Prüfer p-group. Hence, the sub-
group S/V = P/V × Kp/V is finite, that is S/D is finitely generated,
and G/S is a Prüfer p-group.

Corollary 2.2. Let G ≤ GL(F, A), and suppose that G satisfies Max-id.
If G has infinite central dimension, G 6= [G, G], and G/[G, G] is not
finitely generated, then

G = ∪n∈NGn, where G1 ≤ G2 ≤ · · · ≤ Gn ≤ · · ·

is an ascending series of normal subgroups having finite central dimen-
sion.

Proof: Let S be a normal subgroup of G such that G/S is a Prüfer
p-group and S/[G, G] is finitely generated. The existence of such a sub-
group follows from Lemma 2.1. Then there is an ascending series

S = G0 < G1 < · · · < Gn < · · ·

such that Gn/S is a cyclic subgroup of order pn, n ∈ N , G = ∪n∈NGn.
By Lemma 1.3 every subgroup Gn has finite central dimension.

Lemma 2.3. Let G ≤ GL(F, A), and suppose that G is a finitary linear
group. If G has infinite central dimension, then every subgroup of finite
index of G has infinite central dimension.
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Proof: Suppose the contrary: let assume that G has a subgroup H
of finite index such that centdimF (H) is finite. Put K = CoreG(H);
then K is a normal subgroup of finite index. By Lemma 1.1 K has fi-
nite central dimension. There is a finitely generated subgroup L such
that G = KL. Since G is a finitary linear group, L has finite central
dimension. Using Lemma 1.1 we obtain that G has finite central dimen-
sion; a contradiction.

We could not found the needed references for the following form of
the well known result below. Therefore, we decided to place a proof of
it here.

Proposition 2.4. Let G be a soluble group, F be a field and A a simple
FG-module. If dimF (A) = n is finite, then G/CG(A) has a normal
subgroup of finite index, which is isomorphic to some subgroup of U1 ×
· · · × Un where Uj is isomorphic to the multiplicative group of a field K
for certain finite field extension K of the field F , 1 ≤ j ≤ n.

Proof: We can assume that CG(A) = 〈1〉; that is, we can identify G as a
subgroup of GLn(F ) where n = dimF A. By a Maltsev’s Theorem (see,
for example, [WB, Lemma 3.5]) G has a normal abelian subgroup U
of finite index. Suppose now that A is a non simple FE-module. By
Clifford’s Theorem (see, for example, [WB, Theorem 1.7]) A has a simple
FU -submodule L and A =

⊕
x∈S Lx for some finite subset S. Then

clearly ∩x∈SCG(Lx) = CG(A) = 〈1〉, and Remak’s Theorem gives the
imbedding E ≤ Drx∈SG/CG(Lx). Since Lx is a simple FU -submodule
and U is abelian, there exists a finite field K extension of F such that
G/CG(Lx) is isomorphic to some subgroup of the multiplicative group
of K (see, for example, [WB, Corollary 1.3]) for each x ∈ S.

Lemma 2.5. Let Q be a Prüfer q-group, F a field, charF 6= q, A a sim-
ple FQ-module of finite F -dimension. If U(F ) has a Prüfer q-subgroup,
then dimF (A) = 1.

Proof: Let Q = 〈zn | zq
1 = 1, zq

n+1 = zn, n ∈ N〉, R be a Prüfer q-sub-
group of U(F ), f : Q → R an isomorphism. Denote by χn(X) the char-
acteristic polynomial of a linear transformation induced on A by the
element zn, n ∈ N . Since zn is a root of χn(X), λn = f(zn) is also
a root of χn(X). It follows that there is an element 0 6= a ∈ A such
that azn = λna. In turn, it follows that an F -subspace A(n) = {b ∈
A | bzn = λnb} is non-zero. Since G is abelian, A(λn) is an FG-sub-
module. Thus A = A(λn). In other words, for each element a ∈ A
we have aF 〈zn〉 = aF . Since it is valid for every n ∈ N , the equa-
tion Q = ∪n∈N 〈zn〉 implies that aFQ = aF for each element a ∈ A.
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Since A is a simple FG-module A = aFQ = aF for every 0 6= a ∈ A. It
follows that dimF (A) = 1.

Theorem 2.6. Let G ≤ GL(F, A), and suppose that G is a soluble group
satisfying Max-id. If G has infinite central dimension and G/[G, G] is
not finitely generated, then G satisfies the following conditions:

(1) A has a finite series of FG-submodules

〈0〉 = C0 ≤ C1 = C ≤ C2 ≤ · · · ≤ Cn = A

such that dimF (A/C) is finite and Cj+1/Cj is a simple FG-module
for every j, 0 ≤ j ≤ n − 1, Q = G/CG(C) is a Prüfer q-group.

(2) H = CG(C1) ∩ CG(C2/C1) ∩ · · · ∩ CG(Cn/Cn−1) is a nilpotent
normal subgroup of G. Moreover, if charF = 0, then H is torsion-
free; if charF = p > 0, then H is a bounded p-subgroup.

(3) G/H ≤ Q×S1×· · ·×Sn−1 where Q is a Prüfer q-group, q 6= charF ,
S1, . . . , Sn−1 are finite-dimensional irreducible linear groups. In
particular, G has the normal subgroups H ≤ R ≤ V such that
G/V is finite, V/R is a Prüfer q-group, q 6= charF , centdimF (R)
is finite, R/H is finitely generated and V/H is abelian.

(4) C has an FG-submodules B =
⊕

n∈N Bn where Bn is a simple
FG-submodules having finite F -dimension for each n ∈ N , such
that C(ωFG) ≤ B.

Proof: By Lemma 2.1 G has a normal subgroup S such that G/S is a
Prüfer q-group for some prime q. By Lemma 1.3 G is finitary linear
group. Corollary 1.4 yields that centdimF (S) is finite; so that, C =
CA(S) has finite codimension. Furthermore, CG(C) ≥ S, in particular,
G/CG(C) is a Prüfer q-group. Lemma 5.1 of [DEK] proves that q 6=
charF . Since S is a normal subgroup of G, C is an FG-submodule of A
and dimF (A/C) is finite. Hence A has a finite series of FG-submodules

〈0〉 = C0 ≤ C1 = C ≤ C2 ≤ · · · ≤ Cn = A

such that C2/C1, . . . , Cn/Cn−1 are simple FG-modules having finite di-
mension over F . Put

H = CG(C1) ∩ CG(C2/C1) ∩ · · · ∩ CG(Cn/Cn−1).

Then, by Remak’s Theorem

G/H ≤ G/CG(C1) × G/CG(C2/C1) × · · · × CG(Cn/Cn−1),

where Q = G/CG(C1) is a Prüfer q-group, Sj = CG(Cj+1/Cj) is an
irreducible finite dimensional linear group, 1 ≤ j ≤ n − 1.
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The inclusion H ≤ CG(C1) ≤ S implies that centdimF (H) is finite.
Each element of H acts trivially on every factor Cj+1/Cj , 0 ≤ j ≤ n−1.
It follows that H is a nilpotent subgroup, moreover, if charF = 0, then
H is torsion-free; if charF = p > 0, then H is a bounded p-subgroup
(see, for example, [KW, Proposition 1.C.3] and [FL, Section 43]).

Since G is soluble, by a Maltsev’s Theorem (see, for example, [WB,
Lemma 3.5]) all factor-groups G/CG(C2/C1), . . . , G/CG(Cn/Cn−1) are
abelian-by-finite. Then by Remak’s Theorem G/H has a normal abelian
subgroup V/H of finite index. By Lemma 1.3 and Lemma 2.3
centdimF (V ) is infinite. By Lemma 2.1 V/H has a finitely generated
subgroup W/H such that V/W is a Prüfer q-group for some prime q.
Put R/H = (W/H)G/H . Since G/V is finite, R/H is likewise finitely
generated. Lemma 1.1 yields that R has finite central dimension; that
is, E = CA(R) has finite codimension. Furthermore, CG(E) ≥ R, in
particular, G/CG(E) is a Prüfer q-group. By Lemma 1.3 G is a finitary
linear group. Lemma 5.1 of [DEK] proves that q 6= charF .

As we have already noted G has a subgroup S ≥ [G, G] such that
S/[G, G] is finitely generated and G/S is a Prüfer q-group. We have
already mentioned that G is a finitary linear group. By Corollary 1.4
centdimF (S) is finite. Put again C = CA(S); then dimF (A/C) is finite.
Put now U = CG(C); then U ≥ H ; so that, either G/U = Q is a Prüfer
q-group, or U = G. But in the last case, centdimF (G) is finite. By
Lemma 5.1 of [DEK] q 6= charF . Let Q = 〈zn | zp

1 = 1, zp
n+1 = zn, n ∈

N〉. If z is an arbitrary element of Q, then by Maschke’s Theorem
(see, for example, [WB, Theorem 1.5]) C =

⊕
λ∈Λ

Dλ, where Dλ is a
simple F 〈z〉-submodule, λ ∈ Λ. In particular, either Dλ(z − 1) = Dλ

or Dλ(z − 1) = 〈0〉. It implies the decomposition C = CC(z) ⊕ C(z −
1). Since Q is abelian, CC(z) and C(z − 1) are FG-submodules of C.
Since G is a finitary linear group, dimF (C/CC(z)) is finite, in particular,
C(z − 1) is finite-dimensional for each element z ∈ Q. Put E1 = C(z1 −
1), L1 = CC(z1), then E1 is an FG-submodule of finite F -dimension.
By Maschke’s Theorem (see, for example, [WB, Theorem 1.5]) E1 =⊕

γ∈Γ
Bγ , where Γ={1, . . . , n1} and Bγ is a simple FG-submodule, γ∈Γ.

As above, L1 = E2 ⊕ L2 where E2 = E1(z2 − 1), L2 = L1 ∩ CC(z2).
Again dimF (E2) is finite; so that, E2 =

⊕
σ∈Σ

Bσ, where
∑

= {n1 +
1, . . . , n2} and Bσ is a simple FG-submodule, σ ∈ Σ. In particular,
C = (

⊕
σ∈Σ∪Σ

Bσ) ⊕ CC(z3). Continue in the similar way we construct
an FG-submodule B =

⊕
n∈N Bn where Bn is a simple FG-submodules

having finite F -dimension for every n ∈ N , and C(ωFG) ≤ B.
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By Proposition 2.4 Q is isomorphic to a subgroup of U(K), where
K is some finite field extension of F . In particular, U(K) has a Prüfer
q-subgroup and using Lemma 2.5 we obtain

Corollary 2.7. Let G ≤ GL(F, A) and suppose that G is a soluble group
satisfying Max-id. If G has an infinite central dimension and G/[G, G]
is not finitely generated, then there is a finite field extension K of F such
that D = A

⊗
F K has the KG-submodules U ≥ V =

⊕
n∈N En where

dimK(D/U) is finite, dimK(En) = 1, n ∈ N , and U(ωFG) ≤ V .

Recall some needed concepts. Let A be a divisible Chernikov normal
subgroup of a group G. Following B. Hartley [HB2] we say that A is
divisible irreducible in G, if G has no any proper non-identity G-invariant
divisible subgroup. It follows that every proper G-invariant subgroup
of G is finite.

Let R be an integral domain, F the field of fractions of R, G a group,
A an RG-module, which is a torsion-free R-module of finite R-rank. We
say that A is rationally irreducible, if A

⊗
R F is a simple FG-module.

Lemma 2.8. Let G be a group having a finite series of normal subgroups

〈1〉 = H0 ≤ H1 ≤ H2 ≤ · · · ≤ Hn = G,

every infinite factor of which is either a divisible Chernikov group or a
torsion-free abelian group of finite 0-rank. Suppose also that every divisi-
ble factor of this series is divisible irreducible in G and every torsion-free
factor is rationally irreducible in G. Then G has a normal nilpotent sub-
group L such that G/L is abelian-by-finite.

Proof: Let L = ∩0≤j≤n−1CG(Hj+1/Hj). If Aj = Hj+1/Hj is torsion-
free, then we can consider Aj

⊗
Z Q as a simple QG-module. Using

theorems of Clifford (see, for example, [WB, Theorem 1.7]) and Maltsev
(see, for example, [WB, Lemma 3.5]), we obtain that G/CG(Hj+1/Hj)
is abelian-by-finite. Consider now the case, when Aj = Hj+1/Hj is a
divisible Chernikov group. Let R denote the ring of all integer p-adic
numbers, K the field of fraction of R, R0 the R-module F/R, Bj =
HomR(Aj , R0). Then Bj is a rationally irreducible RG-module [HB2,
Lemma 2.1]. Using the theorems of Clifford and Maltsev, we obtain that
G/CG(Hj+1/Hj) is abelian-by-finite. Then by Remak’s Theorem

G/L ≤ G/CG(H1) × G/CG(H2/H1) × · · · × CG(Hn/Hn−1),

so that G/L is abelian-by-finite. Each element of L acts trivially on
every factor Hj+1/Hj , 0 ≤ j ≤ n − 1. It follows that L is a nilpotent
subgroup (see, for example, [KW, Proposition 1.C.3]).
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Theorem 2.9. Let G ≤ GL(F, A) and suppose that G is a soluble group
satisfying Max-id. If G has infinite central dimension and G is not
finitely generated, then G has a normal subgroup S such that G/S is
abelian-by-finite and finitely generated, and S/[S, S] is not finitely gen-
erated.

Proof: Let

〈1〉 = D0 ≤ D1 ≤ D2 ≤ · · · ≤ Dn = G

be the derived series of the group G. Since G is not finitely generated,
there is a number t such that G/Dt is polycyclic, while Dt/Dt−1 is
not finitely generated. Put H = Dt. Since G/H is finitely generated,
Lemma 1.3 and Lemma 1.1 show that dimF (A/CA(H)) is infinite. The
factor-group H/[H, H ] is not finitely generated. By Lemma 2.1 H has a
finitely generated subgroup L ≥ [H, H ] such that H/L is a Prüfer group.
In other words, there is a series of normal subgroups between [H, H ]
and G, every infinite factor of which is either a divisible Chernikov group
or a torsion-free abelian group of finite 0-rank. We can assume that
every divisible factor of this series is divisible irreducible in G, and every
torsion-free factor is rationally irreducible in G. If it is not so, we can take
the respectively refinement. Using Lemma 2.8 we obtain that G has a
normal subgroup R ≥ W = [H, H ] such that R/W is nilpotent and G/R
is abelian-by-finite. Let A be a normal subgroup of G such that R ≤ A,
G/A is finite and A/R is abelian. If A/R is not finitely generated, then
put S = A. Suppose now that A/R is finitely generated. Since G/W is
not finitely generated, this means that R/W is not finitely generated.
Then (R/W )/[R/W, R/W ] is not finitely generated (see, for example,
[RD1, Corollary of Theorem 2.26]) as well, in particular, R/[R, R] is
not finitely generated. For this case we put S = R.

In [DEK, Section 5] it has been constructed a group G ≤ GL(F, A)
satisfying the following conditions:

• G = M ⋊ Q is a Charin group; that is, M is a minimal nor-
mal abelian p-subgroup, Q is a Prüfer q-group, p, q are primes,
and p 6= q;

• G is a finitary subgroup of GL(F, A);
• M has a finite central dimension and Q has an infinite central

dimension.

It is not hard to see, that this group is not finitely generated and satis-
fies Max-id. Using the same construction, we can build a finitary sub-
group G = M ⋊ Q of GL(F, A) satisfying Max-id where M is a minimal
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normal abelian p-subgroup, Q is the group of q-adic numbers, p, q are
primes, and p 6= q.

In the paper [MPP] U. Meierfrankenfeld, R. E. Phillips and O. Puglisi
considered the locally soluble finitary linear groups. In particular, they
proved that locally soluble finitary linear groups is unipotent-by-abelian-
by-(locally finite). Since we consider more concrete cases, we are able to
get more complete description of these factors.

The next natural step is consideration of finitely generated case.

Theorem 2.10. Let G ≤ GL(F, A), and suppose that G is a finitely
generated soluble group satisfying Max-id. If G has infinite central di-
mension but centdimF (FD(G)) is finite, then the following conditions
hold:

(1) G has a normal subgroup U such that G/U is polycyclic.

(2) There is a number m ∈ N such that A(x − 1)m = 〈0〉 for each
x ∈ U , in particular, U is nilpotent.

(3) If charF = 0, then U is torsion-free, if charF = p > 0, then U is
a bounded p-subgroup.

(4) If 〈1〉 = Z0 ≤ Z1 ≤ · · · ≤ Zm = U is an upper central series
of U , then Zj+1/Zj is a noetherian Z〈g〉-module for each element
g ∈ G \ FD(G), 0 ≤ j ≤ m − 1.

In particular, U satisfies Max-〈g〉 for each element g ∈ G \ FD(G).

Proof: Put C = CA(FD(G)). Since dimF (A/C) is finite, A has a finite
series of FG-submodules 〈0〉 = C0 ≤ C1 = C ≤ C2 ≤ · · · ≤ Cm = A
such that C2/C1, . . . , Cm/Cm−1 are simple FG-modules having finite
dimension over F . By a Maltsev’s Theorem (see, for example, [WB,
Lemma 3.5]) G/CG(C2/C1), . . . , G/CG(Cn/Cn−1) are abelian-by-finite
groups and hence polycyclic, because G is finitely generated. Put

U = CG(C1) ∩ CG(C2/C1) ∩ · · · ∩ CG(Cm/Cm−1).

Clearly, CG(C1) ≥ FD(G), so G/CG(C1) is polycyclic by Lemma 1.1.
Then the embedding

G/U ≤ G/CG(C1) × G/CG(C2/C1) × · · · × CG(Cn/Cn−1)

proves that G/U is polycyclic. Each element of U acts trivially in every
factor Cj+1/Cj , 0 ≤ j ≤ m−1. It follows that U is a nilpotent subgroup,
moreover, if charF = 0, then H is torsion-free; if charF = p > 0, then
H is a bounded p-subgroup (see, for example, [KW, Proposition 1.C.3]
and [FL, Section 43]). The assertion (4) follows from Corollary 1.6.

The example below helps us to illustrate these results.
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Example 2.11. Let F be a field, which is not locally finite, and put
A =

⊕
n∈N An where An

∼= F for each n ∈ N . Choose in U(F ) an
element g of infinite order and consider the following infinite matrix
γ = ‖ujm‖j,m∈N , where ujj = gj for all j ∈ N and that ujm = 0
for j 6= m. Consider now the set Σ of all matrices α = ‖ujm‖j,m∈N such
that

ujm = 0 if (j, m) /∈ {(1, 2), (j, j) | (j ∈ N}.

If β = ‖vjm‖j,m∈N is the other matrix of Σ, then αβ = ‖wjm‖j,m∈N

where
wjj = ujjvjj ∈ N, w12 = u11v12 + u12v22,

wjm = 0 if (j, m) /∈ {(1, 2), (j, j) | j ∈ N}.

It follows that αβ ∈ Σ. Furthermore, if α−1 = ‖yjm‖j,m∈N , then yjj =

u−1
jj , j ∈ N , y12 = u−1

11 v−1
22 u12, in particular, α−1 ∈ Σ. This means, that

Σ is a subgroup of GL(F, A). Consider now the set Φ of all matrices α =
‖ujm‖j,m∈N such that ujj = 1 for all j ∈ N , ujm = 0 if (j, m) /∈ {(1, 2)}.
If β = ‖vjm‖j,m∈N is another matrix of Φ, then αβ = ‖wjm‖j,m∈N

where wjj = 1 for all j ∈ N , w12 = v12 + u12. It follows that α, β ∈ Φ.
Moreover, Φ is isomorphic to the additive group of the field F . Let

α = ‖ujm‖j,m∈N ∈ Σ, β = ‖vjm‖j,m∈N ∈ Φ

then α−1βα = ‖wjm‖j,m∈N where wjj = 1 for all j ∈ N , w12 =

u−1
11 u22v12. It follows that Φ is a normal subgroup of Σ. Let τ =

‖ujm‖j,m∈N such that ujj = 1 for all j ∈ N , u12 = 1, and ujm = 0
if (j, m) /∈ {(1, 2)}. Put Γ = 〈γ, τ〉. Then Γ = T ⋊ 〈γ〉 where T is
isomorphic to the subgroup of the additive group of F generated by the
elements {gn | n ∈ Z}. We can consider T as a Z〈γ〉-module. Since
Z〈γ〉 is a noetherian ring, a cyclic Z〈γ〉-module is noetherian. It is easy
to see that Γ satisfies Max-id.

We have considered the easiest case. However, the construction above
allows the normal unipotent subgroup T has as much as desired length
of nilpotency.

Theorem 2.12. Let G ≤ GL(F, A), and suppose that G is a
finitely generated soluble group satisfying Max-id. If centdimF (G) and
centdimF (FD(G)) are infinite, then G has a normal subgroup L satis-
fying the following conditions:

(1) G/L is abelian-by-finite.

(2) L ≤ FD(G), and L has an infinite central dimension.

(3) L/[L, L] is not finitely generated.

(4) L satisfies Max-〈g〉 for each element g ∈ GFD(G).
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Proof: Let

〈1〉 = D0 ≤ D1 ≤ · · · ≤ Dn = G

be the derived series of G. If G is polycyclic, then FD(G) is likewise
polycyclic, and Lemma 1.1 proves that dimF (A/CA(FD(G)) is finite.
This contradiction shows that there is a number m ∈ N such that
G/Dm is polycyclic and Dm/Dm−1 is not finitely generated. Repeat-
ing the arguments of the proof of Theorem 2.9, we can construct a
normal subgroup L such that G/L is abelian-by-finite and L/[L, L] is
not finitely generated. In particular, L is not finitely generated, so that
L ≤ FD(G) by Lemma 1.3. If we suppose that dimF (A/CA(L)) is
finite, then Lemma 1.1 yields that dimF (A/CA(FD(G))) is finite, be-
cause FD(G)/L is finitely generated. Finally the assertion (4) follows
from Corollary 1.6.

3. The structure of the soluble linear groups with
Max-id over some specific fields

The structure of finite dimensional soluble linear groups is often de-
fined by the structure of the multiplicative group of the field, over which
such groups are considered. More precisely, it is defined by not only the
structure of this multiplicative group, but also by the structure of multi-
plicative groups of finite extensions of the base fields. So it is reasonable
to expect, that the same dependence takes place also for infinite dimen-
sional linear groups satisfying Max-id. Proposition 2.4 and Theorem 2.6
logically lead us to the consideration of the following types of fields.

If G is an abelian subgroup, then as usually, we will denote by t(G)
the maximal periodic subgroup of G, the periodic part of G.

Lemma 3.1. Let G be a soluble subgroup of GL(F, A) satisfying Max-id.
Suppose that the field F satisfies the following condition:

(RE) for each finite field extension E of F (in particular, for E = F ) the
subgroup t(U(E)) has only finite Sylow q-subgroup for each prime q.

Then either G has finite central dimension or G/[G, G] is finitely
generated.

Proof: Put D = [G, G], and suppose that dimF (A/CA(G)) is infinite
and G/D is not finitely generated. Lemma 2.1 yields that G has a nor-
mal subgroup L ≥ D such that L/D is finitely generated and G/L is a
Prüfer q-group for some prime q. By Lemma 1.3 G is a finitary linear
group. Corollary 1.4 yields that L has finite central dimension; so that,
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C = CA(L) has finite codimension. Furthermore, CG(C) ≥ L; in partic-
ular, either G = CG(C) or G/CG(C) is a Prüfer q-group. In a first case,
centdimF (G) is finite. Hence, G/CG(C) is a Prüfer q-group. Lemma 5.1
of [DEK] proves that q 6= charF . Since L is a normal subgroup of G,
C is an FG-submodule of A. Put

G/CG(C) = 〈gnCG(C) | gp
1 ∈ CG(C), gp

n+1 ∈ gnCG(C), n ∈ N〉.

Since G/CG(C) is abelian, Yn = CA(gn) = CA(〈gn〉) is an FG-submod-
ule of C for each n ∈ N . By Lemma 1.3 G is a finitary linear group; so
that, dimF (C/Yn) is finite for each n ∈ N . We have already noted that
q 6= charF , therefore by Maschke’s Theorem (see, for example, [WB,
Corollary 1.6]) C/Yn = M1/Yn⊕· · ·⊕Mk/Yn, where Mj/Yn is a simple
FG-submodule of finite F -dimension. By Proposition 2.4 G/CG(Mj/Yn)
is isomorphic to a subgroup of U1 × · · · × Un where Uj is isomorphic to
a multiplicative group of a field E for certain finite field extension E
of the field F , 1 ≤ j ≤ n. Since CG(Mj/Yn) ≥ CG(C), then either
G = CG(Mj/Yn) or G/CG(Mj/Yn) is a Prüfer q-group. By our con-
dition (RE) the group U(E) does not have a Prüfer q-subgroup. This
implies that G = CG(Mj/Yn) for each n ∈ N . In turn, it follows that
G = CG(C/Yn). Since it is valid for each n ∈ N , G = ∩n∈NCG(C/Yn) =
CG(C). Thus we again obtain that G has finite central dimension. This
contradiction proves our lemma.

Proposition 3.2. Let G be a soluble subgroup of GL(F, A) satisfying
Max-id and suppose that a field F satisfies the condition (RE).

(1) If G is not finitely generated, then G has finite central dimension.

(2) If G is finitely generated, then FD(G) has finite central dimension.

Proof: Let
〈1〉 = D0 ≤ D1 ≤ · · · ≤ Dk = G

be the derived series of G. If every factor of this series is finitely gener-
ated, then G satisfies Max. Therefore assume that there is a number t
such that G/Dt is polycyclic, but Dt/Dt−1 is not finitely generated.
In particular, G = 〈Dt, S〉 for some finite subset S. By Lemma 3.1
dimF (A/CA(Dt)) is finite. If G is not finitely generated, then Lemma 1.3
shows that G is a finitary group and the equation G = 〈Dt, S〉 coupled
with Lemma 1.1 imply that G has finite central dimension. If G is finitely
generated, then Dt ≤ FD(G). Since FD(G)/Dt is finitely generated,
Lemma 1.1 proves that FD(G) has finite central dimension.

R. M. Guralnick kindly provided us with the following results about
the structure of the multiplicative groups of some types of fields.
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Proposition 3.3. Let F be a field and suppose that the Sylow q-subgroup
of U(F ) is finite and non-identity for each prime q, and the order of the
Sylow 2-subgroup is at least 4. If E is a finite field extension of F , then
the Sylow q-subgroup of U(E) is finite for each prime q.

Proof: Let Sq (respectively Rq) be a Sylow q-subgroup of U(F ) (respec-
tively U(E)). Then by Lemma 4.2 of [GW] Rq/Sq is finite. It follows
that Rq is finite for each prime q.

The multiplicative groups of rings considered in Proposition 3.3 have
a very large (although reduced) periodic parts. In this connection, it
will be interesting to consider the dual situation; that is, the case when
the periodic part of the multiplicative group of a field is finite. But the
example of the complex field C, which is a finite extension of the field R,
shows that not every field F for which t(U(F )) is finite satisfies the con-
dition (RE) (note that t(U(R)) has order 2, but t(U(C)) is divisible).
Note that in this example we are dealing with the fields of characteristic
zero. The following theorem shows that for fields of positive character-
istic we have much better situation.

Theorem 3.4. Let F be a field of characteristic p > 0 and suppose that
the periodic part of U(F ) is finite. If E is a finite field extension of F ,
then the periodic part of U(E) is likewise finite.

Proof: Let P be the prime subfield of F . We may assume that E is a
normal extension of F (this just enlarges E). We may also assume that
extension E is separable (if not, we can replace E by F (T ) where T =
t(U(E)); this is a separable Galois extension). Let G be the Galois group
of this extension.

Consider E∗ = P (T ). Then F ∗ = F ∩ E∗ = P (F ∩ T ) and by
assumption, this is a finite field. We also see that F ∗ is the fixed field
of G acting on E∗ and so E∗ is a finite Galois extension of F ∗ and so
E∗ is finite, whence the periodic part of U(E) is finite.

Further, if F is a field, the multiplicative group of which is residually
finite, then every Sylow q-subgroup of U(F ) is finite for each prime p.
In connection with Proposition 3.2 the following question is naturally
raised: is a Sylow q-subgroup of the multiplicative group of an arbitrary
finite field extension of F finite for each prime q? In particular, is the
multiplicative group of an arbitrary finite field extension of F residually
finite?

R. M. Guralnick provided us with the following counterexamples for
this question.
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Proposition 3.5. There exist fields F and E satisfying the following
conditions:

(1) charF = 0.

(2) U(F ) is residually finite and t(U(F )) is a finite subgroup of order 2.

(3) E is a finite field extension of F .

(4) U(E) has a Prüfer q-subgroup for some prime q, in particular,
U(E) is not residually finite.

Proof: Let q be a prime. Let S be a Prüfer q-subgroup of U(C) and put
E = Q(S). Clearly U(E) has S, in particular, U(E) is not residually
finite. Let F be the fixed field of E under complex conjugation. So
[E : F ] = 2.

We show that U(F ) is residually finite, the periodic part of U(F ) is
finite (has order 2), but, as we have recently noted, U(E) has a Prüfer
q-subgroup. Since R contains F , the periodic part of U(F ) has order 2.
So U(F ) = T × V where |T | = 2, V is a torsion-free subgroup (see,
for example, [FL, Theorem 27.5]). Hence it suffices to prove that V is
residually finite. Since V/V n is bounded, it is decomposed into a direct
product of finite cyclic groups by Prüfer’s Theorem (see, for example,
[FL, Theorem 17.2]). If we prove that ∩n∈NV n = 〈1〉, it will implies that
V is residually finite. Let 1 6= v ∈ V . Since v ∈ E, v is algebraic over Q,
so Q(v) is a finite extension of Q. Then U(Q(v)) is a direct product of
a finite cyclic subgroup and a free abelian subgroup (see, for example,
[KG, Chapter 4, Corollary 5.7]). Thus we can choose a sufficiently large
prime r such that v /∈ (Q(v))r . Suppose that v ∈ V r, then there must
exists an element w ∈ F such that v = wr . Then Q(w) is a nontrivial
abelian extension of Q(v) (since E is generated over Q by roots of unity).
The field Q(w) must contain at least two roots of a polynomial Xr − v
and their ratio is an r-th root of 1. This implies that Q(w) is not fixed
by complex conjugation and so w is not in F . This contradiction shows
that v /∈ V r, as required.

In this example the periodic part of the multiplicative group of a basic
field is very small —the least possible. In the following proposition the
multiplicative group is periodic.

Proposition 3.6. There exists fields F and E satisfying the following
conditions:

(1) F and E are locally finite fields.

(2) For each prime r the Sylow r-subgroup of U(F ) is finite.
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(3) E is a finite field extension of F .

(4) There exists a prime q such that the Sylow q-subgroup of U(F ) is
identity, but the Sylow q-subgroup of U(E) is a Prüfer q-subgroup,
in particular, U(E) is not residually finite.

(5) For each prime r 6= q the Sylow r-subgroup of U(E) is finite.

Proof: Let p be a prime and q a distinct prime with GCD(q, p− 1) = 1.
Let F be the union of the finite fields of size pme where me = qe, e ∈ N .
By the choice of q the Sylow q-subgroup of F is identity.

Let E = F [a] where a is a q-th root of 1 and let E0 be the subfield
of E generated over the prime subfield. Then E0 is finite, say |E0| = pd.
So pd ≡ 1 (mod q). Then E contains a subfield of degree se = dqe over
the prime field for each e ∈ N . However, qe divides pse− 1 for all e ∈ N
and so the Sylow q-subgroup Eq of U(E) is infinite. This means that
Eq is a Prüfer q-subgroup.

We note now that the Sylow r-subgroup Fr of U(F ) is finite for each
prime r. If r divides pme − 1 with e minimal, then we pick no more
powers of r for any larger e, and so U(F ) is residually finite. However,
U(E) is not residually finite, because it has a Prüfer q-subgroup.

We prove now that that the Sylow r-subgroup Er of U(E) is finite
for each prime r 6= q. Choose the smallest se so that the field of size pse
contains r-th roots of 1 (or 4-th roots of 1 if r = 2; if no such field exists,
we are done); we are then passing to a series of extensions of degree q
and we pick up no further r-torsion (see Lemma 4.2 in [GW]).

The following theorem is concerned with the class of fields for which
residual finiteness of the multiplicative group is inherited by every finite
field extension.

Theorem 3.7. Let F be a field with a discrete valuation v and K be the
residue field. Suppose that the following conditions hold:

(1) K has positive characteristic.

(2) U(P ) is residually finite for every finite extension P of K (in par-
ticular, for P = K).

If E is a finite field extension of F , then U(E) is residually finite.

Proof: Let charK = p. There is no harm in taking E is a normal
extension of F . It is straightforward to reduce to the case that E is a
separable extension of F (and so Galois) (if v is an n-th power for all n,
the same is true for vp; and so, we may take v to be separable over F
—then the v is a pa power for every a, and if some such element were
not separable over E, they would generate larger and larger extensions).
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Now, since E is separable extension of F , we see that the discrete
valuation has only finitely many extensions to E, which are all discrete.
So if v ∈ U(E) is an n-th power for all n, the valuation of v must be
zero.

The condition on the residue fields implies that v = 1 modulo each
maximal ideal over the maximal ideal of F . It is straightforward to see
that such elements (other than 1) are not pa powers for a sufficiently
large.

Now we will consider fields with some other properties which imply
additional conditions on linear groups with Max-id over such fields.

Let F be a field. We say that F has a property (FAE) if for each
finite field extension E of F (in particular, for E = F ) the factor-
group U(E)/t(U(E)) is free abelian.

Lemma 3.8. Let G be a subgroup of GL(F, A) satisfying Max-id. Sup-
pose that G has subgroups V and H with the following properties:

(1) H is a normal subgroup of V .

(2) H is a nilpotent bounded p-subgroup for some prime p.

(3) V/H is a Prüfer q-group, q 6= p.

(4) dimF (A/CA(V )) is infinite.

Then H has a finite V -composition series.

Proof: By Lemma 1.D.4 of the book [KW] V = H ⋊ Q where Q is
a Prüfer q-subgroup, so that, Q = 〈zn | zp

1 = 1, zp
n+1 = zn, n ∈

N〉. If H is finite, then all is proved. Suppose that H is infinite.
It follows that H/[H, H ] is infinite (see, for example, [RD1, Corol-
lary of Theorem 2.26]). Corollary 1.5 yields that dimF (A/CA(H)) is
finite. The equation V = HQ combined with Lemma 1.1 imply that
dimF (A/CA(Q)) is infinite. Let C, D be the V -invariant subgroup of H
such that D ≤ C, and B = C/D is an elementary abelian p-group. If z is
an arbitrary element of Q, then by Maschke’s Theorem (see, for example,
[WB, Theorem 1.5]) B =

⊕
λ∈Λ

Bλ where Bλ is the minimal 〈z〉-invari-
ant subgroup of B for each λ ∈ Λ. In particular, either [Bλ, z] = Bλ

or [Bλ, z] = 〈1〉. It follows that B = CB(z) × [B, z]. Since Q is abelian,
CB(z) and [B, z] are the Q-invariant subgroups of B. If y is an element
of Q such that 〈z〉 ≤ 〈y〉, then CB(y)CB(z), and [B, z] ≤ [B, y]. Thus
we have an ascending series

[B, z1] ≤ [B, z2] ≤ · · · ≤ [B, zn] ≤ · · ·
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of Q-invariant subgroups. By Corollary 1.6 there is a number m ∈ N
such that [B, zn] = [B, zm] for all n ≥ m. The equation B = CB(zj) ×
[B, zj] implies that CB(zn) = CB(zm) for all n ≥ m. In other words,
B satisfies the minimal condition for centralizers. By Theorem A of
paper [HB1] B is a semisimple FpQ-module. By Corollary 1.6 B satisfies
Max-Q, hence B is a direct sum of minimal Q-invariant subgroups. In
turn, it follows that H has finite Q-composition series, because H is
nilpotent and bounded.

Proposition 3.9. Let F be a field of positive characteristic p and G be a
soluble subgroup of GL(F, A) satisfying Max-id. Suppose that G has infi-
nite central dimension and is not finitely generated. If F satisfies (FAE),
then

(1) G has the normal subgroups H ≤ R such that G/R is polycyclic,
R/H is a Prüfer q-group, q 6= charF .

(2) H is a nilpotent bounded p-subgroup.

(3) H has a finite G-composition series.

Proof: Suppose first that G/[G, G] is not finitely generated. Using Theo-
rem 2.6, we obtain that G has a normal nilpotent bounded p-subgroup H ,
such that G/H ≤ Q × S1 × · · · × Sn−1 where Q is a Prüfer q-group,
q 6= charF , S1, . . . , Sn−1 are ordinary finite-dimensional irreducible lin-
ear groups. By Proposition 2.4 Sj has a normal subgroup of finite index,
which is isomorphic to some subgroup of U1 × · · · × Um where Ut is iso-
morphic to the multiplicative group of a field E for certain finite field ex-
tension E of the field F , 1 ≤ t ≤ m. Since F satisfies (FAE), Ut/t(Ut) is
free abelian for each t, 1 ≤ t ≤ m. It follows that G has a normal sub-
group R ≥ H such that G/R is abelian-by-finite and finitely generated,
R/H is a Prüfer q-group, q 6= charF . Since G is not finitely generated,
Lemma 1.3 proves that G is a finitary linear group. Lemma 1.1 yields
that R has infinite central dimension. By Lemma 3.10 H has finite
R-composition length, therefore H has finite G-composition length. For
the general case, it is sufficient to apply Theorem 2.9.

Now we will consider some particular fields satisfying (FAE).

Proposition 3.10. Let F be a finitely generated extension of locally
finite field L. Then U(F )/t(U(F )) is free abelian.
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Proof: Note that the property (FAE) is valid for any subfield. Thus,
there is no harm in replacing L by K where K is the algebraic closure of L
(and is still locally finite) and F by FK = P (note that the hypothesis
still hold). Now P is a finite extension of K(x1, . . . , xr) where the xj are
algebraically independent, 1 ≤ j ≤ r. We can apply Noether’s Lemma
and see that we may choose the xj so that P is the quotient field of the
integral closure D of K[x1, . . . , xr ].

Let V be the set of discrete valuations corresponding to the places
of D. Then we have the map 1 → U(D) → U(P ) → G where G ∼=⊕

v∈V Yv and Yv
∼= Z, v ∈ V , and V is the set of valuations on P (given

by u →
∑

v(u)). Now it is well known that U(D)/U(K) is a finitely
generated abelian [GW], and the image of the map is contained in the
free abelian group G and so is also free abelian.

Thus, the map splits and we see that U(P )/U(K) ∼= A ⊕ B where
A is finitely generated and B is free abelian. Since U(K) is the periodic
part of U(P ), the result is proved.

The following lemma gives us an example of a field of characteristic
zero, satisfying (FAE).

Lemma 3.11. Let F be a field and suppose that E = F (X | λ ∈ Λ) is a
field extension of F such that {X | λ ∈ Λ} are algebraically independent.
Then U(E) ∼= U(F ) × B where B is free abelian.

Proof: We have the obvious F -valuations on E (corresponding to irre-
ducible polynomials). This gives a map 1 → U(D) → U(E) → A where
A is free abelian. Thus, U(E) ∼= U(F ) × B where B is the image of the
map and so free.

Proposition 3.12. Let L be a rational functions field over a finite ex-
tension of Q, and let F be a finite extension of L. Then U(L)/T is free
abelian, where T is the periodic part of U(L). Moreover, T is finite.

Proof: We have F = L(a) for some element a. The minimal polynomial
of a involves only finitely many elements of the transcendence base for L.
So we see that F is a rational functions field over a field finitely generated
over Q and so it suffices to prove the result for L finitely generated
over Q. The result is well known in this case (i.e. there are enough
discrete valuations).

The results above allow us to obtain concrete information about the
groups satisfying Max-id for the following types of fields.
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Theorem 3.13. Let G ≤ GL(F, A) and G be a soluble group satisfy-
ing Max-id. Suppose that G is not finitely generated. Then G has finite
central dimension in each of the following cases:

(1) F is a field satisfying the following conditions: the Sylow q-subgroup
of U(F ) is finite and non-identity for each prime q, and the Sylow
2-subgroup has order at least 4.

(2) F is a field of characteristic p > 0 such that the periodic part
of U(F ) is finite.

(3) F is a finitely generated field.

(4) F is a finite field extension of the p-adic field Qp.

(5) F is a finite field extension of a field L where L is the rational
functions field over a finite extension of Q.

Theorem 3.14. Let G ≤ GL(F, A) and suppose that G is a soluble
group satisfying Max-id . Suppose that G is finitely generated. Then the
finitary radical of G has finite central dimension in the following cases:

(1) F is a field satisfying the following conditions: the Sylow q-subgroup
of U(F ) is finite and non-dentity for each prime q, and the Sylow
2-subgroup has order at least 4.

(2) F is a field of characteristic p > 0 such that the periodic part
of U(F ) is finite.

(3) F is a finitely generated field.

(4) F is a finite field extension of the p-adic field Qp.

(5) F is a finite field extension of a field L where L is a rational func-
tions field over a finite extension of Q.

In these two theorems Assertion (1) follows from Proposition 3.2 and
Proposition 3.3, and Assertion (2) follows from Proposition 3.2 and The-
orem 3.4. Let F be a finitely generated field. Then every finite field
extension E of F is finitely generated. Then U(K) is a direct product of
a finite cyclic subgroup and a free abelian subgroup [MW, Proposition],
and we can apply Proposition 3.2. Assertion (4) is a straightforward
consequence of Proposition 3.2 and Theorem 3.7. Assertion (5) follows
from Proposition 3.2 and Proposition 3.12.

Propositions 3.10 and 3.9 imply
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Theorem 3.15. Let G be a soluble subgroup of GL(F, A) satisfying
Max-id. Suppose that a field F is a finitely generated extension of lo-
cally finite field L. If G has infinite central dimension and is not finitely
generated, then

(1) G has the normal subgroups H ≤ R such that G/R is polycyclic,
R/H is a Prüfer q-group, q 6= charF .

(2) H is a nilpotent bounded p-subgroup.

(3) H has a finite G-composition series.

Corollary 3.16. Let G be a soluble subgroup of GL(F, A) satisfying
Max-id and suppose that F is a locally finite field. If G has infinite
central dimension and is not finitely generated, then

(1) G has the normal subgroups H ≤ R such that G/R is finite, R/H is
a Prüfer q-group, q 6= charF .

(2) H is a nilpotent bounded p-subgroup.

(3) H has a finite G-composition series.

In particular, G satisfies Min-id.
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