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ABSTRACT

Inverse problems in geophysics require the introduction of

complex a priori information and are solved using computation-

ally expensive Monte Carlo techniques �where large portions of

the model space are explored�. The geostatistical method allows

for fast integration of complex a priori information in the form of

covariance functions and training images. We combine geostatis-

tical methods and inverse problem theory to generate realizations

of the posterior probability density function of any Gaussian lin-

ear inverse problem, honoring a priori information in the form of

a covariance function describing the spatial connectivity of the

model space parameters. This is achieved using sequential

Gaussian simulation, a well-known, noniterative geostatistical

method for generating samples of a Gaussian random field with a

given covariance function.

This work is a contribution to both linear inverse problem the-

ory and geostatistics. Our main result is an efficient method to

generate realizations, actual solutions rather than the conven-

tional least-squares-based approach, to any Gaussian linear in-

verse problem using a noniterative method. The sequential ap-

proach to solving linear and weakly nonlinear problems is com-

putationally efficient compared with traditional least-squares-

based inversion. The sequential approach also allows one to

solve the inverse problem in only a small part of the model space

while conditioned to all available data. From a geostatistical

point of view, the method can be used to condition realizations of

Gaussian random fields to the possibly noisy linear average ob-

servations of the model space.

INTRODUCTION

Consider the expression

d = Gm, �1�

where G is a forward mapping operator �linear or nonlinear� that

maps the model parameters m into observations d. Estimation of m,

using the forward mapping operator G and the observed data d, is

referred to as solving the inverse problem.

Linear inversion, where the mapping operator G is linear, general-

ly provides an overly smooth estimate of the properties being esti-

mated. For instance, in seismic tomography, using least-squares lin-

earized inversion with observed traveltime data d of seismic waves

through a medium m produces overly smooth estimates of the under-

lying velocity model mest �Phillips and Fehler, 1991�. Also, complex

a priori information cannot be readily included in the inversion.

Monte Carlo methods can be applied to such linear �and nonlin-

ear� problems, allowing complex a priori information to be included

�Mosegaard and Tarantola, 1995�. In a tomography setup, a priori in-

formation could be the knowledge about the spatial correlation of the

model space parameters, i.e., the spatial correlation of the subsurface

velocity field, hereafter denoted as CM. However, the use of a stan-

dard Metropolis sampler to generate models that honor traveltime

data and a priori information is extremely inefficient. Such algo-

rithms are asymptotic and short-memory samplers that do not take

advantage of the linear and Gaussian nature of the problem.

Kriging is a geostatistical technique to interpolate observed data

values in space, given a covariance model specifying the spatial cor-

relation of data CM. The simplest form of kriging, called simple krig-

ing, is in fact identical to a linear Gaussian inverse problem �equa-

tion 1� with direct observations of the model space dobs�xi� = m�xi�
at locations xi. Interpolation based on kriging will produce maps of

m that are overly smooth, as compared to the assumed a priori cova-

Manuscript received by the EditorAugust 3, 2005; revised manuscript received May 5, 2006; published online November 3, 2006.
1
University of Copenhagen, Niels Bohr Institute, Juliane Mariesvej 28, DK-2100 Copenhagen East, Denmark. E-mail: tmh@gfy.ku.dk.

2
Stanford University, Stanford Center for Reservoir Forecasting, Department of Geological and Environmental Sciences, Stanford, California 94305. E-mail:

journel@pangea.stanford.edu.
3
Institut de Physique du Globe de Paris, 4 place Jussieu, 75005 Paris, France. E-mail: tarantola@mac.com.

© 2006 Society of Exploration Geophysicists.All rights reserved.

GEOPHYSICS, VOL. 71, NO. 6 �NOVEMBER-DECEMBER 2006�; P. R101–R111, 14 FIGS.
10.1190/1.2345195

R101



riance model CM. Journel and Huijbregts �1978� give a detailed

description of the kriging approach.

Geostatisticians use the concept of sequential simulation to cor-

rect the smoothing effect of kriging by simulating a number of real-

izations of the posterior probability function dest�x� honoring both

the a priori information CM and the observed values dobs�x�. Unlike

Metropolis-based Monte Carlo methods, sequential simulation is

not an iterative, asymptotic method. It has maximum computational

efficiency in the sense that it produces one sample that honors the a

priori information in each iteration. Goovaerts �1997� gives an intro-

duction to sequential simulation.

In this paper, we present a methodology that applies the concept of

sequential simulation to any linear Gaussian inverse problem with

prior information given by a covariance function. This allows the

generation of multiple realizations of the model space consistent

with observations d and the a priori model CM. As an example, we

apply the method to a linear Gaussian tomographic inverse problem

based on synthetic data.

We use notations from linear inverse theory and introduce geo-

statistical terms where needed. However, the choice of notation

should not distract the reader from the fact that the methodology

could be presented equally well using geostatistical notation. In this

paper, we apply sequential simulation to solve the Gaussian linear

inverse problem and extend conventional simple kriging and se-

quential simulation to include measurements of linear averages of

the model space, in addition to point measurements.

SEQUENTIAL SIMULATION AND LINEAR

GAUSSIAN INVERSE THEORY

The concept of sequential simulation, as used in geostatistics, can

be applied to any Gaussian linear inverse problem to produce a

number of realizations of a random field with a specified a priori

covariance model CM and honoring observations d that can be seen

as linear averages of the model space.

The a priori information on the model parameters m is represent-

ed using a Gaussian probability density with mean m0 and covari-

ance CM. For the remainder of this text, we will not consider how to

choose a priori CM but refer the interested reader to Goovaerts

�1997� for a thorough discussion on the inference of CM.

Data measurements d are represented using a Gaussian probabili-

ty density with mean d0 and covariance CD. Further, we assume that

the relation between data and model parameters is linear.

The Gaussian linear inverse problem — One data set

We start by introducing the Gaussian linear inverse problem for

two types of observed data: type A direct measurements of some

model parameters, and type B linear average measurements of

model parameters. This distinction between data types may seem

trivial, but it allows relatively straightforward implementation of se-

quential simulation.

Type A data — Direct measurements of model parameters

First, consider a situation where observations a0 �hereafter

referred to as data of type A� are available and that they are direct

measurements of model parameters at some locations xi in that

a0�xi� = m�xi�. The linear mapping function that transforms model

parameters into observations is denoted as A. This can be

described as

a0 = Am. �2�

The least-squares solution to equation 2 can be described by a

Gaussian probability density �see Tarantola, 2005� with mean

m̃ = m0 + CMAt�ACMAt + CD�−1�a0 − Am0� �3�

and with covariance

C̃M = CM − CMAt�ACMAt + CD�−1ACM. �4�

A forward mapping operator like A is relatively unconventional

for inverse theory applied to the physical observations because A is

independent of any physical law and simply gives the value of the

function m�x� at given locations x. Equations 3 and 4 are identical to

the solution to a simple kriging system, with m̃ being the kriging

mean and C̃M the kriging variance.

Type B data — Linear average measurements of model

parameters

Consider now a situation where we are able to measure some lin-

ear averages over the model space b0 �hereafter referred to as data of

type B�:
b0 = Bm. �5�

Here, B could relate to the raypaths of a tomographic experiment.

The least-squares solution to equation 5 can be described by a

Gaussian probability density �see Tarantola, 2005� with mean and

covariance as given in equations 3 and 4, substituting A with B and

a0 with b0.

Though it is obvious that data of type A can be seen as a special

case of data of type B �when the volume average is measured at a

point�, splitting the observed data into types A and B makes utiliza-

tion of sequential simulation straightforward.

The Gaussian linear inverse problem — Two data sets

Assume data of types A and B are available. Direct measurements

of the model parameters a0 �typeA� and linear averages of the model

parameters b0 �type B� are such that

d0 = �a0

b0

�, CD = �Caa Cab

Cab
t Cbb

�, G = �A

B
� , �6�

where Caa and Cbb are data covariances for the observed data a and b

and Cab is the cross data covariance between the two data types. The

observations are linked to the model through the linear operator G:

d0 = Gm. �7�

The least-squares solution to equation 7 then becomes a Gaussian

probability density function with mean

m̃ = m0 + CM�At Bt ��Taa Tab

Tab
t Tbb

�,��a0

b0

� − �A

B
�m0�

�8�

and with covariance

C̃M = CM − CM�At Bt ��Taa Tab

Tab
t Tbb

��A

B
�CM, �9�

where
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S = �Saa Sab

Sab
t Sbb

� = �Caa Cab

Cab
t Cbb

� + �A

B
�CM�At Bt �

�10�

and

T = �Taa Tab

Tab
t Tbb

� = �Saa Sab

Sab
t Sbb

�−1

= S−1. �11�

Equations 8 and 9 can thus be seen as the solution to a linear in-

verse problem, with direct observations of the model space through

a0 and linear averages of the model space through b0.

Estimation of the posterior Gaussian probability at one

point only

Equations 8 and 9 provide the mean and covariance of the

posterior Gaussian probability density function at all locations in

space, as defined by the G and m matrices.

In some situations, specifically when applying sequential simula-

tion, it is convenient to estimate the posterior mean and covariance

for only one point in the model space. The solution to the least-

squares inverse problem in equation 7 at any location x is given by

m̃�x� = m0�x� + 	
i=1

n

	
j=1

n

CM�x,xi��Taa�ij��a0� j − m0�x j��

+ 	
I=1

N

	
j=1

n



VI

dxCM�x,xI��Tab
t �Ij��a0� j − m0�x j��

+ 	
i=1

n

	
J=1

N

CM�x,xi��Tab�iJ��b0�J − 

VJ

dx m0�xJ��
+ 	

I=1

N

	
J=1

N



VI

dx CM�x,xI��Tbb�IJ

���b0�J − 

VJ

dx m0�xJ�� . �12�

The posterior covariance being given by

C̃M�x,x�� = CM�x,x�� − 	
i=1

n

	
j=1

n

CM�x,xi��Taa�ijCM�x j,x��

− 	
I=1

N

	
j=1

n



VI

dx CM�x,xI��Tab
t �IjCM�x j,x��

− 	
i=1

n

	
J=1

N



VJ

dx CM�x,xi��Tab�iJCM�xJ,x��

− 	
I=1

N

	
J=1

N



VI

dx

VJ

dx CM�x,xI��Tbb�IJCM�xJ,x�� ,

�13�

where n is the number of available point data �type A� and N is the

number of volume average data �type B�. The values VI and VJ are the

integrals over the volume spanned by data of type B indicated by in-

dices J, . . . , whereas j, . . . , are indices of data of typeA.

Sequential simulation

Sequential simulation is a technique used to generate independent

realizations of a random field describing a parameter m. It requires

that at any location xi, one can determine the probability distribution

of m�xi� conditional to the known model parameter values and the

observed data. With respect to the theory described above, one must

be able to estimate, at any location, the probability density function

of the model parameter m�xi� conditional to the observed data of

typesAand B.

As shown, m̃�x� and C̃M�x,x�� �equations 12 and 13� can be inter-

preted as the mean and covariance of the posterior Gaussian random

field, conditioned to data of typesAand B. Sequential simulation can

now be performed as follows.

1� Randomly visit a point location in the model space, e.g., xi.

2� Compute the probability distribution conditional to the known

and previously simulated nodes �a0, data of type A� and the ob-

served linear averages �b0, data of type B�. This can be done ef-

ficiently using equations 12 and 13. �Depending on the distribu-

tion of the data to simulate, either sequential Gaussian simula-

tion �SGS� or direct sequential simulation �DSS� can be used.

Using SGS, one can effectively skip this step and move on to

step 3, as the conditional probability function is exactly given

by a Gaussian with the calculated mean and variance. Using

DSS, one can simulate any data distribution that can be de-

scribed by a mean and a variance. To ensure histogram repro-

duction, one can reshape the conditional probability distribu-

tion, as proposed by Oz et al. �2003�, prior to drawing a value,

as in step 3. The application to non-Gaussian data distributions

is discussed below.�

3� Draw a �random� value from the found conditional probability

density function, e.g., mdraw�xi�. This is a sample of the posterior

Gaussian probability function at location xi.

4� The simulated value mdraw�xi� is now treated as a known datum

of type A, a�xi�, and added to the list of type A data such that

a0,i+1 = �a0,i,a�xi��.

5� Repeat steps 1–4 until all desired locations of the model space

have been visited.

Note that for each visited point xi, a sample of the corresponding

posterior Gaussian probability function is found and added to the

conditioning data, i.e., data of typeA. The estimated probability den-

sity function is conditioned to data of types A and B as opposed to

only data of typeA, as in traditional geostatistical SGS �Deutsch and

Journel, 1998�.

The collection of all these samples, one per location xi, is referred

to as one realization of the posterior Gaussian random field. Addi-

tional independent realizations of the posterior random Gaussian

field can be obtained by rerunning the algorithm with a different ran-

dom seed. In practice, when using data neighborhoods of limited ex-

tent �as addressed later�, a new random path must be chosen for each

realization to ensure independent realizations.
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The limited data neighborhood reduces computation time by re-

ducing the number of conditioning data. Data of both types A and B

that have small a priori covariance to the point being simulated

xi, are removed because their contribution would be small to in-

significant. The choice of such neighborhood is examined in more

detail below.

Other methods

Gómez-Hernández and Cassiraga �2000� suggest using sequential

cosimulation with linear constraints. However, they do not con-

sider a formal link to linear inverse theory and consider only

noise-free data.

Journel and Huijbregts �1978, p. 495� suggest an approach to con-

ditional Gaussian simulation using a combination of unconditional

simulation and kriging for data conditioning. Using this approach,

Carr and Myers �1985� give a practical implementation of co-condi-

tional simulation. Gloaguen et al. �2005� use cokriging of arrival

times as measured from a cross-borehole survey to estimate a

smooth-slowness field. Using the approach given by Journel and

Huijbregts �1978� and Carr and Myers �1985�, they combine uncon-

ditional Gaussian simulations with the previous cokriging result to

produce stochastic realizations of the slowness field distribution

conditioned to the observed traveltimes. The methodology of Gloag-

uen et al. �2005� is different from using SGS/DSS, particularly in

that it requires a multivariate Gaussian distribution and hence has no

flexibility to handle non-Gaussian conditioning data.

Monte Carlo-based algorithms can be used to generate realiza-

tions of a random field m�x� consistent with prior information and

observed data. Several iterative approaches exist. They share the

same basic structure:An initial random image is generated, the mod-

el is randomly perturbed, and the perturbed model is either rejected

or accepted according to some objective function. There are many

ways to perturb the model, but one option is to switch the values of

two randomly chosen locations. This ensures that the histogram of

the initial random field is preserved. In theory, this approach is guar-

anteed to provide a solution �one realization of the posterior proba-

bility density function� consistent with a priori information and

observed data. Unfortunately it is impossible to determine a priori

when the solution will converge �see Goovaerts �1997� for

more details�.

GEOSTATISTICAL TOMOGRAPHY

AS AN INVERSE PROBLEM:

A CROSS-BOREHOLE EXAMPLE

As an example of an application of the developed theory, a syn-

thetic cross-borehole tomographic example is considered.

A reference model with a 2D grid of 60 �horizontal� by 80 �verti-

cal� nodes, with 250-m spacing between grid points is chosen. Using

the SGSIM program from the GSLIB software �Deutsch and Jour-

nel, 1998�, one realization of a Gaussian random field with a global

mean and variance of Vmean = 5 km/s and � = 0.1 km/s is selected

as a reference velocity field �see Figure 1�.An isotropic spherical co-

variance model with a range of 400 m �Figure 1c� is used to generate

the reference velocity field. The range is the distance beyond which

the covariance is zero, i.e., data separated by a distance larger than

the range are uncorrelated.

In geostatistics, the equivalent semivariogram is typically used.

The semivariogram is a measure of variability between two points

separated by an offset of h, linked to the covariance through ��h�

= CM�0� − CM�h�. Deutsch and Journel �1998� provide a list of ana-

lytical covariance models. In this paper, the prior choice of covari-

ance model is termed the true semivariogram/covariance model.

Figure 1 also shows the covariance calculated from the reference

model for checking purposes.

The covariance model can be made direction dependent and be

anisotropic �different correlation length for different directions�. It is

only for the sake of simplicity that we use an isotropic covariance

model �see Goovaerts �1997� for more details about covariance

modeling�.

Conventional SGS

The values in the left- and rightmost column at the boundaries of

the reference field are assumed known values, mimicking well-log

data. These data are referred to as well data. When all conditioning

data are typeA, traditional SGS algorithms can be used.

Figure 1. Reference model. �a� Reference velocity field. A realization of a Gaussian random field. �b� Histogram of the distribution of velocities
in the reference model. �c� Synthetic covariance used to generate the reference model �solid line�, and the covariance obtained from the reference
model �stars�. For comparison, the corresponding semivariogram is shown.
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Figure 2 shows three conditional simulations, using the well data

as conditioning data, and the true covariance model as the prior co-

variance function CM. As can be seen �and expected�, the three real-

izations vary significantly in the center of the model, where grid

nodes are uncorrelated to the conditional data. All three simulations

honor the basic statistics of the reference model in terms of mean,

variance, covariance model, and histogram �not shown here�.

Geostatistical tomography — Noise free

In addition to the borehole data, a number of rays traveling from

one borehole to the other is now considered, mimicking a cross-

borehole tomography setup. Thus, in this case, data of type B are also

available. Sources are evenly spread along the left border of the left-

most column, and receivers are evenly spread at the rightmost border

of the rightmost column. Several models with varying ray density

are examined by considering a range of selected sources and receiv-

ers. Figure 3 shows the ray geometry using two, five, and eight

sources and receivers, respectively �the number of sources equals

the number of receivers�. All receivers are assumed to record signal

from all sources; therefore, the number of rays is the square of the

number of sources/receivers, i.e., 4, 25, and 64 rays. In this paper, we

refer to the three types of data sets as a number of rays in square

brackets, such as �4,25,64�. The data set with �0�
rays refers to the case where only well data are

available �no ray data�. Ray tracing is used to cal-

culate, from the reference field, the traveltime for

each ray and the sensitivity of each cell in the

model grid to each ray. From these data, the aver-

age velocity along the raypath is computed and is

referred to as the observed data b0. These ob-

served data can be seen as linear averages of the

model space; hence, the developed theory can be

applied. The observed data b0 are for now consid-

ered noise free. Note that straight rays are consid-

ered for simplicity only. Any linear sensitivity

kernel obtained using, for example, curvilinear

rays or Fresnel zone-based sensitivity can be

used.

Figure 4 shows three �out of 100� simulated

fields for the three models with �4,25,64� rays.

Figures 5 and 6 show vertical profiles of every

fifth generated simulated fields, for �0,4,25,64�
rays, at x = 250 m and x = 750 m �middle of

x-axis range�, respectively. Using four rays �of

which only two actually cross the study area�, no

significant effect can be seen as compared to us-

ing no rays �Figures 4a, 5b, and 6b�.

Using 25 rays, some features are resolved. The

high-velocity feature �black� located around

x�300 m and z�1000 m �Figure 1� can be iden-

tified on all three realizations of Figure 4b. This is

even clearer from the series of vertical profiles at

x = 250 m of Figure 5c, where most of the real-

izations include the high-velocity zone from

z�0.8–1.3 km depth.

The vertical profiles using 64 rays �Figures 5d

and 6d� show realizations that vary more tightly

around the true profile.

Figure 2. Three simulated fields, using the true covariance model as
the a priori covariance model, and the well data �type A data� as con-
ditioning data. No ray data are considered.

Figure 3. Ray coverage �lines� using �a� 4, �b� 25, and �c� 64 rays.

Figure 4. Three simulated fields conditioned to the well data �type A� and observed mean
velocity along raypaths �type B� using �a� 4 rays, �b� 25 rays, and �c� 64 rays. The true co-
variance model was used as the a priori covariance to create all realizations.
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Figure 7 shows some statistics of the generated simulated fields.

The covariance calculated from the simulated fields match the refer-

ence model nicely �Figure 7a�. The simulated fields show a Gaussian

probability density distribution with the correct mean and variance

�Figure 7b�. Finally, all simulated fields result in apparent velocities

along the raypaths that are close to the true values. The error is less

than 0.1% and is from numerical round-off errors only.

Comparison to least-squares linear inversion

Figure 8 shows the E-type �the mean value of the conditional dis-

tribution at each location, calculated as the pointwise mean of all 100

realizations� for �0,4,25,64� rays. Figure 9 shows the least-squares

estimation using equations 8 and 9 using the same true covariance.

The E-type and the least-squares result �Figures 8 and 9� should,

in theory, give the same result if averaging is done on an infinite

number of simulated realizations. As can be seen, the results of the

two approaches are close to identical using only 100 simulated

realizations.

Figure 10 shows the covariance function computed for the least-

squares result conditioned to four rays, compared to the a priori as-

sumed CM and the mean covariance calculated from the 100 simulat-

ed realizations. The covariance estimated from the smooth least-

squares result does not match the a priori chosen CM lacking most of

the higher-frequency variability. This is as expected from any least-

squares estimated map and is known as the smoothing effect

of estimation.

Figures 8–10 illustrate a very important point that is rarely recog-

nized. The least-squares result �Figure 9� is a very unlikely sample of

the posterior Gaussian random function. It is only an average of all

solutions. A solution is one realization of the posterior Gaussian

probability density field, as given by the sequential simulation ap-

proach shown in Figure 4.

In the case where a medium can be described by a Gaussian ran-

dom field, as in the previous cross-borehole tomography example,

sequential simulation can be used to analyze a general linear inverse

problem through generation of multiple random field realizations

that honor data a and b and prior information given by the covari-

ance function CM.

Effect of choice of prior covariance model

Figure 11 shows simulated realizations, conditioned to

�0,4,25,64� rays and using a priori covariance models with a range

of 200, 400, and 800 m. Because 400 m corresponds to the true

range, ranges of 200 and 800 m correspond to situations where the

selected covariance model differs from the true covariance model.

Selecting a range of 200 m implies shorter spatial wavelengths,

whereas a range of 800 m assumes longer spatial wavelengths, i.e., a

smoother random field.

With no ray data included, the simulated fields directly reflect the

choice of the prior covariance model. This is also the case when con-

ditioning to only four ray observations. As more rays are used for

conditioning, the change in the apparent correlation length �the aver-

age dominant distance between high and low features� of the simu-

lated fields becomes less evident. The correlation length is consis-

tently smaller for a range of 200 m as opposed to 400 m. Using an a

priori range of 800 m shows another pattern. When few or no rays

are included, the simulated field is relatively smooth �zero and four

rays�, indicating a long range. However, as more ray data are used for

conditioning, the correlation length of the simulated fields diminish-

es, reflecting the actual and shorter correlation range �400 m� of the

reference field.

This is verified by the experimental covariance calculated from

the simulated fields. Experimental covariances for ranges of 200 and

400 m �Figures 7a and 12a� show that the experimental covariance

model does not change as the amount of ray data increases. In fact,

the experimental covariance fits the synthetic covariance of the a pri-

ori covariance model quite well.

Figure 5. Vertical velocity profile at x = 250 m for every fifth gener-
ated realization using �a� no rays, �b� 4 rays, �c� 25 rays, and �d� 64
rays. The solid thick red line corresponds to the velocity profile of
the reference model at x = 250 m.

Figure 6. Vertical velocity profile at x = 750 m �the middle of the
x-axis range� for every fifth generated realization using �a� no rays,
�b� 4 rays, �c� 25 rays, and �d� 64 rays. The solid thick red line corre-
sponds to the velocity profile of the reference model at x = 750 m.
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The experimental covariance for an a priori

range of 800 m �Figure 12b� shows that the range

actually decreases toward the true range, as the

number of rays increases.As expected, this shows

that, with little or no ray data, the a priori informa-

tion determines the unconstrained part of the

model space. Increasing the number of condition-

ing data leads to increasing use of the data as op-

posed to the a priori information. The a priori in-

formation is honored only when it is consistent

with the conditioning data.

In Figure 12c and d, the models with vary-

ing a priori range all showed a Gaussian-distribut-

ed velocity field with mean 5 km/s and var-

iance 0.1 km/s. These results are similar to

Figure 7b and c.

Noisy data

The simulations above assume noise-free data.

In geostatistics, this is the usual way of dealing

with so-called hard data. When considering geo-

physical data, one cannot avoid dealing with un-

certainty of measurements. In inverse theory, it is

well known that ignoring noise when trying to

solve an inverse problem produces unreliable re-

sults because the data observations become in-

consistent; no solution can be established that

matches the observed data. In the present context,

the sequential simulation process will fail. It pro-

duces simulations with extreme values and caus-

es numerical matrix instability if forced to honor

noisy data exactly.

As the theory is presented here, it is trivial to in-

troduce data uncertainty through the data covari-

ance matrix CD in equation 6. Figure 13 shows the

summary statistics of 100 simulations where

Gaussian noise �zero mean and variance are

0.1 km/s� is added to the observed velocity aver-

age data dobs. Uncorrelated data uncertainty

is set to Cbb = 0.1 �off diagonal elements are

set to zero�, and well data are assumed noise

free, Caa = 0.

Comparing Figure 13 to the results of noise-

free data �Figure 7�, it is apparent that data d are

reproduced by the simulated realizations within

the uncertainty range specified by CD because

the histogram of dobs − dcalculated displays a Gauss-

ian distribution with mean 0 and variance 0.1

km/s. The histogram of the simulated values at

data locations can be approximated by a Gaussian

distribution with mean 5.0 km/s and variance

0.1 km/s. Also, the experimental covariance of

the simulated data matches the reference covari-

ance reasonably well.

By allowing data uncertainty through CD, we

ensure that noisy data observations are fitted

within their uncertainties, while honoring the a

priori covariance information. Adding data un-

certainty through CD is referred to in geostati-

Figure 7. �a� True covariance, CM = 0.1 Sph�0.4 km�, and the mean of 100 experimental
covariance models obtained from the conditional simulation shown in Figure 4. �b� Dis-
tribution of the velocity field for 100 simulations �using 64 rays� and the reference distri-
bution used to set up the reference model. �c� Distribution of the relative error between
the mean velocity along raypaths of 100 simulations �using 64 rays� and the true mean ve-
locity along these raypaths.

Figure 8. E-type �pointwise mean of 100 simulations� using �a� 0, �b� 4, �c� 25, and
�d� 64 rays.

Figure 9. Least-squares estimates for �a� 0, �b� 4, �c� 25, and �d� 64 rays, using equations 8
and 9. Compare to the E-type results of the 100 simulated fields in Figure 8.
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stics as specifying location-specific measurement error �Del

homme, 1978�. This is identical to adding noise through CD as

suggested above.

SEQUENTIAL ESTIMATION

In case one is interested only in the smooth least-squares estimate,

as in equations 8 and 9, the sequential approach also can be applied

effectively. The approach to perform sequential estimation is only a

slight variant to that of sequential simulation:

1� Visit a point in the model space, e.g., xi.

2� Compute the mean and covariance of the posterior Gaussian

probability of the model parameters m̃�xi� and C̃M�x,x��, which

are given by equations 12 and 13.

3� Do not draw a value from the posterior Gaussian probability

function. Do not add any data to the set of conditioning data

�data of typeA�.

4� Repeat steps 1–3 until enough points have been estimated.

Thus, instead of drawing from a conditional probability function, as

is the case in sequential simulation, one chooses the most likely

model �the maximum likelihood model� at each location, through

the means of the posterior probability function. This is also exactly

what direct simple kriging would provide.

This approach will produce results identical to solving equations

8 and 9, which is the usual smooth least-squares estimate of a linear

inverse problem. Solving equations 8 and 9 for all data locations at

once requires the solution of one large linear system, whereas using

the sequential approach requires the solution of many, but small, lin-

ear systems. For some linear problems, this sequential approach may

prove computationally efficient.

We refer to this method as sequential least-squares estimation. It

should not be confused with the sequential kriging method proposed

by Vargas-Guzman andYeh �1999�, which is a kriging- �that is, least-

squares� based estimation algorithm that allows data to be incorpo-

rated into the estimation process in an iterative manner as they be-

come available while obtaining the same result as using all data

at once.

APPLICATION TO WEAKLY

NONLINEAR PROBLEMS

Instead of the linear problem of equation 7,

consider

d = G�m� , �14�

where G is a weakly nonlinear function that maps

model parameters m into observations d. By

weakly nonlinear, we mean nonlinear problems

where G�m� can be linearized around the prior

model of m, mprior. Such weakly nonlinear prob-

lems can be solved by a number of iterative tech-

niques. Each step in the iterative process requires

one to solve a linear system equivalent to equa-

tion 1 �see chapter 3.2.3 in Tarantola �2005��.

This can be done by a conventional least-squares

inversion algorithm or by sequential least-

squares estimation, both described above. The it-

eration continues until the estimated maximum

likelihood model mML�x� has converged to a lo-

cal optimal point.

The weakly nonlinear problem is now linear-

ized around G�mML�. Using the linearized kernel

G, sequential simulation can be now be used to

draw samples from the a posteriori distribution.

Thus, the sequential approach to linear inverse

problems that we describe can be used to generate

realizations of the posterior probability function

of a Gaussian weakly nonlinear problem. In the it-

erative stage of the inversion, one applies sequen-

tial least-squares estimation until a local optimal

Figure 10. A priori covariance model and the covariance calculated
from all realizations conditioned to four rays, as in Figure 4a, and the
covariance calculated from the corresponding least-squares solu-
tion, i.e., the model shown in Figure 9b.

Figure 11. Simulated velocity field for a prior range of the covariance function of �a�
200 m, �b� 400 m, and �c� 800 m. For each row, the four simulated fields are the result of
conditioning to �0,4,25,64� rays, respectively.
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model has been found. Then sequential simulation is used to calcu-

late samples of the posterior probability density function.

APPLICATION TO NON-GAUSSIAN

DATA DISTRIBUTIONS

DSS is a generalization of SGS, which allows simulation of data

with a non-Gaussian distribution. Any distribution that can be de-

scribed by a mean and a variance can be simulated directly �Journel,

1993�, using the exact same kriging system as shown here. The ma-

jor limitation of DSS has been that, although the mean, variance, and

covariance were reproduced by DSS, the histogram was not. This is-

sue is addressed by Soares �2001� and Oz et al. �2003�. They show a

simple approach to ensure histogram reproduction. The only differ-

ence to SGS is that the shape of the conditional distribution from

which a sample is drawn is modified from one simulated node to an-

other to ensure histogram reproduction. Thus, the kriging system

that is solved at each step of the simulation is identical to SGS. This

generalization is important for the inclusion of linear average data,

as we present. Indeed, a normal score transformation to make the

data univariate Gaussian distributed would undo the linear average

property and prevent their integration with a strict sequential

Gaussian algorithm.

COMPUTATIONAL EFFICIENCY

OF THE PROPOSED METHOD

Neighborhood

Using sequential simulation, the number of

conditioning point data �data of type A� increases

by one for each visited point in space. Therefore,

the approach could be computationally ineffi-

cient because the linear system to be solved will

keep increasing. However, as we previously not-

ed, not all the conditioning data need to be used to

solve the linear inverse problem at all points

in space.

It is well known from geostatistics �Deutsch

and Journel, 1998� that data much beyond the

range of the semivariogram model/covariance

model have little to no effect on the estimation of

the mean and covariance of the posterior Gauss-

ian probability. Typically only a small subset of

available conditioning data are used.

Because we deal with linear inverse theory,

only observations close, in terms of the covari-

ance, to the point being simulated need to be con-

sidered. Thus, only those data of type B �and A�

relatively close �e.g., two times to covariance

range� need to be considered. We will refer to

such data of types A and B as belonging to neigh-

borhoodAand B, respectively.

In addition, to ensure that observed data of type

B are reproduced correctly, all previously simu-

lated point data within the volume spanned by

any type B data used must also be added to the

conditioning data �Journel, 1999�.

Comparison to least squares

Typically only a small fraction of the available data is used to cal-

culate the posterior Gaussian probability at any given point in space.

Therefore, sequential simulation can be seen as a process of solving

many, but small, linear matrix equations, as compared to solving one

large linear matrix equation when using conventional least-squares

estimation �equations 8 and 9�.

The size of the linear matrix equation to solve is important be-

cause it involves a matrix inversion. The time it takes to invert an

�N�N� square matrix is approximately proportional to N2. Thus,

solving very large linear inverse problems using equations 8 and 9

can become extremely inefficient, or impossible, not just because of

the long computation time but also because of large physical memo-

ry requirements. In contrast, it may be feasible, for the same linear

inverse problem, to use the sequential approach for solving inverse

problems because it requires many more, but much smaller, matrices

to be inverted.

Simulating only parts of the
model space

The method proposed can be used to simulate regions smaller than

that spanned by the linear average data.

Figure 14 shows the result of applying sequential simulation —

simulation only at 1 km depth using 25 rays. All 25-ray data and all

Figure 12. Similar to Figure 7a, but using a range of 800 m as opposed to the true range of

400 m. �a� Covariance models for CM = 0.1 Sph�0.4 km� and CM = 0.1 Sph�0.2 km�,
and the mean of 100 experimental covariance models obtained from conditional simula-

tion using a prior range of 200 m. �b� Covariance models CM = 0.1 Sph�0.4 km� and

CM = 0.1 Sph�0.8 km�, and the mean of 100 experimental covariance models obtained
from conditional simulation using a prior range of 800 m. �c� Distribution of the velocity
field for 100 simulations �using 64 rays� and the reference distribution. �d� Distribution of
relative error between the mean velocity along raypaths of 100 simulations �using 64
rays� and the true mean velocity along these raypaths.
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conditional well data are included in the simulation. As can be seen,

the E-type matches the least-squares result quite well �Figure 14b�.

Simulating 60 realizations at all points takes 529 s but only 18 s

when visiting only the row at 1 km depth. The speedup of the code is

approximately 30 times. Consider, for instance, a large 3D tomogra-

phic data set as a linear inverse problem, where one is only interested

in a specific small part of the model space. Using conventional least-

squares estimation, a very large matrix system must be inverted,

whereas using the sequential approach, one sim-

ply visits the points in space where one is interest-

ed in the model parameters, and simulates/esti-

mates values based on relatively small �thus fast

to solve� linear inverse problem.

CONCLUSION

We present the methodology to sequentially

solve any Gaussian linear inverse problem, using

the concept of sequential simulation. The major

application is noniterative sequential simulation

that will generate actual samples from the posteri-

or probability density function, consistent with

data observations and a priori information in form

of a prior covariance model describing the spatial

variability.

Compared to Monte Carlo-based approaches,

the proposed approach is noniterative and hence

computationally very efficient. The conventional

least-squares inversion result gives the mean of

all possible solutions, which makes it useful to in-

fer only the posterior Gaussian probability densi-

ty of one model parameter independent from oth-

er model parameters but useless to infer the joint

posterior probability of the joint outcome of two

or more model parameters. Using the sequential

approach we present, one can generate a �large�

number of samples from the posterior probability

density function, which in fact are all solutions to

the Gaussian linear problem. One can then calcu-

late posterior statistics for any spatial model

space feature. For example, one can get the an-

swer to a question, such as, What is the probabili-

ty that model parameters at locations x1 and x2 are

connected by model parameters all larger than

8.1? Such questions and answers are crucial to,

for example, flow-related property modeling.

We show that the sequential approach also can

be used to efficiently solve any Gaussian linear

inverse problem using sequential estimation. The

combination of sequential estimation and simula-

tion can be used to solve Gaussian weakly nonlin-

ear inverse problems.

Linear inverse theory and geostatistics are

closely related research fields. We have combined

the sequential approach from geostatistics and

data conditioning from inverse theory to bring

new theory and application to both research

fields. The theory presented in this paper is close-

ly related to the geostatistical method of SGS, and

can be seen as an extension of SGS to condition-

ing by linear averages.

Today geostatisticians use training images as a priori information

of the spatial distribution, as opposed to the mere covariance model.

Future work will emphasize bringing geostatistics and inverse theo-

ry closer together, where �1� inversionists will use realistic and com-

plex a priori information used by geostatisticians in the form of train-

ing images and �2� geostatisticians will condition their methods di-

Figure 13. �a� Covariance model for CM = 0.1 Sph�0.4 cm�, and the mean of 100 experi-
mental covariances calculated from conditional simulation using 4, 25, and 64 rays, con-
taminated with Gaussian noise with a variation of ±0.1 km/s. �b� Distribution of the ve-
locity field for 100 simulations �using 64 rays� and the reference distribution. �c� Relative
variation of mean velocity along raypaths using 100 simulations �using 64 rays� com-
pared to the true mean velocity along these raypaths. The variance is 0.0093 km/s, close
to the specified data variance of 0.01 km/s.

Figure 14. Result of simulating only at data locations at 1 km depth. �a� Sixty simulated
rows at 1 km depth. �b� Black lines are 60 simulated velocity profiles. The thick white
line is the result of a full least-squares inversion �all points in the model and all rays are
considered� using equations 8 and 9, and the dashed black line is the E-type �pointwise
mean� of the 60 simulations.
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rectly to physical measurements, as opposed to considering such

physical data as soft data.

The sequential simulation approach to solving linear inverse

problems is applied to a ground-penetrating-radar cross-borehole to-

mographic problem.
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