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Linear Jacobi-Legendre expansion of the charge density for
machine learning-accelerated electronic structure calculations
Bruno Focassio1,2,3✉, Michelangelo Domina 3, Urvesh Patil 3, Adalberto Fazzio1,2 and Stefano Sanvito 3✉

Kohn–Sham density functional theory (KS-DFT) is a powerful method to obtain key materials’ properties, but the iterative solution of
the KS equations is a numerically intensive task, which limits its application to complex systems. To address this issue, machine
learning (ML) models can be used as surrogates to find the ground-state charge density and reduce the computational overheads.
We develop a grid-centred structural representation, based on Jacobi and Legendre polynomials combined with a linear regression,
to accurately learn the converged DFT charge density. This integrates into a ML pipeline that can return any density-dependent
observable, including energy and forces, at the quality of a converged DFT calculation, but at a fraction of the computational cost.
Fast scanning of energy landscapes and producing starting densities for the DFT self-consistent cycle are among the applications of
our scheme.
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INTRODUCTION
As the main workhorse in electronic structure calculations, density
functional theory (DFT)1,2 is today the most widely used method
to compute materials properties. Its success derives from the
favourable trade-off between computational overheads and
accuracy, even when using simple approximations for the
exchange and correlation energy functional2–5. The central
quantity in DFT is the electron charge density that, in principle,
gives access to the ground-state properties1, and of particular
interest, to the ground-state total energy. In practice, however, the
DFT functional is never minimized directly by using the charge
density6, but rather by solving a self-consistent set of single-
particle equations, known as the Kohn–Sham (KS) equations2. This
procedure effectively imposes a computational bottleneck and
although large-scale calculations can be performed7,8, the typical
system routinely simulated by DFT rarely reaches a few hundred
atoms.
Machine learning (ML) has recently emerged as a surrogate for

solving DFT KS equations and possibly replacing them9–11. For
instance, trained ML models can be used as predictors for
properties such as the energy gaps12–14, superconducting critical
temperatures15–19, thermodynamic stability20, topological invar-
iant21,22, just to name a few. These models learn a direct map
between the structure/composition and the target property, thus
avoiding one or many computationally expensive calculations.
Using ML for such mapping comes at the cost of accuracy,
transferability, physical insight and the need for a large volume of
high-quality training data, usually obtained through these very
same computationally expensive calculations or, more rarely, from
experimental sources23,24.
For tasks such as structure prediction25–28, phase diagrams

evaluation29–31, molecular dynamics32–34, and, more generally,
materials discovery35–38 one requires fast access to accurate
energy, forces and stress tensor of the system investigated.
Machine learning inter-atomic potentials (ML-IAPs) are developed
to this end, bridging the gap between ab initio methods and
empirical force fields. The several strategies proposed to date

implement a diversity of structural representations and learning
algorithms39–44 to design ML-IAPs attaining accuracies close to
that of DFT at a small fraction of the computational cost43. The
performance of these models is not only a product of the
representation of the atomic structure and the ML algorithm, but
also the volume, quality, and diversity of the data play a
fundamental role43,45. In general, the construction of ML-IAPs
requires campaigns of DFT calculations, whose extension and
quality depend on the problem at hand (e.g., the number of
species present in a given compound) and the range of
applicability of the potential (e.g., the temperature range).
A radically different use of ML consists of improving the theory

at its core instead of targeting the DFT outputs. For instance, ML
can be used to numerically design new energy density functionals,
effectively producing fully exchange and correlation energies46–51,
and kinetic energy densities52–55. These strategies, in general, seek
to find more accurate approximations to the DFT energy, going
beyond the current approximations56, or to eliminate the need of
introducing the KS construct by replacing the self-consistent KS
equations with a direct minimization of the functional6. Unfortu-
nately, although promising, these approaches are still far from
obtaining a “universal” functional, treating all systems on an equal
footing56. Note also that the construction of ML functionals
requires results obtained at the wave-function quantum-chemistry
level, a highly computationally expensive task.
In the same spirit, an alternative way to include ML in the DFT

workflow is to construct models to directly predict the converged
target DFT quantities, namely the Hamiltonian57, the wavefunc-
tions58,59, and the electron density60–65. The goal here is not that
of improving the functional, but to reduce or completely eliminate
the number of iterative steps needed to solve the KS equations.
There are two main approaches used to predict the electronic
charge density, n(r), through ML. One possibility is to expand n(r)
over a local-orbital basis set and learn by ML the expansion
coefficients. The completeness of such expansion, the basis set
details, and the size of the training data limit the accuracy of the
ML model60,61 and may introduce errors intrinsic to the particular
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representation62. Also, the approach is not transferable, namely a
different ML model must be constructed for any different basis set.
The second approach considers the real-space representation of

n(r), which is written over a grid in Cartesian space. This is a more
“natural” representation available in any DFT code. Its main
advantage is that the value of the electron density at a grid point
is rotationally invariant with respect to the external potential,
namely with respect to the position of the surrounding nuclei. As
such, one can construct ML models that predict n(r) one grid point
at the time, using as descriptors the local atomic neighbourhood
of any given grid point (within some chosen cutoff radius). The
success of such a grid-based approach largely depends on the
chosen representation for the local environment and the learning
algorithm. Usually, a single DFT calculation results in tens of
millions of grid points so that the generation of abundant training
data appears like an easy computational task. However, in a single
calculation, there is data redundancy and little diversity (a narrow
distribution of external potentials is explored), so multiple
configurations for the same systems are usually considered. Then,
one typically constructs large neural networks with millions of
weights to be learned63,64, resulting in generally heavy models
with little transferability.
Here our main focus is to transform such a grid-based approach

into a lightweight tool that can be universally applied to DFT
calculations. This is achieved by drastically reducing the computa-
tional overheads while reaching extremely high accuracies. In
particular, we introduce a grid-centred representation of the
atomic structure based on the Jacobi and Legendre (JL)
polynomials, which were previously proposed to construct
efficient ML force fields66. The JL representation is used to build
a linear regression for the charge density, where the many-body
contributions of different orders are separated. This results in a
very compact model with a few coefficients to be trained on a
small subset of the total number of grid points available. For the
sake of brevity, we call such a class of models Jacobi-Legendre
charge density models (JLCDMs). The efficiency and accuracy of
our scheme are demonstrated for a range of molecules and solids,
including benzene, aluminium, molybdenum, and two-
dimensional MoS2. In particular, we show that the KS self-
consistent cycle can be bypassed completely in calculating fully
converged total energies and forces. Our method is implemented
to work with the widely used Vienna ab initio simulation package
(VASP)67,68.

RESULTS
Figure 1 provides a schematic view of the construction of a
JLCDM. Given an atomic configuration, the space is subdivided

into a Cartesian grid, and the atomic environment (the position of
the atoms) of each grid is described by an expansion of JL
polynomials. A selected number of such expansions forms the
training set of a linear regression model that predicts the charge
density over the entire grid. Finally, this is used as the converged
ground-state density to evaluate energy, forces, and any other
density-dependent observable, 〈O〉, or as a starting point for self-
consistent KS-DFT calculations.

Linear expansion of the charge density
The charge density, n(r), at a grid point rg can be separated into
many-body contributions as

nðrgÞ ¼ nð1ÞðrgÞ þ nð2ÞðrgÞ þ nð3ÞðrgÞ þ ¼ þ nðmÞðrgÞ (1)

where n(m) is the mth-body (mB) term of the expansion. Thus,
n(1)(rg) encodes the atomic contributions to the charge density
at rg, n(2) is the contribution from atom pairs, n(3) is the
contribution from atoms triplets, etc. Equation (1) can then be
rewritten as

nðrgÞ ¼
X
i

nð1Þi ðrgÞ þ
X
i≠j

nð2Þij ðrgÞ þ
X

i≠j;i≠k;j≠k

nð3Þijk ðrgÞ þ ¼ (2)

where the sums over the i,j,k… indexes run over the atoms
neighbouring the grid point at rg up to the cutoff distance, rcut.
The assumption that the electron density at one point is
determined mostly by the external potential generated by the
closest atoms follows from the wave mechanics’ locality
principle69.
The atomic configurations required by each contribution in the

expansion are expressed through a local representation that here
we generally call “fingerprint”. The fingerprints should be: (i)
invariant by translations, (ii) invariant by global rotations of the
atoms in the reference frame of the grid point, (iii) invariant to
changes in the coordinate system, (iv) invariant to permutations of
the atomic indices. Furthermore, they should provide a continuous
map of the atomic neighbourhood, i.e., small changes in the
atomic structure must reflect small changes in the fingerprints.
Finally, the fingerprints should be uniquely determined70 and
computationally cheap.
Following closely ref. 66, we expand the one-body contribution,

nð1Þi , using the distances between the grid point and the atomic

Fig. 1 Illustration of the workflow used to construct a JLCDM predicting the converged DFT ground-state charge density and the
associated observables. (Step 1) The procedure starts with an atomic distribution and the mapping of the space over a Cartesian grid. (Step 2)
Each grid point is associated with a local atomic environment described by the Jacobi-Legendre expansion. Such expansion is used to
construct a linear model (Step 3) that, once trained, accurately predicts the charge density of the grid point. After computing the charge
density over the entire grid, this is used to perform DFT calculations (Step 4). For instance, the total energy, the atomic forces, and other
density-dependent observables can be easily obtained by using a few steps of frozen-density KS-DFT instead of the full self-consistent cycle.
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neighbourhood as

nð1Þi ðrgÞ ¼
Xnmax

n¼1

aZin ePðα;βÞn cos π
rig � rmin

rcut � rmin

� �� �
(3)

ePðα;βÞn ðxÞ ¼ Pðα;βÞn ðxÞ � Pðα;βÞn ð�1Þ for �1 � x � 1

0 for x <�1

(
(4)

with Pðα;βÞn being the Jacobi polynomial of order n. Here,
rig= ∣ri− rg∣ is the distance between the grid point g at rg and
the ith atom i at ri, rcut is the radius cutoff, rmin is a distance shift
parameter in the range (−∞, rcut). The degree of the expansion is
set by n with the sum running in the interval 1; nmax½ �, while α and
β control the shape of the polynomial with α, β >−1. Note that the
choice of the basis used to expand the atomic structure is not
unique. Jacobi polynomials represent a convenient one, since they
effectively describe a vast class of basis-set types. For instance
(α, β)= (0, 0) gives us the Legendre polynomials, while (α, β)=
(0.5, 0.5) the Chebyshev polynomials of the second kind. Here we
decide to maintain the generality and treat the (α, β) pair as an
hyperparameter to optimize. The expansion coefficients aZin in
Eq. (3) depend on the atomic species considered. As defined in
Eq. (4), the “vanishing Jacobi polynomials” smoothly vanish at the
cutoff radius without needing an additional ad hoc cutoff function.
The terms forming the two-body contribution, nð2Þij , can be

uniquely written as a function of two distances, rig and rjg, and the
cosine of the subtended angle at g, r̂ig � r̂jg. We then expand
the distances over the vanishing Jacobi polynomials and the angle
over Legendre polynomials. The expansion can then be written as,

nð2Þij ðrgÞ ¼
Xnmax

n1;n2¼1

Xlmax

l¼0

aZiZjn1n2 l
ePðα;βÞn1 ig

ePðα;βÞn2 jg P
ijg
l ; (5)

where we have used the shorthand notations

ePðα;βÞnig ¼ ePðα;βÞn cos π
rig � rmin

rcut � rmin

� �� �
;

and Pijgl ¼ Pl ð̂rig � r̂jgÞ, Pl is the Legendre polynomial,
r̂pg ¼ ðrp � rgÞ=rpg, and l defines the Legendre expansion degree
with the sum running in the interval 0; lmax½ �. The Legendre
polynomials are the natural choice for expanding the scalar
products between two real space versors in three dimensions, as
suggested by the addition theorem of spherical harmonics. As in
the one-body case, the expansion coefficients aZiZjn1n2 l

depend on the
pair of atomic species considered. The Jacobi indices n1 and n2,
and the atom indices i and j are symmetric under the simultaneous
swap, therefore if Zi= Zj only terms n1 ≥ n2 should be considered.
Notice that, in the m-body expansion for m > 1, angular

information enters via a pairwise dot product of unit vectors joining
the atoms to the grid point. The unit vectors are ill-defined when the
distance of the grid point from the atom approaches zero and
creates a discontinuity in the fingerprints. Assuming that the atomic
contribution (1B term) to the charge density dominates at very small
distances from the nucleus, we can introduce a double-vanishing
Jacobi polynomial in place of the simple vanishing one for all them-
body expansions with m > 1 as given in Eqs. (7) and (8). The double-
vanishing Jacobi polynomials are defined as

P
ðα;βÞ
n ðxÞ ¼ ePðα;βÞn ðxÞ �

ePðα;βÞn ð1ÞePðα;βÞ1 ð1Þ
ePðα;βÞ1 ðxÞ for n � 2 (6)

with x ¼ cos π
rig�rmin

rcut�rmin

� �
. Equation (5) now reads

nð2Þij ðrgÞ ¼
Xnmax

n1;n2¼2

Xlmax

l¼0

aZiZjn1n2 l
P
ðα;βÞ
n1 ig P

ðα;βÞ
n2 jg P

ijg
l (7)

with n1, n2 ≥ 2. Generally, a m-body cluster centred on the grid
point g can be uniquely defined bym distances and them(m− 1)/2

angles subtended at g. Using the recipe from Eqs. (3) and (7), the
m-body expansion can then be written by associating a Jacobi
polynomial to each distance and a Legendre polynomial to each
angle. For instance, the three-body contribution nð3Þijk is of the
form

nð3Þijk ðrgÞ ¼ Pnmax

n1;n2;n3¼2

Plmax

l1 l2 l3

aZiZjZk
n1n2n3 l1 l2 l3

´

´ P
ðα;βÞ
n1 ig P

ðα;βÞ
n2 jg P

ðα;βÞ
n3kgP

ijg
l1
Pikgl2 Pjkgl3

(8)

Using this charge density expansion at each grid point, we can
generate a linear representation of the charge density in the
expansion coefficients. Therefore, we can learn the ground state
charge density by using linear regression, as

nDFTðrgÞ ¼
P
i

Pnmax

n
aZi
n
ePðα;βÞn1 ig þP

i 6¼j

Pnmax

n1n2

Plmax

l¼0
aZiZjn1n2 l

P
ðα;βÞ
n1 ig P

ðα;βÞ
n2 jg P

ijg
l þ

P
i 6¼j
i 6¼k
j 6¼k

Pnmax

n1n2n3

Plmax

l1 l2 l3

aZiZjZkn1n2n3 l1 l2 l3
P
ðα;βÞ
n1 ig P

ðα;βÞ
n2 jg P

ðα;βÞ
n3kgP

ijg
l1
Pikgl2 Pjkgl3 þ

þ¼
(9)

In the next section, we will demonstrate the prediction power of
our JLCDM for a benzene molecule, for periodic solids such as
aluminium (Al) and molybdenum (Mo), and a two-dimensional
material MoS2. We will also demonstrate the generalization power
of JLCDM for previously unknown phases of Al and MoS2. Finally,
we will show that the charge density predicted by our model can
be fed back into popular DFT codes to accurately calculate the
total energy and forces at a fraction of the typical numerical cost.

Grid-point sampling strategy
We start our analysis by discussing the construction of an
appropriate training set for our JLCDM, which is truncated at the
2-body order since this is already enough for extremely accurate
predictions. Previously published works63,64 have trained large
neural networks over the entire grid-point mesh, typically
containing a few million density values. Here we show that this
is not necessary since there is significant redundancy in the
information, and often the inclusion of the entire density in the
training set has just the effect of producing an unbalanced
ensemble. This is easy to see in the case of molecules, where most
grid points are situated far away from the molecule and, by sitting
in a vacuum, possess similar vanishing small charge density. For
this reason, we implement a sampling strategy that allows us to
use only a small fraction of the grid points but includes more
diverse atomic arrangements.
In practice, our simple sampling scheme consists in assigning to

a point r in space a probability of selection based on the value of
the charge density, n(r), at that point. The probability of selection
is given by a normal distribution of the inverse of the charge
density, namely exp½�ð1=nðrÞÞ2=2σ2�. This choice gives more
importance to grid points presenting large electron densities,
while low-density regions will contribute little to the training set.
The parameter σ controls how sharp or broad this probability
distribution is, a tool that helps us to select grid points closer or
farther away from the charge density maxima. Such a targeted
sampling technique is accompanied by uniform sampling across
the unit cell, which guarantees that enough diversity is
maintained in the training set. As a result, we can construct an
accurate model trained with just about 0.1% of the available
training points (see the “Methods” section for more details). Note
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that our sampling strategy is not limited to linear charge density
expansions. The same can be used as an efficient way to train
even neural network models, resulting in much smaller models
attaining the same or higher accuracy.

Accuracy of the models
We now discuss the accuracy that can be reached by the JLCDMs
for both molecules and solids. Figure 2a displays the parity plot of
the charge density at the grid points for the 30 atomic
configurations contained in the test set of the benzene molecule.
These have been obtained from ref. 62 by molecular dynamics at
300 K and performing DFT calculations on each sampled
geometry. For benzene, our 1B+ 2B JLCDM contains 1572
coefficients trained over 6,000 density-grid points, out of the
5,832,000 available per atomic configuration over the 30 config-
urations used for training and another 30 for testing. The test-set
mean absolute error (MAE) achieved is 0.000285 eÅ−3. Such error
corresponds to 0.011% of the maximum density, meaning that the
charge density obtained by the JLCDM is very close to that of a
well-converged DFT calculation. Note that the MAE on the total
electron count is 0.025. The model and sampling hyperparameters
are reported in Tables 3 and 5, respectively, in the “Methods”
section.
In Fig. 2b, we present the difference between the charge

density obtained with JLCDM and the converged DFT charge
density on a plane, while Fig. 2c shows a line scan in the same
plane of the two charge densities and their difference. As
expected, the absolute error is larger in the region closer to the
nuclei, where the charge density is maximized. However, no
emerging pattern indicates that the JLCDM is not biased against
any particular local atomic configuration. Importantly, the error, as

the density, vanishes for positions far from the molecule. Our
constructed JLCDM performs better than published models63

despite being trained over a tiny fraction of data and being
constructed on only 1572 trainable parameters.
Next, we move to metallic solids, aluminium and molybdenum.

Aluminium is a benchmark system chosen for comparison with
previously published models61,63,64. Its electronic structure fea-
tures a very delocalized charge density, so as a second example,
we also consider an early transition metal, Mo, which presents a
higher degree of charge localization. In constructing the JLCDM,
we use the same density sampling procedure as used for the
benzene molecule. See the “Methods” section for details.
In the case of Al, we train and test over 10 configurations

obtained from ab initio molecular dynamics (AIMD). We find that a
1B+ 2B JLCDM with only 120 trainable coefficients gives us a MAE
of 0.000481 eÅ−3, at par with previously published deep neural
networks63,64. Most importantly, our model generalizes better, as
we will show in the next section. Figure 2d shows the parity plot
for the Al test set, demonstrating the accuracy achieved. Similarly
to the case of benzene, the difference between the ML predictions
and the DFT charge density does not present any clear error
pattern, see Fig. 2e, except for the expected increase close to the
nuclei. In general, the charge density error for Al is found to be 10
times smaller than that found for benzene, as one can see from
the line plot of Fig. 2f.
Similar results are also obtained for Mo, where a JLCDM with

812 trainable parameters returns a MAE and a RMSE of
0.001974 eÅ−3 and 0.002820 eÅ−3, respectively, see the Supple-
mental Information (SI) for details. In contrast to benzene and
aluminium, the charge density error appears to have a radial
distribution centred around each atom with a minimum error in
the interstitial region. The maximum absolute error over the test

Fig. 2 Analysis of the performance of the JLCDM. a Displays the parity plot for the benzene test set together with mean absolute error
(MAE), root-mean-squared error (RMSE), maximum absolute error (MaxAE) and R2 metrics. b Displays the charge density difference (the error)
between the fully converged DFT ground-state density and that predicted by the model for a distorted benzene configuration selected from
the test set. The results for a symmetric benzene molecule can be found in the Supplemental Information (SI). Here we show the plane
containing the molecule. c Shows DFT and JLCDM-predicted charge density for benzene computed along the line indicated in the inset. The
plot also reports their difference with values provided on the right-hand side scale (red). d Displays the parity plot for the aluminium test set.
e Displays the charge density difference (error) between the fully converged DFT ground-state density and that predicted by the model for a
distorted aluminium configuration selected from the test set. The slice shows the basal plane of the supercell (z= 0.0 Å). In f, the DFT and ML
charge density for aluminium is computed along the line indicated in the inset. The plot also reports their difference with values provided on
the right-hand side scale (red). The planes chosen in c, f are the same as those in b, e, respectively.
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set in this case is only ~0.06 eÅ−3, and it is found over a small set
of grid points.
Finally, we focus on two-dimensional MoS2, which helps us to

demonstrate the capability of our JLCDM to generalize to
previously unseen phases. Two-dimensional MoS2 can be found
in multiple polymorphs, both semiconducting and metallic. Also,
for MoS2, we use the same charge-density sampling procedure
adopted for benzene, Al and Mo. See the “Methods” section.
However, this time we train and test the model on different
phases; namely, the training set is constructed using atomic
configurations of the 1H and 1T phases while we test our
prediction on the 1T0 phase. The 1H phase is formed by
sandwiched hexagonal layers of S–Mo–S in a Bernal stacking,
while the 1T phase presents a rhombohedral arrangement71. As
the free-standing 1T phase is unstable, a spontaneous lattice
distortion in the x direction creates the 1T0 one71,72, which is
depicted in the inset of Fig. 3a. The three polymorphs present
completely different electronic structures. The 1H phase is
semiconducting with a 1.58 eV theoretical energy gap, while the
1T phase is metallic73. In contrast, the 1T0 polymorph has a
topological gap (0.08 eV) induced by spin-orbit coupling74, while it
remains a semi-metal in the absence of spin-orbit coupling
interaction.
In order to train our JLCDM, we use 10 AIMD (at 300 K)

configurations each for the 1H and 1T phases, while the test set is
made of ten 1T0 AIMD (at 300 K) snapshots. Figure 3a shows the
parity plot for all three polymorphs, namely for the training and
test set. By visual inspection, one can notice that the error slightly
increases for the 1T0 phase, but the JLCDM still performs extremely
well, displaying a MAE and a RMSE of 0.002725 eÅ−3 and
0.008080 eÅ−3, respectively. Also, the JCDM remains compact
with 2,346 trainable parameters in this case. The charge density
difference plot, see Fig. 3b, tells us that the error tends to be larger
in the region around the Mo ions pointing towards the S atoms.
This feature is somehow expected since the bonding structure of
the three phases is different, trigonal prismatic for 1H, octahedral
for 1T phase, and a distorted lattice for 1T0. The line density plot of
Fig. 3c further shows that the JLCDM slightly overestimates the
charge density surrounding the Mo atoms. However, it is worth
noting that the error is small, <2%, so the JLCDM-predicted charge
density for the unseen 1T0 phase is still of high quality, namely, the
JLCDM can be used to explore new phases.

JLCDM performance on the DFT total energy and forces
In the previous section, we have shown that the charge density
predicted by our JLCDM is close to the DFT converged one. Now

we show that the energy and forces corresponding to such charge
density are close to the corresponding converged values, with the
average error matching those of state-of-the-art machine-learning
force fields.
This is demonstrated by constructing the KS Hamiltonian

corresponding to the JLCDM-predicted charge density. The band
energy contribution to the total energy, Eband= ∑i f(ϵi)ϵi, is
obtained by summing up the occupied KS eigenvalues, ϵi [f(ϵi) is
the occupation number], which are computed by diagonalizing
the KS Hamiltonian. The remaining contributions to the total
energy are obtained directly from the JLCDM electron density.
Such a scheme is implemented in the VASP code, where an
interactive matrix-diagonalization procedure requires performing
a set of non-self-consistent iterations to compute the KS
eigenvalues and eigenvectors, i.e. the charge density is not
updated during these iterations. In this work, we select 5 non-self
consistent iterations for all systems. The total energy and forces
obtained are then compared with those computed through a
converged fully self-consistent DFT calculation. As given by such
procedure, the total energy yielded by the JLCDM-predicted
charge density may be lower than the KS-DFT ground-state
energy.
The MAE and RMSE metrics of the calculated energy and forces

are given in Table 1, while Fig. 4 shows the error distributions as
box and violin plots. Aluminium presents the narrower total-
energy error spread, with values ranging from −0.11 meV per
atom to −0.02 meV per atom and with a mean error at −0.05 meV
per atom. This is then followed by Mo, with a total-energy error
spread between 0.12 meV per atom and 0.33 meV per atom with a
mean error at 0.20 meV per atom, and then benzene, with a total-

Fig. 3 Analysis of the performance of the JLCDM for MoS2. a Shows the parity plot between JLCDM-predicted and DFT charge density for
the three MoS2 polymorphs, 1H, 1T, and 1T0. In this case 1H and 1T phases are used for training, while the model is tested on the 1T0. All the
error metrics shown, R2, MAE, RMSE, and MaxAE, correspond to the test set. The inset depicts a snapshot of 1T0-MoS2. b Display the charge
density difference (error) between the fully converged DFT charge density and the JLCDM-predicted one over the plane of the monolayer
(z= c/2Å) for a distorted 1T0-MoS2 configuration selected from the test set. c Shows the charge density profile for fully converged DFT and
JLCDM-predicted charge density along the path highlighted with a dashed line in b. The difference between charge densities can be read on
the right-hand side scale (red) of c.

Table 1. JLCDM performance metrics on the task of predicting total
energy and forces.

System Total energy (meV
per atom)

Forces (eV Å−1)

MAE RMSE MAE RMSE

Benzene 4.021 4.065 0.031 0.046

Al 0.046 0.054 0.007 0.009

Mo 0.203 0.212 0.019 0.024

1T0-MoS2 8.058 8.845 0.078 0.104

These are obtained through non-self-consistent DFT using the JLCDM-
predicted charge density. The force error is computed over all and all
atoms.
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energy error between 1.24 meV per atom and 4.67 meV per atom
with mean error at 4.02 meV per atom. Finally, the unseen 1T0

phase of MoS2 returns an error range of− 15.60 meV per atom to
−4.34 meV per atom and a mean error of −8.06 meV per atom.
These errors are all very competitive with that achieved by linear
ML force fields constructed with a comparable range of
parameters75.
Next, we investigate the ability of our JLCDM to perform over

systems never seen before. Our test is constructed for Al, for which
we were able to build the best model, and consists in computing
the total energy and forces of a series of 256-atom supercells
taken from ref. 64. This dataset contains 10 configurations
corresponding to solid Al at 298 K and 10 configurations of both
solid and liquid Al at its melting temperature of 933 K. The JLCDM
used here is the same discussed before that produced the results
from Fig. 2d–f, trained over 32-atom supercells for solid Al at
300 K. Table 2 summarizes our results. The error on the total
energy and forces slightly increases when considering systems in
the same conditions but different cell sizes, namely comparing the
32-atom and the 256-atom supercells for solid Al at 300 K and 298 K,
respectively. In any case, the MAE remains below 1 meV per atom
for the total energy and below 0.025 eV Å−1 for the forces. As the
structures tested become increasingly different from those used

for training (data at 933 K) the error grows further, reaching 35.062
meV per atom and 0.164 eV Å−1 in the liquid phase.
In order to put our results in perspective, neural network

models (~106–107 trainable weights) using the bispectrum
components to describe the local environments reach a MAE of
123.29 meV per atom over the liquid phase, when trained on high-
temperature solid structures only64. This means that, on the same
test, our JLCDM outperforms neural networks by a factor of four,
despite consisting of only 120 trainable parameters and being
trained on the 0.1% of the charge density points. The neural
network error is then reduced to 13.04 meV per atom only when
the training is performed on both high-temperature solids and
liquids64. Certainly, we could systematically improve the JLCDM by
adding more distorted supercells in our training set or by
including both solid and liquid configurations at 933 K. However,
here, we wish to point out that the smooth description of the local
environment allows us to achieve very competitive accuracy (35
meV per atom for liquid Al at 933 K) even for such a compact
model.

DISCUSSION
Inspired by the recently developed Jacobi-Legendre potentials66,
we have designed a grid-based many-body linear expansion of
the charge density, where the local external potential is described
by Jacobi and Legendre polynomials. The method, combined with
a charge-density targeted sampling strategy, produces highly
accurate charge densities despite being constructed over an
extremely limited number of trainable coefficients. We have
demonstrated the efficacy of the JLCDM for diverse examples,
namely a benzene molecule, solid and liquid Al, solid Mo and
different phases of 2D MoS2. In all cases, simple two-body JLCDMs
accurately predict the charge density and can be transferred to
different phases not originally included in the training set. For
instance, training over the 1H and 1T phases of 2D MoS2 is enough
to predict the charge density of the 1T0 phase, and so is the case
for liquid Al, whose density can be constructed from a model
trained over solid-state configurations at room temperature. The
JLCDM-predicted densities can then be used to compute total
energy and forces, achieving accuracy comparable to state-of-the-
art machine learning force fields and, in some cases, even to fully
converged DFT calculations.
As it stands, the methodology introduced here could be readily

used in a diverse set of applications. If one is interested solely in
energies and forces, learning the charge density probably will not
be the optimal way to address the problem because of the
computational overheads involved in many of the steps required
for training and predicting the charge density over a fine grid. In
that case, ML force fields can be a better solution, even though the

Fig. 4 Error on the total energy and forces. Box and violin plots for
the error on the total energy (a) and the forces (b) computed from
JLCDM-predicted charge density. The fully converged DFT values
provide the ground truth. The insets show a magnified version of
the results for Al and Mo, whose distributions are very narrow on the
global scale. The associated absolute mean values are reported in
Table 1. The lines in the middle of the boxes mark the medians. The
boxes are plotted from the first to the third quartile, with the line
marking the median. The whiskers extend to 1.5 times the box
length.

Table 2. Performance of the JLCDM for Al, trained over 32-atom
supercells at room temperature, against 256-atom supercells at various
conditions.

# atoms Condition Total energy (meV
per atom)

Forces (eV Å−1)

MAE RMSE MAE RMSE

32 Solid (300 K) 0.046 0.054 0.007 0.009

256 Solid (298 K) 0.843 0.908 0.025 0.031

256 Solid (933 K) 6.976 7.526 0.068 0.862

256 Liquid (933 K) 35.062 36.498 0.164 0.203

The configurations for the 256-atom supercells are taken from refs. 64,80,
and the test error is computed over 10 samples for each different
condition.
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numerical effort to generate the training set needed to achieve DFT
accuracy is typically rather extensive, much larger than that required
to generate a JLCDM. In any case, a JLCDM strategy becomes
essential when one targets density-related electronic quantities,
which can be obtained only by DFT. For instance, one may need to
evaluate the dipole moment (the Bader charges, the polarizability,
etc.) along a set of molecular dynamics trajectories. In that case, a
successful strategy may be to use a force field to generate the
trajectories and the JLCDM method to evaluate the charge density
and the associated properties. Furthermore, applications such as
crystal structure prediction, phase diagram construction, reaction
path search, and other computationally intensive tasks could be
greatly accelerated by using JLCDM-predicted charge densities as
the starting point of DFT calculations. Finally, the predicted charge
density can be easily employed as the starting density for
computationally expensive hybrid-functional calculations.

METHODS
DFT calculations and dataset generation
All single-point and ab initio molecular dynamics (AIMD) calcula-
tions are performed using density functional theory (DFT)1,2 as
implemented in the Vienna ab initio simulation package
(VASP)67,68. Exchange and correlation interactions are treated by
the generalized gradient approximation (GGA)3 with the
Perdew–Burke–Ernzerhof (PBE)4 exchange and correlation func-
tional. We use the projector augmented wave (PAW)76 pseudopo-
tentials. Single-point self-consistent calculations are performed
with a 600 eV kinetic-energy cutoff for the plane-wave expansion,
and the Brillouin zone is sampled over a k-point density of 12 /Å−1.
AIMD runs are performed with a 2 fs time-step, and the
Nosé–Hoover thermostat77–79 maintains the NVT ensemble. All
AIMD runs are at least 4 ps long, and snapshots are taken from the
simulation’s last 3 ps. For benzene and 2D MoS2 sufficient vacuum
space, at least 15 Å is included in the non-periodic directions so to
avoid spurious interaction between periodic images.

Benzene data generation. Data for benzene are extracted from
the dataset available at http://quantum-machine.org/datasets/62.
For the training set, we randomly select 30 snapshots from a MD
run at 300 K and 400 K, available in the “benzene_300K-
400K.tar.gz” file, and for the test set, 30 snapshots are
randomly sampled from MD at 300 K, available in
“benzene_300K-test.tar.gz”. The charge density for the
selected snapshots is then calculated using VASP with the settings
described above. Using 600 eV as the kinetic-energy cutoff for the
plane-wave expansion, this results in the charge density being
represented over a 180 × 180 × 180 grid (5,832,000 grid points).

Al, Mo, and 2D MoS2 data generation. For Al, Mo and MoS2, we
randomly extract snapshots from AIMD runs at 300 K. For Al, we
use a 2 × 2 × 2 conventional fcc supercell containing 32 atoms,
while a 3 × 3 × 3 conventional bcc supercell containing 54 atoms
described Mo. A 3 × 3 × 1 supercell is used for the 1H and 1T
phases of MoS2 (27 atoms), while for the 1T0, we consider a
4 × 2 × 1 supercell (48 atoms). For Al and Mo, we extract
10 snapshots for training and 10 for testing. For MoS2, we extract
10 snapshots for each phase, with the 1H and 1T structures used
for training and 1T0 for testing. The charge densities are
represented over a 140 × 140 × 140 grid (2,744,000 grid points)
for Al, a 160 × 160 × 160 grid (4,096,000 grid points) for Mo,
160 × 160 × 300 grid (7,680,000 grid points) for MoS2 1H and 1T,
and 216 × 192 × 300 grid (12,441,600 grid points) for 1T0-Mos2.
In order to investigate the transferability of the JLCDM for Al, we

use the snapshots reported in ref. 64, as available in80. These Al are
256-atom Al supercells whose charge density has been recalcu-
lated with VASP. The energy cutoff for those is lowered to 360 eV

so as to match the same real-space grid used in ref. 64,
200 × 200 × 200 (8,000,000 grid points), and only the Γ-point is
used to sample the BZ.

DFT calculations with fixed charge density
In order to use the ML charge density to compute total energies
and forces, we use KS-DFT while keeping the charge density fixed
and using the same settings as specified for the data generation.
The ML charge density is kept constant at each step of an
iterative diagonalization of the Kohn-Sham Hamiltonian. In
particular, the Kohn-Sham eigenstates and eigenvalues are
optimized during five steps with no updates to the charge
density. A comparison for the Al test set at each step of the (non-)
self-consistent cycle can be found in the SI.
While using PAW pseudopotentials, one is required to provide

the augmentation on-site occupancies at the start of a calculation.
For Al, we ignore one-centre correction terms evaluated on the
radial support grid, a strategy that allows us to use the charge-
density predictions for unknown structures or arbitrary sizes. For
the other systems, we reuse the already known one-centre
occupation DFT-computed terms together with our ML charge
density to start the new calculations for configurations on the test
set. In the future, the augmentation occupancies can also be
learned with a similar scheme as designed here. This will allow the
use of the ML charge density as a starting point for DFT
calculations of any structure.

Model training, hyperparameter optimization, and timing
We fit the linear models by using singular value decomposition to
find the pseudo-inverse of A solving the matrix equation, Ax̂ ¼ b̂,
for the coefficients x̂. Training and inference are performed using
the Ridge class (with α= 0) from the scikit-learn library81.
Hyperparameter optimization is performed through Bayesian

optimization using Gaussian Processes (gp_minimize), as
implemented in the scikit-optimize library82. This is done solely
on part of the training set. For the Al and Mo JLCMDs, 8 training
snapshots are used for training and the remaining 2 are for
validation. For benzene, 27 are used for training, and 3 for
validation. On MoS2, we take one training snapshot for each phase
(1H and 1T) as the validation set, and the remaining training
snapshots are used for training. The optimization targets the
minimization of the mean absolute error (MAE). Table 3 shows the
hyperparameters for each model.
An assessment of the time needed to train our model and to

perform new predictions is provided in Table 4, where this is
compared to the time needed to perform a fully converged self-
consistent (SCF) calculation for the same system. This enables us
to evaluate the time saving achieved over a single non-self-
consistent calculation performed with our JLCDM-predicted
charge density. Note that an estimate of the total computation
time saving, which is inclusive of the effort needed to generate

Table 3. Optimized hyperparameters and corresponding feature size
for each model generated.

System Body rcut nmax lmax rmin α β # features

Benzene 1b 2.80 27 – −0.78 7.00 0.00 1572

2b 2.80 12 5 0.00 7.00 0.00

Al 1b 4.08 15 – −0.74 7.87 3.62 120

2b 4.08 6 6 0.00 5.87 1.75

Mo 1b 4.04 20 – −1.09 4.02 5.46 812

2b 4.04 12 11 0.00 −0.08 2.38

2D MoS2 1b 4.76 18 – −0.93 6.72 6.97 2346

2b 4.76 11 10 0.00 5.07 2.69
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the training set, strongly depends on the specific workflow one
aims to follow since it scales with the total number of calculations
to perform. Besides the DFT calculations, computing the JL
fingerprints dominates the overall inference time. Importantly, we
notice that the time taken for the inference of both a 32-atom and
a 256-atom supercell is always inferior to the time of the full SCF-
DFT calculation. As the size of the target system for inference
increases, one see a much more pronounced difference between
the time needed for a JLCDM calculation and that for a full SCF-
DFT one.

Grid sampling
The grid points included in the training set are selected by
randomly sampling the real-space charge density according to a
combination of uniform sampling and targeted sampling on the
grid. Targeted sampling is performed by assigning to each grid
point, rg, a probability P, given by a normal distribution of the
inverse of the charge density at that grid point:

PðrgÞ ¼ 1ffiffiffiffiffiffi
2π

p
σ
exp �ð1=nðrgÞÞ2

2σ2

 !
(10)

Targeted sampling is combined with uniform sampling across
the simulation cell, composing the training data for each
snapshot. The number of grid points sampled through targeted
and uniform sampling is manually tuned to better sample the
features of each example’s charge density. The hyperparameter σ
is also tuned manually for each example. However, these
hyperparameters can readily be included in the automated

hyperparameter optimization routine, making it easy to address
any molecule or solid-state system. Table 5 shows the parameters
used for sampling and the percentage of the available grid point
used to train the models. As shown in the Results section, our
model requires a very modest data set size compared to other
grid-based approaches in the literature while attaining accurate
predictions.
In the SI we show the learning curve of the JLCD model for

benzene with respect to the number of grid points, comparing our
sampling technique with uniform sampling. Models trained with
targeted-sampling data exhibit lower errors compared to those
trained with uniform sampling, therefore, model accuracy is
enhanced by using targeted sampling. In addition, the maximum
absolute error for uniform sampling is significantly higher than
that of targeted sampling, suggesting that the uniform sampling
model has regions in space with poor prediction accuracy. We
expect that as the data volume increases, the difference between
uniform and targeted sampling diminishes. Nonetheless, we
emphasize that our ability to use targeted sampling to develop
highly accurate models with minimal data contributes to the
efficiency of our workflow.

DATA AVAILABILITY
The data used to train and test the models (DFT charge density, structure files, and
trained models) is available via Zenodo83.

CODE AVAILABILITY
Scripts and related code for calculating the Jacobi–Legendre grid-based linear
expansion are available at https://github.com/StefanoSanvitoGroup/MLdensity.
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