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ABSTRACT

We propose a methodology for testing linear hypothesis in high-dimensional linear models. The proposed
test doesnot imposeany restrictionon the sizeof themodel, that is,model sparsityor the loadingvector rep-
resenting the hypothesis. Providing asymptotically validmethods for testing general linear functions of the
regression parameters in high-dimensions is extremely challenging—especially without making restrictive
orunveri�able assumptionson thenumberof nonzeroelements.Wepropose to test themoment conditions
related to the newly designed restructured regression, where the inputs are transformed and augmented
features. These new features incorporate the structure of the null hypothesis directly. The test statistics are
constructed in such a way that lack of sparsity in the original model parameter does not present a prob-
lem for the theoretical justi�cation of our procedures. We establish asymptotically exact control on Type I
error without imposing any sparsity assumptions on model parameter or the vector representing the lin-
ear hypothesis. Our method is also shown to achieve certain optimality in detecting deviations from the
null hypothesis. We demonstrate the favorable �nite-sample performance of the proposed methods, via a
number of numerical and a real data example. Supplementary materials for this article are available online.

1. Introduction

A high-dimensional inference is a fundamental topic of interest
in modern scienti�c problems that are widely recognized to be
of high-dimensional nature, that is, that require estimation of
parameters with dimensionality exceeding the number of obser-
vations. Applications span a wide variety of scienti�c �elds, such
as biology, medicine, genetics, neuroscience, economics, and
�nance. Minimizing a suitably regularized (quasi-)likelihood
function was developed (Tibshirani 1996; Fan and Li 2001)
as a suitable approach for the estimation in such models. In
particular, high-dimensional linear models have been studied
extensively in recent years and take the following form

yi = x⊤
i β∗ + εi, i = 1, 2, . . . , n (1)

for a response yi ∈ R, a feature vector xi ∈ R
p, and the noise

εi ∈ R, such that E[εi] = 0 and E[ε2i ] = σ 2
ε with 0 < σ 2

ε < ∞.
The vector β∗ ∈ R

p is the unknown model parameter and
we allow for p ≫ n. We consider a random design setting
with the feature vectors satisfying Exi = 0 and E[xix

⊤
i ] = �X .

Under certain regularity conditions on the design matrix
X = (x1, x2, . . . , xn)

⊤, regularized methods with a suitable
choice of the tuning parameter have been shown to achieve the
optimal rate of estimation as long as the vector β∗ is sparse in
that ‖β∗‖0 = o(n/ log p).

The goal of the present article is to address the testing prob-
lem for linear hypotheses of the form

H0 : a
⊤β∗ = g0, (2)

CONTACT Jelena Bradic jbradic@ucsd.edu Department of Mathematics, Rady School of Management, University of California at San Diego, La Jolla, CA .
Color versions of one or more of the figures in the article can be found online atwww.tandfonline.com/r/JASA.

Supplementary materials for this article are available online. Please go towww.tandfonline.com/r/JASA.

where the loading vector a ∈ R
p is prespeci�ed and g0 ∈ R

is given, and design an asymptotically valid test statistic that
does not rely on sparsity assumptions. Some central challenges
have hindered the systematic development of tools for statistical
inference in such settings. The nonsparse nature of the model
parameter β∗ poses serious challenges to consistent estimation;
moreover, the size and structure of the loading vector a intro-
duce additional di�culty for the inference. However, in this arti-
cle we consider potentially dense vectors β∗ with 0 ≤ ‖β∗‖0 ≤
p. We also allow for the nonsparse loadings with 1 ≤ ‖a‖0 ≤ p.
The inference problem for the mean of the response yi condi-
tional on xi = a is a prototypical case for the general functional
a⊤β∗ and is a representative case for dense loading a.

We develop the principles of restructured regression, where a
hypothesis-driven feature synthesization is introduced. The fea-
ture augmentation is done in such a way to separate useful infer-
ential information from the useless one, by “projecting” the orig-
inal feature space to the space spanned by the vector a and the
space orthogonal to a. This orthogonal projection is introduced
to achieve the above separation and avoid the curse of dimen-
sionality. Then, an appropriate moment condition is invoked on
the restricted regression and a suitable test statistic constructed.
The structure of the moment condition and its test depend on
whether or not the covariance of the features �X is known.
When prior knowledge of �X is available, the synthesized
features can be created in such a way that the resulting moment
condition and testing procedure do not depend on β∗; thus,
estimation of β∗ is completely avoided. As a result, no assump-
tion on the sparsity of β∗ is required. We establish theoretical
guarantees for Type I error control and show that the test can
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detect the deviation from the null hypothesis of the order
O(‖a‖2/

√
n). To the best of our knowledge, our approach

provides the �rst result on testing general linear hypothesis (2)
in high-dimensional linear models with potentially nonsparse
(dense) parameters.

When prior knowledge of �X is unavailable, the orthogo-
nalization and perfect separation is not achievable due to the
unknown projection matrix. We design an estimator of the pro-
jection matrix and further condition the new and augmented
features in such a way that their correlations are estimable
and yet the format of the restructured regression remains
unchanged. The developed hypothesis-driven feature separation
diminishes the impact of the inaccuracy of an estimator of a
transformation of β∗. Consequently, we can establish asymptot-
ically exact control of Type I error. We believe there is currently
no result on testing a⊤β∗ in the case where�X is unknown, and
both β∗ and a are allowed to be dense. Moreover, when sparsity
assumptions hold, our procedure is shown to achieve optimality
guarantees; hence, it does not loose e�ciency.

Since we do not assume sparsity in β∗, our work does not
directly compare to the existing results, which are only valid for
sparse β∗. However, in some cases, our work generalizes exist-
ing results to the nonsparse models. For example, Cai and Guo
(2017) showed that when �X is known, the minimax length of
the con�dence interval for a⊤β∗ is of the order O(‖a‖2/

√
n) if

‖β∗‖0 = O(n/ log p). As con�dence sets for a⊤β∗ can be easily
constructed by inverting the proposed tests, our results indicate
that their conclusion continues to hold for nonsparse models,
where ‖β∗‖0 can be as large as p. For the case of dense a, we do
not impose any constraint on a. However, existing work, such as
Cai and Guo (2017), imposes a lower bound (in terms of ‖a‖∞)
on theminimal nonzero coordinate of a—a condition that is sel-
dom satis�ed for inference of conditional mean, when a is typi-
cally drawn froma continuous distribution (e.g., a is drawn from
the same distribution as the distribution of the xi’s).

1.1. Relation to Existing Literature

Con�dence intervals and hypothesis testing play a fundamental
role in statistical theory and applications. However, compared
to the point estimation there is still much work to be done for
statistical inference of high-dimensional models. Existing work
on the inference problems predominantly focuses on individual
coordinates of β∗. Early work typically imposes conditions that
guarantee consistent variable selection (see Fan and Li 2001;
Zou 2006; Zhao and Yu 2006) or develops methods that lead
to conservative inferential guarantees (e.g., Bühlmann 2013).
However, recent work focusses on asymptotically accurate
inference without relying on the variable selection consistency.
Current advances in this domain are, however, restricted to
the ultra-sparse case, where ‖β∗‖0 = o(

√
n/ log p); see Zhang

and Zhang (2014), Belloni, Chernozhukov, and Hansen (2014),
Van de Geer et al. (2014), Javanmard and Montanari (2014a),
Ning and Liu (2017), Javanmard and Montanari (2015), Mitra
and Zhang (2016), Bühlmann and van de Geer (2015), Bel-
loni, Chernozhukov, and Kato (2015), and Chernozhukov,
Hansen, and Spindler (2015). Under such sparsity condition,
the expected length of the con�dence intervals for individual
coordinates is of the order O(1/

√
n) (van de Geer and Jankova

2016). Cai and Guo (2017) studied the length of the con�dence
intervals allowing for ‖β∗‖0 = o(n/ log p) and discovered that
lack of explicit knowledge of ‖β∗‖0 can fundamentally limit the
e�ciency of con�dence intervals.

However, there is little reason to believe that the sparsity ofβ∗
needs to hold in practice (Pritchard 2001;Ward 2009; Jin and Ke
2014; Hall, Jin, and Miller 2014). Unfortunately, there is almost
no work on estimating or testing the true sparsity level of the
underlying parameter. Hence, the theory of hypothesis testing
under general sparsity structures is still a very challenging and
important open problem. In particular, progress is very much
required when ‖β∗‖0 is allowed to grow faster than n/ log p and
perhaps even larger than the sample sizen. There are several arti-
cles showing that the regularized procedures have nonvanishing
estimation errors in such settings (Donoho and Johnstone 1994;
Raskutti, Wainwright, and Yu 2011; Cai and Guo 2018). How-
ever, is it still possible to develop a general methodology for test-
ingβ∗ in this case? Can one construct valid inference procedures
that do not require knowledge of ‖β∗‖0?

In the proposed inference procedure, we handle the high-
dimensional, possibly nonsparsemodel parameters and/or non-
sparse loadings, by developing a new methodology for testing.
The proposed methodology is centered around a construction
of augmented and synthesized features that are driven by a spe-
ci�c form of the null hypothesis. Compared with the previous
approaches of de-biasing (Zhang and Zhang 2014; Javanmard
andMontanari 2014a; Van de Geer et al. 2014; Mitra and Zhang
2014), scoring (Ning and Liu 2017; Chernozhukov, Hansen, and
Spindler 2015), and double-selection (Belloni, Chernozhukov,
and Hansen 2014; Belloni, Chernozhukov, and Kato 2015), our
new approach has two major distinctive features:

� We do not rely on an l1norm consistent estimation of the
unknown model parameters. In high-dimensional mod-
els with the lack of sparsity in the parameters, this may
no longer be possible. Instead, we propose to reformu-
late the original parametric null hypothesis into a moment
condition that can be successfully estimated even with-
out sparsity in the model. This moment condition is dif-
ferent from the score equations employed for estimation
as those are not estimable in nonsparse high-dimensional
models.

� We advocate for a study and exploration of the correlation
between feature vectors (and not the model parameters);
this proves to be a valuable tool that overcomes the limit of
estimation. Namely, we propose that the features be split
and projected onto the loading vector a of the hypothesis
(2), thereby fully using the null hypothesis structure.
This “decoupling” scheme allows for a successful esti-
mation of the moment condition even without spar-
sity assumption. As a result the developed method pro-
vides a rich alternative to the classical Wald or Score
principles.

1.2. Notation andOrganization of the Article

We brie�y describe notations used in the article. We use →d

to denote convergence in distribution and N (0, 1) to denote
the standard normal distribution with its cumulative distri-
bution function denoted by �(·). The (multivariate) normal
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distribution with mean (vector) µ and variance (matrix) � is
denoted by N (µ,�). We use ⊤ to denote the transpose of (a
vector ormatrix) and denote by Ip the p× p identity matrix. For
a vector a = (a1, . . . , ap)

⊤ ∈ R
p, its l0 norm is the cardinality

of supp(a) = {i | ai �= 0} and ‖a‖∞ = max{|a1|, . . . , |ap|};
‖a‖1 and ‖a‖2 denote the l1 and l2 norm of a, respectively.
In this case, a−i denotes the vector a with its ith coordinate
removed. For two sequences of positive constants an and bn, we
use an ≍ bn to denote that an/bn = O(1) and bn/an = O(1).
For two real numbers a1 and a2, a1 ∨ a2 and a1 ∧ a2 denote
max{a1, a2} and min{a1, a2}, respectively.

The rest of this article is organized as follows. Section 2 intro-
duces the main methodology under known �X and establishes
theoretical properties of the proposed test. Section 3 extends
the proposed methodology to the case of the unknown �X and
provides theoretical results. Section 4 contains examples illus-
trating new methods that the proposed methodology brings to
the literature on high-dimensional inference. Section 5 contains
detailed numerical experiments on a number of dense high-
dimensional linear models, including sparse and dense loadings
a. In Section 5.1, we demonstrate the excellent �nite-sample per-
formance of the proposed methods through Monte Carlo sim-
ulations; in Section 5.2, we illustrate our method via a real data
study. Appendix A contains complete details of the theoretical
derivations.

2. Testing H0 : a⊤β
∗

= g0 with Prior Knowledge of�X

In this section, we promote a uni�ed approach to a wide class of
decision problems. Our main building block (which we believe
is important in its own right) is a construction, named restruc-
tured regression allowing, under weak assumptions, to build tests
for hypotheses on a⊤β∗, where β∗ and/or a can be nonsparse.
Considering the potential failure of sparsity in many practi-
cal problems, we strongly believe that our approach permits a
diverse spectrum of applications. In this section, our focus is to
introduce the method with known �X (an assumption relaxed
in the next section).

Throughout the article, we denote �X = �−1
X . In the sequel,

given the feature vector xi ∈ R
p and loading vector a ∈ R

p, we
consider the following decomposition:

xi = azi + wi, (3)

with a scalar

zi =
(

�Xa

a⊤�Xa

)⊤
xi

and a p-dimensional vector

wi =
[

Ip − aa⊤�X

a⊤�Xa

]

xi.

Observe that azi can be viewed as the projection of xi onto the
vector a—taking into account�X , hence extracting information
in xi regarding the null hypothesis. Notice that themodel (1) and
decomposition (3) imply

yi = zi · (a⊤β∗) + w
⊤
i β∗ + εi, (4)

referred to as restructured regression. The proposed construction
gives rise to the method of feature customization. Given covari-
ate vector xi and the loading vector a representing the struc-
ture of the null hypothesis, we create the synthesized features
x̃i := (zi,w

⊤
i )⊤ so that the regression coe�cient for zi in the

restructured regression (4) is the quantity under testing.

Remark 1. The synthesized features are not only an artifact of
our new methodology but also admit intuitive interpretations.
Consider the case where �X is known to be Ip. The synthe-
sized features zi and wi represent the relevant and the irrele-
vant information with respect to the null, respectively. To see
this, suppose that the true distribution of the data is known.
With the population expectations, we can identify the param-
eters in the restructured regression (4): E(ziyi) = Ez2i (a

⊤β∗)
and Ewiyi = Ewiw

⊤
i β∗. Notice that the latter equation contains

no information regarding a⊤β∗ because it can be shown that a
is orthogonal to columns in Ewiw

⊤
i . In other words, knowing

Ewiw
⊤
i β∗ does not lead to knowing a⊤β∗. Therefore, a⊤β∗ is

identi�ed with the distribution of (yi, zi) and wi does not con-
tain information about the null hypothesis.

It is not hard to verify that, by the construction of the trans-
formed features, E[wizi] = 0. It follows that E[zi(yi − zig0)] =
E[zi(εi + w

⊤
i β∗ + zi(a

⊤β∗ − g0))] = E[z2i (a
⊤β∗ − g0)].

Observe that the last expression is 0 if and only if the null
hypothesis (2) holds. As a result, testing H0 in (2) is equivalent
to testing the following moment condition:

H0 : E
[

z1(y1 − z1g0)
]

= 0. (5)

To test the above condition, we propose a studentized test statis-
tic, Tn(g0), taking the form

Tn(g0) :=
n−1/2

∑n
i=1 li(g0)

√

n−1
∑n

i=1 li(g0)
2

, (6)

with li(g0) = zi(yi − zig0). For a test ofH0 with nominal sizeα ∈
(0, 1), we reject H0 if

|Tn(g0)| > �(1 − α/2).

The methodology proposed above is novel in a number of
aspects. UnlikeWald or Score or Likelihood principles, centered
around a consistent estimator of β∗, our methodology allows
for extremely fast implementation and does not estimate the
unknown parameter β∗. The novel methodology consists of two
stages. At the �rst stage, our procedure establishes a data-driven
feature decomposition based on the structure of the null hypoth-
esis directly. At the second stage, only “a moment condition”
of the restructured regression is tested. It is critical to observe
that restructured regression by itself is not su�cient to guaran-
tee valid inference. The novel properties of the proposedmethod
are based on the built-in, that is, designed orthogonality of the
synthesized features zi andwi. As such it enables us to construct
a test statistic that does not contain the unknown parameter β∗,
thereby allowing our methodology to handle dense (and thus
possibly nonestimable) β∗. Moreover, no assumption is imposed
on the loadings a either. As we will see in the next section,
these properties under known �X propagate to the case of the
unknown �X and underline all further developments.
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Assumption 1. Let the following hold: (i) there exists a positive
constant C such that E|ziσ−1

z |8 ≤ C, Eε8i ≤ C, and E|w⊤
i β∗|8 <

CwithC < ∞. Moreover, (ii) there exists a constant c ∈ (0,∞),
such that σε ≥ c. Lastly, (iii) there exist constants D1,D2 > 0
such that the eigenvalues of �X lie in [D1,D2].

The stated conditions in Assumption 1 are very weak and
intuitive. Assumption 1(i) requires components in the restruc-
tured regression (4) to have bounded eighthmoments. Assump-
tion 1(ii) rules out the noiseless regression setting in the original
model (1). Assumption 1(iii) is very weak in that it only imposes
well-designed covariance matrix of the features xi (see Bickel,
Ritov, and Tsybakov 2009).

Notice that Assumption 1 does not require any condition
regarding the sparsity of β∗. Even in the case of sparse a, exist-
ing work, such as the debiasing method, heavily relies on the
sparsity of β∗. Results regarding dense a are very limited even
for sparse β∗. Cai and Guo (2017) imposed the condition of
max j∈supp(a) |a j|/min j∈supp(a) |a j| = O(1); however, such a con-
dition is quite hard to satisfy if a is drawn from a continuous dis-
tribution whose support contains zero. In contrast, our results
do not require any condition on a and, hence, bridge the gap in
the existing literature on high-dimensional inference.

Theorem 1. Consider the model in (1) and the de�nition of zi
and wi as in (3). Suppose that Assumption 1 holds. UnderH0 in
(2), we have that (1) the test statistic Tn, (6), satis�es Tn(g0) →d

N (0, 1) as n, p → ∞ and that (2)

lim
n,p→∞

P
(

|Tn(g0)| > �−1(1 − α/2)
)

= α.

Theorem 1 gives an asymptotic approximation for the null
distribution of the test statistic Tn(g0) under general sparsity
structure. The result of Theorem 1 has two striking features. The
�rst is that it holds, no matter the size or sparsity of the loading
vector a. The second is that the proposed test guarantees Type
I error control when p ≥ n and p, n → ∞ no matter of the
sparsity of β∗ and without the knowledge of the noise level σε ;
in particular, it allows ‖β∗‖0 = p. Therefore, our test is fully
adaptive, in the sense that its validity does not depend on in
the sparse/dense level of either the model parameter β∗ or the
hypothesis loading a. We also show that our test can detect
deviations from the null that are larger than O(‖a‖2/

√
n) while

allowing β∗ to be nonsparse and p ≥ n.

Theorem 2. Under the conditions of Theorem 1, suppose that
a⊤β∗ = g0 + hn and

√
n|hn|/‖a‖2 → ∞. Then, for any α ∈

(0, 1).

lim
n,p→∞

P
(

|Tn(g0)| > �−1(1 − α/2)
)

= 1.

Remark 2. Theorem2 also suggests that we can expect the length
of the con�dence interval for a⊤β∗ (obtained by inverting the
proposed test) to be of the order of O(‖a‖2/

√
n) regardless of

the sparsity of β∗ or a. To the best of our knowledge, it is the �rst
result to explicitly allow nonsparse and simultaneously high-
dimensional parameters β∗ or vector loadings a. It is also closely
connected with the existing results for the case of sparse param-
eters β∗. Cai and Guo (2017) stated that under Gaussianity and
sparsity in both β∗ and a together with known �X and σε , the

optimal expected length of con�dence intervals for a⊤β∗ is of
the order O(‖a‖2/

√
n) (see Theorem 7 therein). Observe that

our procedure achieves the same optimality without the knowl-
edge of σε and allowing dense vectors β∗.

We do not formally claim that this is the optimal rate for
dense β∗, but we can consider an obvious benchmark. Let β̄

be an estimator that attains an e�ciency similar to (ordinary
least square) OLS in low dimensions, that is, β̄ is distributed as
N (β∗,�Xσ 2

ε /n). Then a⊤β̄ followsN (a⊤β∗, a⊤�Xaσ
2
ε /n) dis-

tribution. Since �X has eigenvalues bounded away from in�n-
ity, the standard deviation of a⊤β̄ is of the order ‖a‖2/

√
n. Such

an estimator might not be feasible in practice, but could serve
as a benchmark for dense β∗. A rigorous study of the e�ciency
issue is likely to yield results that are quite di�erent from cur-
rent literature since existing results, for example, Cai and Guo
(2017), do not naturally extend to dense problems. For exam-
ple, consider the case of ‖a‖0 = ‖β∗‖0 = p, naively extending
Theorem 8 of Cai and Guo (2017) would conclude that the min-
imax expected length of a con�dence interval for a⊤β∗ is of the
order ‖a‖∞p

√

(log p)/n; however, this rate is larger than the

rate ‖a‖2/
√
n, which is bounded above by ‖a‖∞

√

p/n. Lastly,
according toTheorem2our proposed test achieves the same rate
at the benchmark β̄ .

3. Testing H0 : a⊤β
∗

= g0 Without Prior Knowledge of
�X

The approach proposed in this section tackles the high-
dimensional inference problem in a very general setting. The
focus is the more realistic scenario in which the covariance
matrix�X and the variance of the model (1) are both unknown.
We synthesize new features, create a new reference model, and
explore the correlations therein to design a suitable inferential
procedure that is stable without sparsity assumption.

3.1. Feature Synthesization and Restructured Regression

To design inference when �X unknown, we take on a new per-
spective and build upon themethodology of Section 2. Consider
feature synthesization of Section 2 where �X is naively treated
as Ip,

zi =
( a

a⊤a

)⊤
xi ∈ R and wi =

(

Ip − aa⊤/(a⊤a)
)

xi ∈ R
p.

(7)
Although the decomposition xi = azi + wi still holds, features
zi and wi might be correlated (because �X �= Ip). If such cor-
relation is estimated successfully, we can use certain decou-
pling method to eliminate the impact of dense parameters while
allowing exponentially growing dimensions.

The �rst challenge is that directly estimating the correlation
between zi andwi (as de�ned) is not achievable (as the restricted
eigenvalue (RE) condition (Bickel, Ritov, and Tsybakov 2009) on
W = (w1, . . . ,wn)

⊤ is violated). To address this problem, we
propose to stabilize the feature vector wi and de�ne stabilized
features w̃i. We stabilize the features in such a way that the RE
condition on the stabilized design W̃ = (w̃1, . . . , w̃n)

⊤ is satis-
�ed with high probability. Since Ip − aa⊤/(a⊤a) is a projection
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matrix, we can �nd Ua ∈ R
p×(p−1) an orthogonal matrix such

that

U⊤
a Ua = Ip−1 and Ip − aa⊤/(a⊤a) = UaU

⊤
a .

Then

Wβ∗ = X (Ip − aa⊤/(a⊤a))β∗ = XUaU
⊤
a β∗ = W̃π∗,

where

W̃ = WUa and π∗ = U⊤
a β∗.

Since yi = zi · (a⊤β∗) + w
⊤
i β∗ + εi, we have the stabilized

model

yi = zi · (a⊤β∗) + w̃
⊤
i π∗ + εi. (8)

The model is balanced in the sense that EW̃⊤W̃/n =
U⊤
a �XUa ∈ R

(p−1)×(p−1) with eigenvalues bounded away
from zero and in�nity. Therefore, RE condition on W̃ holds
under weak conditions; see Rudelson and Zhou (2013).

Remark 3. The synthesized feature wi ∈ R
p is consolidated into

w̃i ∈ R
p−1, in that w̃i has a smaller dimensionality and can be

used to recover wi via wi = Uaw̃i. In this sense, w̃i contains all
the information in wi. As an example, consider the case with a
being the �rst column of Ip. In this case, it is not hard to verify
that zi = xi,1, wi = (0, xi,2, . . . , xi,p)

⊤ ∈ R
p,Ua = (0, Ip−1)

⊤ ∈
R

p×(p−1) and thus w̃i = U⊤
a wi = (xi,2, . . . , xi,p)

⊤ ∈ R
p−1.

We now introduce an additional model to account for the
dependence between the synthesized feature zi and the stabilized
feature w̃i:

zi = w̃
⊤
i γ∗ + ui, (9)

where γ∗ ∈ R
p−1 is an unknown parameter and ui is indepen-

dent of w̃i with Eui = 0 and Eu2i = σ 2
u .

In this article, wewill assume that γ∗ is sparse, to decouple the
dependence between zi and w̃i with the unknown �X . In fact,
sparse γ∗ is a generalization of the sparsity condition on the pre-
cisionmatrix�X , a regularity condition typically imposed in the
literature; see Van de Geer et al. (2014), Belloni, Chernozhukov,
and Hansen (2014), Belloni, Chernozhukov, and Kato (2015),
and Ning and Liu (2017). Recall the example in Remark 3. Since
xi,1 = zi = w̃

⊤
i γ∗ + ui = x⊤

i,−1γ∗ + ui, it is not hard to show that
the �rst rowof�X is (σ−2

u ,−σ−2
u γ ⊤

∗ ). Hence, the sparsity of γ∗ is
equivalent to the sparsity in the �rst rowof�X . The sparsity of γ∗
can be justi�ed for dense a aswell. Consider the case of�X = cIp
for some c > 0; a prototypicalmodel in compressive sensing cor-
responds to c = 1 (Nickl and van de Geer 2013). In this case,
one can easily show that zi and w̃i are uncorrelated, meaning
that γ∗ = 0 for any a. The synthesized features also admit intu-
itive interpretations in this case: the feature zi contains useful
information in testing the null hypothesis a⊤β∗ = g0, while the
consolidated w̃i contains information not useful for inference.

Now, we are ready to construct the moment condition of
interest. Observe that underH0 in (2), yi − zig0 − w̃

⊤
i π∗ = εi is

uncorrelatedwith zi − w̃
⊤
i γ∗ = ui. IfH0 is false, then yi − zig0 −

w̃
⊤
i π∗ = εi + zi(θ∗ − g0) = εi + w̃

⊤
i γ∗(θ∗ − g0) + ui(θ∗ − g0)

has nonzero correlation with ui = zi − w̃
⊤
i γ∗. Hence, the

initial null hypothesis, (2) is equivalent to the following null

hypothesis:

H0 : E
[

(

z1 − w̃
⊤
1 γ∗

) (

y1 − z1g0 − w̃
⊤
1 π∗

)

]

= 0. (10)

Directly testing this moment condition is not feasible, due to the
unknown values of parameters γ∗ and π∗. As a result, we �rst
provide estimates for these unknown parameters and consider
the test statistic given by the studentized statistics.

We make a few remarks about the above proposed method-
ology. As mentioned above, the existing literature on high-
dimensional inference adopts the approach of relying on an
(almost) unbiased estimate of the model parameter to distin-
guish the null and alternative hypotheses. The existing methods
largely di�er by themeans of constructing the unbiased estimate
and/or its asymptotic variance. Many use an approximation of a
one-step Newton method (Zhang and Zhang 2014; Van de Geer
et al. 2014; Javanmard and Montanari 2014a) to achieve consis-
tency in estimation of possibly all p parameters. To test a⊤β∗ in
this framework, one need to show that the debiased estimator
for β∗ can be used to construct an asymptotically unbiased
and normal estimator for a⊤β∗; to the best of our knowledge,
a formal theoretical justi�cation is yet to be established even
under sparse β∗. Other than the debiasing technique, some
proposals center around Neyman’s score orthogonalization
ideas (Belloni, Chernozhukov, and Hansen 2014; Ning and Liu
2017; Belloni, Chernozhukov, and Kato 2015; Chernozhukov,
Hansen, and Spindler 2015). It is worth pointing out that such
a method requires a clear separation of parameter under testing
and the nuisance parameter. In the original problem, the model
parameter is β∗ and the quantity under testing is a⊤β∗; hence,
it is not clear how to de�ne the nuisance parameter since the
a⊤β∗ is not just one entry (or a subset) of the parameter vector
β∗. Lastly, the work of Cai and Guo (2017) proposes a minimax
optimal test that allows for dense loadings vector a, however
in the dense case it provides a conservative error bounds and
requires the knowledge of the sparsity size s.

However, our proposal deviates from the above methodolo-
gies in a few aspects. First, we design a test statistic irrespective
of a consistency of high-dimensional estimators for the model
parameter; hence, any re�tting or one-step approximations are
unnecessary. Second, we aim to orthogonalize design features
(rather than model parameters) by directly taking into account
the structure of the null hypothesis (represented by a and
g0). In this way, we achieve full adaptivity to the hypothesis
testing problem of interest. Third, we reformulate the original
parametric hypothesis into a moment condition of which we
provide adaptive estimators. The moment condition itself is
not a simple �rst-order optimality identi�cation (related to
Z-estimators), but rather a moment that uses the special feature
of orthogonalization and fusion. Hence, even in setting where
the existing work applies, our proposed method provides an
alternative. However, apart from existing work, our proposed
method applies much more broadly.

3.2. Adaptive Estimation of the UnknownQuantities

In this subsection, we start with a brief introduction of the
Dantzig selector, which is the basis of our estimators. Then we
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introduce the intuition and steps of our estimator as well as
implementation details.

... Dantzig Selector Review

Numerous studies have been conducted in regards to the consis-
tent estimation of high-dimensional parameters in linear mod-
els. The canonical examples of successful estimators represent

Lasso and Dantzig selector, de�ned as β̂l and β̂d below,

β̂l = arg min
β∈Rp

{

‖Y − Xβ‖22 + λl‖β‖1
}

,

β̂d = argmin
β∈Rp

‖β‖1

s.t
∥

∥n−1X⊤(Y − Xβ)
∥

∥

∞ ≤ λd.
(11)

Although Lasso and Dantzig selector are de�ned in di�erent
times, Bickel, Ritov, and Tsybakov (2009) established equiv-
alence between the two estimators under the conditions of
moderate design correlations and model sparsity, ‖β∗‖0 ≪ n.

Between these two estimator, the Dantzig selector, β̂d , o�ers
easy implementation through linear programming techniques.
Moreover, the constraint in the Dantzig selector can be inter-
preted as a relaxation of the least-square normal equations,
X⊤Y = X⊤Xβ . However, the performance of both estimators
is tightly connected to the choice of their respective tuning
parameters λl and λd , that is, the size of such relaxation. Sev-
eral empirical and theoretical studies emphasized that tuning
parameters should be chosen proportionally to the noise stan-
dard deviation σε , that is, λd = λd(σε) = σε

√

(log p)/n. In such

settings, one can guarantee ‖β̂l − β∗‖1 = O(‖β∗‖0
√

(log p)/n).
Unfortunately, in most applications, the variance of the noise
is unavailable. It is therefore vital to design statistical proce-
dures that estimate unknown parameters together with the size
of model variance in a joint fashion. This topic received special
attention, see Giraud, Huet, and Verzelen (2012) and the refer-
ences therein. Most popular σ -adaptive procedures, the square-
root Lasso (Belloni, Chernozhukov, andWang 2011), the scaled
Lasso (Sun and Zhang 2012), and the self-tuned Dantzig selec-
tor (Gautier and Tsybakov 2013; Belloni, Chernozhukov, and
Hansen 2016) can be seen as maximum a posteriori estimators
with a particular choice of prior distribution. However, they do
not provide estimates that are reasonable in nonsparse and high-
dimensional models—after all in such settings it is impossible to
consistently estimate themodel parameters (see for more details
Raskutti, Wainwright, and Yu 2011; Cai and Guo 2018). The
aim of the present section is to present an alternative to these
methods, which are closely related, but presents some advan-
tages in terms of implementation and a more transparent theo-
retical analysis in not necessarily sparsemodels; themain bene�t
is that our estimates are well controlled in certain sense.

... Modified Dantzig Selector: Adaptive to

Signal-to-Noise Ratio

We start with the estimator for π∗, a parameter that is high-
dimensional and yet not necessarily sparse. We extend the
Dantzig selector above to conform to the testing problem that
we have to perform. We begin by splitting the tuning parame-
ter into a constant independent of the variance of the noise and

introduce a parameter ρ, a square root of the noise to response
ratio as an unknown in the optimization problem. At the popu-
lation level,ρ is intended to representσε/

√

E(y1 − z1g0)2 andρ0

is a lower bound for this ratio. One might attempt to use scaled
Lasso by Sun and Zhang (2012) or self-tuning Dantzig selector
proposed byGautier and Tsybakov (2013), but for nonsparseπ∗,
these methods cannot ensure that the estimated noise variance
is bounded away from zero whenever the vector π∗ is a dense
vector (a case of special interest here).

For Z = (z1, . . . , zn)
⊤ andY = (y1, . . . , yn)

⊤ de�ned in (7),
we introduce the following version of Dantzig selector of π∗:

(π̂, ρ̂) = argmin
(π,ρ)∈Rp−1×R

‖π‖1

s.t ‖W̃⊤(Y − Zg0 − W̃π)‖∞ ≤ η ρ
√
n‖Y − Zg0‖2

(Y − Zg0)
⊤(Y − Zg0 − W̃π) ≥ ρ0 ρ ‖Y − Zg0‖22/2

ρ ∈ [ρ0, 1], (12)

where η ≍
√

n−1 log p and ρ0 ∈ (0, 1) are scale-free tuning
parameters.

The estimator (12) is di�erent from (11) in two ways. First,
the estimator (12) simultaneously estimates π∗ and ρ. We intro-
duce a ρ0 the lower bound for ρ as a tuning parameter. Second,
the estimator (12) has an additional constraint, which essen-
tially serves as an upper bound for ρ. The intuition of this
bound is the following. When π is replaced by the true π∗
and the null hypothesis holds, this constraint (scaled by 1/n)
becomesπ⊤

∗ W̃
⊤ε/n + ε⊤ε/n ≥ ρ0ρ‖W̃π∗ + ε‖22/n. By the law

of large numbers, this means that oP(1) + σ 2
ε ≥ ρ0ρE(y1 −

z1g0)
2, which is satis�ed if ρ = σε/

√

E(y1 − z1g0)2 and ρ > ρ0.

The vector ε = Y − Zg0 − W̃π∗ is a residual vector of the
stabilizedmodel (8) under the null hypothesisH0. The �rst con-
straint on the residual vector imposes that for each i, much like

the Dantzig selector, β̂l , maximal correlation ‖W̃⊤ε/n‖∞ is not

larger than the noise level ησε . Yet, in contrast to β̂l , our estima-
tor treats ρ as an unknown quantity and estimates it simultane-
ously with π∗. Moreover, we introduce the second constraint to
stabilize estimation of the moment of interest (10) in the pres-
ence of nonsparse vectors π∗. Under the null hypothesis, this
constraint prevents choice of ρ that is too large, namely, it con-

straints ρ ≤ C(Y − Zg0)
⊤ε/

∥

∥Y − Zg0
∥

∥

2

2
for a �nite constant

C > 0. In sparse settings, this additional constraint is redundant,
so we remove it from our estimator of γ∗ de�ned below (a vector
that is assumed to be sparse). Hence, we consider the following
estimator, γ̂

γ̂ = argmin
γ∈Rp−1

‖γ ‖1

s.t
∥

∥

∥
n−1W̃⊤(Z − W̃γ )

∥

∥

∥

∞
≤ λn−1/2‖Z‖2, (13)

where λ ≍
√

n−1 log p is a scale-free tuning parameter and
n−1/2‖Z‖2 serves as an upper bound of the unknown σu in the
model (9). It is worth pointing out that the de�ned estima-
tors change with a change in the hypothesis testing problem (2)
through the new, synthesized, and stabilized feature vectors W̃
and Z together with g0. We present a few examples in Section 4.
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... Implementation

The optimization problem in (12), a generalization of the
Dantzig selector (Candes and Tao 2007), can be recast
as a linear program; the computational burden of our
method is comparable to the Dantzig selector. De�ne
scalars d1 = ρ0‖Y − Zg0‖22/2, d2 = ‖Y − Zg0‖22, vectors
D1 = W̃⊤(Y − Zg0) ∈ R

p−1 and D2 =
√
nη‖Y − Zg0‖21p−1

and matrix D3 = W̃⊤W̃ ∈ R
(p−1)×(p−1).

Then, (12) is equivalent to the following linear program:

min(c,π,ρ)∈Rp−1×Rp−1×R 1
⊤
p−1c

s.t. −c ≤ π ≤ c

ρ0 ≤ ρ ≤ 1

d1ρ + D⊤
1 π ≤ d2

−D2ρ ≤ D1 − D3π ≤ D2ρ,

(14)

where the optimization variables are c ∈ R
p−1, π ∈ R

p−1 and
ρ ∈ R. For application purposes, we propose to choose the fol-
lowing choices of the tuning parameters: ρ0 = 0.01 and η =
√

2 log(p)/n. They are universal choices and we show in sim-
ulations that they provide good results.

3.3. Test Statistic

With de�ned estimators of γ∗ and π∗, we are ready to de�ne
a sample analog of the moment condition 10. Under our pro-
posed method, a test of nominal size α ∈ (0, 1) rejectsH0 in (2)
if |Sn| > �−1(1 − α/2), where

Sn =
√
n

(Z − W̃ γ̂ )⊤(Y − Zg0 − W̃ π̂ )

‖Z − W̃ γ̂ ‖2‖Y − Zg0 − W̃ π̂‖2
. (15)

Other estimators of the �rst moment (10) are certainly possi-
ble, however we focus and analyze the natural case above; we
leave future e�ciency studies for future work since it is not
apparent that any other choice is preferred. Moreover, the self-
normalizing statistic above is directly dependent on the hypoth-
esis of interest and is a function of synthesized features. Com-
paredwith the existing approaches where the normalization fac-
tor is a consistent estimator of the asymptotic variance, our self-
normalized approach adopts an inconsistent estimator as the
normalization factor, which in a sense corresponds to “ine�-
cient Studentizing” (see Shao 2010). However, we establish that
the asymptotic distribution of the resulting statistic is pivotal
and its percentiles can be obtained from the normal distribution.

In constructing estimates of γ∗ and π∗, we do not impose
any assumption regarding the sparsity of π∗ or β∗. Notice that,
except for the case of sparse a, it is in general unreasonable to
expect sparsity in π∗, even if β∗ is sparse. Although we use esti-
mates for both γ∗ and π∗ denoted by γ̂ and π̂ , respectively, we
only require l1 consistency properties for γ̂ ; in fact, π̂ only serves
to satisfy our decoupling argument in the proof and does not
need to be consistent. We now brie�y explain this point. The
constraints imposed in the estimator (12) guarantee that for the
test statistic Sn, the termn−1/2(Z − W̃ γ̂ )⊤(Y − Zg0 − W̃ π̂ ) can
be approximated by a product of two independent terms, that
is, n−1/2(Z − W̃γ∗)⊤(Y − Zg0 − W̃ π̂ ). Then, the only require-
ment needed is to guarantee that the second term in the last
expression does not grow to fast (it does not need to converge

to zero) which in turn is provided by the constraints of the opti-
mization problem (12).

3.4. Theoretical Properties

In deriving the theoretical properties of our test, we impose the
following assumption.

Assumption 2. Let (i) xi and εi have Gaussian distributions,
N (0, �X ) and N (0, σ 2

ε ), respectively. Moreover, assume (ii)
that there exist constants c1, c2 > 0, such that σε and the eigen-
values of �X lie in [c1, c2]. Lastly, let (iii) there exist constants
c3, c4 ∈ (0, 1), such that σ 2

u /σ 2
z ≥ c3 and σ 2

ε /σ 2
y ≥ c4.

Assumption 2(i) is only imposed to simplify the proof. In
high-dimensional literature, Gaussian design is a very common
assumption (e.g., Javanmard andMontanari 2014b; Cai andGuo
2017). The same results, at the expense of more complicated
proofs, can be derived for sub-Gaussian designs and errors.
Assumption 2(ii) is very standard in high-dimensional literature
(see Bickel, Ritov, and Tsybakov 2009; Ning and Liu 2017; Van
de Geer et al. 2014 for more details).

Assumption 2(iii) imposes nondegeneracy of signal-to-noise
ratios for models (1) and (9). Since ‖a‖2 is allowed to tend to
in�nity, σ 2

z = a⊤�Xa/(a
⊤a)2 can tend to zero and thus it is too

restrictive to assume that σu is bounded away from zero. Hence,
Assumption 2(iii) is a relaxation, as it only rules out the uninter-
esting case of asymptotic noiselessness.

Remark 4. The sparsity condition is imposed on neither a nor
β∗. Theorem 3 below says that we can conduct valid infer-
ence of a nonsparse linear combination of a nonsparse high-
dimensional parameter without knowing �X . To the best of our
knowledge, this is the �rst result that allows for such generality.

Theorem 3. Let Assumption 2 hold. Consider estimators (12)
and (19) with suitable choice of tuning parameters: η, λ ≍
√

n−1 log p, ρ−1
0 = O(1) and ρ0 ≤ [1 + c2c

−1
1 (c−1

3 − 1)]−1/2.
Suppose that ‖γ∗‖0 = o(

√
n/ log p). Then, under H0 in (2),

optimization problems (12) and (19) are feasible with probabil-
ity approaching one and

lim
n,p→∞

P
(

|Sn| > �−1(1 − α/2)
)

= α ∀α ∈ (0, 1),

where Sn is de�ned in Equation (15).

Theorem 3 establishes that the proposed test is asymptot-
ically exact regardless of how sparse the model parameter or
the loading vector are. In that sense, the result is unique in the
existing literature as it covers cases of β sparse and a sparse
(SS), β sparse and a dense (SD), β dense and a sparse (DS),
and especially β dense and a dense (DD). The (SS) case appears
in a number of existing works (see Belloni, Chernozhukov,
and Hansen 2014; Van de Geer et al. 2014; Javanmard and
Montanari 2014b; Ning and Liu 2017), case (SD) appears in Cai
and Guo (2017). Whenever (SS) case holds, our result above
matches the above-mentioned work, see Theorem 4. In the
special setting of (SD), our result generalizes the one of Cai and
Guo (2017) as Theorem 3 does not impose any restriction on the
size of the loading vector a. The last two cases of (DS) and (DD)
present extremely challenging cases in which inference based
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on estimation (much likeWald or Rao or Likelihood principles)
fails due to the inherit limit of detection—work of Cai and Guo
(2016) provides details of impossibility of estimation in such
settings. However, despite these challenges our method is able
to provide asymptotically valid inference as we have developed
inference based on a speci�cally designed moment condition
(and not a parameter estimation alone).

The result in Theorem 3 is based on the assumption that π̂∗
is a possibly inconsistent estimator of the parameter vector π∗,
that is, the fullmodel is dense with all nonzero entries. In the fol-
lowing, we will show that if themodel is a sparsemodel, the pro-
posed test (15) maintains strong power properties. To facilitate
the mathematical derivations, we consider the local alternatives
of the form

H1,n : a
⊤β∗ = g0 + n−1/2(a⊤�Xa)

1/2σεd, (16)

where d ∈ R is a �xed constant. The following result shows that
the proposed test achieves certain optimality in detecting alter-
natives H1,n.

Theorem 4. Consider zi and wi de�ned in (7). Let Assump-
tion 2 hold and consider the choice of tuning parame-
ters, as in Theorem 3. Suppose that ‖γ∗‖0 ∨ ‖β∗‖0 ∨ ‖a‖0 =
o(

√
n/ log p). Then, under H1,n in (16), optimization problems

(12) and (19) are feasible with probability approaching one and

lim
n,p→∞

P
(

|Sn| > �−1(1 − α/2)
)

= �α(d) ∀α ∈ (0, 1),

where �α(d) := �(−�−1(1 − α/2) + d) + �(−�−1(1 − α/

2) − d).

To better understand the optimality of the result above, con-
sider the estimator (possibly infeasible) discussed at the end
of Section 2: let β̄ denote an estimator satisfying

√
n(β̄ −

β∗) ∼ N (0,�Xσ 2
ε ). Notice that, for the low-dimensional com-

ponents of β∗, β̄ achieves semiparametric e�ciency; see Robin-
son (1988). Therefore, for sparse a, a⊤β̄ is a semiparametrically
e�cient estimator for a⊤β∗. Notice that

√
n(a⊤β̄ − a⊤β∗) ∼

N (0, a⊤�Xaσ
2
ε ). Based on such e�cient estimator, one might

consider an “oracle” test: for a test of nominal size α, reject the
null H0 : a

⊤β∗ = g0 if and only if
√
n|a⊤β̄ − g0|

(a⊤�Xa)1/2σε

> �−1(1 − α/2). (17)

It is easy to verify that the power of this “oracle” test of nom-
inal size α against the local alternatives H1,n (16) is asymp-
totically equal to �α(d). Therefore, Theorem 4 says that our
test asymptotically achieves the same power as the “oracle” test
under sparse a and β∗, that is, it is as e�cient as the “oracle” test.

Moreover, in light of recent inferential results in the high-
dimensional sparse models, the rate of Theorem 4 can also be
shown to be optimal. We discuss in particular the case of Van
de Geer et al. (2014) (VBRD) and Belloni, Chernozhukov, and
Hansen (2014) (BCH). VBRD uses one-step correction tech-
nique to correct the bias of the lasso estimator and then pro-
ceeds to construct a Wald test around such unbiased estimator.
BCH di�ers from VBRD in that it uses two di�erent variable
selection steps followed by a �nal estimation step that uni�es the
results of the two selected sets and corrects the bias by a subse-
quent re�tting step. Both methods are shown to be optimal for

a = e j where e j is a coordinate vector, 1 ≤ j ≤ p. We discuss
the relations of our work in this speci�c setting. We note that
the tests based on VBRD and BCH are asymptotically equiva-
lent to the “oracle” test (17) and hence have the same asymptotic
local power; the power ofWald or Score inferentialmethods (see
Theorem 2.2 in Van de Geer et al. (2014), Theorem 1 in Belloni,
Chernozhukov, and Hansen (2014) or Theorem 4.7 in Ning and
Liu (2017)) and that of Javanmard and Montanari (2014b) (see
Theorem 2.3 therein) is asymptotically equal to and converges
to �α(d), respectively. This, in turn, implies that the proposed
method is semiparametrically e�cient and asymptoticallymini-
max. For vectors a that have more than one nonzero coordinate,
we can only compare our work with that of Cai and Guo (2017),
where we observe that the result of Theorems 1 and 3 therein
matches those of Theorem 4 covering the case of extremely
sparse beta and potentially dense vectors a. However, observe
that the con�dence intervals developed therein require speci�c
knowledge of the sparsity of the parameter β∗, ‖β∗‖0, a quantity
rarely known in practice. Unlike their method, our method can
be directly implemented without the knowledge of the sparsity
of β∗ and yet achieves the same optimality guarantees.

4. Applications to Nonsparse High-Dimensional
Models

This section is devoted to three concrete applications of the
general methodological results developed in Sections 2 and 3—
hence, showcasing the wide impact of the developed theories.

4.1. Testing Pairwise Homogeneity

The previous section deals with situations in which each coordi-
nate of the parameters is allowed to vary independently and any
subset of the coordinates can be nonzero simultaneously. This
condition will not be satis�ed if we are interested in testing pair-
wise homogeneity in the linear model (group e�ect), that is, if
we are interested in testing the hypothesis

H0 : β∗,k = β∗, j

for k, j ∈ {1, 2, . . . , p} while also allowing β to be a dense and
high-dimensional vector. To the best of our knowledge, such
tests were not designed in the existing literature. The proposed
methodology easily extends to this case, where the loading vec-
tor a takes the form a = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0)⊤,
with the location of the 1’s at the jth and kth coordinate, respec-
tively. Without loss of generality, we assume that k = 1 and
j = 2. Then it is not hard to show that zi = (xi,1 − xi,2)/2 and
w̃i = ((xi,1 + xi,2)/

√
2, xi,3, . . . , xi,p)

⊤ ∈ R
p−1. The proposed

methodology for this problem simpli�es, then, to �nding π̂ and
ρ̂ that satisfy

(π̂, ρ̂) = argmin
(π,ρ)∈Rp−1×R+

‖π‖1

s.t W̃ = [(X1 + X2)/
√
2,X3, . . . ,Xp]

‖W̃⊤(Y − W̃π)‖∞ ≤ ηρ
√
n‖Y‖2

Y⊤
(

Y − W̃π
)

≥ ρ0 ρ ‖Y‖22/2
ρ ∈ [ρ0, 1] (18)
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and γ̂ that satis�es

γ̂ = argmin
γ∈Rp−1

‖γ ‖1

s.t W̃ = [(X1 + X2)/
√
2,X3, . . . ,Xp]

‖W̃⊤(X1 − X2 − 2W̃γ )‖∞ ≤ λ
√
n‖X1 − X2‖2, (19)

for λ, η ≍
√

n−1 log p .
Consequently, we reject H0 : β∗,1 = β∗,2 if |Sn| > �−1(1 −

α/2), where

Sn =
√
n

(X1 − X2 − 2W̃ γ̂ )⊤(Y − W̃ π̂ )

‖X1 − X2 − 2W̃ γ̂ ‖2‖Y − W̃ π̂‖2
. (20)

4.2. Inference of Conditional Mean

Our methodology can also be used for the inference regarding
the average value of the response, that is, regarding the condi-
tional mean of the regression model. Suppose that the object of
interest is E(yi | ζi), where yi ∈ R and ζi ∈ R

k. For a given value
d ∈ R

k and g0 ∈ R, the focus is to test

H0 : E(yi | ζi = d) = g0.

Assuming that for some given dictionary of transformations
of {φ j(·)}pj=1, the conditional mean function admits the rep-

resentation: E(yi | ζi) =
∑p

j=1 β∗, jφ j(ζi) for some vector β∗ =
(β∗,1, . . . , β∗,k)

⊤ ∈ R
p. Then the conditional mean model can

be written as

yi = x⊤
i β∗ + εi, (21)

where xi = (φ1(ζi), . . . , φp(ζi))
⊤ ∈ R

p and E(εi | xi) = 0. In
turn, the con�dence intervals for the regression mean can be
designed simply by inverting the test statistics

Sn =
√
n

(Z − W̃ γ̂ )⊤(Y − Zg0 − W̃ π̂ )

‖Z − W̃ γ̂ ‖2‖Y − Zg0 − W̃ π̂‖2
designed for the inference problem

H0 : a
⊤β∗ = g0,

where a = (φ1(d), . . . , φp(d))⊤ ∈ R
p and UaU

⊤
a = (Ip −

aa⊤/
∑p

j=1 φ2
j (d)) with

zi =
∑p

j=1 φ j(d)φ j(ζi)
∑p

j=1 φ2
j (d)

,

and w̃i j =
p

∑

l=1

{Ua}l jφl (ζi), 1 ≤ j ≤ p− 1.

Notice that we do not assume that the vector β∗ is sparse and we
allow for p ≫ n. Therefore, representing the conditional mean
function in terms of a large number of transformations of ζi,
while simultaneously allowing all to be nonzero, does not lose
much in generality. Additionally, it is worth mentioning that
inference for suchmodels has not been addressed in the existing
literature: most of the existing work is strictly focused around
sparse or sparse additive models. With the general model con-
sidered here, one can consider tests regarding treatment e�ects

(when viewed as the conditional mean) and allow for fully dense
models and loading vectors, that is, the treatment being a dense
combination of many variables. Existing work, such as Belloni,
Chernozhukov, andHansen (2014), only allows the treatment to
be a single variable.

4.3. Decomposition of Conditional Mean

In practice, the researcher might be interested in how much a
certain group of features contribute to the conditionalmean. Let
G ⊆ {1, . . . , p}. The goal is to conduct inference on linear func-
tionals of {β∗, j} j∈G , that is,

∑

j∈G c jβ∗, j for some known {c j} j∈G .
For example, consider the notations from Section 4.2. Let

ζi = (ζi,1, . . . , ζi,k)
⊤ and suppose that one is interested in the

impact of ζi,1 on the conditional mean for ζ = d. This is equiv-
alent to quantifying

∑

j∈G1
φ j(d)β∗, j , where the set contains all

the indexes j such that the �rst entry of ζi has nonzero e�ect on
φ j(ζi), that is, G1 = { j : φ j(ζ ) is not constant in ζ1}. If φ j(·)’s
are transformations of individual entries of {ζi, j}kj=1, then G1

corresponds to transformations of ζi,1. For another example,
suppose that all the p features are genes. The domain scientist
(biologist, doctor, geneticist, etc.) might be interested in how
much a group of genes contributes to the expected value of the
response variable.

Without loss of generality, we assume that G = {1, . . . ,
H} and c = (c1, . . . , cH )⊤ ∈ R

H . Let Uc ∈ R
H×(H−1) satisfy

IH − cc⊤/(c⊤c) = UcU
⊤
c and U⊤

c Uc = IH−1. Then the synthe-

sized features can be constructed by zi = ‖c‖−2
2

∑H
j=1 c jxi, j

and w̃i = (
∑H

l=1(Uc)l,1xi,l, . . . ,
∑H

l=1(Uc)l,H−1xi,l, xi,H , . . . ,

xi,p)
⊤ ∈ R

p−1, where (Uc)l, j denotes the (l, j) entry of the
matrix Uc. For example, whenever H = 3 and c j = 1 for all
j = 1, 2, 3, then

Uc =

⎛

⎝

−
√
3/2 −1/

√
2

0
√
2√

3/2 −1/
√
2

⎞

⎠

and the procedure for testing β∗,1 + β∗,2 + β∗,3 = g0 would be
as follows. We de�ne

(π̂, ρ̂) = argmin
(π,ρ)∈Rp−1×R+

‖π‖1

s.t W̃ =
[

√

3

2
(X3 − X1),

− 1√
2
(X1 − 2X2 + X3), X4, . . . ,Xp

]

‖W̃⊤[Y − (X1 + X2 + X3)g0/3 − W̃π]‖∞

≤ ηρ
√
n‖Y − (X1 + X2 + X3)g0/3‖2

(Y − (X1 + X2 + X3)g0/3)
⊤

× (Y − (X1 + X2 + X3)g0/3 − W̃π)

≥ ρ0 ρ ‖Y − (X1 + X2 + X3)g0/3‖22/2
ρ ∈ [ρ0, 1] (22)
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and γ̂ that satis�es

γ̂ = argmin
γ∈Rp−1

‖γ ‖1

s.t W̃ =
[

√

3

2
(X3 − X1),

− 1√
2
(X1 − 2X2 + X3), X4, . . . ,Xp

]

‖W̃⊤
(

(X1 + X2 + X3)g0 − 3W̃γ
)

‖∞

≤λ
√
ng0‖X1 + X2 + X3‖2, (23)

for λ, η ≍
√

n−1 log p .
For a test of nominal size α, we reject H0 : β∗,1 + β∗,2 +

β∗,3 = g0 if |Sn| > �−1(1 − α/2), where

Sn =
√
n

((X1 + X2 + X3)g0 − 3W̃ γ̂ )⊤(Y − (X1 + X2 + X3)g0/3 − W̃ π̂ )

‖(X1 + X2 + X3)g0 − 3W̃ γ̂ ‖2‖Y − (X1 + X2 + X3)g0/3 − W̃ π̂‖2
.

(24)

5. Numerical Results

In this section, we study the �nite sample performance of the
proposed methodology for both known �X and unknown �X .
We explicitly consider dense loadings a and dense parameter
vectors β∗ as well as more common sparse settings. We have

made our code publicly available at http://www.jelenabradic.
net/linear-testing-code.html.

5.1. Monte Carlo Experiments

Consider themodel (1) with themodel error following standard
normal distribution. In all the simulations, we set n = 100 and
p = 500 and the nominal size of all the tests is 5%. The rejection
probabilities are based on 500 repetitions. The null hypothesis
we test isH0 : a

⊤β∗ = g0, where g0 = a⊤β∗ + h and h is allowed
to vary to capture both Type I and Type II error rates.

... Setup

We consider in total four regimes on the structure of the model
and the null hypothesis—sparse and dense regimes for β∗ as well
as sparse and dense regimes for the loading vector a.

(i) In the Sparse parameter regime, we consider the
parameter structure with β∗ = (0.8, 0.8, 0, . . . , 0)⊤.

(ii) In the Dense parameter regime, we consider the
parameter structure with β∗ = 3√

p
(1, 1, . . . , 1)⊤.

(iii) In the Sparse loading regime, we consider the loading
vector a = (0, 1, 0, . . . , 0)⊤.

(iv) In theDense loading regime,we consider the loading vec-
tor a = (1, 1, . . . , 1)⊤.

Observe that (iii) is an extreme sparse-loading case. We con-
sider this special case to compare existing inferential methods,

Figure . Distribution of the test statistics under the null hypothesis H0 : β∗,2 = 0.8 (in blue) and the standard normal distribution N (0, 1) (in red) with n = 100 and

p = 500. In this example, we consider sparse β and sparse a setting and compare the distribution under the null of our tests (with and without known variance) in the
top row and two competing methods VBRD and BCH in the bottom row. We report p-values of the Kolmogorov–Smirnov test statistics in the subtitles. Note that tuning
parameters for all the methods are chosen according to their “oracle” theoretical values. Error and design are normally distributed with Toeplitz correlation structure with
ρ = 0.4. The histograms are computed based on  simulation runs.

http://www.jelenabradic.net/linear-testing-code.html
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likeVBRDandBCH.However, ourmethod can be implemented
for various number of nonzero elements, whereas the existing
one cannot.

We present results for three di�erent designs settings includ-
ing sparse, dense, Gaussian, and non-Gaussian settings.

Example 1. Herewe consider the standardToeplitz designwhere
the rows of X are drawn as an iid random draws from a multi-
variate Gaussian distributionN (0, �X ), with covariancematrix
(�X )i, j = 0.4|i− j|.

Example 2. In this case, we consider a nonsparse design matrix
with equal correlations among the features. Namely, rows of
X are iid draws from the multivariate Gaussian distribution
N (0, �X ), where (�X )i, j is 1 for i = j and is 0.4 for i �= j.
Observe that this case is particularly hard for most inferential
methods as all features are interdependent and�X is not sparse.

Example 3. In this example, we consider a highly non-Gaussian
design that also has strong dependence structure. We consider
the setting of Fan and Song (2010). We repeat the details here
for the convenience of the reader. Let x be a typical row of
X . For j ∈ {1, . . . , 15}, x j = (ξ + cξ j)/

√
1 + c2, where ξ and

{ξ j}15j=1 are iidN (0, 1) and c is chosen such that corr(x1, x2) =
0.4. For j ∈ {16, . . . , [p/3]}, x j is iidN (0, 1). For j ∈ {[p/3] +
1, . . . , [2p/3]}, x j is iid from a double exponential distribu-
tions with location parameter zero and scale parameter one. For

j ∈ {[2p/3] + 1, . . . , p}, x j is iid from the half-half mixture of
N (−1, 1) and N (1, 0.5). Observe that in this case 2/3 of the
features follow non-Gaussian distributions. Thus, in this case it
is extremely di�cult to even obtain consistent estimation of the
model parameters.

... Implementation Details

We compare the proposed tests with VBRD and BCH; meth-
ods proposed in Cai and Guo (2017) contain constants whose
values could be very conservative in �nite samples. Our tests
with known and unknown �X are implemented as discussed in
Sections 2 and 3, respectively.

TheVBRDmethod is implemented for both dense and sparse
loadings as follows. We �rst compute the debiased estimator

β̂debias and the nodewise Lasso estimator �̂Lasso for the precision
matrix �X as in VBRD. Then test is to reject H0 if and only if

√
n|a⊤β̂debias − g0|/

√

a⊤�̂Lasso�̂X�̂⊤
Lassoaσ

2
ε > �−1(1 − 0.05/2).

The BCH method is only implemented for the sparse load-
ings. We compute the generic post-double-selection estimator
for the second entry of β as in eq. (2.8) of BCH and compute
the standard error as in Theorem 2 therein. Then a usual t-test
is conducted. It is not clear how BCH can be extended to handle
any loading vector a di�erent from an extremely sparse case (see

Figure . Distribution of the test statistics under the null hypothesis H0 :
∑p

j=1 a jβ∗, j = 1.6 (in blue) and the standard normal distributionN (0, 1) (in red) with n = 100

and p = 500. In this example, we consider sparse β and dense a setting and compare the distribution under the null of our tests (with and without known variance) in the
top row and two competing methods VBRD and BCH in the bottom row. We report p-values of the Kolmogorov–Smirnov test statistics in the subtitles. Note that tuning
parameters for all the methods are chosen according to their “oracle” theoretical values. Error and design are normally distributed with Toeplitz correlation structure with
ρ = 0.4. The histograms are computed based on  simulation runs.
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Figure . Distribution of the test statistics under the null hypothesis H0 : β∗,2 = 3/
√
p (in blue) and the standard normal distributionN (0, 1) (in red) with n = 100 and

p = 500. In this example, we consider dense β and sparse a setting and compare the distribution under the null of our tests (with and without known variance) in the
top row and two competing methods VBRD and BCH in the bottom row. We report p-values of the Kolmogorov–Smirnov test statistics in the subtitles. Note that tuning
parameters for all the methods are chosen according to their “oracle” theoretical values. Error and design are normally distributed with Toeplitz correlation structure with
ρ = 0.4. The histograms are computed based on  simulation runs.

(iii) above): �rst, for any other loading structure it is not de�ned
how to gather selected features of what would bemultiple simul-
taneous equations; second, naively extending the original BCH
to the problem of dense a (‖a‖0 = p) means running an OLS
regression of the response against all the features, which is not
feasible for p > n.

... Results

We start with the size properties of competing tests. For this
purpose, we examine the distributions of the test statistics
under the null hypothesis by comparing empirical distributions
of the tests with the theoretical benchmark of standard normal
random variable. For simplicity of presentation, we only con-
sider the Toeplitz design. For the testing problem with sparse
β∗ and sparse a, our tests, VBRD, and BCH exhibit the validity
guaranteed by the theory; in Figure 1, the histograms of the
test statistics are close to N (0, 1) with large p-values of the
Kolmogorov–Smirnov (KS) tests. For all the other problems,
our tests outperform existing methods. As shown in Figure 2,
the histogram of VBRD test visually is still close to the standard
normal distribution but the KS test suggests discernible discrep-
ancies between the two distributions. In Figure 3, we see that
lack of sparsity in β∗ causes serious problems in Type I error for
both VBRD and BCH. Inference under dense β∗ and dense a

turns out to be the most challenging problem for existing meth-
ods; in Figure 4, we see quite noticeable di�erence between
the histogram of VBRD test and N (0, 1). In contrast, the dis-
tribution of the test statistics of the proposed methods closely
matchesN (0, 1) in all the scenarios, as established in Theorems
1 and 3. The Type I errors, reported in Table 1, con�rm the
above �ndings: existing methods can su�er greatly from lack
of sparsity in β∗ and/or a in terms of validity—observed Type I
error of BCH or VBRD can easily reach 40%.

We also contrast the power properties of the proposed tests
with respect to the existing methods. Results are collected in
Figures 5–7, where we plot the power curves of competing
methods for design Examples 1, 2, and 3 described above with
hypothesis setting of (i)–(iv). The overall message is clear from

Table . Type I error computed over  repetitions of the % level proposed tests
together with VBRD and BCH. In the table, NA symbol indicates that the method
cannot be implemented “as is.”

Type I error

Hypothesis setting Unknown�X Known�X VBRD BCH

Sparse β and Sparse a .% .% .% .%
Sparse β and Dense a .% .% .% NA
Dense β and Sparse a .% .% .% .%
Dense β and Dense a .% .% .% NA
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Figure . Distribution of the test statistics under the null hypothesis H0 :
∑p

j=1 β∗, j = 3
√
p (in blue) and the standard normal distributionN (0, 1) (in red) with n = 100

and p = 500. In this example, we consider dense β and dense a setting and compare the distribution under the null of our tests (with and without known variance) in the
top row and two competing methods VBRD and BCH in the bottom row. We report p-values of the Kolmogorov–Smirnov test statistics in the subtitles. Note that tuning
parameters for all the methods are chosen according to their “oracle” theoretical values. Error and design are normally distributed with Toeplitz correlation structure with
ρ = 0.4. The histograms are computed based on  simulation runs.

these �gures: our tests and existingmethods are quite similar for
sparse β∗ and sparse a, whereas our tests behave nominally for
other problems with preserving both low Type I error rates and
Type II error rates. The biggest advantages are seen for dense
vectors β∗ with other methods behaving in a manner close to
random guessing. In addition to the advantages in Type I error,
our methods also display certain power advantages. In the case
of equal-correlation setting, we observe that our methods con-
sistently reach faster power than BCH method even in the case
of all sparse setting. Observe that the precisionmatrix in this set-
ting is not sparse and our methods are still well-behaved. In the
case of dense models, VBRD method completely breaks down
with Type I or Type II error being close to 1. For non-Gaussian
design, we see that VBRD may not be a nominal test any more
regardless of the model sparsity. BCH behaves more stably in
this case but fails to apply for the hypothesis settings (ii) and
(iv) as described at the beginning of the section. In conclusion,
we observe that our methods are stable across vastly di�erent
designs andmodel setting whereas existing methods fail to con-
trol either Type I error rate or Type II error rate. Hence the pro-
posed methodology o�ers a robust and more widely applicable
alternative to the existing inferential procedures, achieving bet-
ter error control in di�cult setting and not losing much in the
simple cases.

5.2. Real Data Example: Equity Risk Premia

We apply the methods developed in Section 3 to inference of
equity risk premia during di�erent states of the economy. Some
studies have found that the risk premia of stock market returns
have di�erent predictability, depending on whether the macroe-
conomy is in recession or expansion; see Rapach, Strauss, and
Zhou (2010), Henkel, Martin, and Nardari (2011), and Dangl
and Halling (2012). One common explanation for this is time
variation in risk premia; seeHenkel,Martin, andNardari (2011).
It is plausible that the stock market is riskier in recessions than
in expansions and thus a higher expected return is demanded
by investors, implying that the expected stock returns can be
predicted by the state of the macroeconomy. In this section, we
revisit this argument by directly conducting inference on the
expected return of the stock market conditional on a large num-
ber of macroeconomic variables.

Let yt be the excess return of the U.S. stock market observed
at time t and xt−1 ∈ R

p be a large number of macroeconomic
variables observed at time t − 1. Let st ∈ {0, 1}denote theNBER
recession indicator; st = 1 means that the economy is in reces-
sion at time t . We would like to conduct inference on E(yt |
xt−1) for the two di�erent values of st−1. Formally, we wish to
construct con�dence intervals for the following quantities: (a)
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Figure. Power curves of competingmethods across different hypothesisa⊤β∗ = g0 settings. Design settings followExample withn = 100 and p = 500. The alternative

hypothesis takes the form of a⊤β∗ = g0 + h with h presented on the x-axis. The y-axis contains the average rejection probability over  repetition. Therefore, h = 0
corresponds to Type I error and the remaining ones the Type II error. “Known variance” denotes the method as is introduced in Section  whereas, “unknown variance”
denotes the method introduced in Section . VBRD and BCH refer to the methods proposed in Van de Geer et al. () and Belloni, Chernozhukov, and Hansen (),
respectively. Note that tuning parameters for all themethods are chosen according to their “oracle”theoretical values. If amethod could not be implemented as is proposed
in its respective article, it was not included in the graph.

E[E(yt | xt−1) | st−1 = 1], (b) E[E(yt | xt−1) | st−1 = 0], and
(c) E[E(yt | xt−1) | st−1 = 1] − E[E(yt | xt−1) | st−1 = 0].

We impose a linear model on the risk premia: E(yt | xt−1) =
x⊤
t−1β∗ for some unknown β∗ ∈ R

p. Hence, the quantities of
interest are: a⊤

1 β∗, a⊤
0 β∗, and (a1 − a0)

⊤β∗, where a j = E(xt−1 |
st−1 = j). The macroeconomic variables we use are from the
dataset constructed by McCracken and Ng (2015). We also
include the squared, cubed, and fourth power of these variables,
leading to p = 440 (after removing variables with more than 30
missing observations). It is possible that β∗ ∈ R

p is not a sparse
vector because many macroeconomic variables might be rele-
vant and each might only explain a tiny fraction of the equity
risk premia. Therefore, the methods proposed in this article are
particularly useful because they do not assume the sparsity ofβ∗.

Remark 5. There have been numerous attempts to include infor-
mation from many macroeconomic variables in estimating the
equity risk premium. Rapach, Strauss, and Zhou (2010) used the
model combination approach by taking the simple average of 14
univariate linear models. Although this approach manages to
reduce the variance in the predictions, it only produces a single
point prediction and does not deliver a con�dence interval.

Moreover, under the speci�cation of E(yt | xt−1) = x⊤
t−1β∗, we

should not expect the simple average of predictions by individ-
ual components of xt−1 to be close to x⊤

t−1β∗, especially with
highly correlated regressors. Another popular approach is to use
factor models. This method is widely used in macroeconomics
for predictions; see Stock andWatson (2002a), Stock andWatson
(2002b), and McCracken and Ng (2016). The idea is to extract a
few principal components (PC’s) from xt and to predict yt using
these PC’s. Although the PC’s account for a large variation in
xt−1, they are not hard-wired to have high predictive power for
yt unless we assume that the PC’s capture the factors that drive
yt . In some sense, this factor approach only uses information
in xt−1 that is relevant for predicting variations among di�erent
components of xt−1; by contrast, the methodology we propose
in this article allows us to use all the information in xt−1.

Our dataset has 659 monthly observations start-
ing from 1960. We use the �rst 20 years (n = 240) to
train the data and the last 659 − n months to compute
a j =

∑659
t=n+1 xt1{st = j}/

∑659
t=n+1 1{st = j}. In other words, we

investigate the equity risk premia between 1980 and 2014. We
conduct inference on the average equity risk premia in di�erent
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Figure . Power curves of competing methods across different hypothesis a⊤β∗ = g0 settings. Design settings follow Example  with n = 100 and p = 500. The alter-

native hypothesis takes the form of a⊤β∗ = g0 + h with h presented on the x-axis. The y-axis contains the average rejection probability over  repetition. Therefore,
h = 0 corresponds to Type I error and the remaining ones the Type II error. “Known variance” denotes the method as is introduced in Section  whereas, “unknown vari-
ance”denotes themethod introduced in Section . VBRD and BCH refer to themethods proposed in Van de Geer et al. () and Belloni, Chernozhukov, and Hansen (),
respectively. Note that tuning parameters for all themethods are chosen according to their “oracle”theoretical values. If amethod could not be implemented as is proposed
in its respective article, it was not included in the graph.

states of the macroeconomy. The 95% con�dence intervals for
a⊤
1 β∗, a⊤

0 β∗, and (a1 − a0)
⊤β∗ are reported in Table 2.

The con�dence intervals in Table 2 are very informative for
our purpose. The results presented in Table 2 imply that the
risk premia in recessions are higher than in expansions and
that the magnitude of di�erence is economically meaningful.
These results are consistent with existing literature; see Table 1
of Henkel, Martin, and Nardari (2011). Figure 8 plots the
con�dence intervals for E(yt | xt−1) at each t . This �gure is
consistent with the hypothesis that, during the Recessions (e.g.,
in the early 1980s or around 2008), the risk premia went up
substantially.

Table . % confidence intervals for equity risk premia.

Lower bound Upper bound

Risk premia in expansion a⊤
0 β∗ : . .

Risk premia in recession a⊤
1 β∗ : . .

Risk premia difference (a1 − a0)
⊤β∗ : . .

NOTE: The values are reported in annualized percentage, that is, . means 2.79%.

Discussions

In this article, we develop newmethodology for testing hypothe-
ses on a⊤β∗, where a is given and β∗ is the regression parameter
of a high-dimensional linear model. Under the proposed
methodology, a new restructured regression and with features
that are synthesized and augmented, is constructed based on
a and is used to obtain moment conditions that are equivalent
to the null hypothesis. Estimators proposed are tailored to
the problem at hand and solve constrained high-dimensional
optimization problems. The two proposed methods deal with
the scenario with known �X and the scenario with unknown
�X , respectively. The �rst can be used when a prior information
about correlation among the features exists; a case of inde-
pendent features, whereas the second applies more broadly to
many scienti�c examples where feature correlations need to
be estimated. To solve a high-dimensional inference problem,
there exists at least one competing choice. It is based on the
“debiasing” principles of Zhang and Zhang (2014). However,
the principles laid out therein only apply to strictly sparse
linear models. Therefore, we ful�ll an important gap in the
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Figure . Power curvesof competingmethodsacrossdifferenthypothesisa⊤β∗ = g0 settings.Design settings followExample withn = 100and p = 500. Thealternative

hypothesis takes the form of a⊤β∗ = g0 + h with h presented on the x-axis. The y-axis contains the average rejection probability over  repetition. Therefore, h = 0
corresponds to Type I error and the remaining ones the Type II error. “Known variance” denotes the method as is introduced in Section  whereas, “unknown variance”
denotes the method introduced in Section . VBRD and BCH refer to the methods proposed in Van de Geer et al. () and Belloni, Chernozhukov, and Hansen (),
respectively. Note that tuning parameters for all themethods are chosen according to their “oracle”theoretical values. If amethod could not be implemented as is proposed
in its respective article, it was not included in the graph.

Figure . % confidence interval for the risk premia at each time period (the blue
band) with the gray shades representing the NBER recession periods.

existing literature by developing methodology that allows fully
nonsparse linear models.

Restructuring the model according to the hypothesis under
testing allows for the high-dimensional a and β∗ that are not

necessarily sparse. The synthesized features are customized
based on the null hypothesis and are close to being orthogonal.
We note that this customization is the key, since the orthogo-
nality per se is not useful. Techniques that only induce feature
orthogonality, such as preconditioning by Jia and Rohe (2012)
and DECO by Wang, Dunson, and Leng (2016), still cannot be
used to test H0 : a

⊤β∗ = g0 when a and β∗ are dense.
Observe that we have proposed two di�erent inferential

methods. However, it is not necessarily true that the method
proposed in Section 2 dominates the one proposed in Section 3
in terms of power. Themain di�erence between themethod is in
the de�nition of the moment condition. The method assuming
knowledge of�X avoids estimation of β∗ and hence is extremely
easy to implement; however, when β∗ is sparse (and thus easy
to estimate), not using information on β∗ can cause some loss
of power. The method proposed in Section 2 essentially treats
w

⊤
i β∗ as the error term. In contrast, the method proposed in

Section 3 computes an estimate for w̃
⊤
i π∗ (which in spirit cor-

responds to w
⊤
i β∗); when the model turns out to be sparse,

the method without knowledge of �X can essentially “remove”
w

⊤
i β∗ from the error term, thereby achieving better power. For

dense models, this reasoning does not apply and thus it is not
clear which one should be more powerful.
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To conclude the article, we would like to discuss here valu-
able topics for future research. The proposed methodology
can be used to conduct inference of conditional distribu-
tions of the response, whenever the distribution function
of ε, Q(·) is known or is consistently estimated. Speci�c
example includes construction of prediction intervals for high-
dimensional linear models—a topic of extreme importance.
For FY |X (y, x) = P(yn+1 ≤ y | xn+1 = x), FY |X can be param-
eterized as FY |X (y, x;β∗,Q) = Q(y − x⊤β∗). For a given x,

we can obtain a con�dence set for x⊤β∗ : Î(1 − α, x) such
that P(x⊤β∗ ∈ Î(1 − α, x)) → 1 − α, by inverting the tests
proposed in this article. This leads to a natural con�dence set

for the FY |X (y, x): P(FY |X (·, x) ∈ Ŝ(1 − α, x)) → 1 − α, where

Ŝ(1 − α, x) = {Q(· − c) | c ∈ Î(1 − α, x)}.

If we restrict the model parameters to be sparse, then we can
consistently estimate εi (and thus Q(·)) and consequently
form valid prediction intervals—a topic of speci�c impor-
tance for practitioners. However, when the model is allowed
to be nonsparse and high-dimensional, the question of con-
struction of prediction intervals has not been answered and
needs special considerations. Additionally, under this setup,
the proposed methods also lead to an inference method for
(possibly nonlinear) functionals of the conditional distribution
of yn+1 given xn+1. For example, suppose that one is interested
in H(u, x) = inf{y ∈ R | FY |X (y, x) ≥ u}. Following the above
proposal, we can simply take

Ĥ(u, x, α) = {inf{y ∈ R | Q(y − c) ≥ u} | c ∈ Î(1 − α, x)}

as a con�dence set for H(u, x).

SupplementaryMaterials

The online supplementary materials contain additional proofs
for the article.
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