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Abstract. We prove the following result: The set {hn : n = 0, 1, ... } is a

linearly independent sequence of entire functions, where h0 = 1 , hx = gx ,

h2 = S\ ° Sj.. h¡ = gx o g2o g¿, ... , gx is a nonconstant entire function and

gn {n > 2) are entire functions which are not polynomials of degree < 1 .

Our theorem generalizes a previous one about linear independence of iterates.

In [ 1 ] it is proved that except for trivial cases a sequence of iterates of entire

functions is always linearly independent. As a related result, it is also shown in

[1] that the Feigenbaum functional equation:

f(f(Xx))+Xf(x) = 0       (-1<x<1);

0 < A = -/(l) < 1 ;        /(0) = 1,

does not have an entire solution.

In this paper we shall generalize the interesting theorems proved in [1]. For

the sake of completeness, we state them. In the following we denote by f? the

space of all entire functions, and by C the complex plane.

Theorem A. Let f be a nonidentically zero entire function that satisfies the

functional equation:

f(f(Xz))+Xf(z) = 0

for all z eC, where X is a fixed nonzero complex number, then either f(z) = -z

and X is arbitrary or f(z) is a constant with X = -1.

From Theorem A, the nonexistence of entire solutions of ( 1 ) is derived.

Theorem B. Let f be an entire function that is not a polynomial of degree < 1.

Let Rf: 9 -> 9" be defined by Rf(g) = g o f for all g e &. Then Rf has
no eigenvalue distinct from 0, 1 and any eigenfunction with eigenvalue 1 is a

constant.

Theorem C. Let g be a nonconstant entire function and let f be an entire

function which is not a polynomial of degree < 1. Denote the successive iterates
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of f in the following way: fx= f, f2 = fofx, ... , fn+x= f°fn («=1,2,...),
and f0 will stand for the identity mapping. Then {g ° fn: n > 0} is a linearly

independent sequence of entire functions.

The proofs of these results are based upon a classical result of Pólya (see [5; 2,

pp. 50-51]) concerning the growth of Nevanlinna's characteristics of composite

functions. We prove a more general theorem without using these characteristics.

First, we need several results about the maximum modulus of an entire func-

tion. Throughout this paper we use the following notation. If /, g, h, f¡, g¡,

h¡, ... are entire functions, then F, G, H, F¡, G¡, H(, ... respectively are

their maximum modulus functions, i.e., F(r) = max{|/(z)|: \z\ = r} (r > 0)

and so on. If / = Y^=i ̂ ¡f (X¡ e C; i — 1,2,..., n) and h = g o f, then,
trivially, F(r) < £"=1 pLJ-F^r) and H(r) < G(F(r)) for all r > 0. For func-

tions defined on large enough r > 0, we say that <p(r) < y/(r) asymptotically

(asymp.) when there is r0 > 0 with tp(r) < y/(r) for every r > rQ .

The proof of the following theorem can be found, for instance, in [3, pp.

80-81; 4, pp. 225-227].

Theorem D. Assume that f, g € &~, h = g o /, and /(O) = 0. Then, there

exists c e (0, 1 ) independent from f and g such that

G(cF(r/2)) < H(r)   for all   r > 0.

Next, we state two previous lemmas.

Lemma 1. Suppose that f e SF, f is not constant, a > 1 and 0 < ß < a.

Then ßF(r) < F(ar) asymp.

Proof. We obtain \g(z)\ < \z\G(R)/R if \z\ < R by applying Schwarz's lemma

to g(z) = f(z) - /(0). If R = ar, then F(r) - |/(0)| < G(r) < (r/R)(F(R) +

|/(0)|) = (F(ar) + |/(0)|)/a . Choose e = (a - ß)/(2a + 2ß). Then there is

r0 > 0 with |/(0)| < eF(r0). Thus F(ar) > ((1 -e)a/(l +e))F(r) > ßF(r) for

all r > rQ .   D

Lemma 2. Assume that p  is a nonnegative integer,  p > 2,   g¡ € 9"   (i =

1, 2, ... , p), gi is a nonconstant function (i = 2, 3, ... , p) and h = gx o g2 o

■ ■ ■ o gp . Then, there exists d e (0, 1 ) such that

H(r) > (Gx o G2 o ■ ■ ■ o Gp) (dr)    asymp.

Proof, Let us prove the lemma for p = 2 and put g(z) = gx(z + g2(0)) and

f(z) = g2(z)-g2(0). Evidently, h = gof, /(0) = 0, F(r) > G2(r)-\g2(0)\

(r > 0), G(s) >Gx(s- \g2(0)\) (s > \g2(0)\) and C72(r) >(2 + (2/c))|*2(0)|
asymp., where c is the constant in Theorem D. Then by this theorem we can

conclude that

G(cF(r/2)) > Gx(cF(r/2) - \g2(Q)\) > Gx(cG2(r/2) - (c + l)\g2(0)\).

Hence

(2) H(r)>Gx((c/2)G2(r/2))    asymp.
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Let d = c/6. By applying Lemma 1 to a = 3/c, ß = 2/c we obtain

G2(r/2) = G2(adr) > ßG2(dr) asymp. This inequality and (2) complete the

case p = 2.

Let us go on by induction. Assume that there is dx e (0, I) such that

(3) Q(r)>(GxoG2o-..oGp_x)(dxr)    asymp.,

where q(z) - gx o g2 o • • • o g . We have h = q o gp , so we can apply the case

p = 2. There exists d2 e (0, 1) such that

(4) H(r) > Q(Gp(d2r))    asymp.

Again apply Lemma 1 with a — 2/d{ , ß = \/dx and set d = dxd2/2. Then

(5) dxGp(d2r) = (\/ß)Gp(adr)>Gp(dr)    asymp.

Equations (3)-(5) complete the proof.   D

Theorem. Suppose that gx is a nonconstant entire function and gn (n > 2)

are entire functions which are not polynomials of degree < 1. Define h0 = 1,

h\ = #i - hn = Vi ° 8n (" > 2). Then {hn: n = 0, 1, 2, ...} is a linearly
independent sequence of entire functions.

Proof. By contradiction, let p be an integer > 2 and let Y,1=o^ini(z) = 0 f°r

all z e C, with Xt■ e C  (i = 0, 1,..., p) and Xp^0 (cases p - 0 and p = 1

are trivial). Then hp = ££To P;a¿ » where <"/ = _V^ (' = ° > 1, • • ■ , P - 1) •

We have i/p(r) < // • Y?~q Hj(r) {r > 0), with // a fixed positive real number

greater than max{|/i; | : i — 0, 1,..., p — 1}. By applying Lemma 2, we have

((?, o G2 o • • • o c7p) (ß?r) < p + p Y11Z\ (G, o G2 o • • • o G¡)(r) asymp. Define <p by

<p(r) = (GxoG2o...oGp_x)(r)       (r>0).

Evidently, 1 < ep(r) asymp. and (Gx o G2 o ■■■ o G()(r) < tp(r) asymp. (i =

l, 2, ... , p-l), because Gj(r) > r asymp. for ail j > 2 and each G (j > 1)

is strictly increasing, by hypothesis. Hence,

(6) <p(Gp(dr)) < pptp(r)    asymp.

Since gp is not a polynomial of degree < 1, the inequality

Gp(r)>(p/d)(\+p)r    asymp.

holds. Then we apply Lemma 1/7 — 1 times to obtain <p(G (dr)) >

<p((p + pp)r) >(GxoG2o..-o Gp_2)((p - 1 + pp)Gp_x(r)) > «?, o •. ■ o Gp_3)

((p-2+pp)(Gp_2oGp_x)(r)) > ••• > (l+pp)(Gxo---oGp_x)(r) > pp<p(r) asymp.,

that is a contradiction with (6).   D

Finally, we derive Theorems A, B, and C as a corollary.

Proof of Theorem A. If / is a polynomial of degree < 1 , then the statement is

obvious. Now, let / be an entire function that is not a polynomial of degree

< 1. Then / does not satisfy f(f(Xz)) + Xf(z) = 0(z e C) for any nonzero
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X e C.   To see this, we only have to apply our theorem to gx = /, gn =

/(Az)(h > 2).

Proof of Theorem B. Let g be an eigenfunction for Rf. Applying our theorem

to gx = g, gn = / (n > 2), we deduce that g is a constant (g(z) = p ^ 0).

Consequently, there is A 6 C such that p — Xp = 0. Thus, in fact, X = 1 is

the unique eigenvalue of Rf and the eigenfunctions are precisely the set of all

nonzero constant entire functions.

Proof of Theorem C. Again apply our theorem to gx = g , gn = f  (n>2).
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