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Abstract

An extensive examination of the plasma response to dominantly n = 2 non-axisymmetric

magnetic perturbations (MPs) on the DIII-D tokamak shows the potential to control 3D field

interactions by varying the poloidal spectrum of the radial magnetic field. The plasma

response is calculated as a function of the applied magnetic field structure and plasma

parameters, using the linear magnetohydrodynamic code MARS-F (Liu et al 2000 Phys.

Plasmas 7 3681). The ideal, single fluid plasma response is decomposed into two main

components: a local pitch-resonant response occurring at rational magnetic flux surfaces, and a

global kink response. The efficiency with which the field couples to the total plasma response

is determined by the safety factor and the structure of the applied field. In many cases, control

of the applied field has a more significant effect than control of plasma parameters, which is of

particular interest since it can be modified at will throughout a shot to achieve a desired effect.

The presence of toroidal harmonics, other than the dominant n = 2 component, is examined

revealing a significant n = 4 component in the perturbations applied by the DIII-D MP coils;

however, modeling shows the plasma responses to n = 4 perturbations are substantially

smaller than the dominant n = 2 responses in most situations.

Keywords: edge localized modes, resonant magnetic perturbations, magnetohydrodynamics,

tokamaks, toroidal plasma confinement

(Some figures may appear in colour only in the online journal)

1. Introduction

Non-axisymmetric magnetic perturbations (MPs) have been

used on tokamaks to suppress [1–5], mitigate [6, 7] and

destabilize [8] edge-localized modes (ELMs), perform

magnetic spectroscopy [9, 10], control resistive wall modes

[11, 12] and neoclassical tearing modes [13], and correct error

fields [14, 15]. Due to their role in accessing fusion relevant

plasma scenarios, perturbation coil sets are now an integral

system on many major tokamaks [16, 17]. Recently, ELM

suppression using dominantly n = 2 perturbations has been

achieved on DIII-D, which was previously only attainable

using n = 3 fields [18]. The suppression was achieved

using the internal coils (I-coils), two rows of six coils each,

located above and below the midplane inside the vacuum

vessel. ELM suppression was found within different ranges of

safety factors depending on the structure of the applied field,

with suppression occurring for applied fields found to couple

best to marginally stable kink modes. Additionally, the n = 2

configuration on DIII-D offers substantially more control over

the applied poloidal spectrum of the radial magnetic field than

n = 3 and as such, has been the focus of recent experiments
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[18]. These results have motivated an extensive examination

of the n = 2 plasma response in DIII-D equilibria over a

wide range of plasma parameters and applied fields. The

results presented here are useful for guiding future experiments

and for correlating the ideal plasma response with observed

experimental outcomes.

A single coil produces a magnetic field with a radial

component that is normal to the equilibrium magnetic flux

surfaces. The radial component of the magnetic field can be

Fourier decomposed along the toroidal and poloidal angles

of the torus to produce a spectrum of toroidal (n) and poloidal

(m) harmonics, hereafter referred to as the toroidal and poloidal

spectra. These spectra are controlled by combining fields from

multiple coils. The toroidal spectrum is controlled by the

relative phase difference of the currents in coils at the same

poloidal angle but different toroidal angles. Similarly, the

poloidal spectrum is controlled by the relative phase difference

of the currents in coils at the same toroidal angle but different

poloidal angles. Here, we consider n = 2 fields, where the

toroidal phase difference between currents in the upper and

lower I-coil, �φul, is defined through the following relations:

Iupper ∝ cos(nφcoil) and Ilower ∝ cos(nφcoil + �φul), where

Iupper and Ilower are the currents in the MP coils above and below

the midplane respectively, and φcoil is the DIII-D tokamak

toroidal angle location of the center of a MP coil. The DIII-D

tokamak toroidal angle is in the opposite direction to the

toroidal equilibrium magnetic field.

Previous studies have found that the measured magnetic

field is substantially different from that predicted in a pure

vacuum case, indicating the need to take into account

the plasma response in MP calculations. For example,

in [19], the plasma response to an applied MP, as measured

by a midplane poloidal pickup coil, normalized to the

MP coil current, showed a strong dependence on βN =
β(%)a(m)B0(T )/Ip(MA), with the pickup output due to the

plasma response exceeding the output of a radial pickup due

to the vacuum field by more than a factor of 10 at high

βN. Here, β = 2µ0〈p〉/B2
0 , 〈p〉 represents the volume-

averaged pressure, µ0 the magnetic permeability of free space,

Ip the plasma current, a the plasma minor radius and B0 the

equilibrium magnetic field strength on axis. This substantial

modification of the magnetic field by the plasma indicates the

importance of including the plasma response when modeling

non-axisymmetric plasma equilibria.

Both screening and amplification can occur in the plasma

response to MPs. The screening, at least in the linear (small-

island) regime, robustly occurs for the resonant component

of the MP, either due to an ideal plasma response or due

to fast plasma flow. There is strong experimental evidence

of screening, for example smaller lobe sizes than vacuum

predictions in MAST, and the absence of strike point splitting

in H-mode JET discharges [21]. The amplification, due to

excitation of marginally stable modes (such as the kink mode)

by the non-resonant components of the MP, depends on the

equilibrium configuration, in particular on the plasma pressure.

In order to model the plasma response within the framework

of magnetohydrodynamic (MHD), one can follow the time-

dependent dynamic evolution of the 2D equilibria until a 3D
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Figure 1. 3D picture showing the radial location of the I-coils with
respect to the DIII-D vacuum vessel. Poloidal cross section shows
the location of the I-coils above and below the midplane.

steady-state solution is reached, or one can attempt to find

a nearby 3D equilibrium. Additionally, the problem can

be treated linearly or non-linearly, leading to four different

approaches [20].

In this paper, we have used the single fluid linear MHD

code MARS-F [22], which treats the 3D MP as a time-

dependent, driven problem. This approach does not include

non-linear effects, but can include a resistive wall, toroidal

rotation, plasma resistivity, and guarantees force balance. In

the simulations presented here, we include a resistive wall, but

exclude plasma rotation and resistivity.

While there are non-linear codes such as M3D [23, 24],

M3D-C1 [25], NIMROD [26, 27], RMHD [28] or JOREK

[29, 30], the linear approach has the significant advantage

of being less computationally intensive and has been

experimentally validated. For example, previous work looking

at the n = 1 and 3 perturbations on DIII-D [19, 31] found

good qualitative agreement between MARS-F predictions and

measurements from the magnetic pickup coils up to 80% of

the predicted ideal MHD pressure limit calculated without a

conducting wall near the plasma edge (βNW
N ). At larger βN,

the MARS-F code predicts a much larger plasma response,

indicating the need to include additional physics, or non-linear

effects.

This paper is organized as follows. In section 2, we

introduce the MP coils on DIII-D and discuss the differences

between the MARS-F coil representation and a geometrically

accurate representation of the MP coils. Section 3 describes

the main components of the ideal plasma response and how we

separate and quantify these components. Section 4 presents

maps showing the parameter dependence of the components

described in section 3. These maps are particularly useful for

guiding experiments, and some examples of their use is given.

Lastly, section 5 considers the importance of harmonics other

than the dominant n = 2 component.

2. Validation of the MARS-F MP coil representation

In this study, we consider the plasma response to fields applied

with the I-coil. Half of the coils are located above the midplane,

and the other half are below, as shown in figure 1. The six

toroidal locations allow perturbations with dominant toroidal

mode numbers up to 3 to be applied. Higher harmonics are also

present due to the geometry of the I-coils as discussed below.
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Figure 2. (a) A simplified picture of the magnetic field normal to the
midpoint of the upper (or lower) I-coil array as a function of φ for a
common n = 2 configuration on DIII-D (top). The toroidal extent of
each of the coils in the array is marked by the dashed vertical lines.
(b) Fourier decomposition of this profile in the toroidal direction
shows that in addition to the dominant n = 2 component, there is a
significant n = 4 component present. (c) The toroidal harmonic
content of the m = 10 mode at s = 0.92 calculated using SURFMN
showing the toroidal harmonics that are present in addition to n = 2.

Adjusting �φul allows the poloidal harmonic (m) spectrum of

the applied field to be modified. Refer to section 1 for the

definition of �φul as it is used in this paper.

As described in [32], MARS-F does not include the full 3D

geometry of the MP coils. Instead, the source current, jMP, is

represented as a surface current at the radial location of the MP

coils. The toroidal component of jMP has a finite width along

the poloidal angle, similar to the pointwise MP coil current on

the poloidal plane, and varies as exp(inφ) along the toroidal

angle, φ. The poloidal component of jMP is obtained from

the divergence-free condition (∇ · jMP = 0) and the MP field

generated by jMP is determined by ∇ × b = jMP.

In order to quantitatively compare MARS-F calculations

with experiment, it is necessary to calculate the equivalent

amplitude of the applied field in the simple coil model. The

mapping employed is illustrated in figure 2(a) where the

simplified magnetic field normal to the midpoint of the upper

(or lower) I-coil array is plotted as a function of toroidal angle

φ for a common n = 2 configuration on DIII-D. Fourier

decomposition of this simplified field profile shows that a

significant n = 4 component is present in addition to the

dominant n = 2 component (figure 2(b)). While this is a

simplistic treatment, it allows us to estimate an approximately

equivalent n = 2 current for MARS-F in order to compare with

experiments and vacuum codes. In this case, using figure 2(b),

we set the MARS-F equivalent n = 2 current to 0.86 times the

maximum current in the I-coils. The presence of harmonics

other than n = 2 is discussed later in this section.
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Figure 3. Poloidal harmonic content of the applied field calculated
using SURFMN (a) and MARS-F (b) for the n = 2 component of
the dominantly n = 2 MP. The locus of pitch resonance (m = nq)
for a particular equilibrium with q95 = 3.9, is overlaid with the
location of low order pitch-resonant harmonics marked with a dot.
The MARS-F and SURFMN harmonic structures are in good
agreement.

To assess the accuracy of the n = 2 applied vacuum

field from MARS-F, we compare it with the output from

the SURFMN vacuum code [33], which includes a realistic

geometric model of the I-coils. Here, we Fourier decompose

the magnetic field normal to the flux surfaces in the toroidal

and poloidal directions in straight field line coordinates,

as described in appendix A of [33], to obtain δBm,n
r (s),

where m and n represent the poloidal and toroidal harmonics

respectively, s =
√

ψN is a flux surface label and ψN is the

normalized poloidal flux. In addition, we can define δBm,n
r,vac(s),

δB
m,n
r,plas(s), and δB

m,n
r,tot(s) = δBm,n

r,vac(s) + δB
m,n
r,plas(s) where

δBm,n
r,vac is the field generated by the MP coils, δB

m,n
r,plas is the

plasma generated field and δB
m,n
r,tot is the sum of the two. Each

of these fields is normalized to the MP coil current and is

reported in units of G kA−1.

The toroidal spectrum of the applied field calculated

with SURFMN shows significant toroidal sidebands. The

toroidal harmonic amplitudes for the magnetic field normal

to the flux surfaces for the m = 10 component at s =
0.92 [|δBm=10,n

r,vac (s = 0.92)|] calculated by SURFMN for the

�φul = 0◦ case are shown in figure 2(c). We choose m = 10

and s = 0.92 for this comparison because these values are

in the range of interest in later sections of this paper. As

expected, the n = 2 component is the largest; however, there

are significant contributions from other toroidal harmonics, in

particular n = 4. Comparing figure 2(c) with figure 2(b), we

see that the simplistic model provides a good estimate of the

relative amplitude of the different toroidal harmonics.

There is good agreement between SURFMN and MARS-F

for the poloidal harmonic structure of the n = 2 toroidal

harmonic. A comparison between SURFMN and MARS-F

for the |δBm,n=2
r,vac (s)| harmonics for �φul = 0◦ is shown in

figure 3. For clarity, the radial dependence of some individual
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Figure 4. Comparison between the radial structure of selected
vacuum poloidal harmonics calculated by SURFMN (dashed) and
MARS-F (solid) for n = 2, showing good agreement.

poloidal harmonics is shown in figure 4. For this comparison,

we set the MARS-F MP current to the n = 2 component shown

in figure 2(b). In the plasma volume, the MARS-F model is in

quantitative agreement with SURFMN to within ≈8%.

A comparison between SURFMN and MARS-F for the

|δBm,n=4
r,vac (s)| harmonics for �φul = 0◦ is shown in figure 5,

with the MARS-F MP current set to the n = 4 component

shown in figure 2(b). As with the n = 2 harmonic, the

agreement between the two codes is good suggesting MARS-F

can accurately model the individual toroidal harmonics of the

I-coil MP.

The presence of toroidal harmonics other than n = 2 can

be taken into account in MARS-F by performing separate

simulations for each harmonic, while accounting for the

relative strength of each harmonic in the vacuum field

(figure 2(b)). In section 5, we will show that the n = 4 plasma

response is negligible, except in some special circumstances.

3. Components of the ideal MHD plasma response

The scope of this paper is limited to the ideal MHD plasma

response. The effects of resistivity and rotation are the subject

of future work. The plasma response, δB
m,n
r,plas(s), consists

of two main components in the ideal MHD case for the low

frequency/static, low-n fields, applied by the I-coils. Firstly,

there is a screening of the magnetic field normal to the flux

surfaces, which occurs for magnetic field line pitch-resonant

harmonics m = nq (hereafter referred to as pitch-resonant

component of the response). Secondly, there is a coupling

to the stable external kink mode, which generally occurs for

poloidal harmonics nq < m < 3nq (hereafter referred to

as kink-resonant component [34]). The location of these

harmonics in the poloidal spectrum of the plasma response

to the n = 2 component of the MP [|δBm,n=2
r,plas (s)|] are shown

in figure 6, along with |δBm,n=2
r,vac (s)| and |δBm,n=2

r,tot (s)|.
Pitch-resonant fields are of interest due to their role in the

creation of stochastic magnetic fields, which may reduce the

edge pressure gradient below the ELM instability threshold

[35]. In the ideal MHD model, the plasma responds to the

pitch-resonant fields by generating currents, which reduce the
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Figure 5. Poloidal harmonic content of the applied field as
calculated using SURFMN (a) and MARS-F (b) for the n = 4
component of the dominantly n = 2 MP. The locus of pitch
resonance (m = nq) for a particular equilibrium with q95 = 3.9, is
overlaid with the location of low order pitch-resonant harmonics
marked with a dot. As with the n = 2 harmonic, the MARS-F and
SURFMN poloidal harmonic structures are in good agreement.

pitch-resonant components to zero [δB
m=nq,n
r,tot (s) = 0], leaving

the magnetic topology unchanged and preventing islands from

forming near the rational surfaces. Pitch-resonant fields

are also of interest because in the case where the islands

are suppressed by plasma rotation, the resulting currents

create an electromagnetic torque which acts as a sink in the

toroidal momentum balance equation [36]. The cancellation

of the fields at the pitch-resonant surfaces can be seen in

figure 12. When plasma resistivity and toroidal rotation

are taken into account, it is possible to amplify the pitch-

resonant components for sufficiently slow rotation leading to

larger islands than predicted by vacuum theory alone [32].

More generally, the pitch-resonant harmonics are subject to

increased attenuation as the resistivity is decreased or the

rotation is increased [32].

To quantify the degree of pitch-resonant drive, we

calculate the sum of all the applied pitch-resonant harmonics

in the vacuum field, and the average of all the applied pitch-

resonant harmonics in the vacuum field (where Nn
res is the

number of pitch-resonant harmonics satisfying m = nq in

the plasma):

δBn
res =

∑
|δBm=nq,n

r,vac (s)|, (1)

δB
n

res = δBn
res/N

n
res. (2)

It is useful to consider δB
n

res as well as δBn
res to

capture the strength of the individual resonant harmonics in

addition to the number of resonant harmonics, which increases

4
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Figure 6. The amplitude of the vacuum, plasma and total n = 2

poloidal harmonics (|δBm,n=2
r,vac (s)|, |δBm,n=2

r,plas (s)| and |δBm,n=2
r,tot (s)|) as

calculated by MARS-F. The ideal plasma response has two main
components, a pitch-resonant response, which acts to perfectly
cancel the applied pitch-resonant field (harmonics m = nq) and an
amplification of the harmonics that couple to the kink mode
(poloidal harmonics satisfying nq < m < 3nq). The m = nq line
for the equilibrium used (q95 = 3.9 and βN/ℓi = 2.0) is overlaid
with the location of low-order rational surfaces marked with a white
dot. These images have been smoothed over the discrete m to make
trends easier to see.

with q95. The number of resonant harmonics is bounded for the

equilibria used here because MARS-F requires a finite edge q.

This is discussed in section 4.

For the pitch-resonant calculations, we do not take

the ideal plasma response into account because it is equal

and opposite to the applied vacuum field [δB
m=nq,n

r,plas (s) =
−δB

m=nq,n
r,vac (s)]. While the formation of magnetic islands in

the ideal plasma response case is not possible, these measures

indicate how strongly the vacuum field couples to the pitch-

resonant harmonics, and are still useful measures of the

possibility of island formation when resistivity and rotation

are considered. Including the effects of resistivity and rotation

is outside the scope of this paper.

Poloidal harmonics in the range nq < m < 3nq can

couple to a stable external global kink mode, resulting in

substantial amplification of these harmonics. This is often

referred to as resonant field amplification (RFA) [37], and

can be clearly seen in figures 6 and 12. The level to

which the kink mode is driven is of interest for several

reasons. Firstly the experimentally observed n = 2 ELM

suppression windows in [18] correspond to upper–lower I-coil

phasings that maximize the kink-resonant response. Also,

a disruption may occur if the mode is driven to sufficiently

large amplitude. Finally, the excitation of this mode can give

rise to larger plasma displacements which generally apply a

braking torque to the plasma through the increased neoclassical

toroidal viscosity (NTV) [36]. The responses from other stable

global modes (for example Alfvén eigenmodes, internal kink,

tearing modes, ballooning modes) are not usually seen because

they generally have higher n numbers, and/or high rotation

frequency meaning they cannot be in direct resonance with the

low-frequency/static, low-n MPs considered here [38]. These

modes can interact non-linearly with the low-n MP, although

it is not possible to see this interaction in the linear approach

considered here. The effect of resistivity and rotation on the

RFA as calculated using MARS-F are described in [38]. It was

found that ideal and resistive plasma responses result in similar

peak amplitudes for all poloidal harmonics, while decreases

in rotation generally increase the RFA although this effect is

reduced as plasma resistivity is decreased.

To quantify the extent of the coupling to the external kink

mode, we find the strongest harmonic in the plasma response

that is in the range nq + 2 < m < 3nq at a particular flux

surface near the edge of the plasma. This measure can be

represented as follows:

δBn
kink = |δBm∗,n

r,plas(s = 0.92)|, (3)

where m∗ is the harmonic that gives the maximum plasma

response for any �φul:

m∗ = arg maxnq+2<m<3nq |δB
m,n
r,plas(s = 0.92, �φul)|. (4)

We set the lower bound for m to be nq + 2 so that we avoid

accidental selection of harmonics which may be part of the

plasma screening response. Low-n peeling modes have also

been observed for the low-frequency/static, low-n MPs [38],

and as we will show in section 4.2, there is some evidence for

excitation of these modes as a new pitch-resonant surface enters

the plasma, although the extent to which this is introduced due

to smoothing of the x-point (as required by MARS-F) is under

investigation. The peeling response is captured as part of the

δBn
kink measure but is isolated to narrow q95 ranges.

4. Maps of the ideal plasma response sensitivity to

upper–lower I-coil phasing and plasma equilibrium

parameters

In this section, we explore the amplitudes of the pitch-

resonant and kink-resonant responses as a function of �φul

and parameters such as plasma pressure and magnetic topology

near the boundary. �φul represents the toroidal phase

difference between currents in the upper and lower I-coil,

which determines the poloidal spectrum of the applied radial

magnetic field. Kirk et al [39] examined ELM mitigation

(as measured by the ELM frequency) on MAST as a function of

many parameters including �φul and q95. A strong dependence

was found for both of these parameters because they change

the alignment of the applied perturbation (affected by �φul)

with the pitch of the equilibrium magnetic field (affected by

q95). Given the relatively narrow poloidal extent of the coils

on MAST and the fine control of ��ul possible with 12 coils,

we speculate that mapping out the parameter dependencies

as described here may identify specific coil configurations that

could be used to investigate the role of kink- and pitch-resonant

harmonics in ELM mitigation on MAST. Unfortunately, on

DIII-D, the upper and lower I-coil arrays consist of only

six coils, making it impossible to make fine changes in the

n = 3 poloidal spectrum with the I-coil alone. However,

5
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by including n = 3 fields from another coil row such as

the C-coil, it may be possible to vary the relative amplitudes

of the kink- and pitch-resonant harmonics. This illustrates

how mapping out these parameter dependencies is particularly

useful for guiding experiments because it helps to identify

important regions of parameter space, such as where island

creation is more likely, or when coupling to the kink mode is

optimized. This type of information can also be used in real-

time control applications, such as changing �φul to maximize

the resonant drive throughout a shot. We use δBn=2
res and

δB
n=2

res to quantify the pitch-resonant response, and δBn=2
kink to

quantify the kink-resonant response. The plasma pressure

and magnetic topology are quantified using βN/ℓi and q95

respectively (ℓi represents the plasma inductance).

Starting with a single experimental equilibrium recon-

struction, the plasma pressure profile and safety factor pro-

file were scaled and the equilibria solved by setting current

as the free variable, to generate a set of ≈1000 equilibria,

which form a well-sampled (βN/ℓi, q95) space. The pressure

profile is scaled using a single multiplier, while the q profile

is scaled so that q near the plasma edge is modified while q

near the plasma center remains relatively unchanged. For each

q-profile, the maximum pressure is chosen to be marginally be-

low the n = 2 no-wall stability limit. We consider H-mode,

lower single-null DIII-D scenarios, with ITER similar shape

(ISS) as our initial equilibria. As with [31], the magnetic field

pitch angle measurements from multiple motional Stark effect

(MSE) polarimeters [40], kinetic profile measurements from

Thomson scattering [41] and charge exchange recombination

spectroscopy (CER) [42], and ONETWO [43] transport cal-

culations of the total pressure, including the contribution from

non-thermal beam ions, are used to constrain reconstructions

of the axisymmetric magnetic field using the EFIT code [44].

Since the MARS-F calculation is performed in flux

coordinates, it cannot treat the exact separatrix geometry.

Therefore, the EFIT equilibria were truncated to include 99.7%

of the total poloidal flux. Test cases with flux truncation

between 99.0% and 99.7% showed the calculated plasma

response was not sensitive to this parameter in this range

of values. The pressure and q-profiles are then scaled and

the equilibria solved by setting current as the free variable,

using the Grad–Shafranov solver in the CORSICA code [45].

Examples of the scaled profiles are shown in figure 7, and the

location of the equilibria in (βN/ℓi, q95) space is marked by

black dots in figure 8. Figure 8 also marks the location of

the n = 2 no-wall stability limit calculated using the DCON

code [46]. The grid for MARS-F is created using the CHEASE

code [47] and in the MARS-F calculations, a thin resistive

axisymmetric shell is included to model the effect of the DIII-D

wall.

4.1. Maps of the pitch-resonant response

The strength of the pitch-resonant drive depends strongly

on �φul and the magnetic topology near the boundary

(as measured by q95), with a weaker dependence on plasma

pressure (as measured by βN/ℓi). Figure 8 shows δBn=2
res

and δB
n=2

res (defined in equations (1) and (2)) calculated as
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Figure 8. Measures of pitch-resonant drive, δB
n=2

res (a) and δBn=2
res

(b) calculated as a function of βN/ℓi and q95, for �φul = 0◦,
exhibiting a strong dependence on q95, and a smaller dependence on

βN/ℓi. The βN/ℓi and q95 dependence of δBn=2
res and δB

n=2

res are
similar. The thick black line marks the n = 2 no-wall limit.

a function of these parameters for �φul = 0◦. The pitch-

resonant drive depends predominantly on the location of the

pitch-resonant line (m = nq) relative to the large amplitude

lobes in δBm,n=2
r,vac (s) (as marked in figure 9). Changes in plasma

pressure can modify the location of the flux surfaces relative

to the applied field through the Shafranov shift; however, this

effect is minimal compared to the dependence on q95 and �φul.

Comparing figures 8(a) and (b), we can see that δBn=2
res and

δB
n=2

res produce similar results, although δB
n=2

res increases more

rapidly at lowerq95, and δBn=2
res increases more rapidly at higher

q95. The reason these two measures are alike is because the

shape of contours of constant amplitude in δBm,n=2
r,vac (s), follow

a similar path in (s, m) space to the m = nq line as shown in

figures 6 and 9.

Varying �φul significantly alters the vacuum poloidal

spectrum, which causes large variations in the pitch-resonant

6
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Figure 9. The applied vacuum field (|δBm,n=2
r,vac (s)|) for four discrete

�φul values, where q95 = 3.9 and βN/ℓi = 2.0. The pitch-resonant
strength at the m = nq harmonics (marked by white dots) varies
considerably depending on �φul. The lobe of strong harmonics
sweeps towards lower m as �φul increases from 0◦ causing the ridge
of maximum |δBm,n=2

r,vac (s)| to sweep over the pitch-resonant

harmonics, with a maximum in δBn=2
res occurring near �φul = 90◦.

For �φul = 270◦, the m = nq line is in a valley and couples very
poorly to the pitch-resonant harmonics.

drive. This is demonstrated in figure 9, where δBm,n=2
r,vac (s) is

shown for four separate �φul values for an equilibrium with

q95 = 3.9 and βN/ℓi = 2.0. As �φul is increased from

0◦, the lobe of strong harmonics moves towards the lower

poloidal harmonics passing over the m = nq resonances in the

process. We can take advantage of the linearity of the MARS-F

code to substantially reduce our computation requirements

when calculating the dependence on �φul. In MARS-F it

is possible to calculate the response to the upper array only

(δBU) and the lower array (δBL) only. �φul can then be

taken into account by combining the two responses as follows:

δB�φul
= δBU +δBL exp (�φuli). This represents a substantial

computational saving and allows us to examine the δBn=2
res

dependence on q95 and �φul, while setting βN/ℓi = 1.15,

without having to perform a new set of calculations for each

�φul. The result is shown in figure 10. The regions of

constant pitch-resonant drive essentially follow a straight line

in (�φul, q95) space. This result demonstrates how q95 and

�φul interact with one another to determine the efficiency of the

coupling of δBm,n=2
r,vac (s) to the pitch-resonant harmonics, with

�φul providing a more dominant contribution. There is also a

general increase (decrease) in the maximum achievable δBn=2
res

(δB
n=2

res ) as q95 increases, indicating that while an increase

in q95 causes more resonant harmonics to be present in the

plasma, the average amplitude of these harmonics decreases

as q95 increases. This is ultimately due to the geometry of

the MP coils, which restrict the range of accessible poloidal

harmonics.
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best fits to the maxima and minima are overlaid in blue. For any
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δ
B

kin
k 

B
N

/ℓ
i

(G
/kA

)
n

=
2

2.0

2.5

2.5

2.0

1.5

1.0

3.0

3.0

3.5

3.5

4.0

4.0

4.5

4.5

q
95

5.0 5.5 6.0 6.5

n=2 no-wall limit
1.8

1.6

1.4

1.2

1.0

0.8

0.6

0.4

0.2

0.0

Figure 11. A measure of the kink-resonance, δBn=2
kink , calculated as a

function of βN/ℓi and q95 for �φul = 0◦. There is a strong
dependence on βN/ℓi and a smaller periodic dependence on q95 due
to low-n peeling modes. The thick black line marks the n = 2
no-wall limit.

4.2. Maps of kink resonance

The strength of the kink resonance depends strongly on

�φul and the plasma pressure (as measured by βN/ℓi) with

a weaker dependence on the magnetic topology near the

boundary (as measured by q95). Figure 11 shows δBn=2
kink

calculated as a function of these parameters for �φul =
0◦. The strong dependence on plasma pressure is expected

because as the pressure is increased, the kink mode approaches

instability causing a larger RFA. The dependence onq95 is more

complicated, with periodic maxima occurring twice every half

integer increase in q95. This is due to the response from

low-n peeling modes, which can also couple to the low-

frequency/static, low-n MPs [38]. An important question,

which is currently being investigated, is whether this instability
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Figure 12. The vacuum field plus the plasma response

(|δBm,n=2
r,tot (s)|) for the same equilibrium and �φul values as figure 9.

The amplitude of the harmonics nq < m < 3nq vary considerably
depending on �φul with the strongest amplification occurring for 0◦

and 270◦ which are the cases where |δBnq<m<3nq,n=2
r,vac (s)| is greatest.

These images also show the nulls in the pitch-resonant harmonics
(white dots) which are due to the ideal plasma response. These
images have been smoothed over the discrete m to make trends
easier to see.

is artificially induced by the finite edge q due to the flux

truncation required by MARS-F (described in section 4), or

if this is a physical result that would still occur if the x-point

were included in the calculation.

As with the pitch-resonant component, varying �φul

significantly alters the vacuum poloidal spectrum causing large

variations in the kink-resonant response. This is demonstrated

in figure 12, where the same four �φul values from figure 9

are used, except here |δBm=nq,n
r,tot (s)| is shown to illustrate the

contribution from the plasma response. Strong amplification

occurs for �φul = 0◦ and 270◦, which are also the cases where

|δBnq<m<3nq,n=2
r,vac (s)| is greatest.

A harmonic in the edge vacuum magnetic field that

satisfies nq < m < 3nq can be used to provide a good first-

order estimate of the kink response. This is shown in figure 13

where δBn=2
kink (a) and |δBm=nq+3,n=2

vac (s = 0.92)| (b) are plotted

as a function of q95 and �φul, with βN/ℓi = 1.15. The trends in

the two plots are similar, suggesting |δBm=nq+3,n=2
vac (s = 0.92)|

can be used as a first-order estimate of the kink resonance

without calculating the plasma response.

The periodic maxima occurring twice every integer due to

low-n peeling modes are a prominent feature in the measure of

the kink response (figures 13(a) and 17). Here, substantially

more artificial equilibria were used to more densely sample q95

to capture the periodic maxima (q95 is sampled in increments

of ≈0.02). The maxima occur over a narrow q95 range

of ≈0.1 and could be associated with the narrow q95 ELM

suppression windows that have been observed [18, 48]. These
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Figure 13. Plots of (a) δBn=2

kink and (b) δBm=nq+3,n=2
vac (s = 0.92) as a

function of �φul and q95, with βN/ℓi = 1.15. The maxima and
minima are marked by crosses and dots respectively. The location of
the dots also marks the q95 values of the equilibria used for the
calculations showing a dense sampling of q95 to capture the maxima.

periodic maxima are not captured in the vacuum calculation

(figure 13(b)) and illustrate the importance of including the

plasma response.

As with the pitch-resonant drive, the �φul that gives the

maximum kink-resonant response decreases slowly as q95 is

increased, following an almost linear trend. Varying �φul can

change the kink resonance by more than an order of magnitude

for the same q95 value, illustrating the utility of multi-row

perturbation coils and the importance of including the plasma

response.

4.3. Example uses of the pitch-resonant drive and

kink-resonance maps

In this section, some examples are given that demonstrate how

maps, like those shown in figures 10, 11 and 13, can be used

to guide machine operations. It is possible to estimate the

value of �φul, which maximizes the possibility of generating

islands, or minimizes the excitation of the stable kink mode,

for example. Additionally, these types of maps can be used

for real-time control of �φul, and suggest that varying �φul

provides an effective method of testing the dependence of

outcomes, such as ELM suppression, on pitch-resonant and

kink-resonant drive. The experimentally observed n = 2 ELM

suppression windows in [18] correspond to upper–lower I-coil

phasings that maximize the kink-resonant response as opposed

to the pitch-resonant response. This suggests that if one is

looking for ELM suppression windows, the maps should be

used to locate regions of strong kink-resonant forcing.

The maps allow �φul to be optimized to achieve certain

goals prior to an experiment. For example, if a shot is

constrained such that q95 = 3.5, βN/ℓi = 1.15, and one wants

to maximize (minimize) the possibility of generating islands,

8
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then one could look for a maximum (minimum) in the applied

pitch-resonant drive. The optimum �φul ≈ 130◦(310◦) can be

easily determined using figure 10. Alternatively, for the same

shot, if a maximum (minimum) is required in the kink-resonant

component, the optimum value of �φul ≈ 10◦(190◦) can be

calculated using figure 13. For the kink-resonant calculations,

it is important to take βN/ℓi into account, as this will play a

critical role in the extent of the RFA; however, q95 and �φul

determine the efficiency of the coupling of the MP to the kink-

mode.

It is possible to achieve a substantial range of pitch-

resonant drive and kink resonance for any given q95 by varying

�φul (figures 10 and 13). This suggests that changing �φul

throughout a shot provides an effective way of checking

the effect of pitch-resonant drive, and kink resonance on

experimental outcomes, such as ELM suppression. In [48],

a q95 ramp-down was performed, which swept q95 across a

resonant ridge in the poloidal mode number spectrum of the

MP, to check for correlation with regions of ELM suppression.

An alternative, is to sweep �φul and keep q95 fixed. This

sweeps the poloidal mode number spectrum of the MP across

the pitch-resonant harmonics (similar to what is shown in

figure 12), allowing a larger range of pitch-resonant drive to

be accessed. Additionally, this can be tried for any q95 value.

Experimentally, sweeping the poloidal mode number spectrum

of the MP across the pitch-resonant harmonics can be achieved

by having a slight frequency difference between the upper MP

array and the lower. If the frequency difference was 0.5 Hz, this

would allow a rate of change in �φul of 180◦ s−1. The rate of

change in the phasing can be increased or decreased depending

on the time available and the extent of the phasing window that

one wants to examine. This idea is illustrated in figure 14

where, for q95 = 3.5 and βN/ℓi = 1.15, the normalized

amplitudes of δBres and δBn=2
kink are plotted as a function of

�φul, or time, if the perturbation in the lower array is slowly

rotated as described above. Figure 14 clearly illustrates how

effective �φul is at controlling the pitch-resonant (δBres) and

kink-resonant (δBkink) components of the response.

The maps can also be used for real-time control of �φul to

achieve a particular goal, such as maximizing the possibility

of generating islands by maximizing the pitch-resonant drive

throughout a shot. For example, as q95 varies throughout a

shot, a real-time calculation of q95 can be used together with

the relevant maps to change �φul to optimally align the ridge

in the poloidal mode number spectrum of the MP with the

pitch-resonant harmonics.

4.4. Relationship between pitch- and kink-resonant

measures, and n = 2 ELM suppression

The narrow q95 ELM suppression windows (0.02, 0.06 and

0.2) that have been observed [18] are more consistent with

the kink-resonant measure than the pitch-resonant measure.

The pitch-resonant measure is quite smooth, and for any given

q95 value, it is possible to achieve roughly the same level of

pitch resonance by varying �φul (figure 10). On the other

hand, the kink-resonant measure (figure 13) shows significant

localized maxima in q95 due to a low-n peeling response.
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Figure 14. The n = 2 kink and pitch-resonant components (δBn=2
kink

and δBn=2
res ) normalized to their maximum values plotted as a

function of �φul, or time, in a simulated experiment where the upper
array has a n = 2 static MP, and the bottom array has a rotating
0.5 Hz n = 2 perturbation. Here, q95 = 3.5 and βN/ℓi = 1.15.

The width of these maxima is approximately 0.1 which is

similar to the experimentally observed n = 2 ELM suppression

windows. This suggests that the suppression of ELMs may

be more closely related to the modified stability of global

modes than with the creation of stochastic magnetic fields.

However, it is important to point out that while the pitch-

resonant measure is a good metric for how well the applied MP

aligns with the resonant surfaces, it does not capture where the

resonant surfaces are, or how they interact with one another,

both of which will show a q95 dependence. Including these

dependencies is the subject of future work. Additionally,

because we are using the ideal MHD approximation, we

are only looking at the vacuum field for the pitch-resonant

measure. This does not capture the interplay between the

stability of the global modes, and the pitch-resonant fields. A

full two-fluid plasma response calculations with rotation and

resistivity is necessary to more accurately calculate the pitch-

resonant fields and confirm these results.

5. The importance of the n = 4 component in the

dominantly n = 2 MP

In this section, we examine the importance of the n = 4

harmonic in the dominantly n = 2 MP. As was discussed

in section 2, the n 	= 2 vacuum field harmonics are small,

except for the n = 4 component. We show that the n = 4

pitch-resonant and kink-resonant components are substantially

smaller than their n = 2 counterparts. Therefore, only

considering the n = 2 component in the dominantly n = 2

MP provides a good approximation in most cases.

The n = 2 component of the pitch-resonant drive is

substantially larger than the n = 4 component in most regions

of parameter space. To measure the relative importance of

δB
n=2

res , figure 15 shows the proportion of the total drive caused

by the n = 2 component (δB
n=2

res /(δB
n=2

res + δB
n=4

res )). This

plot shows that δB
n=2

res ≫ δB
n=4

res in most regions of parameter

9
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Figure 15. Proportion of the total pitch-resonant component caused
by the dominant n = 2 harmonic as a function of �φul and q95,
showing the regions of parameter space where the n = 4
pitch-resonant component becomes significant.

space demonstrating that for the pitch-resonant response, the

n = 4 component of the dominantly n = 2 MP can usually be

ignored. In certain regions of parameter space where δB
n=2

res is

small, δB
n=4

res > δB
n=2

res indicating that the n = 4 component

needs to be considered; however, the total pitch-resonant drive

in these regions is still small. Another situation where the

n = 4 component may be important is if one is considering

island overlap between n = 2 and n = 4 islands. Note that the

pitch-resonant drive calculation does not include the plasma

response. If the resonant fields are amplified (for example due

to an unstable tearing mode) for a particular equilibrium, this

is not captured in these calculations.

As with pitch-resonant drive, the n = 2 component of the

kink-resonant response is significantly larger than the n = 4

component. The proportion of the kink-resonant drive caused

by the n = 2 component is shown in figure 16. This figure

clearly illustrate that δBn=2
kink ≫ δBn=4

kink in most regions of

parameter space. Additionally, δBn=2
kink and δBn=4

kink , plotted

as a function of q95 for �φul = 0◦, are shown in figure 17

further demonstrating δBn=2
kink ≫ δBn=4

kink and highlighting the

periodic maxima due to the low-n peeling modes. Therefore,

we conclude that in most regions of parameter space, δBn=4
kink is

substantially smaller than δBn=2
kink in the dominantly n = 2 MP.

6. Summary

An extensive examination of the n = 2 non-axisymmetric

magnetic perturbation, as a function of �φul and plasma

parameters on the DIII-D tokamak, using the linear MHD

code MARS-F, has been presented. Pitch- and kink-resonant

measures have been introduced and used to characterize the

magnetic perturbations. These measures, while imperfect,

represent an improvement on previous work on n = 3

perturbations [31] where a simulated magnetic probe response,

and visual identification was used to separate out the responses.
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Figure 16. Proportion of the total kink-resonant component caused
by the dominant n = 2 harmonic as a function of �φul and q95,
showing the regions of parameter space where the n = 4
kink-resonant component becomes significant.
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Figure 17. The n = 2 and n = 4 kink-resonant component (δBn=2
kink

and δBn=4
kink ) as a function of q95, with βN/ℓi = 1.15. The periodic

maxima are due to the peeling response, and occur over narrow q95

ranges, which may be related to the narrow q95 ELM suppression
regions.

Revisiting the n = 3 and other toroidal mode number

perturbations on DIII-D, and the impact of the plasma response

on n = 3 ELM suppression is the subject of future work.

The �φul and plasma parameter dependence of pitch-resonant

fields and the plasma kink-resonant response, have been

mapped out, showing that �φul has a substantial influence on

both of these responses. In many cases, �φul can have a larger

effect than plasma parameters such as q95 and βN/ℓi. This

is of particular interest because �φul can be modified at will

throughout a shot to achieve a desired effect provided sufficient

power supplies are available.

The maxima and minima in the kink-resonant and pitch-

resonant responses were found to follow an almost linear path

in (�φul, q95) space, demonstrating how these two parameters

interact to determine how efficiently the MP drives a pitch-

resonant or kink-resonant response. Additionally, βN/ℓi

mainly determines the extent of the kink-resonant response.

10



Plasma Phys. Control. Fusion 56 (2014) 035005 S R Haskey et al

Periodic increases in δBkink are found twice for every integer

increase in q95 due to low-n peeling modes. These periodic

increases occur over small ranges in q95 suggesting that they

could be related to the narrow, q95 ELM suppression windows

that have been observed.

The separation of the plasma response into pitch-resonant

and kink-resonant components is also useful for toroidal

momentum confinement studies as these measures are related

to the electromagnetic and NTV torque respectively. It

should therefore be possible to use these measures to help

determine under what plasma conditions and MP fields the

electromagnetic or NTV torque will dominate. During such

studies, it is critical to keep in mind the potential to indirectly

increase the pitch-resonant harmonics by driving the kink

mode, a key physics result observed in error field correction

studies [15]. This will be the subject of future work.

The presence of other toroidal harmonics in the applied

magnetic field was examined showing a substantial n = 4

component is present in the perturbations applied by the DIII-D

I-coils. Examination of the plasma response to n = 4

perturbations shows that they are substantially smaller than

the dominant n = 2 responses. This demonstrates that a good

approximation to the dominantly n = 2 MP on DIII-D can be

achieved using MARS-F and an idealized n = 2 MP.

The work presented here shows that a linear MHD code

such as MARS-F can be used to effectively map out the

plasma response dependence on plasma parameters and MP

coil parameters such as dominant n and �φul. These maps can

then be used to guide real-time control of �φul to achieve

specified outcomes, or alternatively decide on an optimum

�φul in advance. Additionally, this type of approach can be

used to optimize the design of MP coil sets.
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