LINEAR INDEPENDENCE OF ITERATES OF ENTIRE FUNCTIONS

LUIS BERNAL GONZÁLEZ

(Communicated by Paul S. Muhly)

ABSTRACT. We prove the following result: The set $\{h_n : n = 0, 1, ...\}$ is a linearly independent sequence of entire functions, where $h_0 = 1$, $h_1 = g_1$, $h_2 = g_1 \circ g_2$, $h_3 = g_1 \circ g_2 \circ g_3$, ..., g_1 is a nonconstant entire function and g_n $(n \ge 2)$ are entire functions which are not polynomials of degree ≤ 1 . Our theorem generalizes a previous one about linear independence of iterates.

In [1] it is proved that except for trivial cases a sequence of iterates of entire functions is always linearly independent. As a related result, it is also shown in [1] that the Feigenbaum functional equation:

(1)
$$f(f(\lambda x)) + \lambda f(x) = 0 \quad (-1 \le x \le 1); \\ 0 < \lambda = -f(1) < 1; \quad f(0) = 1,$$

does not have an entire solution.

In this paper we shall generalize the interesting theorems proved in [1]. For the sake of completeness, we state them. In the following we denote by \mathcal{F} the space of all entire functions, and by C the complex plane.

Theorem A. Let f be a nonidentically zero entire function that satisfies the functional equation:

$$f(f(\lambda z)) + \lambda f(z) = 0$$

for all $z \in \mathbb{C}$, where λ is a fixed nonzero complex number, then either f(z) = -zand λ is arbitrary or f(z) is a constant with $\lambda = -1$.

From Theorem A, the nonexistence of entire solutions of (1) is derived.

Theorem B. Let f be an entire function that is not a polynomial of degree ≤ 1 . Let $R_f: \mathscr{F} \to \mathscr{F}$ be defined by $R_f(g) = g \circ f$ for all $g \in \mathscr{F}$. Then R_f has no eigenvalue distinct from 0, 1 and any eigenfunction with eigenvalue 1 is a constant.

Theorem C. Let g be a nonconstant entire function and let f be an entire function which is not a polynomial of degree ≤ 1 . Denote the successive iterates

©1991 American Mathematical Society 0002-9939/91 \$1.00 + \$.25 per page

Received by the editors February 12, 1990.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 30D05; Secondary 30D15.

Key words and phrases. Entire functions, linear independence, iterates, maximum modulus, asymptotic inequalities, composite functions.

of f in the following way: $f_1 = f$, $f_2 = f \circ f_1, \ldots, f_{n+1} = f \circ f_n$ $(n = 1, 2, \ldots)$, and f_0 will stand for the identity mapping. Then $\{g \circ f_n : n \ge 0\}$ is a linearly independent sequence of entire functions.

The proofs of these results are based upon a classical result of Pólya (see [5; 2, pp. 50-51]) concerning the growth of Nevanlinna's characteristics of composite functions. We prove a more general theorem without using these characteristics.

First, we need several results about the maximum modulus of an entire function. Throughout this paper we use the following notation. If f, g, h, f_i, g_i , h_i, \ldots are entire functions, then $F, G, H, F_i, G_i, H_i, \ldots$ respectively are their maximum modulus functions, i.e., $F(r) = \max\{|f(z)|: |z| = r\}$ (r > 0) and so on. If $f = \sum_{i=1}^{n} \lambda_i f_i$ $(\lambda_i \in \mathbb{C}; i = 1, 2, \ldots, n)$ and $h = g \circ f$, then, trivially, $F(r) \leq \sum_{i=1}^{n} |\lambda_i| F_i(r)$ and $H(r) \leq G(F(r))$ for all r > 0. For functions defined on large enough r > 0, we say that $\varphi(r) < \psi(r)$ asymptotically (asymp.) when there is $r_0 > 0$ with $\varphi(r) < \psi(r)$ for every $r > r_0$.

The proof of the following theorem can be found, for instance, in [3, pp. 80-81; 4, pp. 225-227].

Theorem D. Assume that $f, g \in \mathcal{F}$, $h = g \circ f$, and f(0) = 0. Then, there exists $c \in (0, 1)$ independent from f and g such that

$$G(cF(r/2)) \leq H(r)$$
 for all $r > 0$.

Next, we state two previous lemmas.

Lemma 1. Suppose that $f \in \mathcal{F}$, f is not constant, $\alpha > 1$ and $0 < \beta < \alpha$. Then $\beta F(r) < F(\alpha r)$ asymp.

Proof. We obtain $|g(z)| \le |z|G(R)/R$ if $|z| \le R$ by applying Schwarz's lemma to g(z) = f(z) - f(0). If $R = \alpha r$, then $F(r) - |f(0)| \le G(r) \le (r/R)(F(R) + |f(0)|) = (F(\alpha r) + |f(0)|)/\alpha$. Choose $\varepsilon = (\alpha - \beta)/(2\alpha + 2\beta)$. Then there is $r_0 > 0$ with $|f(0)| < \varepsilon F(r_0)$. Thus $F(\alpha r) \ge ((1 - \varepsilon)\alpha/(1 + \varepsilon))F(r) > \beta F(r)$ for all $r > r_0$. \Box

Lemma 2. Assume that p is a nonnegative integer, $p \ge 2$, $g_i \in \mathscr{F}$ (i = 1, 2, ..., p), g_i is a nonconstant function (i = 2, 3, ..., p) and $h = g_1 \circ g_2 \circ \cdots \circ g_n$. Then, there exists $d \in (0, 1)$ such that

$$H(r) \ge (G_1 \circ G_2 \circ \cdots \circ G_n) (dr)$$
 asymp.

Proof. Let us prove the lemma for p = 2 and put $g(z) = g_1(z + g_2(0))$ and $f(z) = g_2(z) - g_2(0)$. Evidently, $h = g \circ f$, f(0) = 0, $F(r) \ge G_2(r) - |g_2(0)|$ (r > 0), $G(s) \ge G_1(s - |g_2(0)|)$ $(s > |g_2(0)|)$ and $G_2(r) > (2 + (2/c))|g_2(0)|$ asymp., where c is the constant in Theorem D. Then by this theorem we can conclude that

$$G(cF(r/2)) \ge G_1(cF(r/2) - |g_2(0)|) \ge G_1(cG_2(r/2) - (c+1)|g_2(0)|).$$

Hence

(2)
$$H(r) \ge G_1((c/2)G_2(r/2))$$
 asymptotic asymptotic difference in the symptotic din

Let d = c/6. By applying Lemma 1 to $\alpha = 3/c$, $\beta = 2/c$ we obtain $G_2(r/2) = G_2(\alpha dr) \ge \beta G_2(dr)$ asymp. This inequality and (2) complete the case p = 2.

Let us go on by induction. Assume that there is $d_1 \in (0, 1)$ such that

(3)
$$Q(r) \ge (G_1 \circ G_2 \circ \cdots \circ G_{p-1})(d_1 r)$$
 asymp.

where $q(z) = g_1 \circ g_2 \circ \cdots \circ g_{p-1}$. We have $h = q \circ g_p$, so we can apply the case p = 2. There exists $d_2 \in (0, 1)$ such that

(4)
$$H(r) \ge Q(G_n(d_2r))$$
 asymp.

Again apply Lemma 1 with $\alpha = 2/d_1$, $\beta = 1/d_1$ and set $d = d_1 d_2/2$. Then

(5)
$$d_1 G_p(d_2 r) = (1/\beta) G_p(\alpha \, dr) \ge G_p(dr) \quad \text{asymp}$$

Equations (3)–(5) complete the proof. \Box

Theorem. Suppose that g_1 is a nonconstant entire function and g_n $(n \ge 2)$ are entire functions which are not polynomials of degree ≤ 1 . Define $h_0 = 1$, $h_1 = g_1$, $h_n = h_{n-1} \circ g_n$ $(n \ge 2)$. Then $\{h_n : n = 0, 1, 2, ...\}$ is a linearly independent sequence of entire functions.

Proof. By contradiction, let p be an integer ≥ 2 and let $\sum_{i=0}^{p} \lambda_i h_i(z) = 0$ for all $z \in \mathbb{C}$, with $\lambda_i \in \mathbb{C}$ (i = 0, 1, ..., p) and $\lambda_p \neq 0$ (cases p = 0 and p = 1 are trivial). Then $h_p = \sum_{i=0}^{p-1} \mu_i h_i$, where $\mu_i = -\lambda_i/\lambda_p$ (i = 0, 1, ..., p - 1). We have $H_p(r) < \mu \cdot \sum_{i=0}^{p-1} H_i(r)$ (r > 0), with μ a fixed positive real number greater than $\max\{|\mu_i|: i = 0, 1, ..., p - 1\}$. By applying Lemma 2, we have $(G_1 \circ G_2 \circ \cdots \circ G_p)(dr) < \mu + \mu \sum_{i=1}^{p-1} (G_1 \circ G_2 \circ \cdots \circ G_i)(r)$ asymp. Define φ by $\varphi(r) = (G_1 \circ G_2 \circ \cdots \circ G_{p-1})(r)$ (r > 0).

Evidently, $1 < \varphi(r)$ asymp. and $(G_1 \circ G_2 \circ \cdots \circ G_i)(r) \le \varphi(r)$ asymp. $(i = 1, 2, \ldots, p-1)$, because $G_j(r) > r$ asymp. for all $j \ge 2$ and each G_j $(j \ge 1)$ is strictly increasing, by hypothesis. Hence,

(6)
$$\varphi(G_n(dr)) < p\mu\varphi(r)$$
 asymp.

Since g_n is not a polynomial of degree ≤ 1 , the inequality

$$G_p(r) > (p/d)(1+\mu)r$$
 asymp.

holds. Then we apply Lemma 1 p-1 times to obtain $\varphi(G_p(dr)) > \varphi((p+p\mu)r) > (G_1 \circ G_2 \circ \cdots \circ G_{p-2})((p-1+p\mu)G_{p-1}(r)) > (G_1 \circ \cdots \circ G_{p-3})$ $((p-2+p\mu)(G_{p-2} \circ G_{p-1})(r)) > \cdots > (1+p\mu)(G_1 \circ \cdots \circ G_{p-1})(r) > p\mu\varphi(r)$ asymp., that is a contradiction with (6). \Box

Finally, we derive Theorems A, B, and C as a corollary.

Proof of Theorem A. If f is a polynomial of degree ≤ 1 , then the statement is obvious. Now, let f be an entire function that is not a polynomial of degree ≤ 1 . Then f does not satisfy $f(f(\lambda z)) + \lambda f(z) = 0 (z \in \mathbb{C})$ for any nonzero

 $\lambda \in \mathbb{C}$. To see this, we only have to apply our theorem to $g_1 = f$, $g_n = f(\lambda z)(n \ge 2)$.

Proof of Theorem B. Let g be an eigenfunction for R_f . Applying our theorem to $g_1 = g$, $g_n = f$ $(n \ge 2)$, we deduce that g is a constant $(g(z) = \mu \ne 0)$. Consequently, there is $\lambda \in \mathbb{C}$ such that $\mu - \lambda \mu = 0$. Thus, in fact, $\lambda = 1$ is the unique eigenvalue of R_f and the eigenfunctions are precisely the set of all nonzero constant entire functions.

Proof of Theorem C. Again apply our theorem to $g_1 = g$, $g_n = f$ $(n \ge 2)$.

References

- 1. J.P.R. Christensen and P. Fischer, Linear independence of iterates and entire solutions of functional equations, Proc. Amer. Math. Soc. 103 (1988), 1120-1124.
- 2. W. K. Hayman, *Meromorphic functions*, Oxford Mathematical Monograph, Clarendon Press, 1964.
- 3. A. S. B. Holland, Introduction to the theory of entire functions, Academic Press, New York and London, 1973.
- 4. J. E. Littlewood, *Lectures on the theory of functions*, Oxford Univ. Press, London and New York, 1944.
- 5. G. Pólya, On an integral function of an integral function, J. London Math. Soc. 1 (1926), 12-15.

Departamento de Análisis Matemático, Facultad de Matemáticas, Avenida Reina Mercedes, 41080-Sevilla, Spain