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Abstract. By prior work, there is a distributed graph algorithm that finds a max-
imal fractional matching (maximal edge packing) in O(∆) rounds, independently
of n; here ∆ is the maximum degree of the graph and n is the number of nodes
in the graph. We show that this is optimal: there is no distributed algorithm
that finds a maximal fractional matching in o(∆) rounds, independently of n.
Our work gives the first linear-in-∆ lower bound for a natural graph problem in
the standard LOCAL model of distributed computing—prior lower bounds for a
wide range of graph problems have been at best logarithmic in ∆.
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1 Introduction

This work settles the distributed time complexity of the maximal fractional
matching problem (see Section 1.2 for definitions) as a function of ∆, the maximum
degree of the input graph.

By prior work [4], there is a distributed algorithm that finds a maximal frac-
tional matching (also known as a maximal edge packing) in O(∆) communication
rounds, independently of the number of nodes. In this work, we show that this
is optimal: there is no distributed algorithm that finds a maximal fractional
matching in o(∆) rounds.

This is the first linear-in-∆ lower bound for a natural graph problem in the
standard LOCAL model of distributed computing. It is also a step towards under-
standing the complexity of the non-fractional analogue, the maximal matching
problem, which is a basic symmetry breaking primitive in the field of distributed
graph algorithms. For many related primitives, the prior lower bounds in the
LOCAL model have been at best logarithmic in ∆.

1.1 Matchings: state-of-the-art

Simple randomised distributed algorithms that find a maximal matching in time
O(log n) have been known since the 1980s [1, 16, 23]. Currently, the fastest
algorithms that compute a maximal matching stand as follows:

− Dense graphs. There is a recent O(log ∆ + log4 log n)-time randomised
algorithm due to Barenboim et al. [6]. The fastest known deterministic
algorithm runs in time O(log4 n) and is due to Hańćkowiak et al. [13].

− Sparse graphs. There is a O(∆ + log∗ n)-time deterministic algorithm
due to Panconesi and Rizzi [27]. Here log∗ n is the iterated logarithm of n,
a very slowly growing function.

Our focus is on the sparse case. It is a long-standing open problem to either
improve on the algorithm of Panconesi and Rizzi, or prove it optimal. As we are
dealing with two independent parameters n and ∆, we must be careful what we
mean by “proving it optimal”. The meaning is: (1) there is no algorithm with
run-time O(∆) + o(log∗ n); (2) nor an algorithm with run-time o(∆) +O(log∗ n).

The first type of lower bound follows from Linial’s [22] seminal work. Linial
shows that 3-colouring a cycle is not possible in time o(log∗ n), so by a simple
reduction:

(1) Linial’s result: Maximal matchings cannot be computed in time f(∆) +
o(log∗ n) for any function f .

Hence we have an arbitrarily large lower bound in terms of ∆, since ∆ = 2 on
cycles. However, viewing Linial’s result from the perspective of ∆ is not very
meaningful: the source of hardness exhibited in Linial’s proof is not the degree
of the graph but its growing size.

The second type of lower bound has remained elusive (see Barenboim and
Elkin [5, Open Problem 10.6]):

(2) Open problem: Can maximal matchings be computed in time o(∆) +
O(log∗ n)?
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We conjecture that there are no such algorithms. Our linear-in-∆ lower bound
for the fractional version of this problem builds towards proving such conjectures:
the source of hardness for maximal fractional matchings is not the size of the
graph but the growing degree. The graphs in our lower bound construction
end up satisfying ∆ = Θ(log∗ n); if this could be improved to a family where
∆ = ω(log∗ n), we would obtain a negative answer to (2).

1.2 Fractional matchings

While a matching associates a weight 0 or 1 with each edge of a graph, with 1
indicating that the edge is in a matching, a fractional matching (FM) associates
a weight between 0 and 1 with each edge. In both cases, the total weight of the
edges incident to any given node has to be at most 1.

Formally, let G = (V,E) be a simple undirected graph and let y : E → [0, 1]
associate weights to the edges of G. Define, for each v ∈ V ,

y[v] :=
∑

e∈E:v∈e
y(e).

The function y is called a fractional matching, or an FM for short, if y[v] ≤ 1 for
each node v. A node v is saturated if y[v] = 1.

There are two interesting varieties of fractional matchings.

− Maximum weight. An FM y is of maximum weight, if its total weight∑
e∈E y(e) is the maximum over all fractional matchings on G.

− Maximality. An FM y is maximal, if each edge e has at least one saturated
endpoint v ∈ e.

See below for examples of (a) a maximum-weight FM, and (b) a maximal FM;
the saturated nodes are highlighted.
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Distributed complexity. The distributed complexity of computing maximum-
weight FMs is completely understood. It is easy to see that computing an exact
solution requires time Ω(n) already on odd-length path graphs (a node needs to
learn the parity of its distance from an endpoint). If one settles for an approximate
solution, then FMs whose total weight is at least a (1−ε)-fraction of the maximum
can be computed in time O(ε−1 log ∆) by the well-known results of Kuhn et al. [17–
19]. This is optimal: Kuhn et al. also show that any constant-factor approximation
of maximum-weight FMs requires time Ω(log ∆).

By contrast, the complexity of computing maximal FMs has not been under-
stood. A maximal FM is a 1/2-approximation of a maximum-weight FM, so the
results of Kuhn et al. imply that finding a maximal FM requires time Ω(log ∆),
but this lower bound is exponentially small in comparison to the O(∆) upper
bound [4].

2



1.3 Contributions

We prove that the O(∆)-time algorithm [4] for maximal fractional matchings is
optimal:

Theorem 1. There is no (randomised) LOCAL algorithm that finds a maximal
fractional matching in o(∆) rounds, independently of n.

To our knowledge, this is the first linear-in-∆ lower bound in the LOCAL

model for a classical graph problem. Indeed, prior lower bounds have typically
fallen in one of the following categories:

− they are logarithmic in ∆ [17–19],
− they analyse the complexity as a function of n for a fixed ∆ [7–9, 11, 21,

22, 25],
− they only hold in a model that is strictly weaker than LOCAL [15, 20].

1.4 The LOCAL model

Our result holds in the standard LOCAL model of distributed computing [22, 28].
For now, we only recall the basic setting; see Section 3 for precise definitions.

In the LOCAL model an input graph G = (V,E) defines both the problem
instance and the structure of the communication network. Each node v ∈ V is
a computer and each edge {u, v} ∈ E is a communication link through which
nodes u and v can exchange messages. Initially, each node is equipped with a
unique identifier and, if we study randomised algorithms, a source of randomness.
In each communication round, each node in parallel (1) sends a message to each
neighbour, (2) receives a message from each neighbour, and (3) updates its local
state. Eventually, all nodes have to stop and announce their local outputs—in
our case the local output of a node v ∈ V is an encoding of the weight y(e) for
each edge e incident to v. The running time t of the algorithm is the number of
communication rounds until all nodes have stopped. We call an algorithm strictly
local, or simply local, if t = t(∆) is only a function of ∆, i.e., independent of n.

The LOCAL model is the strongest model commonly in use—in particular, the
size of each message and the amount of local computation in each communication
round is unbounded—and this makes lower bounds in this model very widely
applicable.

2 Overview

We will first show how to prove Theorem 1 for deterministic distributed algorithms;
then we can use fairly standard techniques to extend the results to randomised
distributed algorithms.

2.1 Deterministic models

Our lower bound builds on a long line of prior research. During the course of
the proof, we will visit each of the following deterministic models (see Figure 1),
whose formal definitions are given in Section 3.

ID: Deterministic LOCAL. Each node has a unique identifier [22, 28]. This is the
standard model in the field of deterministic distributed algorithms.
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Figure 1: Deterministic models that are discussed in this work.

OI: Order-invariance. The output of an algorithm is not allowed to change if
we relabel the nodes while preserving the relative order of the labels [25].
Equivalently, the algorithm can only compare the identifiers, not access their
numerical value.

PO: Port numbering and orientation. For each node, there is an ordering on the
incident edges, and all edges carry an orientation [24]. Each node knows
the orientations of the incident edges, and a node of degree d can refer
to its incident edges with d distinct port numbers: incoming messages are
labelled with the port numbers, and outgoing messages are addressed with
port numbers.

EC: Edge colouring. A proper edge colouring with O(∆) colours is given [15].
Each node knows the colours of the incident edges, and the edge colours play
the same role as a port numbering in communication: incoming messages
are labelled with the edge colours, and outgoing messages are addressed
with edge colours.

There are two key differences between PO and EC: (1) The edge orientation
provides additional symmetry-breaking information in PO, and this infor-
mation is not available in EC. (2) For each edge {u, v}, nodes u and v can
use the same label (edge colour) to refer to each other in EC, but possibly
different labels (port numbers) to refer to each other in PO.

The models are listed here roughly in the order of decreasing strength. For
example, the ID model is strictly stronger than OI, which is strictly stronger than
PO. However, the EC model is not directly comparable:

• There are problems that are trivial to solve in ID, OI, and PO but impossible
to solve in EC with any deterministic algorithm. A simple example is graph
colouring in 1-regular graphs.

• There are also problems that can be solved with a local algorithm in EC

but they do not admit a local algorithm in ID or OI, nor any algorithm in
PO. A simple example is maximal matching in cycles: In the EC model
we can find a maximal matching in O(1) rounds by iterating through the
colour classes and greedily selecting all available edges in each class [15].
In essence, we can use the existence of the edge colouring to circumvent
Linial’s lower bound [22].
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2.2 Proof outline

In short, our proof is an application of techniques that were introduced in two of
our earlier works [9, 15], followed by a straightforward reduction that extends
the result to randomised algorithms.

A weak deterministic lower bound. In our prior work [15] we showed that
maximal matchings cannot be computed in time o(∆) in the EC model. The
lower-bound construction there is a regular graph, and as such, tells us very little
about the fractional matching problem, since maximal fractional matchings are
trivial to compute in regular graphs.

Nevertheless, we use a similar unfold-and-mix argument on what will be called
loopy EC-graphs to prove the following intermediate result in Section 4:

Step 1. The maximal FM problem cannot be solved in time o(∆) on loopy
EC-graphs with deterministic distributed algorithms.

The proof heavily exploits the limited symmetry breaking capabilities of the
EC model. To continue, we need to argue that similar limitations exist in the ID

model.

Strengthening the deterministic lower bound. To extend the lower bound
to the ID model, we give a series of local simulation results

EC ; PO ; OI ; ID,

which state that a local algorithm for the maximal fractional matching problem
in one model can be simulated fast in the model preceding it. That is, even
though the models EC, PO, OI, and ID are generally very different, we show that
the models are roughly equally powerful for computing a maximal fractional
matching.

This part of the argument applies ideas from another prior work [9]. There,
we showed that, for a large class of optimisation problems, a run-time preserving
simulation PO ; ID exists. Unfortunately, the maximal fractional matching
problem is not included in the scope of this result (fractional matchings are not
simple in the sense of [9]), so we may not apply this result directly in a black-box
fashion. In addition, this general result does not hold for the EC model.

Nevertheless, we spend Section 5 extending the methods of [9] and show that
they can be tailored to the case of fractional matchings:

Step 2. If the maximal FM problem can be solved in time t(∆) on ID-graphs with
deterministic distributed algorithms, then it can be solved in time t(Θ(∆)) on
loopy EC-graphs with deterministic distributed algorithms.

Extending to randomised algorithms. So far we have proved Theorem 1
for deterministic algorithms. We will now extend the result so that it also holds
for randomised algorithms (more specifically, for Monte Carlo algorithms that
may fail to produce a feasible solution with some small probability).

The maximal FM problem is an example of a locally checkable problem: there
is a local algorithm that can check whether a proposed function y is a feasible
solution. It is known that randomness does not help a local algorithm in solving
a locally checkable problem with bounded outputs [25]: if there is a t(∆)-time
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randomised algorithm, then there is a t(∆)-time deterministic algorithm. In the
FM problem, the local outputs are not necessarily bounded—a feasible solution
y may use a superconstant number of bits to represent the edge weights y(e).
However, we can circumvent this technicality and strengthen Step 2 as follows;
the details are given in Appendix A:

Step 2’. If the maximal FM problem can be solved in time t(∆) on ID-graphs
with randomised distributed algorithms, then it can be solved in time t(Θ(∆)) on
loopy EC-graphs with deterministic distributed algorithms.

In combination with Step 1, this proves Theorem 1.

3 Tools of the trade

Before we dive into the lower-bound proof, we recall the definitions of the four
models mentioned in Section 2.1, and describe the standard tools that are used in
their analysis. In what follows, we will only discuss deterministic algorithms—see
Appendix A for the details on how to extend the results to randomised algorithms.

3.1 Locality

Distributed algorithms are typically described in terms of networked state ma-
chines: the nodes of a network exchange messages for t synchronous communica-
tion rounds after which they produce their local outputs (cf. Section 1.4).

Instead, for the purposes of our lower-bound analysis, we view an algorithm
A simply as a function that associates to each pair (G, v) an output A(G, v) in
a way that respects locality. That is, an algorithm A is said to have run-time t,
if the output A(G, v) depends only on the information that is available in the
radius-t neighbourhood around v. More formally, define

τt(G, v)

as the restriction of the structure (G, v) to the t-neighbourhood of v. That is,
τt(G, v) consists of the nodes and edges of G that are within distance t from v; here
the distance of an edge {u,w} from v is defined as min{dist(v, u),dist(v, w)}+ 1.
A t-time algorithm A is then a mapping that satisfies

A(G, v) = A(τt(G, v)). (1)

(Note that, according to our definition, a node needs to use an algorithm with
run-time at least 1 to learn its own degree. While this might seem restrictive,
we adopt this convention merely for technical convenience: our algorithms are at
most 1 round slower than algorithms in the more natural model where the degree
is known at the start.)

The information contained in τt(G, v) depends on which of the models EC,
PO, OI, and ID we are studying. For each model we define an associated graph
class.

3.2 Identifier-based networks

An ID-graph is simply a graph G whose nodes are assigned unique identifiers;
namely, V (G) ⊆ N. Any mapping A satisfying (1) is a t-time ID-algorithm.
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Figure 2: Two equivalent definitions of PO-graphs: (PO1) a node of degree d can
refer to incident edges with labels 1, 2, . . . , d; (PO2) edges are coloured so that
incoming edges have distinct colours and outgoing edges have distinct colours.

An OI-graph is an ordered graph (G,�) where � is a linear order on V (G).
An OI-algorithm A operates on OI-graphs in such a way that if (G,�, v) and
(G′,�′, v′) are isomorphic (as ordered structures), then A(G,�, v) = A(G′,�′, v′).

Every ID-graph G is naturally an OI-graph (G,≤) under the usual order ≤
on N. In the converse direction, we often convert an OI-graph (G,�) into an
ID-graph by specifying an ID-assignment ϕ : V (G) → N that respects � in the
sense that v � u implies ϕ(v) ≤ ϕ(u). The resulting ID-graph is denoted ϕ(G).

3.3 Anonymous networks

On anonymous networks the nodes do not have identifiers. The only symmetry
breaking information is now provided in an edge colouring of a suitable type.
This means that whenever there is an isomorphism between (G, v) and (G′, v′)
that preserves edge colours, we will have A(G, v) = A(G′, v′).

An EC-graph carries a proper edge colouring E(G) → {1, . . . , k}, where
k = O(∆). That is, if two edges are adjacent, they have distinct colours.

A PO-graph is a directed graph whose edges are coloured in the following
way: if (u, v) and (u,w) are outgoing edges incident to u, then they have distinct
colours; and if (v, u) and (w, u) are incoming edges incident to u, then they have
distinct colours. Thus, we may have (v, u) and (u,w) coloured the same.

We find it convenient to treat PO-graphs as edge-coloured digraphs, even if
this view is slightly nonstandard. Usually, PO-graphs are defined as digraphs
with a port numbering, i.e., each node is given an ordering of its neighbours.
This is equivalent to our definition as it is easy to give local simulations in both
directions: A port numbering gives rise to an edge colouring where an edge (u, v)
is coloured with (i, j) if v is the i-th neighbour of u and u is the j-th neighbour
of v (see Figure 2a). Conversely, we can derive a port numbering from an edge
colouring—using some agreed-upon ordering of the edge colours, first take all
outgoing edges ordered by their colours, and then take all incoming edges ordered
by their colours (see Figure 2b). (Note that this does not give a one-to-one
correspondence between port-numbered graphs and edge-coloured graphs, but
what matters is that we can simulate any algorithm designed for one model in
the other model with the same run-time).

We are not done with defining EC and PO algorithms. We still need to restrict
their power by requiring that their outputs are invariant under graph lifts, as
defined next.
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3.4 Lifts

A graph H is said to be a lift of another graph G if there exists an onto graph
homomorphism α : V (H)→ V (G) that is a covering map, i.e., α preserves node
degrees, degH(v) = degG(α(v)); see Figure 3. Our discussion of lifts always takes
place in either EC or PO; in this context we require that a covering map preserves
edge colours.

The defining characteristic of anonymous models is that the output of an
algorithm is invariant under taking lifts. That is, if α : V (H) → V (G) is a
covering map, then

A(H, v) = A(G,α(v)), for each v ∈ V (H). (2)

Since an isomorphism between H and G is a special case of a covering map, the
condition (2) generalises the discussion in Section 3.3. We will be exploiting this
limitation extensively in analysing the models EC and PO.

Graphs are partially ordered by the lift relation. For any connected graph G,
there are two graphs UG and FG of special interest that are related to G via lifts.

Universal cover UG. The universal cover UG of G is an unfolded tree-like
version of G; see Figure 4. More precisely, UG is the unique tree that is a lift of
G. Thus, if G is a tree, UG = G; if G has cycles, UG is infinite. In passing from
G to UG we lose all the cycle structure that is present in G. The universal cover
is often used to model the information that a distributed algorithm—even with
unlimited running time—is able to collect on an anonymous network [2].

Factor graph FG. The factor graph FG of G is the smallest graph F such
that G is a lift of F ; see Figure 5. In general, FG is a multigraph with loops and
parallel edges. It is the most concise representation of all the global symmetry
breaking information available in G. For example, in the extreme case when G is
vertex-transitive, FG consists of just one node and some loops.

An input graph to an algorithm is always required to be simple (no loops
or parallel edges). However, we find it convenient to virtually run EC and PO-
algorithms A on multigraphs F with the understanding that the output A(F, v)
is interpreted as if we had run A on a simple lift of F and then mapped the
solution back to F according to (2). That is, to determine A(F, v) where F is a
multigraph, do the following:

1. Lift F to a simple graph G (e.g., take G = UF ) via some α : V (G)→ V (F ).
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Figure 5: Factor graphs and loops. We follow the convention that undirected loops
in EC-graphs count as a single incident edge, while directed loops in PO-graphs count
as two incident edges: an incoming edge and an outgoing edge. In this example,
both u and its preimage u′ are nodes of degree 2; they are incident to one edge of
colour 1 and one edge of colour 2. Both v and its preimage v′ are nodes of degree 3;
they are incident to two outgoing edges of colours 1 and 2, and one incoming edge
of colour 1.

G
H

v v1

v2

α

Figure 6: EC-graph G is loopy. Assume that an EC-algorithm A produces an output
in which node v is unsaturated. Then we can construct a simple EC-graph H that is
a lift of G via α : V (H)→ V (G) such that α(v1) = α(v2) = v and {v1, v2} ∈ E(H).
If we apply A to H, both v1 and v2 are unsaturated; hence A fails to produce a
maximal FM.

2. Execute A on (G, u) for some u ∈ α−1(v).
3. Interpret the output of u as an output of v.

In what follows we refer to multigraphs simply as graphs.

3.5 Loops

In EC-graphs, a single loop on a node contributes +1 to its degree, whereas in
PO-graphs, a single (directed) loop contributes +2 to its degree, once for the tail
and once for the head. This is reflected in the way we draw loops—see Figure 5.

The loop count on a node v ∈ V (G) measures the inability of v to break local
symmetries. Indeed, if v has ` loops, then in any simple lift H of G each node
u ∈ V (H) that is mapped to v by the covering map will have ` distinct neighbours
w1, . . . , w` that, too, get mapped to v. Thus, an anonymous algorithm is forced
to have the same output on u as on each of w1, . . . , w`.

We consider loops as an important resource.

Definition 1. An edge-coloured graph G is called k-loopy if each node in FG
has at least k loops. A graph is simply loopy if it is 1-loopy.

When computing maximal fractional matchings on a loopy graph G, an
anonymous algorithm must saturate all the nodes. Otherwise, if v ∈ V (G) is
a node that does not get saturated, the loopiness of G implies that v has a
neighbour u (can be u = v via a loop) that produces the same output as v. But
now neither endpoint of {u, v} is saturated, which contradicts maximality; see
Figure 6. We record this observation.

Lemma 1. Any EC-algorithm for the maximal FM problem computes a fully
saturated FM on loopy EC-graphs.
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Figure 7: Base case. By removing a loop e with a non-zero weight, we force the
algorithm to change the weight of at least one edge that is present in both G0

and H0.

4 Lower bound in EC

In this section we carry out Step 1 of our lower-bound plan. To do this we extend
the previous lower bound result [15] to the case of maximal fractional matchings.

4.1 Strategy

Let A be any EC-algorithm computing a maximal fractional matching. We
construct inductively a sequence of EC-graph pairs

(Gi, Hi), i = 0, 1, . . . ,∆− 2,

that witness A having run-time greater than i. Each of the graphs Gi and Hi will
have maximum degree at most ∆, so for i = ∆− 2, we will have the desired lower
bound. More precisely, we show that there are nodes gi ∈ V (Gi) and hi ∈ V (Hi)
satisfying the following property:

(P1) The i-neighbourhoods τi(Gi, gi) and τi(Hi, hi) are isomorphic, yet

A(Gi, gi) 6= A(Hi, hi).

Moreover, there is a loop of some colour ci adjacent to both gi and hi such
that the outputs disagree on its weight.

We will also make use of the following additional properties in the construction:

(P2) The graphs Gi and Hi are (∆− 1− i)-loopy. Consequently, A will saturate
all their nodes by Lemma 1.

(P3) When the loops are ignored, both Gi and Hi are trees.

4.2 Base case (i = 0)

Let G0 consist of a single node v that has ∆ differently coloured loops. When A
is run on G0, it saturates v by assigning at least one loop e a non-zero weight;
see Figure 7. Letting H0 := G0 − e it is now easy to check that the pair (G0, H0)
satisfies (P1–P3) for g0 = h0 = v. For example, we have τ0(G0, v) ∼= τ0(H0, v)
because both 0-neighbourhoods consist of a single isolated node of degree 0.
Recall our convention that the loops are at distance 1 from v.

4.3 Inductive step

Suppose (Gi, Hi) is a pair satisfying (P1–P3). For convenience, we write G, H, g,
h, and c in place of Gi, Hi, gi, hi, and ci. Also, we let e ∈ E(G) and f ∈ E(H)
be the colour-c loops adjacent to g and h to which A assigns different weights.

To construct the pair (Gi+1, Hi+1) we unfold and mix; see Figure 8.
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Figure 8: Unfold and mix. The weights of e and f differ; hence the weight of {g, h}
is different from the weight of e or f .

Unfolding. First, we unfold the loop e in G to obtain a 2-lift GG of G. That
is, GG consists of two disjoint copies of G− e and a new edge of colour c (which
we still call e) that connects the two copies of g in GG. For notational purposes,
we fix some identification V (G) ⊆ V (GG) so that we can easily talk about one of
the copies. Similarly, we construct a 2-lift HH of H by unfolding the loop f .

Recall that A cannot tell apart G from GG, or H from HH. In particular A
continues to assign unequal weights to e and f in these lifts.

Mixing. Next, we mix together the graphs GG and HH to obtain a graph GH
defined as follows: GH contains a copy of G − e, a copy of H − f , and a new
colour-c edge that connects the nodes g and h. For notational purposes, we let
V (GH) := V (G) ∪ V (H), where we tacitly assume that V (G) ∩ V (H) = ∅.

Analysis. Consider the weight that A assigns to the colour-c edge {g, h} in
GH. Since A gives the edges e and f different weights in GG and HH, we must
have that the weight of {g, h} differs from the weight of e or the weight of f (or
both). We assume the former (the latter case is analogous), and argue that the
pair

(Gi+1, Hi+1) := (GG,GH)

satisfies the properties (P1–P3). It is easy to check that (P2) and (P3) are
satisfied by the construction; it remains is to find the nodes gi+1 ∈ V (GG) and
hi+1 ∈ V (GH) that satisfy (P1).

To this end, we exploit the following property of fractional matchings:

Fact 1 (Propagation principle). Assume that y and y′ are fractional matchings
that saturate a node v. If y and y′ disagree on some edge incident to v, there
must be another edge incident to v where y and y′ disagree.

Our idea is to apply this principle in a fully saturated graph, where the
disagreements propagate until they are resolved at a loop; this is where we locate
gi+1 and hi+1. See Figure 9 for an example.
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Figure 9: Propagation. The weights of e and {g, h} differ. We apply the propagation
principle towards the common part G that is shared by GG and GH. The graphs
are loopy and hence all nodes are saturated by A; we will eventually find a loop e∗

that is present in both GG and GH, with different weights.

We consider the following fully saturated fractional matchings on G:

y = the FM determined by A’s output on the nodes V (G) in GG,

y′ = the FM determined by A’s output on the nodes V (G) in GH.

Starting at the node g ∈ V (G) we already know by assumption that y and y′

disagree on the colour-c edge incident to g. Thus, by the propagation principle,
y and y′ disagree on some other edge incident to g. If this edge is not a loop,
it connects to a neighbour g′ ∈ V (G) of g and the argument can be continued:
because y and y′ disagree on {g, g′}, there must be another edge incident to g′

where y and y′ disagree, and so on. Since G does not have any cycles (apart from
the loops), this process has to terminate at some node g∗ ∈ V (G) such that y
and y′ disagree on a loop e∗ 6= e incident to g∗. Note that e∗ is a loop in both
GG and GH, too. Thus, we have found our candidate gi+1 = hi+1 = g∗.

To finish the proof, we need to show that

τi+1(GG, g
∗) ∼= τi+1(GH, g

∗). (3)

The critical case is when g∗ = g as this node is the closest among V (G) to seeing
the topological differences between the graphs GG and GH. Starting from g and
stepping along the colour-c edge towards the differences, we arrive, in GG, at a
node ĝ that is a copy of g ∈ V (G), and in GH, at the node h. But these nodes
satisfy

τi(GG, ĝ) ∼= τi(GH,h)

by our induction assumption. Using this, (3) follows.

5 Local simulations

Now that we have an Ω(∆) time lower bound in the EC model, our next goal is
to extend this result to the ID model. In this section we implement Step 2 of our
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Figure 10: EC ; PO. Mapping an EC-graph G into a PO-graph G�, and mapping
the output of a PO-algorithm back to the original graph.

plan and give a series of local simulations

EC ; PO ; OI ; ID.

Here, each simulation preserves the running time of an algorithm up to a constant
factor. In particular, together with Step 1, this will imply the Ω(∆) time lower
bound in the ID model.

5.1 Simulation EC ; PO

We start with the easiest simulation. Suppose there is a t-time PO-algorithm for
the maximal fractional matching problem on graphs of maximum degree ∆; we
describe a t-time EC-algorithm for graphs of maximum degree ∆/2.

The local simulation is simple; see Figure 10. On an EC-graph G we interpret
each edge {u, v} of colour c as two directed edges (u, v) and (v, u), both of colour c;
this interpretation makes G into a PO-graph G�. We can now locally simulate
the PO-algorithm on G� to obtain an FM y as output. Finally, we transform y
back to an FM of G: the edge {u, v} is assigned weight y(u, v) + y(v, u).

5.2 Tricky identifiers

When we are computing a maximal fractional matching y : E(G)→ [0, 1], we have,
a priori, infinitely many choices for the weight y(e) of an edge. For example, in a
path on nodes v1, v2, and v3, we can freely choose y({v1, v2}) ∈ [0, 1] provided we
set y({v2, v3}) = 1− y({v1, v2}). In particular, an ID-algorithm can output edge
weights that depend on the node identifiers whose magnitude is not bounded.

Unbounded outputs are tricky from the perspective of proving lower bounds
(we will have the same challenge in Appendix A when we deal with randomness).
The main result of the recent work [9] is a run-time preserving local simulation
PO ; ID, but the result only holds under the assumption that the solution can
be encoded using finitely many values per node on graphs of maximum degree ∆.
This restriction has its source in an earlier local simulation OI ; ID due to Naor
and Stockmeyer [25] that is crucially using Ramsey’s theorem. In fact, these two
local simulation results fail if unbounded outputs are allowed; counterexamples
include even natural graph problems [14].

In conclusion, we need an ad hoc argument to establish that an ID-algorithm
cannot benefit from unique identifiers in the case of the maximal fractional
matching problem.
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5.3 Simulation PO ; OI

Before we address the question of simulating ID-algorithms, we first salvage one
part of the result in [9]: there is local simulation PO ; OI that applies to many
locally checkable problems, regardless of the size of the output encoding. Even
though this simulation works off-the-shelf in our present setting, we cannot use
this result in a black-box fashion, as we need to access its inner workings later in
the analysis. Thus, we proceed with a self-contained proof.

The following presentation is considerably simpler than that in [9], since we
are only interested in a simulation that produces a locally maximal fractional
matching, not in a simulation that also provides approximation guarantees on
the total weight, as does the original result.

PO-checkability. Maximal fractional matchings are not only locally checkable,
but also PO-checkable: there is a local PO-algorithm that can check whether a
given y is a maximal FM. An important consequence of PO-checkability is that if
H is a lift of G then any PO-algorithm produces a feasible solution on H if and
only if it produces a feasible solution on G.

Order homogeneity. The key to the simulation PO ; OI is a canonical linear
order that can be computed for any tree-like PO-neighbourhood. To define this
ordering, let d denote the maximum number of edge colours appearing in the
input PO-graphs that have maximum degree ∆, and let T denote the infinite
2d-regular d-edge-coloured PO-tree. We fix a homogeneous linear order for T :

Lemma 2. There is a linear order � on V (T ) such that all the ordered neigh-
bourhoods (T,�, v), v ∈ V (T ), are pairwise isomorphic (i.e., up to any radius).

Proof. The tree T can be thought of as a Cayley graph of the free group on d
generators, and the free group admits a linear order that is invariant under the
group acting on itself by multiplication; for details, see Neumann [26] and the
discussion in [9, §5].

For an alternative, combinatorial proof of Lemma 2, Appendix B.

Simulation. Let AOI be any t-time OI-algorithm solving a PO-checkable prob-
lem; we describe a t-time PO-algorithm APO solving the same problem.

The algorithm APO operates on a PO-graph G as follows; see Figure 11. Given
a PO-neighbourhood τ := τt(UG, v), we first embed τ in T : we choose an arbitrary
node u ∈ V (T ), identify v with u, and let the rest of the embedding τ ⊆ (T, u)
be dictated uniquely by the edge colours. We then use the ordering � inherited
from T to order the nodes of τ . By Lemma 2, the resulting structure (τ,�) is
independent of the choice of u, i.e., the isomorphism type of (τ,�) is only a
function of τ . Finally, we simulate

APO(τ) := AOI(τ,�). (4)

To see that the output of APO is feasible, we argue as follows. Embed the
universal cover UG as a subgraph of (T,�) in a way that respects edge colours.
Again, all possible embeddings are isomorphic; we call the inherited ordering
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Figure 11: Given a PO-graph G, algorithm APO simulates the execution of AOI on
OI-graph τ . The linear order on V (τ) is inherited from the regular tree T . As T is
homogeneous, the linear order does not depend on the choice of node u in T .

(UG,�) the canonical ordering of UG. Our definition of APO and the order
homogeneity of (T,�) now imply that

APO(UG, v) = AOI(UG,�, v) for all v ∈ V (UG).

Therefore, the output of APO is feasible on UG. Finally, by PO-checkability, the
output of APO is feasible also on G, as desired.

5.4 Simulation OI ; ID

The reason why an ID-algorithm A cannot benefit from unbounded identifiers is
due to the propagation principle. We formalise this in two steps.

(i) We use the Naor–Stockmeyer OI ; ID result to see that A can be forced to
output fully saturated FMs on so-called loopy OI-neighbourhoods.

(ii) We then observe that, on these neighbourhoods, A behaves like an OI-
algorithm: A’s output cannot change if we relabel a node in an order-
preserving fashion, because the changes in the output would have to propa-
gate outside of A’s run-time.

That is, our simulation OI ; ID will work only on certain types of neighbourhoods
(in contrast to our previous simulations), but this will be sufficient for the purposes
of the lower bound proof.

Step (i). Let A be a t-time ID-algorithm that computes a maximal fractional
matching on graphs of maximum degree ∆.
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From A we can derive, by a straightforward simulation, a t-time binary-valued
ID-algorithm A∗ that indicates whether A saturates a node. That is, A∗(G, v) := 1
if A saturates v in G, otherwise A∗(G, v) := 0. Such saturation indicators A∗
were considered previously in [3, §4].

Because (and only because) A∗ outputs finitely many values, we can now
apply the Ramsey technique of Naor and Stockmeyer [25, Lemma 3.2]. To avoid
notational clutter, we use a version of their result that follows from the application
of the infinite Ramsey’s theorem (rather than the finite):

Lemma 3 (Naor and Stockmeyer). There is an infinite set I ⊆ N such that A∗
is an OI-algorithm when restricted to graphs whose identifiers are in I.

We say that τt(UG,�, v) is a loopy OI-neighbourhood if G is a loopy PO-graph
and (UG,�) is the canonically ordered universal cover of G. We also denote by
Bt(v) ⊆ V (UG) the node set of τt(UG, v).

Our saturation indicator A∗ is useful in proving the following lemma, which
encapsulates step (i) of our argument.

Lemma 4. Let τ := τt(UG,�, v) be loopy. If ϕ : Bt(v)→ I is an ID-assignment
to the nodes of τ that respects �, then A saturates v under ϕ.

Proof. By loopiness of G, the node v has a neighbour u ∈ V (UG) such that
τt(UG, v) ∼= τt(UG, u) as PO-neighbourhoods. By order homogeneity, τt(UG,�
, v) ∼= τt(UG,�, v) as OI-neighbourhoods. By Lemma 3, this forces A∗ to output
the same on v and u under any ID-assignment ϕ′ : Bt(v)∪Bt(u)→ I that respects
�. But A∗ cannot output two adjacent 0’s if A is to produce a maximal fractional
matching. Hence, A∗ outputs 1 on ϕ′(τ). Finally, by order-invariance, A∗ outputs
1 on ϕ(τ), which proves the claim.

Step (ii). Define J as an infinite subset of I that is obtained by picking every
(m + 1)-th identifier from I, where m is the maximum number of nodes in a
(2t + 1)-neighbourhood of maximum degree ∆. That is, for any two j, j′ ∈ J ,
j < j′, there are m distinct identifiers i ∈ I with j < i < j′.

The next lemma states that A behaves like an OI-algorithm on loopy neigh-
bourhoods that have identifiers from J .

Lemma 5. Assume that τ := τt(UG,�, v) is loopy. If ϕ1, ϕ2 : Bt(v)→ J are any
two ID-assignments that respect �, then A(ϕ1(τ)) = A(ϕ2(τ)).

Proof. We first consider the case where ϕ1 and ϕ2 disagree only on a single
node v∗ ∈ Bt(v). Towards a contradiction suppose that

A(ϕ1(τ)) 6= A(ϕ2(τ)). (5)

We start with partial ID-assignments for UG that are defined on the nodes
B2t+1(v); this will suffice for running A on the nodes Bt+1(v). Indeed, be-
cause J ⊆ I is sufficiently sparse, we can extend ϕ1 and ϕ2 into assignments
ϕ̄1, ϕ̄2 : B2t+1(v)→ I such that

− ϕ̄1 and ϕ̄2 respect �, and
− ϕ̄1 and ϕ̄2 still disagree only on the node v∗.
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Let yi, i = 1, 2, be the fractional matching defined on the edges incident to
Bt+1(v) that is determined by the output of A on the nodes Bt+1(v) under the
assignment ϕ̄i. By Lemma 4, all the nodes Bt+1(v) are saturated in both y1
and y2.

Let D ⊆ UG be the subgraph consisting of the edges e with y1(e) 6= y2(e) and
of the nodes that are incident to such edges; by (5), we have v ∈ V (D). Now we
can reinterpret the propagation principle from Section 4:

Fact 2 (Propagation principle). For each node u ∈ Bt+1(v) ∩ V (D) we have
degD(u) ≥ 2.

Using the fact that D ⊆ UG is a tree, we can start a simple walk at v ∈ V (D),
take the first step away from v∗, and finally arrive at a node u ∈ Bt+1(v) ∩ V (D)
that has dist(u, v∗) ≥ t+ 1, i.e, the node u does not see the difference between
the assignments ϕ̄1 and ϕ̄2. But this is a contradiction: as the t-neighbourhoods
ϕ̄i(τt(UG, u)), i = 1, 2, are the same, so should be the weights output by A.

General case. If ϕ1, ϕ2 : Bt(v) → J are any two assignments respecting �,
they can be related to one another by a series of assignments

ϕ1 = π1, π2, . . . , πk = ϕ2,

where any two consecutive assignments πi and πi+1 both respect � and disagree
on exactly one node. Thus, the claim follows from the analysis above.

Let AOI be any t-time OI-algorithm that agrees with the order-invariant output
of A on loopy OI-neighbourhoods that have identifiers from J . We now obtain
the final form of our OI ; ID simulation:

Corollary 1. If G is a loopy PO-graph, AOI produces a maximal fractional
matching on the canonically ordered universal cover (UG,�).

Proof. The claim follows by a standard argument [25, Lemma 3.2] from two facts:
J is large enough; and maximal fractional matchings are locally checkable.

5.5 Concluding Theorem 1

To get the final lower bound of Theorem 1 we reason backwards. We will
first consider the case of deterministic algorithms. Assume that A is a t-time
ID-algorithm that computes a maximal fractional matching on any graph of
maximum degree ∆.

OI ; ID: Corollary 1 above gives us a t-time OI-algorithm AOI that computes
a maximal fractional matching on the canonically ordered universal
cover (UG,�) for any loopy PO-graph G of maximum degree ∆.

PO ; OI: Simulation (4) in Section 5.3 queries the output of AOI only on (UG,�).
This gives us a t-time PO-algorithm APO that computes a maximal
fractional matching on any loopy PO-graph G of maximum degree ∆.

EC ; PO: The simple simulation in Section 5.1 gives us a t-time EC-algorithmAEC

that computes a maximal fractional matching on any loopy EC-graph
G of maximum degree ∆/2.
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But now we can use the construction of Section 4: there is a loopy EC-graph of
maximum degree ∆/2 where AEC runs for Ω(∆) rounds. Hence the running time
of A is also Ω(∆).

This completes the proof of Theorem 1 for deterministic algorithms—Appendix A
shows how to extend it to randomised Monte Carlo algorithms.

6 Discussion

We have now a complete characterisation of the distributed time complexity of
maximal fractional matchings in the region ∆� n:

1. There is a deterministic distributed algorithm that finds a maximal fractional
matching in O(∆) rounds, independently of n.

2. There is no (deterministic or randomised) distributed algorithm that finds
a maximal fractional matching in o(∆) rounds, independently of n.

Any maximal matching is also a maximal fractional matching. However, our
lower bound does not have any nontrivial implications on the distributed time
complexity of maximal matchings: Linial’s lower bound [22] already shows that
there is no distributed algorithm that finds a maximal matching in o(∆) rounds,
independently of n.

As discussed in Section 1.1, a major open question is whether there is a
distributed algorithm that finds a maximal matchings in o(∆) +O(log∗ n) rounds.
A more careful analysis of our construction would show that a maximal (fractional)
matching cannot be found in o(∆) + o(log∗ n) rounds, but the proof cannot be
extended directly to algorithms with a running time of o(∆) +O(log∗ n).

Informally, the key obstacle is that we can no longer argue that ID and OI

are equally strong from the perspective of algorithms with a running time of
Θ(log∗ n): in the ID model, such algorithms can produce, e.g., a vertex colouring,
which may possibly help with symmetry breaking. Therefore, a natural first step
towards stronger lower bounds would be to extend the techniques of Section 4
so that they hold also for vertex-coloured graphs. This suggests the following
concrete open question that is currently just beyond the reach of our techniques:

• Is there a deterministic distributed algorithm that finds a maximal matching
in o(∆) rounds in bipartite, 2-vertex-coloured graphs in the port-numbering
model?

Note that there is a simple algorithm that solves the problem in O(∆) rounds:
nodes of colour 1 send proposals to their neighbours, one by one, until one of the
proposals is accepted, and nodes of colour 2 accept the first proposal that they
get, breaking ties with port numbers [12]. However, it is not known if the problem
can be solved in o(∆) rounds, independently of n. Proving such a lower bound
could be a stepping stone towards resolving the open questions related to the
distributed time complexity of maximal matchings, as well as other problems for
which the fastest current algorithms have linear-in-∆ running times for ∆� n.
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A Derandomisation

As discussed in Section 5.2, unbounded outputs require special care. In this
appendix we note that even though Naor and Stockmeyer [25] assume bounded
outputs, their result on derandomising local algorithms applies in our setting,
too.

Recall that a randomised algorithm is an ID-algorithm such that each node
has in addition access to a source of random bits. Let A be a randomised t(∆)-
time algorithm that computes a maximal FM on graphs of maximum degree ∆
or possibly fails with some small probability. Given an assignment of random
bit strings ρ : V (G) → {0, 1}∗ to the nodes of a graph G, denote by Aρ the
deterministic algorithm that computes as A, but uses ρ for randomness.

The proof of Theorem 5.1 in [25] is using the following fact whose proof we
reproduce here for convenience.

Lemma 6. For every n, there is an n-set Sn ⊆ N of identifiers and an assignment
ρn : Sn → {0, 1}∗ such that Aρn is correct on all graphs that have identifiers from
Sn.

Proof. Denote by k = k(n) the number of graphs G with V (G) ⊆ {1, . . . , n}.
Let X1, . . . , Xq ⊆ N be any q disjoint sets of size n. Suppose for the sake of
contradiction that the claim is false for each Xi. That is, for any assignment
ρ : Xi → {0, 1}∗ of random bits, Aρ fails on at least one of the k many graphs G
with V (G) ⊆ Xi. By averaging, this implies that for each i there is a particular
graph Gi, V (Gi) ⊆ Xi, on which A fails with probability at least 1/k. Consider
the graph G that is the disjoint union of the graphs G1, . . . , Gq. Since A fails
independently on each of the components Gi, the failure probability on G is at
least 1− (1− 1/k)q. But this probability can be made arbitrarily close to 1 by
choosing a large enough q, which contradicts the correctness of A.

The deterministic algorithms Aρn allow us to again obtain a t(∆)-time OI-
algorithm, which establishes the Ω(∆) lower bound for A. Only small modifica-
tions to Section 5.4 are needed:

− Step (i). Instead of the infinite set I ⊆ N as previously provided by
Lemma 3, we can use the finite Ramsey’s theorem to find arbitrarily large
sets In ⊆ Sn (i.e., |In| → ∞ as n → ∞) with the property that Aρn fully
saturates the nodes of a loopy OI-neighbourhood that has identifiers from
In (Lemma 4).

− Step (ii). Then, passing again to sufficiently sparse subsets Jn ⊆ In, we
can reprove Lemma 5 and Corollary 1, which only require that J is large
enough.

This concludes the lower bound proof for randomised LOCAL algorithms.

B Combinatorial proof of Lemma 2

In T there is a unique simple directed path x  y between any two nodes
x, y ∈ V (T ). We use V (x y) and E(x y) to denote the nodes and edges of
the path. Also, we set Vin(x y) := V (x y) r {x, y}. We will assign to each
path x y an integer value, denoted Jx yK, which will determine the relative
order of the endpoints.
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Figure 12: In this example, Ju vK = +1, Jv uK = −1, and hence u ≺ v.

By definition, in the PO model, we are given the following linear orders:

− Each node v ∈ V (T ) has a linear order ≺v on its incident edges.
− Each edge e ∈ E(T ) has a linear order ≺e on its incident nodes.

For notational convenience, we extend these relations a little: for v ∈ Vin(x y)
we define x ≺v y ⇐⇒ e ≺v e′, where e is the last edge on the path x v and
e′ is the first edge on the path v y; similarly, for e ∈ E(x y), we define
x ≺e y ⇐⇒ x′ ≺e y′, where e = {x′, y′} and x′ and y′ appear on the path x y
in this order.

For any statement P , we will use the following type of Iverson bracket notation:

[P ] :=

{
+1 if P is true,

−1 if P is false.

We can now define

Jx yK :=
∑

e∈E(x y)

[x ≺e y] +
∑

v∈Vin(x y)

[x ≺v y]. (6)

In particular, Jx xK = 0. The linear order ≺ on V (T ) is now defined by setting

x ≺ y ⇐⇒ Jx yK > 0.

See Figure 12. Next, we show that this is indeed a linear order.

Antisymmetry and totality. Since [x ≺v y] = −[y ≺v x] and [x ≺e y] =
−[y ≺e x], we have the property that

Jx yK = −Jy xK.

23



Moreover, if x 6= y, the first sum in (6) is odd iff the second sum in (6) is even.
Therefore Jx yK is always odd; in particular, it is non-zero. These properties
establish that either x ≺ y or y ≺ x (but never both).

Transitivity. Let x, y, z ∈ V (T ) be three distinct nodes with x ≺ y and y ≺ z;
we need to show that x ≺ z. Denote by v ∈ V (T ) the unique node in the
intersection of the paths x z, z y, and y x.

Viewing the path x z piecewise as x v z we write

Jx zK = Jx vK + [x ≺v z] + Jv zK,

where it is understood that [x ≺v z] := 0 in the degenerate cases where v ∈ {x, z}.
Similar decompositions can be written for z y and y x. Indeed, it is easily
checked that

Jx zK + Jz yK + Jy xK = [x ≺v z] + [z ≺v y] + [y ≺v x].

By assumption, Jz yK, Jy xK ≤ −1, so we get

Jx zK ≥ 2 + [x ≺v z] + [z ≺v y] + [y ≺v x].

The only way the right hand side can be negative is if

[x ≺v z] = [z ≺v y] = [y ≺v x] = −1,

but this is equivalent to having z ≺v x ≺v y ≺v z, which is impossible. Hence
Jx zK ≥ 0. But since x 6= z we must have in fact that x ≺ z.
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