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Abstract— The Hamilton Jacobi Bellman Equation (HJB)
provides the globally optimal solution to large classes of control
problems. Unfortunately, this generality comes at a price, the
calculation of such solutions is typically intractible for systems
with more than moderate state space size due to the curse
of dimensionality. This work combines recent results in the
structure of the HJB, and its reduction to a linear Partial
Differential Equation (PDE), with methods based on low rank
tensor representations, known as a separated representations, to
address the curse of dimensionality. The result is an algorithm
to solve optimal control problems which scales linearly with the
number of states in a system, and is applicable to systems that
are nonlinear with stochastic forcing in finite-horizon, average
cost, and first-exit settings. The method is demonstrated on
inverted pendulum, VTOL aircraft, and quadcopter models,
with system dimension two, six, and twelve respectively.

I. INTRODUCTION

The Hamilton Jacobi Bellman (HJB) equation is central

to control theory, yielding the optimal solution to general

problems specified by known dynamics and a specified cost

functional. Given the assumption of quadratic cost on the

control input, it is well known that the HJB reduces to a

particular Partial Differential Equation (PDE) [14]. While

powerful, this reduction is not commonly used as the PDE

is of second order, is nonlinear, and examples exist where the

problem may not have a solution in a classical sense [11].

Furthermore, each state of the system appears as another

dimension of the PDE, giving rise to the curse of dimension-

ality [5]. Since the number of degrees of freedom required to

solve the optimal control problem grows exponentially with

dimension, the problem becomes intractable for systems with

all but modest dimension.

In the last decade researchers have found that under

certain, fairly non-restrictive, structural assumptions, the HJB

may be transformed into a linear PDE, see, e.g., [41] and

[23], with an interesting analogue in the discretized domain

of Markov Decision Processes (MDP) [40]. The implications

for this discovery are numerous, and research has only begun

to tap into the computational benefits [?] and [21]. The work

presented here is a continuation of this theme, and uses the

linearity of this particular form of the HJB PDE to push the

computational boundaries of the HJB.

Our method relies on recent work in Separated Represen-

tations (SR) [7], which have recently emerged as a method to

solve a number of problems in machine learning and the nu-

merical solution of PDEs with complexity that scales linearly

with dimension, bypassing the curse of dimensionality. The

central idea of this paper is to approximate the solution, and
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its associated operators, by a low rank tensor. If the problem’s

components can be adequately modeled in this regime, then

the complexity grows with the rank of the approximation,

rather than the dimensionality. For many problems of interest

this proves to be a valid modeling assumption.

II. RELATED WORK

We combine two previously disjoint threads of research.

The first is the study of HJB equations, while the second is

the study of high dimensional tensors and their approxima-

tions.

A. Linearly Solvable Stochastic Optimal Control

The study of linearly solvable Stochastic Optimal Control

(SOC) problems has developed along two lines of inves-

tigation. One is that of Linear MDPs [41], in which a

control design problem may be solved via a linear set of

equations given several structural assumptions. By taking

the continuous limit of the discretization, a linear PDE is

obtained. In another line of work begun by Kappen [23]

the same linear PDE has been found through a particular

transformation of the HJB. While the linearity of the HJB

provides computational benefits in terms of the numerical

techniques available, the curse of dimensionality prevents

existing techniques from scaling to realistic problems of

interest. This has been addressed through the use of the Path

Integral techniques [38], [39], which rely on Monte Carlo

techniques via the Feynman-Kac Lemma. The solution of the

Linear PDE at an individual point in the state space is solved

via an ensemble of Brownian motions. While these sampling

techniques are formally independent of state space dimen-

sion, they may nonetheless be computationally expensive and

typically only provide guarantees in the asymptotic regime.

Furthermore, as the solution is only valid at an individual

point, these solutions must be solved for all anticipated

states that will occur over the course of a trajectory. These

techniques have nonetheless shown notable success [36].

B. Nonlinear Hamilton Jacobi Bellman Equations in Control

HJB equations have arisen as objects of study in the

research of Control Lyapunov Functions. These functions

generalize the notion of Lyapunov stability, allowing for

the control signal to be incorporated in the analysis of a

system’s stability [35]. These techniques may be seen as

a relaxation of the conditions that lead to optimality for

the HJB, and thus existing CLF-synthesis techniques are in

general suboptimal. This may be ameliorated by combin-

ing CLFs with Euler-Lagrange equations which arise from

the Pontraygin maximum principle, typically recognized as
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Model Predictive Control or Receding Horizon Control [34].

Indeed, many planning techniques may be understood as

heuristic or approximate methods to solve the HJB [27], [20].

Ours is not the first study of numerical techniques to solve

the HJB PDE directly. In [31] level-set algorithms are used

to solve variants of the HJB that relate to the calculation

of reachable sets. In [2], the authors uses high order Taylor

expansions to approximate the HJB directly. McEaney [30]

has developed another curse-of-dimensionality free method

which relies on a max-plus expansion of the solution, with

complexity that scales with the number of basis solutions,

each requiring the solution to a Riccati system.

Lasserre provides an alternative framework to solve the

HJB by constraining the moments of the solution, producing

bounds on the moments that can be made to converge

through a hierarchy of optimization problems [26], [25].

These techniques seek to reduce the fundamental infinite

dimensional linear program to a semidefinite program with

a finite number of degrees of freedom by truncating the

solution moments. This is currently an active and growing

area of research [29]. A similar construction of Lasserre

hierarchies was proposed in [21] using Sum of Squares

techniques, producing upper and lower bounds to the linear

HJB. However, all fall prey to the curse of dimensionality,

save the work of McEaney, and in practice are limited

to dimensions of five or lower. We argue that while the

techniques presented herein do not yet apply to all optimal

control problems at the moment, they apply to a broad class

of systems, with astounding computational gains. We discuss

how these techniques may in fact be applied without these

assumptions in our concluding discussion.

Researchers have previously attacked the intractability of

the HJB through discretization of the system state space,

creating an MDP. The curse of dimensionality is mitigated

in this context by parameterizing the value function with

a sparse set of basis, giving rise to Approximate Dynamic

Programming, or when the basis may change online Adaptive

Dynamic Programming (ADP) [6]. These techniques have

constraint sets that formally grow exponentially with dimen-

sionality [12]. Nonetheless, these techniques are the most

popular method to deal with the curse of dimensionality,

and have even been used to surpass human capabilities on

complex time dependent games via synthesis with modern

machine learning techniques [32]. These methods are closest

to ours in spirit, and our method could be seen as generating

a sparse basis, as is desired in ADP, albeit ours is performed

without recourse to an MDP, with the attendant constraints.

C. High Dimensional Tensors

Tensor approximations have historically been developed

with the goal of approximating high dimensional data,

yielding rise to the framework used here under the names

CANDECOMP/PARAFAC [17], [9]. However, [7] demon-

strated that these approximation techniques were applicable

to the linear systems describing discretized PDEs. This

technique has been applied in several domains, including

computational chemistry and quantum physics, among others

[24]. In particular, [37] examines their use in the context

of stationary Fokker-Planck equations. There are interesting

connections between the fundamental task of these tech-

niques, approximating a tensor with one of lower rank, and

convex relaxation based methods [10], [15]. Unfortunately,

low rank tensor approximation is NP-hard in general, and an

optimal solution is not to be expected [18].

III. THE LINEAR HAMILTON JACOBI BELLMAN

EQUATION

We begin by constructing the value function, which cap-

tures the cost-to-go from a given state. If such a quantity

is known, the optimal action may be chosen as that which

follows the gradient of the value, bringing the agent into the

states with highest value over the remaining time horizon.

We define xt ∈ R
n as the system state at time t, control

input ut ∈ R
m , and dynamics that evolve according to the

equation

dxt = (f (xt) +G (xt)ut) dt+B (xt) dωt (1)

on a compact domain Ω, and where the expressions f(x),
G(x), B(x) are assumed to be smoothly differentiable, but

possibly nonlinear, functions, and ωt is Gaussian noise with

covariance Σǫ. The system has cost rt accrued at time t

according to

r (xt, ut) = q (xt) +
1

2
uTt Rut (2)

where q(x) is a state dependent cost. We require q(x) ≥ 0
for all x in the problem domain and R positive definite. The

goal is to minimize the expectation of the cost functional

J(x, u) = φT (xT ) +

ˆ T

0

r (xt, ut) dt (3)

where φT represents a state-dependent terminal cost. The

solution to this minimization is known as the value function,

where, beginning from an initial point x0 at time 0

V (x0) = min
u[0,T ]

E [J (x0)] (4)

where we use the shortand u[t,T ] to denote the trajectory of

ut over the time interval t ∈ [t, T ], and the expectation is

taken over a realizations of the trajectory x[0,T ] with initial

condition x0.

The associated Hamilton-Jacobi-Bellman equation, arising

from Dynamic Programming arguments [14], is

−∂tV = min
u

(

r + (∇xV )
T
f +

1

2
Tr

(

(∇xxV )GΣǫG
T
)

)

.

(5)

As the control effort enters quadratically into the cost func-

tion it is a simple matter to solve for it analytically by

substituting (2) into (5) and finding the minimum, yielding:

u∗ = −R−1GT (∇xV ) . (6)

The minimal control, u∗, may then be substituted into

(5) to yield the following nonlinear, second order partial



TABLE I

LINEAR DESIRABILITY PDE FOR VARIOUS STOCHASTIC OPTIMAL

CONTROL SETTINGS. L(Ψ) := fT (∇xΨ) + 1

2
Tr ((∇xxΨ)Σt)

Cost Functional Desirability PDE

Finite φT (xT ) +
´

T

0
r(xt, ut)dt

1

λ
qΨ−

∂Ψ

∂t
= L(Ψ)

First-Exit φT∗
(xT∗

) +
´

T

0
r(xt, ut)dt

1

λ
qΨ = L(Ψ)

Average limT→∞

1

T
E

[

´

T

0
r(xt, ut)dt

]

1

λ
qΨ− cΨ = L(Ψ)

differential equation

−∂tV = q + (∇xV )
T
f −

1

2
(∇xV )

T
GR−1GT (∇xV )

+
1

2
Tr

(

(∇xxV )BΣǫB
T
)

.

(7)

The difficulty of solving this PDE is what usually prevents

the value function from being directly solved for. However, it

has recently been found [23], [41] that with the assumption

that there exists a λ ∈ R and a control penalty cost R ∈
R
n×n satisfying this equation

λG(x)R−1G(x)T = B(x)ΣǫB(x)T , Σt (8)

and using the logarithmic transformation, with λ > 0,

V = −λ logΨ (9)

it is possible, after substitution and simplification, to obtain

the following linear PDE from Equation (7)

− ∂tΨ = −
1

λ
qΨ+ fT (∇xΨ) +

1

2
Tr ((∇xxΨ)Σt) . (10)

This transformation of the value function, which we call here

the desirability [41], provides an additional, computationally

appealing, method by which to calculate the value function.

Remark 1. The condition (8) can roughly be interpreted as a

controllability-type condition: the system controls must span

(or counterbalance) the effects of input noise on the system

dynamics. A degree of designer input is also given up, as

the constraint restricts the design of the control penalty R,

requiring that control effort be highly penalized in subspaces

with little noise, and lightly penalized in those with high

noise. Additional discussion may be found in [41].

The boundary conditions of (10) correspond to the exit

conditions of the optimal control problem. This may corre-

spond to colliding with an obstacle or goal region, and in the

finite horizon problem there is the added boundary condition

of the terminal cost at t = T . These final costs must then

be transformed according to (9), producing added boundary

conditions to (10).

Linearly solvable optimal control is not limited to the finite

horizon setting. Similar analysis can be performed to obtain

linear HJB PDEs for infinite horizon average cost, and first-

exit settings, with the corresponding cost functionals and

PDEs shown in Table I.

IV. SEPARATED REPRESENTATIONS OF TENSORS

Traditional numerical techniques to solve PDEs rely on the

discretization of the domain. However, in these schemes the

degrees of freedom in the problem grows exponentially with

the number of dimensions. While tractable when the number

of dimensions is small, in higher dimensions these prob-

lems become computationally prohibitive. In [7], Beylkin

and Mohlenkamp proposed to model the solutions to such

problems via so-called separated representations, which may

be viewed as an extension of the separation of variables

technique. Problem data, and the solution, is modeled as

a sum of terms, each of which is dependent on individual

dimensional variables. Specifically, a function is modeled as

f (x1, . . . , xd) ≈

r
∑

l=1

slφ
l
1(x1) · · ·φ

l
d(xd). (11)

The key is that such a representation separates the depen-

dence of the solution into each component dimension. By

then framing operations to act on single dimensions, it is

possible to create algorithms that need only operate along

each dimension independently and thus scale linearly in d.

However, the complexity of the problem now grows with

r, denoted the separation rank. Thus, maintaining a low

separation rank becomes paramount for any practical algo-

rithm. Unfortunately, many operations inherently increase

the separation rank, including vector addition and matrix-

vector multiplication. This unbounded growth is mitigated by

reducing the separation rank at each step of an algorithm in

an attempt to continually maintain low rank approximations.

Unfortunately, there are often no guarantees that a given

function, or solution to a PDE, will have low separation rank

and situations may arise where it is impossible to lower the

rank while maintaining the desired accuracy.

Here we simply provide an introduction to the concept

of a separated representation and discuss them in a manner

tailored to our use. As such, we direct the reader to [7] for

a complete treatment.

A vector F in dimension d is a discrete representation of

a function f on a rectangular domain, F = F (j1, . . . , jd)
where ji = 1, . . . ,Mi are the indices along each dimension.

A linear operator A in dimension d is a linear map A :
S → S where S is the space of functions in dimension d.

A matrix A in dimension d is a discrete representation of a

linear operator in dimension d.

Definition 2. For a given ǫ, we represent a vector F =
F (j1, j2, . . . , jd) in dimension d as

F ≈

rF
∑

l=1

sl

d
⊗

i=1

F
l
i

where
⊗

denotes the tensor product and F
l
i are traditional

vectors in R
Mi with entries F li (ji) and unit norm. For this

to be an ǫ accurate representation we require that
∥

∥

∥

∥

∥

F −

rF
∑

l=1

sl

d
⊗

i=1

F
l
i

∥

∥

∥

∥

∥

≤ ǫ.



The integer r is known as the separation rank.

The matrix definition is analogous, with the matrices

A
l
i ∈ R

Mi×Mi in lieu of F l
i = F li (ji). Matrix multiplication

is then performed as

AF =

rA
∑

m=1

rF
∑

l=1

sAms
F
l

(

A
m
1 F

l
1

)

⊗ · · · ⊗ A
m
d F

l
d. (12)

Since matrix operations in this formulation reduce to individ-

ual operations along each dimension, as the dimensionality

of the problem increases the complexity of these operations

scales linearly, e.g., if we let Mi = M for all i a matrix

vector multiplication costs O(rArF dM
2).

A. Alternating Least Squares

Any scheme that uses these separated representations will

become computationally prohibitive if the separation ranks

are allowed to grow unchecked. For example, in the matrix

vector multiplication the separation rank of the output grows

by a factor of rArF , so even performing the most basic

of operations may have a large impact on the separation

rank. It is therefore necessary to periodically find lower

rank approximations to various operators and vectors. If the

assumption is that the discrete versions of the functions being

represented have low separation rank, then any increase in the

separation rank is only an artifact of the way operations are

performed in these tensor representations, and we expect is

possible to produce an accurate representation of the resultant

tensor that has a reduced separation rank.

We provide a high level overview of the alternating least

squares (ALS) algorithm, with the reader directed to [7]

for details. This algorithm allows us to look for separated

representations with lower separation rank and solve sys-

tems. A recently proposed variant relying on a randomized

interpolative decomposition is presented in [8] and may be

used as a precursor to ALS.

Given a vector with separated representation G, and an

operator A, ALS tries to either minimize ‖F − G‖ or, with

slight modification, ‖AF − G‖ subject to F having fixed rank

rF . The algorithm sweeps through the coordinate directions,

effectively performing block-gradient descent. For a fixed

separation rank of F this process may be repeated until the

algorithm has either achieved the desired accuracy, or has

stagnated. If the algorithm has stagnated, and the representa-

tion error is not small enough, e.g., ‖AF − G‖ ≥ ǫ, a random

rank-one tensor is added to F, and the ALS routine continues.

At an individual step in this iterative algorithm, all dimen-

sions of the tensor F are held constant save one dimension

k, in which case the least-squares problem becomes linear

in Flk for l = 1, . . . , rG. The resulting least squares problem

is solved via derivation of the normal equations, yielding a

linear set of equations. These were originally given in [7],

but have been rederived in [37] in a more compact format

as







M1,1 · · · M1,rG
...

. . .
...

MrG,1 · · · MrG,rG













F 1
k
...

F rGk






=







N1

...

NrG







(13)

where the components of the normal equations are given by

Mi,j =

rA
∑

iA=1

rA
∑

jA=1

(

A
jA
k

)T

AiAk

∏

d 6=k

〈

AiAd F
j
d , A

jA
d F id

〉

(14)

Ni =

rA
∑

iA=1

rG
∑

iG=1

(

AiAk
)T
GiGk

∏

d 6=k

〈

AiAd F
i
d, G

iG
d

〉

(15)

with the solution vector F =
∑rF

i=1 ⊗
n
d=1F

i
d, the vector

G =
∑rG

i=1 ⊗
n
d=1G

i
d, and the operator A =

∑rA
i=1 ⊗

n
d=1A

i
d,

for n the dimension of the system. When the operator A is

the identity, the problem ‖F − G‖ has additional structure

that may be leveraged [7]. The solution to these linear

equations provides a new F, with different components in the

k dimension, that has a smaller residual error. The algorithm

continues by optimizing the components in the next, k + 1,
dimension.

While the core ALS algorithm, with the identity operator,

costs O
(

dM + dr3
F

)

per iteration, its use to solve a linear

system costs O
(

dM3 + r3
A
M3

)

per iteration, where d is the

underlying dimensionality of the system, M is the maximal

number of mesh nodes along each dimension, and rA, (rF)
is the rank of the operator A (vector F). See [7] for a

more comprehensive list of algorithms that may be used with

operators and vectors in separated representations.

V. SEPARATED SOLUTION TO THE HJB

We make the modeling assumption that the problem data

of (1) can be accurately represented, or approximated, with

a low rank separated representation.

fi(t, x) =

rfi
∑

l=1

d
⊗

k=1

(fi)
l
d (16)

where rfi is assumed to be small.

There is then the need to approximate the relevant opera-

tors present in (1), specifically the gradient and Hessian, in

a low rank representation. A number of options exist, with

varying levels of complexity in the analysis and accuracy,

ranging from simple finite difference schemes to spectral dif-

ferentiation techniques [43]. Specifically, the gradient along

dimension k is simply

∇k = I1 ⊗ · · · ⊗ Ik−1 ⊗∇⊗ Ik+1 ⊗ · · · ⊗ Id

while the Hessian has entries ∇k,j = ∇k · ∇j , and the

estimates of the derivative along an individual coordinate

are simply a suitably high order finite difference scheme in

one dimension. Thus, the directional gradient and second

order terms may simply be constructed out of rank one

representations. For example, using of sums of these rank

one terms yields a representation for the Laplacian that has

separation rank d. However, such a representation may be



not have minimal separation rank for a given accuracy. Other

constructions specifically targeting the separated representa-

tion exist [7], for example a Laplacian approximation may

be made with separation rank two, rather than requiring a

full rank-d sum of second order terms. Choices about how

to approximate the operators may lead to some variation in

the separation rank of the solutions since different strategies

introduce different types of discretization error.

A. Separation Rank of the HJB

Determining the separation rank of the HJB operator is

straightforward. Denote the rank of a vector or operator X

as rX . Recalling (10) and neglecting the time dependent

component, the operator consists of three additive terms. The

state-cost term qΨ is a diagonal operator along each dimen-

sion, and thus contributes rq . The second, advection term is

an inner product between the dynamics f and the gradient,

resulting in the multiplication of each element fi by a rank

one operator, and then their summation. The contribution

from this component results in separation rank
∑d
k=1 rfi .

Finally, the second-order term requires the construction of

Σt in (8). Here the growth in the separation rank may

be significant, due to the multiplicative contribution of G.

However, given diagonal cost matrix R or noise covariance

Σǫ the number of terms may collapse significantly. The

separation rank of the HJB operator is simply the sum of

these three terms’ rank.

The result is that the separation rank for individual prob-

lems may vary over a wide range, depending on the problem

data. However, in many problems of interest it remains low.

For even apparently complex systems, complexity typically

manifests as nonlinear multiplicative terms in the dynamics.

This form of complexity effectively adds no cost in terms

of separation rank, and it is instead the number of additive

terms that are of concern, which is typically small. Further-

more, in many applications the control and noise matrices

typically contain constant terms, corresponding to tensors

of separation rank one. Finally, for systems where a high

separation rank accumulates, it remains possible to search

for low rank structure by performing ALS on the operator

before attempting to solve the linear system.

B. Representation of Interior Boundary Conditions

Optimal control applications impose irregular boundary

conditions on many problems of interest. For example,

stabilization to the origin corresponds to a zero-cost point-

boundary at the origin. Obstacles, or sub-task goals in

temporal problems ([13], [22]), become boundary conditions

as well, i.e. a set of Dirichlet boundary conditions within the

domain.

We impose essential boundary conditions by setting the

value of nodes to some desired value via linear equalities

within the domain. Although in other settings it is desirable

to remove the degrees of freedom from within the boundaries

to save computational effort, in our context maintaining the

grid form is a far greater concern. Specifically, we impose

Dirichlet boundary conditions only on regions composed

of hyper-cubes in the domain, allowing us to modify the

domain with only a modest increase in the separation rank

of the operator. We first eliminate the operators effect on this

hypercube of the domain via a single subtraction, and then

replace it with the identity operator via a single addition. The

resulting operator Ā with the desired boundary conditions has

rank rĀ = d+ 2rA.

VI. IMPLEMENTATION DETAILS AND EXAMPLES

In the following examples, we approximate first and

second order derivatives using eighth order finite differences,

with the number of mesh points along each dimension

varying between ng = 100 and ng = 201. The result are

tensors that would typically not fit in the memory of even the

largest modern super computers if expressed naively without

the use of the separated representation. In each case we

modeled the problem as first-exit (see Table I). In all cases

the noise was assumed to enter the dynamics in the same

manner as the control, with G(x) = B(x) in (1).

The operator is constructed as described in Section V. The

operator and boundary conditions are compressed indepen-

dently using Alternating Least Squares with the linear system

set to identity. With this low-rank representation, the problem

is then solved using Alternating Least Squares for the HJB

system. We employed the Matlab Tensor Toolbox [4], [1],

for storage and manipulation of tensor objects.

The problems were solved on a quad-core 2.3Ghz i7-

equipped laptop. We denote ū, x̄ as the vector of system

control inputs and states for each example.

A. Inverted Pendulum

In [33] the geometry of optimal control for the inverted

pendulum on a cart was investigated in detail. In particular,

they produce the value function for the inverted pendulum

when actuated directly at the base

ẋ1 = x2 (17)

ẋ2 =
g
l
sin(x1)−

1
2mrx

2
2 sin(2x1)−

mr

ml
cos(x1)u

4
3 −mr cos2(x1)

and the cost function is q(x) = 0.1x21 + 0.05x22 + 0.01u2.

This problem has periodic boundary conditions along the x1
dimension, and we placed a Dirichlet boundary condition

of φ(x1,±11) = 10, i.e. a high penalty for exceeding

the maximal angular velocity of θ̇ > 11 rad/s. An exit

interior boundary was placed at the origin, with Dirichlet

boundary conditions corresponding to unity desirability. We

chose ng = 201 discretization points in each dimension.

The value function obtained by inverting the transforma-

tion (9) to the solution is shown in Figure 1. The process took

approximately ten minutes, achieving error e = 5.22 · 10−5

with a basis of rΨ = 20 rank one tensors. The five principal

basis functions along each dimension are shown in Figure 2.

B. VTOL Aircraft

Next, we consider a Vertical Takeoff and Landing aircraft

(also known as the Harrier Jet). We examine a planar cross

section of the translational state, that is the jet’s (x, y)



Fig. 1. Cost to go for the inverted pendulum. The effects of the noise
may be seen in the smoothing of the value function, in comparison to the
deterministic case seen in [33].

x1

x2

Fig. 2. Five principal basis functions for the inverted pendulum along the
x1, x2 dimensions.

location where y is in the vertical direction. The system is

characterized by second order dynamics with gravitational

drift and trigonometric inputs, giving rise to a sixth dimen-

sional nonlinear system. Specifically, the equations governing

the system are given in [19] as

ẍ = −u sin(θ) + ǫ τ cos(θ)

ÿ = u cos(θ) + ǫ τ sin(θ)− g

θ̈ = τ,

where ǫ = 0.01 in our example. The cost function chosen

was r = u2, and q(x, y, θ, . . .) = 1.0 on the domain

x ∈ [−4, 4], y ∈ [0, 2], ẋ ∈ [−8, 8], ẏ ∈ [−1, 1], θ̇ ∈ [−5, 5],
with θ periodic on [−π, π]. All boundaries were set to have

boundary conditions Ψ |∂Ω= 0, save y = 0, which had

condition Ψ | ∂Ω = 1 − s2 for each coordinate direction s,

placing a target of landing with zero velocities. Discretization

ng = 100 were used along each dimension. We limited the

solver to twenty iterations, which required approximately

five minutes. We omit the resulting basis functions due to

space restrictions. We also show the error and basis function

weighting in Figure 4. A sample trajectory when executing

the policy in closed loop in Figure 3.

C. Quadcopter

The next example is in the stabilization of a quadcopter.

The derivation of the dynamics may be found in [16], and

results in a system of order twelve with highly nonlinear
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Fig. 3. Sample trajectory when executing desirability for the VTOL aircraft.
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Fig. 4. Convergence and weighting for the VTOL solution. The red markers
indicate at which iterations the ALS algorithm enriched the solution by
adding a basis element.

dynamics.

mẍ = u (sinφ sinψ + cosφ cosψ sin θ)

mÿ = u (cosφ sin θ sinψ − cosψ sinφ)

mz̈ = u cos θ cosφ−mg

ψ̈ = τ̃ψ

θ̈ = τ̃θ

φ̈ = τ̃φ

where η = (x, y, z) are in the horizontal and vertical plane,

respectively, while τ̃ = (τ̃ψ, τ̃θ, τ̃φ) are the yaw, pitch, and

roll moments. For simplicity, we assume we have direct

actuation control over τ̃ . We solve the problem with r = ‖ū‖
and q(x̄) = 2. Similar to the VTOL example, we penalize

all boundaries, save x = 1, where a quadratic along the

boundary in each dimension induces the system to exit with

small velocity in all dimensions. Discretization ng = 100
was again used along each dimension.

In this instance f(x) ≡ 0 for all but the z−acceleration,

which has separation rank one, and G(x) has separation rank

two for only the first three coordinate dimensions. Due to

the matching condition (8), we model noise as entering the

system as entering the same subspace as the control input,

with B(x) , G(x). The formation of the partial differential

operator requires rA = 56, but the ALS algorithm is able

to compress this to r
Ã
= 24 with a relative error of 10−4
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Fig. 5. Complete basis function set for Quadcopter policy.
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Fig. 6. Convergence and weighting for the quadcopter solution.

in approximately two minutes, indicating there exist a great

deal of underlying structure that the system is able to exploit.

Only five basis functions were computed, with the results

shown in Figure 5. The time for each ALS iteration is

shown in Figure 6, along with the weighting upon each basis

function. The total computation time was approximately ten

minutes. Finally, Figure 7 shows a trajectory of the closed

loop system.

VII. DISCUSSION

There are a number of immediate implications of this

work. The first is in the control of nonlinear distributed

systems. In these problems, additional systems manifest as

additional dimensions for the PDE. Formally, the complexity

therefore grows linearly with the number of sub-systems. As
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Fig. 7. Simulation of the closed loop quadcopter system.

well, if the coupling between such subsystems is sparse, it is

expected that this interconnection could be simply described,

leading to low separation rank necessary to describe the

coupled dynamics.

The techniques that have been developed which rely on

Sums of Squares programming [21] have been limited in

degree and dimensionality due to the factorial growth in

monomial basis. However, returning to the development of

the separated representation, each rank-1 term corresponds

to a single monomial. By limiting the basis to those with

high representative power, such problems may be scaled to

arbitrarily high degree and dimensionality.

A key limitation of this work is that it requires the struc-

tural assumptions of (8) to obtain a linear set of equations

for which ALS may be applied. The general nonlinear value

function may not be directly solved. However, it has been

shown that iterative linearization of the nonlinear equations

may be constructed in such a manner as to solve the more

general HJB problem without our structural assumptions

[28].

As alluded to in the introduction, these linear PDEs

have a discrete counterpart in linearly solvable MDPs [41],

[40]. In general, MDPs must be solved through an iterative

maximization process known as value or policy iteration.

However, by assuming a similar restriction on the noise of

the system, specifically that it enters into the system along

the same transitions actuated by the control input, Todorov

has demonstrated that average cost, first exit, and finite

horizon optimal control problems may be solved through

a set of linear equations. It remains to be seen if the

separated representation approach may also be adapted for

linear MDPs.

A. Applications of the Hamilton Jacobi Bellman Solution

The Hamilton Jacobi Bellman equation yields the optimal

solution to a general form of control problem, and its impact

is present in many components of control theory. Of course,

the most straightforward application is that emphasized in

the previous development, that of trajectory generation. The

most likely trajectory of the system is in fact related to

the desirability, and can be calculated from the HJB solu-

tion [42]. Furthermore, although the HJB solution provides

optimal trajectories, by (6) the method also provides an

optimal feedback controller. The result is an architecture that

is both robust and far-sighted, with the feedback controller

and planner both accounting for the other. This controller

has several appealing properties. In contrast to MPC-based

schemes, no online computation is required, and can be seen

as the optimal, continuous limit of gain scheduling.

The ability to solve these problems for arbitrary dimen-

sion, this opens a new synthesis technique for a number of

difficult problems. The first of these is the generation of

Control Lyapunov Functions, which may be done by placing

an exit with zero cost at the origin for the first-exit problem.

The benefits of such automatic generation techniques may

be seen in works such as [3], where significant effort goes

towards generating CLFs for particular applications, and



further effort is used towards bringing these CLFs towards

optimality.

CONCLUSION

In this work a method to solve the Hamilton Jacobi

Bellman equation for nonlinear, stochastic systems with

complexity the scales linearly with dimension has been pro-

posed. Although several structural assumptions are required,

systems that do not meet these may be approximated by

the introduction of noise and control effort with arbitrary

magnitudes. The implications are vast, as the curse of dimen-

sionality no longer necessarily prevents the use of optimal

control on complex, realistic systems. As the Hamilton Ja-

cobi Bellman equations touch every aspect of control theory,

the techniques here hold promise in a wide variety of topics.

In particular, there are a number of important linear PDEs in

control theory and estimation, including the Fokker Planck,

Duncan-Mortensen-Zakai, and other equations. With the

methods presented here, recourse to linearization techniques

for these problems is no longer the only possibility.
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