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Abstract. The refinement equation ϕ(t) =
∑N2
k=N1

ck ϕ(2t − k) plays a key

role in wavelet theory and in subdivision schemes in approximation theory.
Viewed as an expression of linear dependence among the time-scale translates
|a|1/2ϕ(at − b) of ϕ ∈ L2(R), it is natural to ask if there exist similar depen-
dencies among the time-frequency translates e2πibtf(t + a) of f ∈ L2(R). In
other words, what is the effect of replacing the group representation of L2(R)
induced by the affine group with the corresponding representation induced by
the Heisenberg group? This paper proves that there are no nonzero solutions to
lattice-type generalizations of the refinement equation to the Heisenberg group.
Moreover, it is proved that for each arbitrary finite collection {(ak , bk)}Nk=1,

the set of all functions f ∈ L2(R) such that {e2πibktf(t+ ak)}Nk=1 is indepen-

dent is an open, dense subset of L2(R). It is conjectured that this set is all of
L2(R) \ {0}.

1. Introduction

Gabor analysis and wavelet analysis are two important classes of techniques with
applications in mathematics, physics, and engineering. Each can be described in
terms of the action of a particular group on a function space, such as L2(R) =
{f :

∫∞
−∞ |f(t)|2 dt < ∞}. This point of view has been beautifully advanced in

the atomic decomposition theory of Feichtinger and Gröchenig [FG1], [FG2], which
applies to general representations acting on Banach spaces. A survey specifically
of Gabor and wavelet analysis on L2(R) from the group viewpoint can be found in
the research/tutorial article [HW].

The group for Gabor analysis is the Heisenberg group H = T×R×R, where T
is the unit circle in the complex plane and R is the real line. The group operation
is induced by the Schroedinger representation ρ of H on L2(R) [F], which is defined
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by

ρ(z, a, b)f(t) = z eπiab e2πibt f(t+ a) for (z, a, b) ∈ H and f ∈ L2(R).

In this paper the toral component of H is inconsequential, as multiplication by the
scalar z and phase factor eπiab can always be absorbed into other scalar multipli-
cations that will appear. We therefore write simply ρ(a, b)f(t) = e2πibt f(t + a).
We call ρ(a, b)f a time-frequency translate of f , and refer to R2 = R×R as phase
space.

In Gabor analysis, a function g ∈ L2(R) is analyzed in terms of the collection of
inner products {〈g, ρ(a, b)f〉 : (a, b) ∈ Λ}, where f ∈ L2(R) and Λ ⊂ R2 are fixed
and are selected according to some constraints. These inner products 〈g, ρ(a, b)f〉
are termed Gabor coefficients. Retaining all possible Gabor coefficients (i.e., Λ =
R2) permits a stable integral reconstruction of g from those coefficients for any
f . The mapping g 7→ {〈g, ρ(a, b)f〉 : (a, b) ∈ R2} is called the continuous Gabor
transform of g by f . Less redundant transforms can be obtained by selecting a
discrete subset Λ of R2. In order that g be completely determined by the Gabor
coefficients corresponding only to (a, b) ∈ Λ, the collection

S(f,Λ) = {ρ(a, b)f : (a, b) ∈ Λ}

of time-frequency translates of f along Λ must be complete in L2(R). In order to
allow stable reconstruction of g from these Gabor coefficients, S(f,Λ) must form
a frame for L2(R). (Frames are generalizations of Riesz bases, allowing stable
basis-like representations of elements but without the requirement that these rep-
resentations be unique.)

Extensive effort has been put into analyzing the properties of S(f,Λ). Feichtinger–
Gröchenig theory ensures that S(f,Λ) will be a frame for L2(R) for many f as long
as Λ is dense enough. This result is not dependent on the representation or the
function space, although the required density does depend on these factors. Aside
from density, no structural properties of Λ are required.

In the opposite direction, it is known that S(f,Λ) cannot be complete if the
density of Λ is too low. Specifically, for the lattice Λ = aZ×bZ, Daubechies [D1] and
Rieffel [R] proved that S(f,Λ) is incomplete if the density 1/(ab) is strictly less than
one. Both proofs rely heavily on the algebraic structure of Λ. Rieffel’s result is a
corollary of powerfulC∗-algebra theorems. Daubechies’ result, which applies only to
rational values of ab, relies on the Zak transform, a unitary mapping of L2(R) onto
L2([0, 1)2) with numerous applications in Gabor analysis. Daubechies’ monograph
[D2] contains a wealth of expository information relating to the analysis of S(f,Λ)
with lattice Λ. Recently, Ramanathan and Steger [RS] proved for arbitrary irregular
Λ that S(f,Λ) cannot be a frame for any f if Λ has density strictly less than one.
The proof requires only simple dimension-counting techniques. Moreover, if S(f,Λ)
is a frame and Λ has density greater than one, then S(f,Λ) is overcomplete, hence
not a basis for L2(R). Thus S(f,Λ) can form a Riesz basis for L2(R) only if Λ
has density exactly one. For the case of lattice Λ = aZ× bZ with density 1/(ab) =
1, the Balian–Low Theorem places severe restrictions on those f ∈ L2(R) such
that S(f,Λ) can form a Riesz basis. Specifically, f must “maximize uncertainty,”

meaning that
(∫
|t f(t)|2 dt

) (∫
|γ f̂(γ)|2 dγ

)
= +∞. In particular, either f is not

smooth or it has very slow decay at infinity. Proofs of the Balian–Low Theorem
are exposited in [BHW] and [D2].
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Note added in proof. Walnut and Heil recently observed that the work of Landau
[L] on sparse sets of exponentials on unions of intervals implies the existence of
complete Gabor systems S(f,Λ), where Λ is not a lattice and has density strictly
less than one [BHW].

Wavelet analysis is parallel in certain respects to Gabor analysis, with the affine
group A = (R \ {0})×R substituting for the Heisenberg group. Time-scale trans-
lates replace time-frequency translates: we let σ be the representation of A on
L2(R) defined by σ(a, b)ψ(t) = |a|1/2 ψ(at − b) for (a, b) ∈ A and ψ ∈ L2(R).
Again, we may define a continuous transform, or seek frames or bases of the form

T (ψ,Λ) = {σ(a, b)ψ : (a, b) ∈ Λ}.
Feichtinger–Gröchenig theory again ensures the existence of frames for Λ which are
“dense enough.” However, because the affine group differs considerably in structure
from the Heisenberg group, there are several striking differences in the obtainable
properties of S(f,Λ) versus T (ψ,Λ). Perhaps the most striking is that T (ψ,Λ) can
form an orthonormal basis with smooth, well-localized ψ. The smoothness can be
Ck if ψ is compactly supported, or C∞ (with exponential decay) if ψ is infinitely
supported. The typical choice for Λ in these constructions is the “regular” discrete
subset Λ = {(an,mb) : m,n ∈ Z}, most often with a = 2 and b = 1. This Λ is not a
subgroup of A—in fact, A contains no discrete subgroups. Daubechies’ monograph
[D2] is again an excellent reference for details of these constructions.

This paper analyzes another fundamental property of S(f,Λ) in terms of f and
Λ. That property is finite linear independence. An immediate motivation arises
from the fact that any practical implementation of frames must be finite. And
since any finite set of independent vectors is a Riesz basis for its linear span, the
first basic question is whether S(f,Λ) is independent when Λ is finite. Our results
here on finite independence of S(f,Λ) have inspired new results from Christensen
on finite implementations of frames [C].

A second motivation follows immediately upon comparison with the indepen-
dence properties of time-scale translates. The key step in the construction of com-
pactly supported wavelets ψ such that T (ψ,Λ) forms an orthonormal basis for
L2(R) is the solution of a refinement equation

ϕ(t) =

N2∑
k=N1

ck ϕ(2t− k)(1)

to find a scaling function ϕ. This refinement equation is also the starting point
for the generation of subdivision schemes in approximation theory [CDM]. Note
that it is an expression of linear dependence among the time-scale translates of ϕ:

σ(1, 0)ϕ =
∑N2

k=N1
ck σ(2, k)ϕ. Thus T (ϕ,Λ) is dependent when Λ = {(1, 0)} ∪

{(2, k)}N2

k=N1
, a set of regularly spaced points with one additional point. A natural

question is whether there are analogous dependencies among time-frequency trans-
lates: if we take Λ to be any set of regularly spaced points in R2 along with one
additional point, i.e., Λ = {(p, q)} ∪ {(ak + c, bk + d)}N2

k=N1
, will S(f,Λ) be depen-

dent for some f ∈ L2(R)? In other words, are there solutions to the “Heisenberg
refinement equation”

e2πipt f(t+ q) =

N2∑
k=N1

ck e
2πi(bk+d)t f(t+ ak + c)?(2)
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We prove in Section 3 that the answer to this question is no (and therefore that
there are no “Heisenberg multiresolution analyses” for L2(R)). In particular, this
implies that any collection of three or fewer time-frequency translates of any nonzero
f must be independent.

The assumption made for this result, that the points of Λ are regularly spaced
and collinear with at most one non-collinear point, is crucial to our method of proof,
which is based on the Ergodic Theorem. The question for arbitrary finite Λ is open.
We prove in Section 4 that S(f,Λ) is independent for several special classes of f
and Λ. In particular, we prove that for each fixed finite Λ, the set of functions
f ∈ L2(R) such that S(f,Λ) is independent is an open, dense subset of L2(R).
Thus dependency of S(f,Λ) occurs at most rarely, at least in the Baire category
sense: the set of f whose translates are dependent is a nowhere dense subset of
L2(R). We conjecture that this set actually consists of the zero function alone.

Conjecture. If f ∈ L2(R) is nonzero, then S(f,Λ) is linearly independent for
every finite Λ ⊂ R2.

We note that our results and this Conjecture generalize easily to higher di-
mensions. Most of the results also apply to Lp(R) for 1 ≤ p < ∞. The ana-
logue of the Conjecture for L∞(R) is clearly false. An interesting counterexam-

ple for this case is any trigonometric polynomial f(t) =
∑N
k=1 ck e

2πibkt—since
f(t + a) f(t) − f(t) f(t + a) = 0 for each a, we have S(f,Λ) dependent with
Λ = {(0, bk)} ∪ {(a, bk)}.

In this paper we focus on the Schroedinger representation induced by the Heisen-
berg group, with motivation provided by comparison with the representation in-
duced by the affine group. It would be of great interest to understand the problem
of independence more generally, i.e., to tie the existence of dependency relations
among group translates of a function to some specific structures in the group or its
representation.

2. Operations on phase space

Independence of S(f,Λ) is preserved by area-preserving affine transformations of
phase space, also called metaplectic transforms. In particular, if α ∈ R2 is fixed and
M is a 2×2 matrix with determinant one, then there are unitary operators U , V on
L2(R) such that S(f,Λ) = V (S(Uf,MΛ + α)). Therefore S(f,Λ) is independent
if and only if S(Uf,MΛ + α) is independent. This is most easily seen by writing
M as a composition of shears and axis rescalings, and using the following facts.

a. Translations. The time and frequency translation operators Trf(t) = f(t+ r)
and Mrf(t) = e2πirt f(t) translate phase space parallel to the axes: ρ(a, b) =
eπirb ρ(a− r, b)Tr and ρ(a, b) = e−πira ρ(a, b− r)Mr .

b. Rescalings. The dilation operator Drf(t) = |r|1/2 f(rt) rescales the axes:
ρ(a, b) = D1/r ρ(a/r, br)Dr.

c. Shears. Modulation by a linear-FM chirp shears phase space along the

frequency axis: if Srf(t) = eπirt
2

f(t), then ρ(a, b) = S−r ρ(a, b − ar)Sr. Sim-
ilarly, convolution with a linear-FM chirp shears along the time axis: if Urf =

(eπirt
2

)∨ ∗ f = (Srf̂)∨, then ρ(a, b) = U−r ρ(−a− br,−b)Ur.
Metaplectic transforms have recently been applied to time-frequency analysis in

novel ways by Mann, Baraniuk, Haykin, and Jones [MBHJ]. In addition, Kaiser [K]
has shown how rotations of phase space can be useful in constructing collections
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S(f,Λ) which form frames for L2(R) when Λ = aZ × bZ is a lattice in R2. The
Fourier transform rotates phase space by π/2: ρ(a, b) = F−1 ρ(−b, a)F , where
Fg(γ) = ĝ(γ) =

∫
g(t) e−2πiγt dt. Arbitrary rotations can be achieved using the

Hermite operator, or harmonic oscillator Hamiltonian, H = t2 − 1
4π2

d2

dt2 . The

unitary operator Rθ = e−2πiθH rotates phase space by θ:

ρ(a, b) = R−θ ρ(a cos θ − b sin θ, a sin θ + b cos θ)Rθ.

We use metaplectic transforms to simplify several of the proofs. For example,
here are two simple results establishing that S(f,Λ) is always independent for some
specific Λ.

Proposition 1. Assume f ∈ L2(R) is nonzero. If the elements of Λ are collinear,
then S(f,Λ) is linearly independent.

Proof. By applying a metaplectic transform, we may assume that Λ = {(0, bk)}Nk=1

with distinct bk. However,
∑N
k=1 ck ρ(0, bk)f(t) =

(∑N
k=1 ck e

2πibkt
)
f(t), and

trigonometric polynomials are nonzero almost everywhere.

A lattice in R2 is any rigid translation of a discrete subgroup of R2 generated
by two independent vectors in R2. It is a unit lattice if a fundamental tile has area
one.

Proposition 2. Fix any nonzero f ∈ L2(R). If Λ is a finite subset of a unit lattice
in R2, then S(f,Λ) is linearly independent.

Proof. By applying a metaplectic transform, we may assume that Λ is a subset of
Z2. Let Z be the Zak transform Zf(t, ω) =

∑
k∈Z f(t+k) e−2πikω. This is a unitary

mapping of L2(R) onto L2([0, 1)2). Properties of the Zak transform are surveyed
in [J] and [HW, Section 4.3]. We need only the fact that Z(ρ(m,n)f)(t, ω) =

e2πint e2πimω Zf(t, ω), so that Z
(∑

(m,n)∈Λ cmn ρ(m,n)f
)

(t, ω) = E(t, ω)Zf(t, ω),

with E a two-dimensional trigonometric polynomial, which must be nonzero almost
everywhere.

3. Heisenberg refinement equations

Proposition 1 states that S(f,Λ) is always independent if the elements of Λ
are collinear. The addition of one non-collinear point to Λ greatly complicates the
question of independence. In this section we prove that S(f,Λ) remains independent
with one non-collinear point, as long as the collinear points are regularly spaced.
In particular, there are no solutions to the Heisenberg refinement equation (2).

Theorem 1. Assume f ∈ L2(R) is nonzero. If Λ consists of a finite collection of
regularly spaced collinear points in phase space together with one additional point,
i.e., if

Λ = {(p, q)} ∪ {(ak + c, bk + d)}N2

k=N1
,

then S(f,Λ) is linearly independent. In particular, this is the case for any Λ con-
sisting of three or fewer points.

Proof. By applying a metaplectic transform, we may assume that Λ is a finite subset
of {(a, 0)} ∪ {(0, k)}k∈Z, with a ≥ 0. If a = 0 then the points of Λ are collinear,
and the proof follows by Proposition 1. Assume therefore that a > 0.
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Suppose that S(f,Λ) is dependent. Then there would exist scalars c, ck so that

c f(t+ a) =
∑

(0,k)∈Λ

ck e
2πikt f(t) a.e.(3)

In light of Proposition 1 we cannot have c = 0, so we may normalize to c = 1.
By replacing f by a translate f(t + r) and changing the values of the ck in (3)
correspondingly, we may assume that (3) holds and that

A = supp(f) ∩ [0,min(a, 1)]

has positive measure. Let M(t) be the 1-periodic trigonometric polynomial M(t) =∑
(0,k)∈Λ ck e

2πikt, so that

f(t+ a) = M(t) f(t) a.e.(4)

Iterating (4), we have

f(t+ an) = f(t)
n−1∏
j=0

M(t+ ja) = f(t)Pn(t), n ≥ 0.(5)

Replacing t by t − a in (4), we have f(t) = M(t − a) f(t − a). Since M is a
trigonometric polynomial, it is nonzero almost everywhere. Therefore f(t − a) =
M(t− a)−1 f(t) a.e. Iterating this, we obtain

f(t− an) = f(t)
n∏
j=1

M(t− ja)−1 = f(t)Qn(t), n ≥ 0.(6)

Therefore, from equalities (5) and (6) we conclude that f(t)Qn(t) = f(t − an) =
f(t)Pn(t− an)−1, so

Qn(t) = Pn(t− an)−1, t ∈ supp(f).(7)

Applying (5), we compute

∞ >

∫ ∞
0

|f(t)|2 dt =
∞∑
n=0

∫ a

0

|f(t+ an)|2 dt

=

∫ a

0

∞∑
n=0

|f(t)|2 |Pn(t)|2 dt ≥
∫
A

|f(t)|2
∞∑
n=0

|Pn(t)|2 dt.

After a similar calculation based on (6) and the fact that
∫ a
−∞ |f(t)|2 dt < ∞, we

conclude that

lim
n→∞

Pn(t) = lim
n→∞

Qn(t) = 0, a.e. t ∈ A.(8)

If a is rational, say a = p/q, then aq = p is an integer, so from (7) we have
Qqn(t) = Pqn(t− aqn)−1 = Pqn(t)−1 for t ∈ supp(f). This contradicts (8).

Assume then that a is irrational. By Egorov’s Theorem applied to (8), we can
find a set E ⊂ A with positive measure such that Pn(t) → 0 uniformly for t ∈ E.
Similarly, there is a set F ⊂ A with positive measure such that Qn(t)→ 0 uniformly
for t ∈ F .

Now fix 0 < ε < 1. Then there exists an integer N such that |Pn(t)| < ε for
t ∈ E and |Qn(t)| < ε for t ∈ F if n > N . Because a is irrational, the mapping
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τt = t − a mod 1 is a measure-preserving, ergodic map of [0, 1) onto itself. The
Ergodic Theorem [W, Corollary 1.14.2] therefore implies that

lim
k→∞

1

k

k−1∑
n=0

|τ−nE ∩ F | = |E| |F | > 0.

So, there must be an n > N such that |τ−nE ∩ F | > 0. However, if t ∈ τ−nE ∩ F
then t − na mod 1 ∈ E and t ∈ F . Therefore |Pn(t − na)| < ε and |Qn(t)| < ε for
every t ∈ τ−nE ∩ F . Since Qn(t) = Pn(t− na)−1 for each such t, this contradicts
(8).

4. Independence of arbitrary time-frequency translates

In this section we investigate whether S(f,Λ) is independent for arbitrary f and
Λ. First, Propositions 3 and 4 establish that S(f,Λ) is linearly independent if Λ is
an arbitrary finite set and f is an element of specific dense subsets of L2(R).

Proposition 3. Fix any finite Λ ⊂ R2. If f ∈ L2(R) is supported in a half-line
then S(f,Λ) is linearly independent.

Proof. By translating and time-reversing f if necessary (i.e., by applying a meta-
plectic transform to phase space), we may assume that f is supported in [0,∞)
and that f is not supported in [R,∞) if R > 0. Write Λ = {(ak, bkj) : j =
1, . . . ,Mk; k = 1, . . . , N}, where a1 < · · · < aN , and set

s(t) =
N∑
k=1

Mk∑
j=1

ckj ρ(ak, bkj)f(t) =
N∑
k=1

(Mk∑
j=1

ckj e
2πibkjt

)
f(t+ aj)

=
N∑
k=1

Ek(t) f(t+ aj).(9)

Each Ek is a trigonometric polynomial. If −aN ≤ t < −aN−1 then there is only a
single nonzero term in the last summation in (9), i.e., s(t) = EN (t) f(t+aN ) = 0 for
t ∈ [−aN ,−aN−1). Therefore, if s(t) = 0 a.e., then f vanishes almost everywhere
on [0, aN − aN−1), a contradiction.

Proposition 4. Fix any finite Λ ⊂ R2. If f is any finite linear combination of
Hermite functions, then S(f,Λ) is linearly independent.

Proof. By dilating f if necessary, we can write f(t) = p(t) e−t
2

with p a polynomial.
Write Λ = {(ak, bkj) : j = 1, . . . ,Mk; k = 1, . . . , N}, where a1 < · · · < aN . If
N = 1, then the elements of Λ are collinear. So, assume N > 1, and set

s(t) =
N∑
k=1

Mk∑
j=1

ckj ρ(ak, bkj)f(t) = e−t
2
N∑
k=1

(Mk∑
j=1

ckj e
−a2

k e2πibkj t

)
e−2tak p(t+ ak)

= e−t
2
N∑
k=1

Ek(t) e−2tak p(t+ ak).

Since N > 1 we must have either a1 < 0 or aN > 0. Suppose that a1 < 0. Then
since a1 < a2, . . . , aN and p is polynomial, |e−2ta1 p(t + a1)| increases as t → ∞
exponentially faster than |e−2tak p(t+ ak)| for k = 2, . . . , N . Moreover, each Ek is
a trigonometric polynomial. In particular, E1 is almost periodic and E2, . . . , EN
are bounded. Hence, if E1 is nontrivial then we can find a sequence {tn} with
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tn → ∞ such that |E1(tn) e−2tna1 p(tn + a1)| increases exponentially faster than
|Ek(tn) e−2tnak p(tn + ak)| for any k = 2, . . . , N . Therefore, s(tn) 6= 0 for large
enough n. Since s is continuous, we conclude that S(f,Λ) is independent. A
similar argument applies if aN > 0.

Next, the following result implies that for each Λ, the set of all f ∈ L2(R) such
that S(f,Λ) is linearly independent is an open subset of L2(R). From Propositions 3
and 4, we know that this subset is dense in L2(R).

Proposition 5. Fix any finite Λ ⊂ L2(R). Assume f ∈ L2(R) is such that S(f,Λ)
is linearly independent. Then there exists an ε > 0 such that S(g,Λ) is linearly
independent for any g ∈ L2(R) with ‖f − g‖ < ε.

Proof. Write Λ = {(ak, bk)}Nk=1, and define the continuous, linear mapping T : CN→
L2(R) by T (c1, . . . , cN) =

∑
ck ρ(ak, bk)f . Note that T is injective since S(f,Λ)

is independent. Therefore T is continuously invertible on its range. In particular,
there exist A, B > 0 such that

A
N∑
k=1

|ck| ≤
∥∥∥ N∑
k=1

ck ρ(ak, bk)f
∥∥∥ ≤ B

N∑
k=1

|ck| for each (c1, . . . , cN ) ∈ CN .

Therefore, if ‖f − g‖ < A and (c1, . . . , cN ) ∈ CN , then∥∥∥ N∑
k=1

ck ρ(ak, bk)g
∥∥∥ ≥ ∥∥∥ N∑

k=1

ck ρ(ak, bk)f
∥∥∥ − ∥∥∥ N∑

k=1

ck ρ(ak, bk)(g − f)
∥∥∥

≥ A
N∑
k=1

|ck| −
N∑
k=1

|ck| ‖ρ(ak, bk)(f − g)‖

= (A− ‖f − g‖)
N∑
k=1

|ck|.

Any finite collection of independent vectors is a Riesz basis for its linear span.
The proof of Proposition 5, with the `2 norm on CN replacing the `1 norm, therefore
implies that a perturbation of a finite Riesz basis remains a Riesz basis for its span.
The problem of perturbing bases is classical. The problem of perturbing general
frames in Hilbert and Banach spaces has been explored recently in [CH].

The following final result, on perturbing of the elements of Λ while keeping f
fixed, can be proved with a technique similar to that used in the proof of Propo-
sition 5, using the fact that translation and modulation are continuous in the L2-
norm.

Proposition 6. Fix any finite Λ = {(ak, bk)}Nk=1. Assume f ∈ L2(R) is such that
S(f,Λ) is linearly independent. Then there exists an ε > 0 such that S(f,Λ′) is
linearly independent for any Λ′ = {(a′k, b′k)}Nk=1 such that |ak − a′k|, |bk − b′k| < ε
for k = 1, . . . , N .
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