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LINEAR ISOMETRIES BETWEEN SUBSPACES

OF CONTINUOUS FUNCTIONS

JESÚS ARAUJO AND JUAN J. FONT

Abstract. We say that a linear subspace A of C0(X) is strongly separating
if given any pair of distinct points x1, x2 of the locally compact space X, then
there exists f ∈ A such that |f(x1)| 6= |f(x2)|. In this paper we prove that a
linear isometry T of A onto such a subspace B of C0(Y ) induces a homeomor-
phism h between two certain singular subspaces of the Shilov boundaries of B
and A, sending the Choquet boundary of B onto the Choquet boundary of A.
We also provide an example which shows that the above result is no longer
true if we do not assume A to be strongly separating. Furthermore we obtain
the following multiplicative representation of T : (Tf)(y) = a(y)f(h(y)) for all
y ∈ ∂B and all f ∈ A, where a is a unimodular scalar-valued continuous func-
tion on ∂B. These results contain and extend some others by Amir and Arbel,
Holsztyński, Myers and Novinger. Some applications to isometries involving
commutative Banach algebras without unit are announced.

1. Introduction

Let K denote the field of real or complex numbers. For a locally compact Haus-
dorff space X , we denote by C0(X) the Banach space of all continuous K-valued
functions defined on X which vanish at infinity, equipped with its usual supremum
norm. If X is compact, we write C(X) instead of C0(X). X ∪ {∞} denotes the
Alexandroff compactification of X .

Let A be a linear subspace of C0(X). We will denote by σA the set of all x0 ∈ X
such that for each neighborhood U of x0, there is a function f in A such that
|f(x)| < ‖f‖ for all x ∈ X − U . Let us define the set

σ0A := σA ∩ {x ∈ X : there exists f ∈ A such that f(x) 6= 0}.
If it exists, we will denote by ∂A the Shilov boundary of A, that is, the minimal

closed subset of X with the property that each function in A assumes its maximum
on ∂A. On the other hand, it is said that x0 ∈ X is a strong boundary point of A if
for each neighborhood U of x0, there is a function f in A such that |f(x0)| = ‖f‖
and |f(x)| < ‖f‖ for all x ∈ X − U . We will denote by τA the set of all strong
boundary points of A.

We will denote by ChA the Choquet boundary of A. Let us recall that each
extreme point of the unit ball V of the dual space of A has the form µex, where µ is
a complex number of modulus 1 and ex is the evaluation map at the point x ∈ X ,
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ex(f) = f(x) (f ∈ C0(X)). The Choquet boundary for A is defined as {x ∈ X : ex
is a extreme point of V }. Recall that although the Choquet boundary is usually
defined in the case when X is compact and A separates points and contains the
constants, both definitions agree in this case.

We say that a linear subspace A of C0(X) is separating (resp. strongly sepa-
rating) if given any pair of distinct points x1, x2 of X , then there exists f ∈ A
such that f(x1) 6= f(x2) (resp. |f(x1)| 6= |f(x2)|). It is well-known that the Shilov
boundary of a separating subalgebra of C0(X) always exists.

A separating (resp. strongly separating) linear subspace A of C0(X) is said to
be a separating (resp. strongly separating) function subspace if for all x ∈ X , there
exists f ∈ A such that f(x) 6= 0.

The source of this article is the classical Banach-Stone theorem. In its present
form it states as follows: if there exists a linear isometry T of C0(X) onto C0(Y ),
then there are a homeomorphism h of Y onto X and a continuous map a : Y → K,
|a| ≡ 1, such that T can be written as a weighted composition map, that is,

(Tf)(y) = a(y)f(h(y)) for all y ∈ Y and all f ∈ C0(X).

This well-known theorem has been generalized in several directions, for instance,
by considering injective (not necessarily surjective) linear isometries. Perhaps the
most important result of this type is due to Holsztyński [15]: if there exists a linear
isometry T of C(X) into C(Y ), then we can find a closed subset Y0 of Y and a
continuous map h of Y0 onto X and a continuous map a : Y0 → K, |a| ≡ 1, such
that

(Tf)(y) = a(y)f(h(y)) for all y ∈ Y0 and all f ∈ C(X).

Some years before, Geba and Semadeni [14] had obtained an analogue of Hol-
sztyński’s theorem though for isotonic injective linear isometries. Also a number of
applications of Holsztyński’s theorem can be found in the literature. Recently, for
instance, it has played a crucial role in the classification of isometric shift operators
on C(X) (see, e.g., [12] and [13]).

Generalizations of a similar type are provided by replacing C0(X) by its sub-
spaces or subalgebras. Indeed, in 1948, Myers [20] proved that, if K = R, then a
sufficient condition for X and Y to be homeomorphic is that a completely regular
linear subspace of C(X) and such a subspace of C(Y ) be isometrically isomorphic.
Let us recall that a closed linear subspace A of C0(X) is said to be completely
regular if every x ∈ X is a strong boundary point of A, i.e., τA = X .

In 1959, Nagasawa [21] (see also [11]) extended the Banach-Stone theorem for
function algebras, that is, closed separating subalgebras with unit of C(X)-spaces.
He proved that two function algebras are isomorphic as algebras if and only if they
are isometric as Banach spaces.

In 1975, Novinger [22] went a step further and extended some of the above
generalizations: if there exists a linear isometry T from a linear subspace A of
C(X) which is separating and contains the constants into C0(Y ), then there are a
continuous map h of the Choquet boundary of T (A), ChT (A), onto ChA and a
continuous map a : ChT (A)→ K, |a| ≡ 1, such that

(Tf)(y) = a(y)f(h(y)) for all y ∈ ChT (A) and all f ∈ A.

Similar extensions of the Banach-Stone theorem have been given for subspaces
of C0(X) equipped with different norms. Among these subspaces we point out
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the following: spaces of differentiable functions (see, e.g., [7]); spaces of absolutely
continuous functions (see, e.g., [23]); spaces of Lipschitz functions (see, e.g., [10]).

If we weaken the geometric bond betweenC0(X) and C0(Y ), the homeomorphism
between X and Y may wither: Milutin [19] proved that if X is any uncountable
compact metric space (for instance, X = [0, 1]∪ {2}), then C(X) is linearly home-
omorphic to C([0, 1]). However, if the isometry is not weakened too much, good
results can still be accomplished: Amir [1] and Cambern [6] proved that if C0(X)
and C0(Y ) are isomorphic under an isomorphim T satisfying ‖T‖ ·

∥∥T−1
∥∥ < 2,

which is the best constant, then X and Y must also be homeomorphic. This the-
orem has been extended to cover various subspaces of C0(X)-spaces, for instance,
extremely regular subspaces (see, e.g., [5], [8], [9] or [16]) and function algebras
(see, e.g., [17]).

The corresponding Banach-Stone theorem for E-valued continuous functions is
not true even when the Banach space E is the two dimensional space R2 and X ,
Y are compact metric spaces (see [24]). Thus, the main concern in this line is to
determine the geometric properties of E which allow analogues of the Banach-Stone
theorem. A systematic account of many of the generalizations in this and the above
directions can be found in [4] or [18].

In this paper we deal with some of these generalizations. Indeed we focus on
Holsztyński and Novinger’s directions. Namely we study linear isometries of a
strongly separating linear subspace A of C0(X) into C0(Y ) or onto such a subspace
B of C0(Y ). We show that such isometries can be written as weighted composition
maps on some subspaces of Y (σ0B for the onto case). Furthermore, under the onto
assumption, we prove that σ0A and σ0B are homeomorphic. As straightforward
consequences of this result we first show that the set of strong boundary points
of A and B are homeomorphic. Also ∂A and ∂B are homeomorphic if A and
B are assumed to be strongly separating function subspaces. We also provide an
example which shows that this latter result may fail if the hypothesis “A is strongly
separating” is replaced by the weaker one “A is separating”.

Next we extend some results (op. cit.) by Amir and Arbel [3], Holsztyńsky
[15], Myers [20] and Novinger [22]. We also apply our main results to study the
isometries between separating function subalgebras of C0(X) and C0(Y ) or, more
generally, between semisimple commutative Banach algebras without unit and their
Shilov boundaries.

Finally, we would like to remark that our techniques are not based on the usual
concepts, such as extreme points of the unit ball of the dual of C0(X), T -sets or
M -ideals, used to prove the Banach-Stone theorem and their generalizations. We
only use straightforward concepts instead.

2. Some previous lemmas

In the sequel we will assume that every linear subspace A of C0(X) has nonvoid
Shilov boundary. Anyway, let us note that the Shilov boundary of a strongly
separating linear subspace of C0(X) is nonvoid and coincides with the closure of
its Choquet boundary ([2, Theorem 1]).

Lemma 2.1. Let A be a linear subspace of C0(X). Then ∂A = σA.

Proof. Let x0 ∈ ∂A. Given an open neighborhood U of x0, the closed set X − U
cannot be a boundary for A since it does not contain ∂A. Consequently, there
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exists a function f ∈ A which does not attain its maximum value on X − U , that
is, |f(x)| < ‖f‖ for all x outside U .

Conversely, let x0 ∈ σA. If x0 /∈ ∂A, then there exists an open neighborhood U
of x0 such that ∂A ∩ U = ∅. Hence, there exists a function f ∈ A not attaining its
maximum value on ∂A, which contradicts the definition of boundary.

Lemma 2.2. Let A be a linear subspace of C0(X). Let T be a linear isometry from
A into C0(Y ). Let x ∈ X such that there exists f ∈ A with ‖f‖ = |f(x)|. Let

Cx := {f ∈ A : 1 = ‖f‖ = |f(x)|}.
For any f ∈ A, let

L(f) := {y ∈ Y : ‖Tf‖ = |(Tf)(y)|}
and let Ix :=

⋂
f∈Cx L(f). Then Ix is a nonempty subset of Y .

Proof. For any f ∈ Cx, we have

Ix ⊂Mf := {y ∈ Y : |(Tf)(y)| ≥ ‖Tf‖/2}
and Mf is compact because Tf ∈ C0(Y ). Hence, we only need to prove that if
f1, . . . , fn belong to Cx, then

⋂n
i=1 L(fi) 6= ∅. We have that 1 = ‖fi‖ = |fi(x)| for

all i = 1, . . . , n. Let f ∈ A be defined as
n∑
i=1

(|fi(x)| /fi(x))fi.

Clearly |f(x)| = n = ‖f‖. Since T is an isometry, ‖Tf‖ = n and there is y ∈ Y
such that

n = |(Tf)(y)| =
n∑
i=1

|(|fi(x)| /fi(x))(Tfi)(y)| .

As ‖Tfi‖ ≤ 1 for all i = 1, . . . , n, we deduce that |(Tfi)(y)| = 1 for all i = 1, . . . , n,
that is, y ∈

⋂n
i=1 L(fi).

Remark. Let A be a linear subspace of C0(X) and let x0 ∈ ∂A. We then define the
following subset of Y :

Vx0 := {y ∈ Y : |(Tf)(y)| = |f(x0)| for all f ∈ A}.

Lemma 2.3. Let A be a linear subspace of C0(X) and let x0 ∈ σ0A. Then Vx0 6= ∅.

Proof. Let f0 ∈ A such that |f0(x0)| = 1. Given ε > 0, let

Uf0,ε := {x ∈ X : 1− ε < |f0(x)| < 1 + ε}.
Let U be an open neighborhood of x0. We will assume that U ⊆ Uf0,ε. Since
x0 ∈ σ0A and U is an open neighborhood of x0, there exists a function g0 ∈ A such
that ‖g0‖ = 1 and |g0(x)| < 1 for all x outside U . Since (X ∪{∞})−U is compact,
we can consider

s := sup
x∈X−U

{|g0(x)|} < 1.

Then there exists M > 0 such that ‖f0‖+Ms < 1 + ε+M . Take x ∈ U . Then

|(f0 +Mg0)(x)| ≤ 1 + ε+M.

If x /∈ U , then

|(f0 +Mg0)(x)| < ‖f0‖+Ms < 1 + ε+M.
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As a consequence, ‖f0 +Mg0‖ < 1 + ε+M . Hence, ‖T (f0 +Mg0)‖ < 1 + ε+M .
Furthermore, since

lim
M→+∞

‖f0 +Mg0‖
1 +M

= 1,

we can choose M in such a way that |f0 +Mg0| attains its maximum value inside
U . Otherwise,

lim
M→+∞

‖f0 +Mg0‖
1 +M

≤ lim
M→+∞

‖f0‖+Ms

1 +M
= s < 1,

which is a contradiction. Thus, let x1 ∈ U such that ‖f0 +Mg0‖ = |(f0+Mg0)(x1)|.
Let x2 ∈ U such that ‖g0‖ = |g0(x2)| = 1. It is clear that we can choose g0 such

that |(f0 +Mg0)(x2)| = |f0(x2)|+M |g0(x2)|. Thus,

‖f0 +Mg0‖ ≥ |(f0 +Mg0)(x2)| ≥M + 1− ε.
Consequently,

‖Tf0 +MTg0‖ ≥M + 1− ε.
From the definition of Ix1 (see Lemma 2.2), we infer that

‖Tf0 +MTg0‖ = |(Tf0 +MTg0)(y1)| ≥M + 1− ε
for all y1 ∈ Ix1 . Since |(Tg0)(y)| ≤ 1 for all y ∈ Y , we deduce that |(Tf0)(y1)| ≥ 1−ε
for all y1 ∈ Ix1 .

Next we shall show that |(Tf0)(y1)| ≤ 1 + ε for all y1 ∈ Ix1 . Let us define the
function

g1 :=
f0 +Mg0

‖f0 +Mg0‖
.

Hence |g1(x1)| = 1 = ‖g1‖ and |g1| < 1 outside U . Since (X∪{∞})−U is compact,
we can consider

r := sup
x∈X−U

{|g1(x)|} < 1.

Arguing as above, we find a numberN ∈ K such that |f0+Ng1| attains its maximum
value inside U and ‖f0 +Ng1‖ < 1 + ε + |N |. Furthermore, we can choose N in
such a way that

|(Tf0 +NTg1)(y1)| = |(Tf0)(y1)|+ |N ||(Tg1)(y1)|.
As a consequence, since |(Tg1)(y1)| = 1, we have

|N |+ 1 + ε ≥ ‖Tf0 +NTg1‖ ≥ |(Tf0 +NTg1)(y1)| = |(Tf0)(y1)|+ |N |,
that is, |(Tf0)(y1)| ≤ 1 + ε for all y1 ∈ Ix1 . Gathering up the information we have
obtained so far, it is clear that we can find a net (xα) in X converging to x0 and a
net (yα) in Y such that yα ∈ Ixα for all α and such that there exists a subnet (yβ)
of (yα) converging to some y0 ∈ Y ∪ {∞} with |(Tf0)(y0)| = 1. This latter fact
shows that y0 6= ∞. Furthermore, it is apparent, from the above arguments, that,
for any open neighborhood V of x0, there exist a term xβ0 of the net (xβ) and a
function gβ0 ∈ A such that |gβ0(xβ0)| = 1 = ‖gβ0‖ and |gβ0 | < 1 outside V .

On the other hand, let g ∈ A such that g(x0) = 0. We shall show that (Tg)(y0) =
0. Given ε > 0, let

Ug,ε := {x ∈ X : |g(x)| < ε}.
Let V be an open neighborhood of x0 such that V ⊆ Ug,ε. Hence, as mentioned
above, there exist a term xβ0 of the net (xβ) and a function gβ0 ∈ A such that
|gβ0(xβ0)| = 1 = ‖gβ0‖ and |gβ0 | < 1 outside V . Arguing as above, we find a
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number P ∈ K such that the function |g + Pgβ0 | attains its maximum value inside
V and ‖g + Pgβ0‖ < ε+ |P |. Furthermore, we can choose P in such a way that

|(Tg + PTgβ0)(yβ0)| = |(Tg)(yβ0)|+ |P ||(Tgβ0)(yβ0)|.
As a consequence, since |(Tgβ0)(yβ0)| = 1, we have

|P |+ ε ≥ ‖Tg + PTgβ0‖ ≥ |(Tg + PTgβ0)(yβ0)| = |(Tg)(yβ0)|+ |P |,
that is, |(Tg)(yβ0)| ≤ ε. Therefore, since the net (yβ) converges to y0, we infer that
(Tg)(y0) = 0.

Let us now consider l ∈ A such that |l(x0)| = 1. Let us define the function

l′ :=
f0(x0)

l(x0)
· l

and let g ∈ A such that l′ = f0 + g. It is clear that g(x0) = 0. Consequently, by
the above paragraph, (Tg)(y0) = 0 and, since l′(x0) = 1,

|(T l′)(y0)| = |(Tf0)(y0) + (Tg)(y0)| = 1

and, thus, |(T l)(y0)| = 1.
Finally, if f ∈ A, then we define f ′ = f/|f(x0)|. Hence |f ′(x0)| = 1. As a

consequence, by the previous paragraph, we infer that |(Tf ′)(y0)| = 1, i.e., |f(x0)| =
|(Tf)(y0)|. The proof is complete.

Lemma 2.4. Let A be a strongly separating linear subspace of C0(X) and let T be
a linear isometry from A into C0(Y ). If x0 is a strong boundary point of A, then
Vx0 = Ix0 .

Proof. It suffices to check that Ix0 ⊆ Vx0 since the other inclusion is apparent.
We will first show that, if f ∈ A satisfies f(x0) = 0, then (Tf)(y) = 0 for all

y ∈ Ix0 . Let us suppose that there exists y0 ∈ Ix0 such that (Tf)(y0) 6= 0 and
f(x0) = 0 for some f ∈ A. We will assume, without loss of generality, that ‖f‖ = 1
and (Tf)(y0) = α > 0. Let

U = {x ∈ X : |f(x)| ≥ α/2}.
Since x0 is a strong boundary point of A and y0 ∈ Ix0 , there exists g ∈ A such that,
multiplying by a constant if necessary, |g(x0)| = 1 = ‖g‖, |g(x)| < 1 for all x ∈ U
and (Tg)(y0) = 1. Since, from the definition of C0(X), U is a compact set, we can
consider

s := sup
x∈U
{|g(x)|} < 1.

Thus there is a real number M > 0 such that 1 +Ms < α+M . We will distinguish
two cases: If x ∈ U , then

|(f +Mg)(x)| ≤ 1 +Ms.

If x /∈ U , then

|(f +Mg)(x)| ≤ α/2 +M.

That is, we have that ‖f +Mg‖ < α+M , but

α+M = (Tf)(y0) + (MTg)(y0) ≤ ‖T (f +Mg)‖ ,
which is absurd since T is an isometry.

Finally, let us suppose that there exists y′ ∈ Ix0 such that |(Tf)(y′)| 6= |f(x0)|
for some f ∈ A. Since x0 is a strong boundary point of A, there will exist a function
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k ∈ A such that k(x0) = 1 = ‖k‖. Hence it is straightforward to check that the
function

l(x) := f(x)− f(x0) · k(x)

belongs to A and, furthermore,
l(x0) = 0

and
(T l)(y′) = (Tf)(y′)− f(x0) · (Tk)(y′) 6= 0

since |(Tk)(y′)| = 1. This fact contradicts the paragraph above.

3. Into isometries between subspaces

Theorem 3.1. Let T be a linear isometry of a strongly separating linear subspace
A of C0(X) into C0(Y ). Then there are a subset Y0 of Y , which is a boundary for
T (A), a continuous map h from Y0 onto σ0A and a continuous map a : Y0 → K,
such that |a(y)| = 1 for all y ∈ Y0, and

(Tf)(y) = a(y)f(h(y)) for all y ∈ Y0 and all f ∈ A.
Furthermore, if σ0A is compact, then Y0 is closed.

Proof. Let Y0 be the set
⋃
x∈σ0A

Vx. It is clear, by Lemma 3.3, that Y0 is nonvoid.
In order to prove that Y0 is a boundary for T (A), let us suppose that there exists
f ∈ A such that

|(Tf)(y)| < ‖Tf‖ = ‖f‖
for all y ∈ Y0. Then we can find x0 ∈ σ0A such that

|f(x0)| = ‖f‖ = ‖Tf‖ .
Let y0 ∈ Vx0 . Then y0 ∈ Y0 and

‖f‖ = ‖Tf‖ = |f(x0)| = |(Tf)(y0)| ,
which contradicts the above assumptions.

Next, we define the map h of Y0 onto σ0A as h(y) := x if y ∈ Vx. Since A
is strongly separating, given x, x′ ∈ σ0A with x 6= x′, it is easy to check that
Vx ∩ Vx′ = ∅. Thus the map h is well-defined. Moreover, since Vx 6= ∅ for every
x ∈ σ0A, h is onto.

In order to prove the continuity of h, suppose that h(y0) = x0 for some y0 ∈ Y0.
Let f ∈ A such that f(x0) = 1. Hence, |(Tf)(y0)| = 1. Let (yα) be a net in Y0

converging to y0 and let h(yα) = xα for all α. Since |(Tf)(y0)| = 1, we can assume,
without loss of generality, that ||(Tf)(yα)| − 1| < 1/2 for all α. Then, from the
definition of Vxα , |f(xα)| > 1/2 for all α. Let (xβ) be a subnet of (xα) converging
to x1 ∈ X ∪ {∞}. Consequently, |f(x1)| ≥ 1/2. Hence, x1 6= ∞. If x1 6= x0, then
we take g ∈ A such that

|g(x0)| = 1 6= s = |g(x1)| .
Take a subnet (yγ) of (yβ) such that

||(Tg)(yγ)| − |(Tg)(y0)|| < |1− s| /2.
Hence

||g(h(yγ))| − 1| < |1− s| /2
and (|g(xγ)|) does not converge to |g(x1)|, which is a contradiction. Hence every
subnet of (xα) has a subnet that converges to x0 and then we have that (xα)
converges to x0.
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Now, let us define a map a of Y0 into K as follows: given y ∈ Y0, let f be any
function inA such that f(h(y)) = 1. Hence, we define a(y) := (Tf)(y) for all y ∈ Y0.
This is a well-defined map because if we take another function g in A such that
g(h(y)) = 1, then (f − g)(h(y)) = 0 and by the definition of h, (Tf)(y) = (Tg)(y).

On the other hand, it is clear that |a(y)| = 1 for all y ∈ Y0.
Next we prove both that T can be written as a weighted composition map and,

as a consequence, the continuity of a. We have already proved that if f(h(y)) = 0,
then (Tf)(y) = 0 for all y ∈ Y0 and all f ∈ A. If f(h(y)) 6= 0 for some f ∈ A and
some y ∈ Y0, then let

g = f − f(h(y))k.

k being any function in A such that k(h(y)) = 1. Clearly g(h(y)) = 0. Thus,
(Tg)(y) = 0, that is,

(Tf)(y) = a(y)f(h(y)).

In order to prove the continuity of a, we will show that for each y ∈ Y0, there
exists an open neighborhood of y where a is continuous. Let us consider any f ∈ A
such that f(h(y)) 6= 0 and let

W := {x ∈ σ0A : f(x) 6= 0}.
It is clear that h−1(W ) is an open neighborhood of y. Moreover the map Tf/(f ◦h)
is continuous on h−1(W ), and a and Tf/(f ◦ h) coincide on h−1(W ).

Finally, assume that σ0A is compact and let y0 ∈ Y such that there exists a
net (yα) in Y0 converging to y0. For all α, yα belongs to some Vxα (see remark
preceding Lemma 2.3) with h(yα) = xα ∈ σ0A. Hence the net above has a subnet
(xβ) which converges to some x0 ∈ σ0A. Since

|f(xβ)| = |(Tf)(yβ)|
for all β and all f ∈ A, we deduce, by the continuity of f and Tf , that

|f(x0)| = |(Tf)(y0)|
for all f ∈ A, that is, y0 ∈ Vx0 ⊂ Y0.

Remark. Theorem 3.1 generalizes Holsztyński’s theorem by taking X compact and
A = C(X).

Corollary 3.2. In the same conditions as in Theorem 3.1, h sends ChT (A) onto
ChA.

Proof. By [2, Theorem 1], we know that the Choquet boundary of A is contained
in ∂A. On the other hand, for every point x of ChA, there exists f ∈ A such that
f(x) 6= 0, so ChA ⊂ σ0A. Since T−1 : T (A)→ A is a linear surjective isometry, we
have that its adjoint (T−1)′ : A′ → (T (A))′ sends the extreme points of the unit
ball of A′ onto such points of (T (A))′. So, if x ∈ ChA, (T−1)′ex = µey, where
µ ∈ K, |µ| = 1 and y ∈ Y . If f ∈ A,

|(Tf)(y)| = |µ(Tf)(y)|
= |µey(Tf)|
=

∣∣((T−1)′ex)(Tf)
∣∣

= |f(x)| .
We conclude that y ∈ Vx and, consequently, that ChA ⊆ h(ChT (A)).

The other inclusion follows from the same arguments since (T−1)′ is bijective.
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Remark. It is evident, from Corollary 3.2, that Theorem 3.1 extends the main result
(Theorem 1) of [22].

Theorem 3.3. Let T be a linear isometry of a strongly separating linear subspace
A of C0(X) into C0(Y ). Then Tf = E(a · f ◦ h), where h is a continuous map
defined from a subset Y0 of Y onto σ0A, a : Y0 → K is a continuous map such
that |a| ≡ 1 and E : Z → C0(Y ) is a norm-preserving linear extension with Z =
{a · f ◦ h : f ∈ A}.
Proof. Let a, h, and Y0 be as in Theorem 3.1 and let us define Eg := Tf being
g := a · f ◦ h for some f ∈ A. Clearly this definition completes the proof.

4. The onto case

Theorem 4.1. Let T be a linear isometry of a strongly separating linear subspace
A of C0(X) onto such a subspace B of C0(Y ). Then there exist a homeomorphism
h of σ0B onto σ0A and a continuous map a : σ0B → K, such that |a(y)| = 1 for
all y ∈ σ0B, and

(Tf)(y) = a(y)f(h(y)) for all y ∈ σ0B and all f ∈ A.
Proof. Let h and Y0 be as in Theorem 3.1. To prove the injectivity of h, we shall
check that the sets Vx are singletons. Suppose that y0, y1 ∈ Vx for some x ∈ σ0A
and y0 6= y1. Consequently

|(Tf)(y0)| = |(Tf)(y1)| = |f(x)|
for all f ∈ A, which contradicts the strongly separating property of B.

We now show that Y0 = σ0B. Let y0 ∈ Y0. There exists x0 ∈ σ0A such that

x0 = h(y0).

Let U be any open neighborhood of y0. It falls out of the way we obtain y0 in
Lemma 2.3 that there exists a set Ix, for some x ∈ X , contained in U . This means,
according to the definition of Ix (see Lemma 2.1), that⋂

f∈Cx

L(f) ⊂ U,

that is,

(
⋂
f∈Cx

L(f)) ∩ ((X ∪ {∞}) \ U) = ∅.

Thus we have an intersection of closed subsets whose intersection with the compact
set (X∪{∞})\U is empty. Hence, there exist finitely many functions {f1, ..., fn} ⊂
Cx such that

n⋂
i=1

L(fi) ⊂ U.

We can assume, with no loss of generality, that

fi(x) = 1, i = 1, ..., n.

Then the function f :=
∑n
i=1 fi satisfies f(x) = n. As a consequence,

|(Tf)(y)| < ‖Tf‖ = n

for all y /∈ U , which implies that y0 ∈ σ0B.
Conversely, to prove that σ0B ⊂ Y0, take y0 ∈ σ0B. We now consider the inverse

of T , which is an isometry of B onto A. By Theorem 3.1, there exists a continuous
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map k from a subset X0 of X , defined as
⋃
y∈σ0B

Vy, onto σ0B. As above, we can

prove that X0 ⊂ σ0A. Let us consider x0 ∈ X0 such that k(x0) = y0. It just
remains to prove that y0 ∈ Vx0 . We know that, for all g ∈ B,∣∣(T−1g)(x0)

∣∣ = |g(y0)| ,
that is, for all f ∈ A,

|(Tf)(y0)| = |f(x0)| .
Consequently, h(y0) = x0. Hence, h is a homeomorphism of σ0A onto σ0B. Finally,
by Theorem 3.1, T is a weighted composition map.

Now the following corollary holds because of Theorem 4.1 and Corollary 3.2.

Corollary 4.2. In the same conditions as in Theorem 4.1, h is a homeomorphism
of ChB onto ChA.

Remarks. 1. Let T be the isometric embedding of C0(N) into C(N ∪ {∞}). This
example shows both that, in Theorem 3.1, Y0 may not be closed and that, in
Theorem 3.3, the Shilov boundaries of A and B are not homeomorphic in general.
However, if A and B are assumed to be strongly separating function subspaces, then
it is straightforward, from the definition of σ0A (resp. σ0B) and by Lemma 2.1,
that their Shilov boundaries are homeomorphic.

2. The following example shows that this latter assertion may fail if we replace
the hypothesis “A is strongly separating” by “A is separating”: Let us define the
compact set

X := {1− 1

n
: n ∈ N} ∪ {−1 +

1

n
: n ∈ N} ∪ {−1, 1}

and let A′ be the set of all functions fn ∈ C(X), n = 2, 3, 4, . . . , defined as follows:
if n is even,

fn(x) :=

 1 if x = 1− 1
n ,

−1 + 1
n if x = −1 + 1

n ,
0 otherwise.

If n is odd,

fn(x) :=

 −1 if x = −1 + 1
n ,

1− 1
n if x = 1− 1

n ,
0 otherwise.

Given x ∈ X (resp. x ∈ Y ), we will denote by χx the characteristic function of the
singleton {x}. Let us define the function f ∈ C(X) in the following way:

f(x) := (
∞∑
n=2

fn(x)) + χ1 − χ−1

Let A be the linear span of A′ and f .
On the other hand, let us define the compact set

Y := { 1

n
: n ∈ N} ∪ {0}

and let us define g ∈ C(Y ) as follows:

g(x) := (
∞∑
n=1

χ 1
n

) + χ0.
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Let B be the linear span of the set {χ 1
n

: n ∈ N} and g. It is now a routine matter

to verify that A is a (not strongly) separating linear subspace of C(X). Also, A is
linearly isometric to B. However,

∂A = {1− 1

n
: n even} ∪ {−1 +

1

n
: n odd} ∪ {−1, 1}

is not homeomorphic to ∂B = Y .
3. The assertion of Theorem 4.1 cannot be strengthened to the effect “X

homeomorphic to Y ”. A counterexample is obtained by taking the isometry T
of C0(X) = C0(0, 1) into C0(Y ) = C0((0, 1)∪(1, 2)) defined to be (Tf)(x) = f(x) if
x ∈ (0, 1), and (Tf)(x) = f(x− 1)/2 if x ∈ (1, 2). Clearly X is not homeomorphic
to Y because Y is not connected.

Corollary 4.3. Let T , X, Y , A and B be as in Theorem 4.1. If, in addition, we
assume that either τA or τB is a nonempty set, then τA and τB are homeomorphic.

Proof. Let us define the set

Y00 =
⋃
x∈τA

Vx.

By the definition of h (see the proof of Theorem 3.1) and since it is injective
(Theorem 4.1), we infer that h(Y00) = τA. Hence, by virtue of Theorem 4.1, it
suffices to check that Y00 = τB. Let y0 ∈ Y00. There exists x0 ∈ τA such that
x0 = h(y0). Let U be any open neighborhood of y0. If y /∈ U , then y ∈ Vx0

since, by Lemma 2.4, Vx0 = Ix0 whenever x0 is a strong boundary point. Thus, by
Lemma 2.2, there is fy ∈ A such that

1 = fy(x0) = ‖fy‖
and

|(Tfy)(y)| < 1.

For each y ∈ (Y ∪ {∞}) − U , we take an open neighborhood Uy of y such that
|(Tfy)(y′)| < 1 for all y′ ∈ Uy. Since (Y ∪ {∞}) − U is compact, we can find
{y1, . . . , yn} ⊂ (Y ∪ {∞})− U such that (Y ∪ {∞})− U ⊂

⋃n
i=1 Uyi. Now, let us

define the map

g = (
n∑
i=1

fyi)/n.

It is clear that

1 = g(x0) = ‖g‖
and

1 = |(Tg)(y0)| = ‖Tg‖ .
Moreover, |(Tg)(y)| < 1 for all y outside U . Consequently, the elements of Y00 are
strong boundary points for B.

Conversely, let y0 ∈ τB. Arguing as in the preceding paragraph, we prove
X00 ⊂ τA, where

X00 :=
⋃
y∈τB

Vy.

Thus, there exists x0 ∈ τA such that k(x0) = y0, where k is the inverse of h (see
the proof of Theorem 4.1). That is, y0 ∈ Vx0 ⊂ Y00 and we are done.
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The following corollary shows that Myers’ theorem ([20]) is valid also for non-
compact spaces and complex valued functions. Moreover we can write the isometry
as a weighted composition map.

Corollary 4.4. Let T be a linear isometry of a completely regular linear subspace
A of C0(X) onto such a subspace B of C0(Y ). Then there exist a homeomorphism
h of Y onto X and a continuous map a : Y → K, such that |a(y)| = 1 for all y ∈ Y ,
and

(Tf)(y) = a(y)f(h(y)) for all y ∈ Y and all f ∈ A.

Proof. It is evident from the definition of completely regular linear subspace that
σ0A = X and σ0B = Y . The result follows now from Theorem 4.1.

Remark. It is clear that the linear isometry T extends uniquely to an isometry from
C0(X) onto C0(Y ).

5. Subspaces as quotient spaces

Corollary 5.1. Let T be a linear isometry of a strongly separating subspace A of
C0(X) into C0(Y ). Then σ0A is homeomorphic to a quotient of a subspace Y0 of
Y .

Proof. With the same notation as in Theorem 3.1, let us define the following equiv-
alence in Y0: y0 ∼ y1 if y0, y1 belong to the same Vx, for some x ∈ σ0A. If π
denotes the natural quotient map of Y0 onto (Y0/ ∼), then the map h∼ = h ◦ π−1

is a continuous bijection of (Y0/ ∼) onto σ0A. To prove the continuity of (h∼)−1,
take a net (xα) in σ0A converging to x0 ∈ σ0A. For each α, take yα ∈ Vxα . Clearly
there exists a subnet (yβ) of (yα) converging to a point y0 ∈ Y ∪ {∞}. Take any
f ∈ A. Then (|f(xβ)|) converges to |f(x0)| and |(Tf)(yβ)| converges to |(Tf)(y0)|.
As

|(Tf)(yβ)| = |f(xβ)|
for all β, we have that

|f(x0)| = |(Tf)(y0)|
for all f ∈ A, that is, y0 ∈ Vx0 . This implies that ((h∼)−1(xβ)) converges to
(h∼)−1(x0). In this way, every subnet of ((h∼)−1(xα)) has a subnet converging to
(h∼)−1(x0). So ((h∼)−1(xα)) converges to (h∼)−1(x0). Then (h∼)−1 is continuous.

Remark. Let us suppose that, in Corollary 5.1, X is compact and 1 ∈ A. We now
consider the quotient space Y/D, where D is a decomposition of Y which consists
of the subsets Vx, x ∈ σ0A, and the singletons {y} such that y ∈ Y −Y0. Since now
a = T1 then ‖a‖ = 1 and we can define an isometry T∼ of A into C0(Y/D) by the
requirement that (T∼f)(y∼) = (āT f)(π−1(y∼)) for all f ∈ A and all y∼ ∈ Y/D,
where ā denotes the complex conjugate of the map a and π the natural quotient
map of Y onto Y/D. T∼ is well defined because, by Theorem 3.1, āT f is constant
on each Vx, x ∈ σ0A. As in Corollary 5.1, we prove that σ0A is homeomorphic to
a subspace (Y/D)0 of Y/D, defined like Y0 in Theorem 3.1. Moreover, with the
hypothesis of Corollary 5.1, there exists a norm-preserving linear extension U from
the subspace {A ◦ h} of C(Y0) into C0(Y ) defined to be U(g) := ā(Tf), where
g := f ◦ h for some f ∈ A.
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All these remarks show that Corollary 5.1 extends a result by D. Amir and
B. Arbel [3, Theorem 1], if we assume that X is compact and A = C(X). Further-
more, this assumption lets us claim that if T (C(X)) is a strongly separating linear
subspace, then it is complemented in C0(Y ). To prove this, we define a projection
π from C0(Y ) onto T (C(X)) as follows: given f ∈ C0(Y ), let π(f) be

T (ā(h−1(−))) · f(h−1(−))

where h−1 is the inverse of h defined as in Theorem 4.1. It is easy to check that
π ◦ T = T and, consequently, π2 = π.

6. Isometries between subalgebras

Theorem 6.1. Let T be a linear isometry of a separating function subalgebra A of
C0(X) onto such a subspace B of C0(Y ). Then

1.− ∂A is homeomorphic to ∂B.
2.− There exists a continuous map b : Y → K such that

T (fg)(y) = b(y)(Tf)(y)(Tg)(y) for all y ∈ Y and all f, g ∈ A.

Proof. 1.− It suffices to show that A is strongly separating. Let x1, x2 ∈ X with
x1 6= x2. There exists f ∈ A such that f(x1) = z1 and f(x2) = z2 with z1 6= z2. If
|z1| = |z2|, then we consider the function g := f+f2 ∈ A. Hence, g(x1) = z1(1+z1)
and g(x2) = z2(1 + z2). With no loss of generality, we can assume that Re z1 and
Re z2 are different. Otherwise we multiply the function f by the complex number
i and, since z1 6= z2, we infer that Re iz1 6= Re iz2. Then

|g(x1)|2 = |z1|2 |1 + z1|2

= |z1|2 (1 + z1)(1 + z1)

= |z1|2 (1 + z1 + z1 + |z1|2)

= |z1|2
∣∣∣1 + 2Re z1 + |z1|2

∣∣∣
and

|g(x2)|2 = |z2|2 |1 + z2|2

= |z2|2 (1 + z2)(1 + z2)

= |z2|2 (1 + z2 + z2 + |z2|2)

= |z2|2
∣∣∣1 + 2Re z2 + |z2|2

∣∣∣ .
Clearly, |g(x1)| 6= |g(x2)|. Summing up, A is a strongly separating linear subspace
of C0(X) and the result follows from Theorem 4.1.

2.− We know, by Theorem 4.1, that a(y)T (fg)(y) = (Tf)(y)(Tg)(y) for all
f, g ∈ A and all y ∈ ∂B. Consequently, if b denotes the complex conjugate of a,

T (fg)(y) = b(y)(Tf)(y)(Tg)(y)

for all y ∈ ∂B and all f, g ∈ A.
Let y0 ∈ Y − ∂B and let f ∈ A such that (Tf)(y0) = 0. We now show that

T (fg)(y0) = 0 for all g ∈ A. It is clear that the maps
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T (fg)(Tk)(Tk)

and

(Tk2)(Tf)(Tg)

coincide on ∂B, for k ∈ A such that (Tk)(y0) 6= 0. Thus they coincide on Y and
consequently T (fg)(y0) = 0.

To extend b from ∂B to Y , take, for each y ∈ Y − ∂B, f , g in A such that
(Tf)(y) 6= 0 and (Tg)(y) 6= 0. Then we define

b(y) = T (fg)(y)/(Tf)(y)(Tg)(y).

This extension of the map b to the whole Y is well defined because if we consider
k, l ∈ A with (Tk)(y) 6= 0 and (T l)(y) 6= 0, then

T (fg)(Tk)(T l)

and

(Tf)(Tg)T (kl)

coincide on ∂B and, as a consequence, on Y . The continuity of b follows from the
continuity of T (fg), Tf and Tg in an open neighborhood of each y.

Theorem 6.2. Let A,B be semisimple commutative Banach algebras (not neces-

sarily with unit), such that ‖f‖2 =
∥∥f2

∥∥ for all f ∈ A (resp. f ∈ B). If T is a
linear isometry of A into (resp. onto) B, then there exists a continuous map (resp.
a homeomorphism) h of a subset Y0 of the maximal ideal space Y of B (resp. the
Shilov boundary ∂B) onto the Shilov boundary, ∂A, of A and a continuous map
a : Y0 → K (resp. a : ∂B → K) with |a(y)| = 1 for all y ∈ Y0 (resp. y ∈ ∂B) and

(Tf)(y) = a(y)f(h(y)) for all y ∈ Y0 (resp. ∂B) and all f ∈ A.

Proof. Since ‖f‖2 =
∥∥f2

∥∥ for all f ∈ A (for all f ∈ B respectively), the Gelfand
transform is an isometry of A (resp. B) into C0(X) (resp. C0(Y )), where X (resp.
Y ) is the maximal ideal space of A (resp. B). We can, therefore, regard A and B
as separating function subalgebras of C0(X) and C0(Y ) respectively, and the result
follows from Theorem 3.1 and Theorem 4.1.

Corollary 6.3. (Nagasawa) Two semisimple commutative Banach algebras with

unit A and B such that ‖f‖2 =
∥∥f2

∥∥ for all f ∈ A (resp. f ∈ B) are isometric as
Banach spaces if and only if they are isomorphic as algebras.

Proof. Let us first regard A and B as in the proof of Theorem 6.2 and let T be a
linear isometry of A onto B. It is clear, since both subalgebras have unit 1, that, in
this context, the continuous function a which appears in Theorem 6.1 is T1. That
is, a ∈ B. Furthermore, since T is onto, there exists f ∈ A such that Tf = 1.
Finally, from Theorem 6.1, we infer both that b = a−1 ∈ B and that b · T is the
desired algebra isomorphism.

The converse is clear.

Remark. As a consequence of Theorem 6.2 we deduce, for example, that the Shilov
boundary of H∞, i.e. the space of bounded analytic functions on the open unit
disk, is homeomorphic to the Shilov boundary of the algebra H∞0 consisting of all
f ∈ H∞ that vanish at the origin. This falls immediately out of the linear isometry
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f ↪→ z · f of H∞ onto H∞0 . This example also shows that H∞ and H∞0 , despite
being isometric as Banach spaces, are not algebraically isomorphic since H∞0 does
not have a unit. Consequently we cannot strengthen Corollary 6.3 to the effect “A
and B are algebraically isomorphic”, that is, Nagasawa’s result for uniform algebras
with unit (see [21]).

The authors wish to thank the referee for making several suggestions which
improved this paper.
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