
Linear-invariant generation
for probabilistic programs:

automated support for proof-based methods

JP Katoen1, AK McIver2?, LA Meinicke2 ?, and CC Morgan3 ?

1 Software Modeling and Verification Group, RWTH Aachen University, Germany
2 Dept. Computer Science, Macquarie University, NSW 2109 Australia

3 School of Comp. Sci. and Eng., Univ. New South Wales, NSW 2052 Australia

Abstract. We present a constraint-based method for automatically gen-
erating quantitative invariants for linear probabilistic programs, and we
show how it can be used, in combination with proof-based methods,
to verify properties of probabilistic programs that cannot be analysed
using existing automated methods. To our knowledge, this is the first
automated method proposed for quantitative-invariant generation.

Key words: probabilistic programs, quantitative program logic, verifi-
cation, invariant generation

1 Introduction

Verification of sequential programs rests typically on the pioneering work of
Floyd, Hoare and Dijkstra [12, 17, 10] in which annotations are associated with
control points in the program. For probabilistic programs, quantitative annota-
tions are needed to reason about probabilistic program correctness [23, 7, 25].
We generalise the method of Floyd, Hoare and Dijkstra to probabilistic programs
by making the annotations real- rather than Boolean-valued expressions in the
program variables [23, 25]. As is well known, the crucial annotations are those
used for loops, the loop invariants. Thus in particular we focus on real-valued,
quantitative invariants: they are random variables whose expected value is not
decreased by iterations of the loop [27].

One way of finding annotations is to place them speculatively on the program,
as parametrised formula containing only first-order unknowns, and then to use
a constraint-solver to solve for parameter-instantiations that would make the
associated “verification conditions” true [4, 28, 5, 26, 13]. Such approaches are
referred to as being constraint-based.

Our main contribution in this paper is to generalise the constraint-based
method of Colón et al. [4] to probabilistic programs. We demonstrate our gener-
alisation on a number of small-but-intricate probabilistic programs, ones whose
analyses appear to be beyond other automated techniques for probabilistic pro-
grams at this stage. We discuss this in Sec. 7.

We begin in the next section with an overview of our approach.
? We acknowledge the support of the Australian Research Council Grant DP0879529.
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2 Overall summary of the approach

For qualitative (non-probabilistic) programs, Boolean annotations are called as-
sertions; and the associated verification condition for assertions P and Q sep-
arated by a program path path prog (that does not pass through other annota-
tions) is that they must satisfy the Hoare triple [17]

{P} path prog {Q} or equivalently P ⇒ wp.path prog.Q ,

where wp refers to Dijkstra’s weakest-precondition semantics of programs [10].
In either formulation, this condition requires that whenever the precondition P
holds before the execution of path prog, the postcondition Q holds after.

In the constraint-based method of Colón et al. [4], assertions for linear pro-
grams –programs with real-valued program variables in which expressions occur-
ring in both conditionals and assignment expressions must be linear in the pro-
gram variables– are found by speculatively annotating a program with Boolean
expressions of the particular linear form a1x1 + . . . + anxn + an+1 ≤ 0, where
a1, . . . , an+1 are parameters and x1, . . . , xn are program variables. The verifica-
tion conditions associated with these annotations are then expressed as a set of
polynomial constraints over the annotation-parameters and solved (for those un-
known parameters) using off-the-shelf SAT solvers. This process yields Boolean
annotations, that is assertions, from which program correctness can subsequently
be inferred.

For probabilistic programs our real-valued (not Boolean) annotations are
called expectations (rather than assertions), and the verification condition
{P} path prog {Q} is now interpreted as follows: if path prog takes some initial
state σ to a final distribution δ′ on states, then the expected value of post-
expectation Q over δ′ is at least the (actual) value of pre-expectation P over
σ. Using the quantitative wp semantics whose definition appears at Fig. 1, this
condition is equivalently written as P ≤ wp.path prog.Q. When there is no prob-
ability, quantitative wp is in fact isomorphic to ordinary (qualitative) wp [25].

Example 1. Consider a slot machine with three dials and two symbols, hearts (♥)
and diamonds (♦), on each one. The state of the machine is the configuration of the
dials: a mapping from dials d1, d2 and d3 to suits. The semantics of program flip that
spins the dials independently so that they come to rest on each of the suits with equal
probability,

flip := (d1 := ♥ 1
2
⊕ d1 := ♦); (d2 := ♥ 1

2
⊕ d2 := ♦); (d3 := ♥ 1

2
⊕ d3 := ♦) ,

is then a function that maps each initial state to a single distribution δ′ in which
the probability of being in a slot-machine state is 1

8
for each. If all.x is the expres-

sion x=d1=d2=d3 and [·] is the function that takes false to 0 and true to 1, then we
have for example that the expected value of [all.♥] over δ′, wp.flip.[all.♥] = 1

8
, is the

probability of reaching final state all.♥. This means that the probabilistic Hoare triple
{1/8} flip {[all.♥]} holds.

In general, a post-expectation may be any real-valued expression in the pro-
gram variables, as the following example shows.
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Example 2. Again with flip, a post-expectation Q may be used to represent the
winnings assigned to each final configuration of suits. For instance, we could have
Q := 1×[all.♥]+ 1

2
×[all.♦] to represent that a gamer wins the whole jackpot if there are

three hearts, a half if there are three diamonds, and nothing otherwise. Pre-expectation
wp.flip.Q then represents a mapping from initial configurations of the slot machine to
the least fraction of the jackpot the gamer can expect to win from that configuration.
For the above Q, we have that wp.flip.Q is a mapping from each state to the value 3

16
,

that is 6× 1
8
×0 + 1

8
×1 + 1

8
× 1

2
.

Our first main technical contribution is to show how to determine the
verification conditions for a probabilistic program annotation. To do this we
must identify the appropriate notion of execution paths between annotations:
this is because it doesn’t make sense to speak of some annotation P ’s “being
true here” when P is a real-valued expression over the program variables (rather
than a Boolean predicate). The principal problem is paths through decision
points, e.g. conditionals, where the truth (or falsity) of the Boolean condition
cannot determine a “dead path” in the way that Colón does: we are not able to
formulate a notion of “probably dead.” Thus we explain in Sec. 4 below how,
by imposing an extra condition on the program annotation, we can avoid this
problem. For now we concentrate on the special case of annotating a single loop.

A single loop, loop := while G do body od, is annotated as follows

{I};while G do {[G]×I}; body od; {[¬G]×I} ,

where I is some expectation. Such annotations are verifiable (i.e. valid) just
when the expected value of I does not decrease after an iteration of the loop
body, that is

[G]×I ≤ wp.body.I . (1)

In this situation we refer to I as a quantitative invariant (or invariant) of the
loop [27, 25]. In the case that the loop terminates (i.e. it terminates with prob-
ability 1), and indeed all of our examples in this paper are terminating, we may
reason that if (1) holds so does the probabilistic Hoare triple {I} loop {[¬G]×I}.4

Example 3. The behaviour of a gamer that plays the slot-machine described earlier
(at least once) until the dials show all hearts or all diamonds is represented by program

init : flip;
loop : while ¬(all.♥ ∨ all.♦) do flip od .

If the potential winnings are again described by Q (from Ex. 2), we can use the invariant
I := 3

4
×[¬(all.♥ ∨ all.♦)] + 1×[all.♥] + 1

2
×[all.♦] to calculate the gamer’s expected

winnings. (Playing the machine costs nothing in this simplistic example.) Since I is
an invariant of loop, which terminates, and Q equals [all.♥ ∨ all.♦] × I, we have that
{I} loop {Q} holds. Thus the gamer can expect to win at least wp.init.I = 6× 1

8
× 3

4
+

1
8
×1 + 1

8
× 1

2
= 3

4
of the jackpot. (Half the time the loop will terminate showing all

hearts and the gamer will win the whole jackpot, and half the time it will terminate
with all diamonds and he will win half.)

4 Quantitative invariants may also be used to reason about loops that terminate with
some probability between 0 and 1 (see [25]).
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Our second main technical contribution is to identify in Sec. 5.1 a
class of probabilistic programs and parametrised expectations for which machine-
solvable verification conditions can readily be extracted. As for Colón et al. [4]
the class of probabilistic programs that our method works for is the set of linear
probabilistic programs: the set of linear qualitative programs that may also con-
tain discrete probabilistic choices made with a constant probability. Using our
parametrised expectations it is possible to express invariants like I from Ex. 3.

Our third main technical contribution is to show in Sec. 5.2 how to
convert our verification conditions on parametrised annotations to the same form
as those generated by Colón et al. [4], so that they can be machine-solved in much
the same way. Since this verification-condition translation is an equivalence, our
method is both correct and fully general. That is, it can be used to find all
parameter solutions that make an annotation valid, and no others.

3 Probabilistic programs

Probabilistic programs with nondeterministic and discrete probabilistic choices
can be written using the probabilistic guarded command language (pGCL); in
Fig. 1 we set out its syntax and wp semantics. Non-negative real-valued functions
that are bounded above by some constant are referred to as expectations, and
written as expressions in the program variables. For a probabilistic program prog
and expectation Q, wp.prog.Q represents the least expected value of Q in the final-
state of prog (as an expression on the initial value of the program variables). This
semantics is dual to an operational-style interpretation of program execution,
where from an initial state σ the result of a computation is a set of probability
distributions over final states; it is dual because wp.prog.Q evaluated at σ is
exactly the minimal expected value of Q over any of the result distributions.
When Q is of the form [R] for some Boolean expression R, then wp is in fact just
the least probability that the final state will satisfy R, as in Example 1 above;
but it can be more generally applied, as in Example 2.

Probabilistic guarded commands are scaling, c∗wp.prog.Q=wp.prog.(c∗Q), and
monotonic, Q1≤Q2⇒wp.prog.Q1≤wp.prog.Q2, for all expectations Q,Q1,Q2 and
constants c [25]. Scaling, for example, is essentially linearity of expected values.

4 Probabilistic program annotations

If we imagine a program as a flowchart, a program annotation associates predi-
cates with arcs and conventionally has the interpretation that a predicate is true
of the program state whenever its associated arc is traversed during execution.
Our generalisation of qualitative program annotations is to replace predicates
(Boolean-valued expressions over the program variables) with expectations.

In order to specify verification conditions on these annotations, we impose
restrictions on the program annotations that we allow: first, as for the qualitative
case, there must be at least one annotation along any cyclic program path. This is
so that verification conditions only involve cycle-free program fragments. Second,
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prog wp.prog.Q

Identity skip Q
Assignment x := E Q[x\E]
Composition prog1; prog2 wp.prog1.(wp.prog2.Q)
Cond. choice if G then prog1 [G]×wp.prog1.Q + [¬G]×wp.prog2.Q

else prog2 fi
Nondet. choice prog1 u prog2 wp.prog1.Q u wp.prog2.Q
Prob. choice prog1 p⊕ prog2 p∗wp.prog1.Q + (1−p)∗wp.prog2.Q
While-loop while G do body od (µX · [G]×wp.body.X + [¬G]×Q)

x is a program variable; E is an expression in the program variables; prog{1,2}
and body are probabilistic programs; G is a Boolean-valued expression in the program
variables; p is a constant probability in [0, 1]; and Q is an expectation (represented as a
real-valued expression in the program variables). We write Q[x\E] to mean expression
Q in which free occurrences of x have been replaced by expression E.

For expectations (interpreted as real-valued functions), scalar multiplication ∗, multi-
plication, ×, addition, +, subtraction, −, minimum, u, and the comparison (such as
≤ and <) between expectations are defined by the usual pointwise extension of these
operators (as they apply to the real numbers). Multiplication and scalar multiplication
have the highest precedence, followed by addition, subtraction, minimum and finally
the comparison operators. Operators of equal precedence are evaluated from the left.
µ is the least fixed point operator w.r.t. the ordering ≤ between expectations.

Function [·] takes Boolean expression false to 0 and true to 1. For {0, 1}-valued func-
tions, operation ≤ has the same meaning as implication over predicates, and × and u
represent conjunction, and addition over disjoint predicates is equivalent to disjunction.

Fig. 1. Probabilistic program notation and weakest-precondition semantics.

we assume that there is an annotation at the beginning and end of the program
so that we can reason about the correctness of the whole. The third restriction
is made so that we can reason about the branching behaviour of probabilistic
programs. We require that if there is any “interior” annotation on a while-loop,
conditional, nondeterministic or probabilistic choice, i.e. one following its choice
point but occurring before the two choices rejoin, then the choice point itself
must have three “immediate” annotations as well: one at its entry, and one
at each of its (two) exits. Thus if we consider the flowchart generated by the
annotated program fragment

{P}; prog1; if G then prog2; {Q}; prog3 else prog4 fi; {R} , (2)

we see that the conditional “if G” has an interior annotation Q — and so we
must augment (2) with further annotations S, T, U as follows:

{P}; prog1; {S}; if G then {T}; prog2; {Q}; prog3 else {U}; prog4 fi; {R} , (3)

The S annotation is just before the choice point “if G”; the T annotation is
just after its true exit; and the U annotation is just after its (implied) false exit.
Loops and the other kinds of choice statements are similarly annotated.
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A program annotation is valid when it satisfies the following verification
conditions:

– For every pair (P,Q) of annotations separated by a program path prog that
does not contain annotations, if P does not appear just before a choice-point
with an interior annotation then {P} path prog {Q} holds. For example, for
(3) we must have that {P} prog1 {S}, {T} prog2 {Q}, {Q} prog3 {R} and
{U} prog4 {R} hold.

– Annotations appearing just before choice-points with interior annotations
must be treated differently. In the case of program (3) for instance, it makes
no sense to give a meaning to the Hoare triple {S} “G is true” {T}. For
annotation S in (3) we require that the “special” constraint S ≤ [G]×T +
[¬G]×U –that does not involve program execution at all– holds. Choice-
point annotations on nondeterministic and probabilistic choices and while-
loops must satisfy similar constraints. For example, annotation P in frag-
ment {P}; ({Q}; prog1 u {R}; prog2) must satisfy P ≤ Q u R. Likewise, for
{P}; ({Q}; prog1 p⊕ {R}; prog2) we must have P ≤ p∗Q + (1−p)∗R.

Theorem 1. Given a valid annotation of a terminating probabilistic program
prog such that the first annotation is P and the last is Q, we have that prog
satisfies the probabilistic Hoare triple {P} prog {Q}.
Proof. By structural induction over program texts.

For example, if (3) terminates and the annotation is valid then the proba-
bilistic Hoare triple {P} prog1; if G then prog2; prog3 else prog4 fi {R} holds.

4.1 The special case of loops

In this paper we deal only with single-loop programs (mostly) and the conditions
above require that a loop be annotated (at least) with an expectation just before
the loop, one just before the loop body (the true branch of the loop conditional)
and one just after the loop (the false branch). For loop := while G do body od, this
amounts to the following annotation, {I};while G do {J}; body od; {K}, which
is valid if

{J} body {I} and special constraint I ≤ [G]×J + [¬G]×K

holds. We simplify this further by taking J to be [G]×I and K to be [¬G]×I so
that the special constraint is satisfied by construction — we need only find an I
so that {[G]×I} body {I}. Such an I is referred to as a quantitative invariant.

5 Constraint-solving for quantitative annotations

Given a “linear probabilistic program” annotated with parametrised real-valued
expressions that are “propositionally linear” (the definitions for which appear in
the following section), we show how to extract a set of polynomial constraints
that are sufficient and necessary to show that the annotation is valid. Once we
have the constraints we are able to apply constraint solvers to solve for the
annotation parameters.
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5.1 Linear probabilistic programs and parametrised annotations

An expression E on a given state space is linear if it is a linear combination of
the program variables. A predicate P is a linear constraint if it is an inequality or
a strict inequality between linear expressions. A linear assertion is then a finite
conjunction of linear constraints. Finally, for any natural-valued constants M and
N , and linear constraints Pmn, Boolean expression (

∧
m : [1..M ]

∨
n : [1..N ] Pmn)

is said to be a propositionally linear predicate with conjunctive-degree M and
disjunctive-degree N .

A quantitative expression of the form
∑

m : [1..M ][
∧

n : [1..N ] Pmn]×Qm, where
M and N are naturals, each Pmn is a linear constraint and Qm is a linear expres-
sion, is referred to as a propositionally linear expression with additive-degree M
and conjunctive-degree N . Such an expression is written in disjoint normal form
if for all i, j : [1..M ] where i 6= j, we have (

∧
n : [1..N ] Pin)∧(

∧
n : [1..N ] Pjn) = false.

Lemma 1. Any propositionally linear expression is semantically equivalent to
another propositionally linear expression in disjoint normal form. (See App. C
for proof.)

A probabilistic program is said to be linear if the variables are real-valued,
all of the guards are linear constraints, and updates are linear expressions.

To find valid quantitative annotations for a program with variables x1, . . . , xX ,
we parametrise each annotation with a propositionally linear expression∑

m : [1..M ][
∧

n : [1..N ] α(j,mn,1)x1 + . . . + α(j,mn,X)xX + β(j,mn) � 0]
× (γ(j,m,1)x1 + . . . + γ(j,m,X)xX + δ(j,m))

containing free real-valued variables α(j,mn,x), β(j,mn), γ(j,m,x) and δ(j,m), in
which each occurrence of � is instantiated to either < or ≤.

To ensure that each annotation P is an expectation (a real-valued expression
bounded below by 0 and above by some real number) we require 0≤P≤1. Re-
stricting each annotation to be bounded above by 1 instead of an arbitrary upper
bound does not limit our method because programs satisfy scaling (Sec. 3) so
that if prog is correctly annotated with expectations P , Q, etc., then the modi-
fied annotation in which P is replaced by c∗P , Q is replaced by c∗Q etc. is also
valid for any non-negative constant c.

5.2 Constructing machine-solvable constraints

For qualitative programs the verification conditions for a linear program anno-
tated with linear constraints can be formulated as Boolean expressions on linear
constraints. After rewriting these expressions in conjunctive normal form (as
propositionally linear predicates), Colón et al. [4] showed how it was possible to
use Motzkin’s Transposition theorem [14] to reduce each (universally quantified)
finite disjunction of linear constraints to an existentially quantified polynomial
formula over the annotation parameters.5

5 To be precise, Colón et al. [4] used a specialisation of this theorem, Farkas’ lemma,
since they did not consider parametrised forms of invariants that could include strict
inequalities.
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For probabilistic programs, the verification conditions for a program anno-
tation are of one of the five possible forms (Sec. 4):

0 ≤ P ≤ 1 (4)
P ≤ wp.path prog.Q (5)
R ≤ [G]×S + [¬G]×T or R ≤ S u T or R ≤ p∗S + (1−p)∗T (6)

where P , Q, R, S and T are annotations, G is a Boolean expression in the pro-
gram variables, p is a constant in [0, 1], and path prog is a loop- and annotation-
free program fragment occurring in the program. For linear probabilistic pro-
grams, G must be a linear constraint, and sub-program path prog must also be
linear. By parametrisation the annotations are propositionally linear.

To convert each constraint of the form (4–6) to machine-solvable form we
must first formulate each of them as a finite Boolean expression on linear con-
straints. We can then use Colón et al.’s method to convert these to polynomial
formulae over the annotation parameters. We start by showing how this novel
first step is performed and then we recount Motzkin’s transposition theorem.

Equivalence translation to a finite Boolean expression. This translation
occurs in two stages. First we convert each expression of the form (4–6) to
inequalities between propositionally linear expressions. This first step is made
possible by the following observations:

Lemma 2. Let S and T be any propositionally linear expressions, G a linear
constraint, p a constant expression, x a program variable, and E a linear ex-
pression. We have that [G] × S, S u T and p∗S are semantically equivalent to
propositionally linear expressions; ¬G may be expressed as a linear constraint;
S + T and S[x\E] are propositionally linear. (See App. C for proof.)

Using these observations we immediately have that constraints of the form
(4) and (6) can be translated to inequalities between propositionally linear
expressions. For (5), we may use them to show by structural induction that
wp.path prog.Q may be evaluated to a propositionally linear expression.

In the second step we convert each of these inequalities between proposi-
tionally linear expressions to finite Boolean expressions over linear constraints
(which may then be translated to conjunctive normal form):

Lemma 3. Any inequality Qa ≤ Qb between non-negative propositionally linear
expressions can be equivalently formulated as a finite Boolean expression over
linear constraints.

Proof. First rewrite Qa and Qb in disjoint normal form (Lem. 1) as proposition-
ally linear expressions [Pa1]×Qa1 + · · · + [PaM ]×QaM , and [Pb1]×Qb1 + · · · +
[PbK ]×QbK , where each Pam, Pbk are linear assertions and Qam,Qbk are linear
expressions. Then Qa ≤ Qb if and only if for all m : [1..M ] and k : [1..K] we have
Pam ∧ Pbk ⇒ (Qam −Qbk ≤ 0) and Pam ∧ (

∧
k : [1..K] ¬Pbk) ⇒ (Qam ≤ 0).
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Equivalence translation using Motzkin’s transposition theorem. Motz-
kin’s Transposition theorem can be used to equivalently represent any (univer-
sally quantified) propositionally linear predicate as a conjunction of existentially
quantified constraints. Since the linear constraints in our propositionally linear
predicate contain unknown coefficients, the constraints derived from Motzkin’s
Transposition theorem are polynomial, and not linear.

Theorem 2. Motzkin’s Transposition Theorem Given the set of linear, and
strict linear, inequalities over real-valued variables x1, ..., xn

S :=

α(1,1)x1 + . . .+ α(1,n)xn + β1 ≤ 0
...

...
...

α(m,1)x1 + . . .+ α(m,n)xn + βm ≤ 0



T :=

α(m+1,1)x1 + . . .+ α(m+1,n)xn + βm+1 < 0
...

...
...

α(m+k,1)x1 + . . .+ α(m+k,n)xn + βm+k < 0

 ,

in which α(1,1), ..., α(m+k,n) and β1, ..., βm+k are real-valued, we have that S and
T simultaneously are not satisfiable (i.e. they have no solution in x) if and only
if there exist non-negative real numbers λ0, λ1, . . . , λm+k such that either

0 =
∑m+k

i=1 λiα(i,1), . . . , 0 =
∑m+k

i=1 λiα(i,n), 1 = (
∑m+k

i=1 λiβi)− λ0 ,

or at least one coefficient λi for i in the range [m+1 . . .m+k] is non-zero and

0 =
∑m+k

i=1 λiα(i,1), . . . , 0 =
∑m+k

i=1 λiα(i,n), 0 = (
∑m+k

i=1 λiβi)− λ0 .

Proof. This is a geometric rephrasing of the theorem as it appears in a standard
reference [14, p.268].

5.3 Solving constraints and heuristics

Constraint solving. Our generated constraints are of the same form as those
generated by Colón et al. [4] for qualitative programs, and may therefore be
solved using exactly the same tools and techniques applicable there.

A survey of techniques for solving constraints is given by Bockmayr and
Weispfenning [1]. Colón et al. [4] used, for example, REDLOG’s6 [11] imple-
mentation of quantifier-elimination algorithms for polynomial constraints. In
addition to quantifier-elimination techniques, other methods such as factorisa-
tion and root finding were employed.

Quantifier-elimination implementations are exponential in complexity, which
limits the size of annotation-generation problems that may be addressed using
this approach. In our examples from Sec. 6 –which are of a small size– we solved
our constraints using REDLOG.
6 Available from http://redlog.dolzmann.de/.
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Heuristics. In practice it may not be possible automatically to solve con-
straints when the program size is large or the parametrised invariants have either
additive- or conjunctive- degree greater than say two or three or, even if we can,
still the output of quantifier-elimination procedures might be unreadable. Colón
et al. [4] encountered similar problems for trying to generate “k-linear inductive
assertions” for values of k greater than one. As in [4] we recommend, where pos-
sible, (i) reducing the size of a problem by guessing values of certain parameters,
and (ii) decomposing the task into finding structurally smaller invariants and
(iii) finding invariants for sub-programs separately. Other suggestions (such as
polynomial factorisation) may be found in [4].

To illustrate (ii), we have for instance that for linear assertion P and proposit-
ionally linear expression J the expression I := [P ]×J is an invariant of the loop
while G do body od if [P ] is invariant and 0 ≤ I ≤ 1 and [G]×I ≤ wp.body.J
holds. This method of decomposing the problem –although often applicable– is
not complete. That is, there exist loop invariants of the form [P ]×J , where P
is a linear assertion and J is a linear expression, such that [P ] on its own is not
invariant.

Example 4. Consider program x, y := 1, 1; while y < N do (y := 2y 1/2⊕ x := 0) od,
in which N is a positive constant. Although [x = 1 ∧ 0 ≤ y ≤ 2N ] isn’t an invariant of
the loop since x is not guaranteed to remain at the value 1, [x = 1 ∧ 0 ≤ y ≤ 2N ]×y
is, since transitions that set x to 0 are balanced by y’s doubling in value.

5.4 Soundness and completeness

Theorem 3. For any linear probabilistic program annotated with propositionally
linear expressions, our method is correct and fully general. That is, it can be used
to find all parameter solutions that make the annotation valid, and no others.

Proof. This follows from the fact that our translation of the annotation verifica-
tion conditions to machine-solvable form (as defined in Sec. 4) is an equivalence.

This means, for instance, that our method can be used to find all proposi-
tionally linear invariants of a chosen degree for a single (i.e. un-nested) loop.

6 Three examples

We will now use the invariant-generation method set out on the preceding sec-
tions together with proof-based techniques to analyse three simple, terminating7,
probabilistic programs. The Boolean and natural-valued variables are interpreted
more generally as reals (with Boolean value true represented by real-value 1 and
false by 0), so that we can apply our approach.

7 In each case a separate (and very simple) argument can be used to show that the
programs terminate with probability 1.
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init : x, n := 0, 0;
loop : while n < N do
body : (x := x + 1 p⊕ skip); n := n + 1

od

Variables x and n are of type N, constant N : N, and constant p : [0, 1]. To verify that
the expected final value of x is at least p×N we must show that wp.(init; loop).x ≥ pN ,
which is implied by the discovered loop invariant [0≤x≤ n∧n≤N ]×(αx−pαn+pαN),
where 0 ≤ α ≤ 1/N .

Fig. 2. Binomial update.

6.1 Example one: binomial update

The program in Fig. 2 sets variable x to a value between 0 and constant N
according to the binomial distribution with parameter p. We use our invariant-
generation method to find invariants of loop for calculating lower-bounds on the
final expected value of x.

We first search for invariants for loop of the form I := [αx + βn + γ ≤ 0],
that we can use to describe upper and lower bounds on the values of program
variables x and n. In other words, we search for parameters α, β and γ that
make the following program annotation valid:

{I};while n<N do {[n<N ]×I}; (x := x+1p⊕ skip);n := n+1 od; {[n≥N ]×I} .

Solving for the constraints on the parameters, we find that [0 ≤ x], [x ≤ n] and
[n ≤ N + 1] are invariants.8 Next, we search for quantitative invariants for loop
of the form I := J×(αx + βn + γ). where J := [0 ≤ x ∧ x ≤ n ∧ n ≤ N ]. Since
J is invariant it suffices to show that for all values of x and n we have

0 ≤ I and I ≤ 1 and [n < N ]×(αx+βn+γ) ≤ wp.body.(αx+βn+γ) (7)

where wp.body.(αx+βn+γ) can be evaluated to αx+βn+pα+β+γ. Using the
result of this wp-calculation, constraints (7) may then be equivalently formulated
as the following finite Boolean expressions on linear constraints:

0 ≤ x ∧ x ≤ n ∧ n ≤ N ⇒ (0 ≤ αx + βn + γ) (8)
0 ≤ x ∧ x ≤ n ∧ n ≤ N ⇒ (αx + βn + γ ≤ 1) (9)

n < N ⇒ (0 ≤ pα + β) . (10)

To translate (8), (9) and (10) into a set of existentially quantified constraints that
can be used as inputs to a SAT-solver, we use Motzkin’s Theorem. Condition
(10) for instance, which holds if the strict linear inequalities[

0x + n + −N < 0
0x + 0n + pα + β < 0

]
8 Invariant [n ≤ N ] cannot be generated since –although n only takes natural values

in the context of the program– we are solving constraints over the reals, and not the
natural numbers.
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init : x := p; b := true;
loop : while b do

b := false 1/2⊕ true;
if b then

x := 2x; if x ≥ 1 then x := x−1 else skip fi
elseif x ≥ 1/2 then x := 1
else x := 0 fi

od

Variable x is of type R and b of type B. This program sets x to 1 with probability at
least p, a fact verified by establishing wp.(init; loop).[x = 1] ≥ p, which follows from
the discovery of the loop invariant [0≤x≤1]×x.

Fig. 3. Generating a biased coin from a fair one.

are not satisfiable, is equivalent (by Motzkin’s Theorem) to the following poly-
nomial constraints:

∃λ0, λ1, λ2 ·
λ0 ≥ 0 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0 ∧
0 = λ10 + λ20 ∧
0 = λ1 + λ20 ∧
1 = −λ1N + λ2(pα + β)− λ0

 ∨


λ0 ≥ 0 ∧ λ1 ≥ 0 ∧ λ2 ≥ 0 ∧
(λ1 6= 0 ∨ λ2 6= 0) ∧
0 = λ10 + λ20 ∧
0 = λ1 + λ20 ∧
0 = −λ1N + λ2(pα + β)− λ0


Simplifying this constraint reveals that parameters α, β and γ must satisfy
pα + β ≥ 0. This condition is satisfied, for example, if β = −pα and γ = pα.
Assuming that β = −pα and γ = pα holds, we have that (8) and (9) hold if N
is positive and 0 < α ≤ 1/N . Consequently, for positive N and α : (0, 1/N ] we
have that

J×(αx− pαn + pαN) (11)

is invariant. Assuming N is positive, (11) can be used to calculate a lower bound
on the expected value of x produced by the binomial program. We have

wp.(init; loop).(αx)
≥ wp.(init; loop).([n ≥ N ]×J×αx) “αx ≥ [n ≥ N ]×J×αx; monotonicity”

= wp.init.(wp.loop.([n ≥ N ]× I)) “simplify; sequential composition”

≥ wp.init.I “loop terminates and I is invariant; monotonicity”

= [0 ≤ N ]× pαN “calculate”

= pαN . “we have assumed that N is positive”

From scaling (Sec. 3), a lower bound of the least expected value of x (i.e. (1/α)×
αx) that may be produced by the Binomial program is pN (i.e. (1/α)× pαN).

6.2 Example two: generating a biased coin from a fair one

The program in Fig. 3 (which appears in [18, Ch4]) uses a stream of fair coin flips
to generate a (single) biased coin. To verify that on termination it correctly sets x
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init1 : n, g := 1, N ;
loop1 : while g ≥ N do
init2 : n, g := 1, 0;
loop2 : while n < N do n := 2n; (g := 2g 1/2⊕ g := 2g + 1) od

od

n and g are both variables of type N and N is a constant positive natural num-
ber. This program uniformly sets g to a value in [0..N), verified by establishing
wp.init1; loop1.[g = k] ≥ 1/N , implied by the invariant (for the outer loop) [g = k]+[g ≥
N ]× (1/N).

Fig. 4. Uniform distribution.

to 1 with probability (at least) p, we need to determine that p ≤ wp.loop.[x = 1].
We used our techniques to discover that [0 ≤ x ≤ 1]×x is an invariant of loop, and
then additional reasoning to show that it implies correctness. First, it simplifies
to the post-expectation on termination (because on exiting the loop x takes only
the values 0 or 1); next substituting values for the initialisation x := p yields
the required lower bound.9 Details of the generating constraints are set out in
App. A.

6.3 Example three: uniform distribution; nested loops

Cryptographic applications often require a variable to be chosen uniformly from
some interval [0 . . . N ]; in practice this must be achieved using a fair coin as
above, and the program in Fig. 4 is an example. Intuitively its inner loop sets g
uniformly to some interval [0 . . . c] where c is the smallest power of 2 exceeding
N (i.e. 2dlog2 Ne); the function of the outer loop is to repeat the process from
scratch until g lies in the required interval [0 . . . N ].

To verify this program we use the above technique to generate automatically a
linear invariant for the inner loop. We then use that invariant to reason manually
about the effect of the outer loop. In the conclusion we suggest ways in which
we might be able to extend our method so that this (manual) reasoning could
be automated as well.

Verifying this program thus requires the combination of automated invariant
generation and interactive proof, and in this section we sketch how it was done.

Interactive proof: First, we make an assumption that the inner loop correctly
sets g uniformly within [0 . . . c]; this is formalised by the set of (parametrised)
Hoare triples

{1/c} init2; loop2 {[g = k]} , 0 ≤ k ≤ c . (12)

With this assumption we are able to use the wp-calculus directly to verify that
[g = k] + [g ≥ N ]× d (for d ≤ 1/N) is an invariant of the outer loop, loop1, and
that is sufficient to verify the whole program; the details are set out at App. B.
9 It can be in fact be shown that this bound on the expected value of x is tight.
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That leaves us with the problem of establishing (12) ; we use our automated
invariant generation technique to find invariants to do so.

Automatic invariant generation for the inner-loop analysis: First we considered
the special case of (12) where k = 0 and searched for loop2 invariants of the form
I := [g = 0 ∧ J ] × (αn + γ), where J := 1 ≤ n ≤ c, and we needed that [J ] is
an invariant of loop2. This gave us [g = 0 ∧ 1 ≤ n ≤ c] × n/c as an invariant,
which is sufficient for the special case. To generalise this, we then searched for
loop2 invariants of the form [αn + β < g ≤ γn + δ ∧ J ]× dn, and we found that
for any α and dc = 1, [αn− 1 < g ≤ αn ∧ J ]× dn is also invariant, from which
we can derive our result. Details are set out in App. B.

7 Alternative automated methods

Markov decision processes (MDP’s) are a natural candidate for an operational
model for probabilistic programs. Analysis of quantitative properties relative to
Markov decision processes are available via probabilistic model checking. Exam-
ples include PRISM [16] (supporting PCTL model checking) and LiQuor [3]
(supporting LTL). Whilst the invariant technique produces general statements
about program behaviour, model checking is restricted to the verification of par-
ticular instances: for the generation of a biased coin from a fair coin, it can be
checked whether eventually the probability that x equals 1 is p, for a given p.
One cannot check that for any p this property holds.

Recent developments using abstraction refinement increase the potential for
generality. In particular PASS [15] and a SAT-based extension of PRISM [22]
both compute sound approximations of the underlying MDP, with the former
yielding over approximations, and the latter computing both upper- and lower
bounds. In neither case does it appear that the methods could feasibly be used
to treat the examples in this paper, however. In particular the analysis of loops
by the extension of PRISM tends to be extremely costly, and do not perform
well when the variables can take real values [21].

Testing for language equivalence between probabilistic programs over finite
integer datatypes has been exploited by the tool APEX [24], but again this would
not be able to treat the examples that use real-valued variables straightforwardly.

Abstract interpretation methods [6] have also been applied to probabilistic
programs [8, 9]. As for non-probabilistic abstract interpretation methods, these
might –in contrast to constraint-based methods– only produce “approximate
answers”.

Finally, none of PASS, SAT-based PRISM, APEX nor the probabilistic
abstract interpretation methods generate quantitative loop invariants.

8 Aims and conclusions

We have defined a constraint-based method for generating propositionally linear
annotations for linear probabilistic programs, and demonstrated it using a num-
ber of realistic (but small) probabilistic programs. We have primarily focused
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on generating invariants for loops. As for other constraint-based methods, the
program-size and the size of the parametrised invariants is constrained to small-
to-medium sized problem instances by the capabilities of current constraint-
solving tools.

Once found, quantitative invariants can be used to prove very general prop-
erties of probabilistic programs. Practical experience in automating proofs in
HOL [19, 2] has shown that some of the quantitative invariants crucial to proof
are not at all obvious; the development of an automated assistant for invariant
discovery to augment interactive proofs is one of the main motivations for this
work. Our third example in Sec. 6.3 is typical of how invariant generation can
enhance an interactive proof session. It also suggests that propositionally linear
annotations are unlikely to be sufficient in themselves for proving all properties
of interest: recall that we used a set of discovered linear annotations to approx-
imate the inner loop behaviour. On the other hand, this suggests a method in
which sets of annotation pairs could be used more generally to abstract from
program behaviour. For us that implies the following hierarchical method: first
linear invariants are discovered for inner loops, and then used to abstract the
loops’ behaviour as sets of annotations. The analysis of all the enclosing loop(s)
can then proceed as outlined in this paper, but with the inner loops summarised
by their sets of annotations. That is our next step.

Beyond that, we would also like to build tool support for our approach. This
would involve, among other tasks, the mechanisation of weakest-precondition
calculations involving propositionally linear expressions over probabilistic pro-
grams. Earlier mechanisations of the quantitative logic for pGCL (e.g. [19]) sug-
gest that this task is feasible.

Finally, it would be interesting to consider whether other advances in constraint-
based invariant generation methods, such as [29, 5, 20] could be adapted to
generate polynomial forms of quantitative invariants.
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generation using Gröbner bases. In Principles of Programming Languages
(PoPL), pages 318–329. ACM, 2004.



18 JP Katoen, AK McIver, LA Meinicke, and CC Morgan

A Constraints for Fig. 3

First, it is possible to generate loop invariants [γ ≤ x] and [x ≤ γ] where γ =
0 or γ = 1, which describe lower- and upper bounds on the value of x. Having
identified bounds on x we fix J := [0 ≤ x ≤ 1] and search for parametrised
invariants for loop of the form I := J × (αx + βn + γ). I is invariant of loop if

0 ≤ x ≤ 1 ⇒ (0 ≤ αx + βn + γ) , (13)
0 ≤ x ≤ 1 ⇒ (αx + βn + γ ≤ 1) and (14)

b = 1 ⇒ (αx + βn + γ) ≤ wp.body.(αx + βn + γ) . (15)

We calculate that (15) holds if β ≤ 0. Setting β and γ to zero and α to one
trivially satisfies the bounding constraints (13) and (14). This gives us that
J × x is invariant, as desired.

B Calculations for Fig. 4

Inner-loop analysis. The inner loop, loop2 in Fig. 4, sets value g uniformly
between values in the range [0...2dlog2 Ne). To prove this we would like to find an
invariant of loop2 we could use to show that, for each k : [0..2dlog2 Ne), we have
(a lower bound on) the expected value of g = k is 1/2dlog2 Ne.

By focusing on the special case where k = 0 we learn something about the
programs behaviour that can guide our search for a more general invariant.
Assuming that there exists a constant c such that [J ], where J := 1 ≤ n ≤ c, is
an invariant of loop2, we calculate that I := [g = 0 ∧ J ] × (αn + γ) is invariant
provided γ ≤ 0 ∨N = 1 and boundedness condition 0 ≤ I ≤ 1 holds. For γ=0,
boundedness is satisfied if 0 ≤ α ∧ αc ≤ 1. Hence

[g = 0 ∧ 1 ≤ n ≤ c]× n/c (16)

is invariant. Using our constraint-solving method, we find that J is invariant if
c ≥ 2N , but this does not provide us on a tight lower bound for c. Creative user
input must be used to find the exact bound, 1/2dlog2 Ne, which is non-linear in
the program variables. Taking c=1/2dlog2 Ne, and using the additional knowledge
that n = 2dlog2 Ne when the loop terminates, invariant (16) can be used to show
that the probability of reaching the state g=0 is at least 1/2dlog2 Ne.

For the general case we want to calculate the expected value of g = k, for some
k 6= 0. By generating invariants of the form [αn+β < g ≤ γn+δ∧J ]×dn –which is
reminiscent of (16)– we find that for any α and dc = 1, [αn−1 < g ≤ αn∧J ]×dn
is invariant. Since g may only take integer values this implies invariance of

[g = bαnc ∧ J ]× dn . (17)

For any k : [0..2dlog2 Ne), taking c = 2dlog2 Ne and α = k/c, invariant (17) can
be used to calculate that g = k is reached with probability 1/2dlog2 Ne, i.e.
{1/2dlog2 Ne} init2; loop2 {[g = k]}.
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Outer-loop analysis. The outer loop loop1 sets g uniformly in the range
[0..N) by repeatedly initialising and executing loop2 until g is assigned a value
in that range. This algorithm works since –as we know from our earlier analysis–
the probability that loop2 assigns g to be a value in the range [0..N) is uniform.
This behaviour is captured by the set of linear invariants

[g = k] + [g ≥ N ]× d (18)

for k : [0..N) and dN = 1, which says that once g has been assigned a value k,
it stays there, and when g has not yet reached k and it has not been assigned
another value in the range [0..N), it retains a d = 1

N chance of reaching k. To
verify invariance of (18) using our inner-loop analysis we reason (by hand):

wp.(init2; loop2).([g = k] + [g ≥ N ]×d)

≥ wp.(init2; loop2).([g = k] + d ∗
∑

h : [N..2dlog2 Ne] [g = h]) “monotonicity”

=
wp.(init2; loop2).[g = k] + d ∗

∑
h : [N..2dlog2 Ne] wp.(init2; loop2).[g = h]

“additivity of wp [25] for deterministic programs and scaling ”

≥
1/2dlog2 Ne + d ∗ (2dlog2 Ne −N) ∗ 1/2dlog2 Ne

“ for each k, {1/2dlog2 Ne} init2; loop2 {[g = k]} ”

= d “simplify using dN = 1”

≥ [g ≥ N ]× ([g = k] + [g ≥ N ]× d) “k < N”

and so (18) is invariant.

C Proofs

C.1 Proof of Lem. 1:

Proof. We have that

Q
=

(
∑

m : [1..M ] · [
∧

n : [1..N ] Pmn]×Qm)
“propositionally linear parametrisation”

= (
∑

X : P[1..M ] ·
[(

∧
x : X;n : [1..N ] Pxn) ∧ (

∧
x : [1..M ]−X ¬(

∧
n : [1..N ] Pxn))]× (

∑
x : X Qx))

“rewrite as a summation with disjoint predicates”

= (
∑

X : P[1..M ] ·
[(

∧
x : X;n : [1..N ] Pxn) ∧ (

∧
x : [1..M ]−X (

∨
n : [1..N ] ¬Pxn))]× (

∑
x : X Qx))

“negate conjunction”

= “ for each permutation X, convert the predicate to the disjunctive normal form
where each QXij is a linear constraint Pmn or ¬Pmn for some m, n. ”
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(
∑

X : P[1..M ] · [(
∨

i : IX
(
∧

j : JX
QXij))]× (

∑
x : X Qx))

=
(
∑

X : P[1..M ]; i : IX · [(
∧

j : JX
QXij)]× (

∑
x : X Qx))

“rewrite disjunction as summation”

which is a propositionally linear expression in disjoint normal form, since each
QXij is a linear constraint (or representable as one since the negation of a linear
constraint is also linear) and the summation of linear expressions (

∑
x : X Qx)

is also a linear expression. Any differences betwen the number of conjunctions
in each predicate can be overcome by padding with extra conjunctions of the
predicate true.

C.2 Proof of Lem. 2

Proof. Let S and T be the propositionally linear expressions

[PS1]×QS1 + · · ·+ [PSM ]×QSM and [PT1]×QT1 + · · ·+ [PTK ]×QTK ,

where each PSm, PTk are linear assertions and QSm,QTk are linear expressions
such that QSm = γ(Sm,1)x1 + . . .+γ(Sm,X)xX +γ(Sm). If G is a linear constraint
and p is a constant we then have that:

1. [G]×S is semantically equivalent to the propositionally linear expression

[PS1 ∧G]×QS1 + · · ·+ [PSM ∧G]×QSM .

2. Without loss of generality (Lem. 1) assume that S and T are in disjoint
normal form. Expression S u T is then semantically equivalent to∑

m : [1..M ];k : [1..K][PSm ∧ PTk ∧ (QSm−QTk ≤ 0)]×QSm

+ [PSm ∧ PTk ∧ (QTk−QSm < 0)]×QTk ,

which is propositionally linear.
3. p ∗ S is semantically equivalent to the propositionally linear expression∑

m : [1..M ]

[PSm]×(p ∗ γ(Sm,1)x1+ . . .+p ∗ γ(Sm,X)xX+p ∗ γ(Sm)) .

It is trivially true that ¬G may be expressed as a linear constraint; and that
S + T and S[x\E] are propositionally linear if E is a linear expression.


