$$
\begin{aligned}
& \text { LINEAR LEAST SQUARES AND QUADRATIC PROGRAMMING } \\
& \text { Gene H. Golub, et al } \\
& \text { Stanford University } \\
& \text { Stanford, California } \\
& \text { May } 1969
\end{aligned}
$$

This document has been approved for public release and sale.

Linear Least Squares and Quadratic Programming *

Gene H. Golub
Michael A. Saunders

Reproduction in whole or in part is permitted for any purpose of the United States Government.
*Invited paper to be presented at the NATO Advanced Study Institute on Integer and Nonlinear Programming, Ile de Bendor, France, June $8-22$, 1969. This research was supported, in part, by the National Science Foundation and the Atomic Energy Commission project at Stanford University.

Abstract

Several algorithms are presented for solving lincar least squares problems; the basic tool is orthogonalization techniques. A hishly accurate algorithm is presented for solving least squares problemi with linear inequality constraints. A method is also given for findirg tila least squares solution when there is a quadratic conctraint on the solution.

0. Introduction

Tne of the most common problems in any computation center is that of finding linear least squares solutions. These problems arise in a varicty of areas and in a variety of contexts. For instance, the data may ve arriving seq"entially from a source and there may be some constraint on the solution. Finear least squares problems are particularly difficult to solve because they frequently involve large quaritities of data, and they are ill-conditioned by their very nature.

In this paper, we shall present several numerical algorithms ior solving linear least squares problems in a highly accurate manner. In addition, we shall give an algorithm for solving linear least squares problem with linear inequality constraints.

1. Linear least squares

Let A be a given $m \times n$ real matrix of rank r and b a given vector. We wish to determine $\hat{\sim}$ such that

$$
\sum_{i=1}^{m}\left(b_{i}-\sum_{j=1}^{n} a_{i j} x_{j}\right)^{2}=\min
$$

or using matrix notation

$$
\begin{equation*}
\|b-A x\|_{2}=\min . \tag{1.1}
\end{equation*}
$$

If $n \geq n$ and $r<n$, then there is no unique solution. Under these conditions, we require amongst those vectors $\underset{\sim}{x}$ which satisty (1.1) that

$$
\|\hat{x}\|_{2}=\min .
$$

For $r=n, \underset{\sim}{\hat{x}}$ satisfies the normal equations

$$
\begin{equation*}
A^{T} A \underline{\sim}=A^{T} \underline{b} \tag{3.2}
\end{equation*}
$$

Unfortunately, the matrix $A^{T} A$ is frequently ill-conditioned and influericed greatly by roundoff errors. The following example illustrates this well. Suppose

where \tilde{R} is an upper triangular matrix (∇). Let

$$
\tilde{R}=\left[\begin{array}{cccccc}
r_{11} & r_{12} & \cdot & \cdot & \cdot & r_{1 n} \\
& r_{22} & \cdot & \cdot & \cdot & r_{2 n} \\
& \ddots & \cdot & & \\
& \vdots & & & & \\
& & & & r_{n n}
\end{array}\right]
$$

then

$$
\begin{aligned}
\|\underset{\sim}{b-A x}\|_{2}^{2} & =\left(c_{1}-r_{12} x_{1}-r_{12} x_{2}-\ldots-r_{l n} x_{n}\right)^{2} \\
& +\left(c_{2}-r_{22} x_{2}-\ldots-r_{2 n} x_{n}\right)^{2} \\
& +\ldots+\left(c_{n}-r_{n n} x_{n}\right)^{2} \\
& +c_{n+1}^{2}+c_{n+2}^{2}+\ldots+c_{m}^{2} .
\end{aligned}
$$

Th:us $\|\sim \sim \sim A\|_{2}^{2}$ is minimized when

$$
\begin{array}{r}
r_{11} \hat{x}_{1}+r_{12} \hat{x}_{2}+\ldots+r_{1 n} \hat{x}_{n}=c_{1} \\
r_{22} \hat{x}_{2}+\ldots+r_{2 n} \hat{x}_{n}=c_{2}
\end{array}
$$

$$
\text { i.e., } \underset{\sim}{R \hat{\sim}}=\underset{\sim}{\tilde{c}} \text {, where }
$$

$$
\begin{align*}
R^{T} \mathrm{P} & =[\tilde{R}: 0]^{\mathrm{T}}[\tilde{\mathrm{R}}: 0]=\tilde{R}^{T_{\mathrm{R}}} \\
& =[Q A]^{\mathrm{T}}[Q A]=A^{T} \mathrm{~A}, \tag{2.3}
\end{align*}
$$

Then

$$
\begin{equation*}
\|\underset{\sim}{b-A \hat{x}}\|_{2}^{2}=c_{n+1}^{2}+c_{n+2}^{2}+\ldots+c_{m}^{2} \tag{2.2}
\end{equation*}
$$

and

$$
{\underset{\sim}{c}}^{T}=\left(c_{1}, c_{2}, \ldots, c_{n}\right),
$$

i.e., ${\underset{\sim}{R}}_{\tilde{x}}=\underset{\sim}{\tilde{c}}$, where

$$
\vdots_{r_{n n}} \hat{x}_{n}=c_{n}
$$

and thus $\frac{R^{2} R}{}$ is simply the Cholesky decomposition of $A^{T} A$. There are a number of ways to achieve the decomposition of (2.1); n.e. on couid apply a sequence of plane rotations to annihilate the elements kelow the diagonal of A. A very effective method to realize
the decomposition (2.1) is via Householder transformations. A matrix P is said to be a Householder transformation if

$$
P=I-2{\underset{\sim}{u}}_{u}^{T}, \underset{\sim}{u}{\underset{\sim}{u}}^{T} \underset{\sim}{u}=1 \text {. }
$$

 that P is a symmetric, orthogonal transformation.

Let. $A^{(1)}=A$ and let. $A^{(2)}, A^{(3)}, \ldots, A^{(n+1)}$ be defined as tollows:

$$
A^{(k+1)}=P^{(k)_{A}(k)} \quad(k=1,2, \ldots, n)
$$

where $p^{(k)}=I-2 \underset{\sim}{w}(k)_{\underset{\sim}{w}}(k)^{T}, \underset{\sim}{w}(k)^{T} \underset{\sim}{w}(k)=1$. The matrix $P^{(k)}$ is chosen so that $a_{k+1, k}^{(k+1)}=a_{k+2, k}^{(k+1)}=\cdots=a_{n, k}^{(k+1)}=0$. Thus after k trancformetions

and

$$
Q=P^{(n)} P^{(n-1)} \ldots p^{(1)}
$$

altheugh one need not compute Q explicitly. mhe nuber o: muliplications required to produce R is rourhly man $n^{2}\left(n^{3} / j\right)$ whereas mproximater mate multiplications are required to form the noral equaton (1.i).

3. The practical procedure

It is known that the Cholesky method for solvire systums of quinons is numerically stable evon if no interchanges oi' rows and :olumns are performed. Since we are in effect pertorming a Clolesky decomposition of $A^{T} A$ no interchanges or the columns of A are needed in most situations. However, numerical experiments have indicated that the accuracy is slightly improved by the interchance strateries outlined below, and consequently, in order to ensure the atmost. accuracy one should choose the columns of A by some strategy. In what follows, we shall refer to the matrix $A(k)$ even if some of the columns bave been interchanged.

One possibility is to choose at the $k^{\text {th }}$ stage the columns of $A^{(k)}$ which will maximize $\left|a_{k k}^{(k+1)}\right|$. This is equivalent to searching for the maximum diagnal element in the Cholesky decomposition of $A A^{T}$. I, et

$$
s_{j}^{(k)}=\sum_{j=k}^{m}\left(a_{i, j}^{(k)}\right)^{2} \quad \text { for } \quad j=k, k+1, \ldots, n .
$$

 \therefore ik) is maximized. After $A^{(k+1)}$ has been complited, one can compate $s_{j}^{(k+1)}$ as follows:

$$
s_{\therefore}^{(k+1)}=s_{j}^{(k)}-\left(a_{k, j}^{(k+1)}\right)^{2} \quad(j=k+1, \ldots, n)
$$

since the orthoronal transformations leave the culumn leneths invariant. Naturally, the $s_{j}^{(k)}$'s must be interchanged if the columns of $A(k)$ are interchanfed.

The above strategy is useful in determining the rank of a matrix. If the rank of A is r and the arithmetic is performed exactly, then alter r transformations

$$
A^{(r+1)}=\left[\begin{array}{c|c}
\tilde{R}_{r \times r} & S_{(n-r) \times r} \\
\hline 0 & :
\end{array}\right],
$$

and

$$
s_{j}^{(r+1)}=0 \quad \text { for } \quad j=r+1, \ldots, n
$$

w!ich implies $N=0$. In most sitmations, however, where rounded arithmetic is used $\|N\|=\varepsilon$. It is not easy to determine bounds on ε when the rank of A is unknown.

The stratety described above is most appropriate when one has a sequence 0 . vectors $\underset{\sim}{b},{\underset{\sim}{2}}_{2}^{b_{2}}, \ldots,{\underset{\sim}{p}}_{p}$ for which one desires a least squares estimate. In many protlems, there is but one vector b and one wishes to express it in as few columns of A as possible. Or more precisely, ore wishes to determine the k indices such that

$$
\sum_{i=1}^{n}\left(b_{i}-\sum_{v=1}^{n} a_{i i_{v}} \hat{x}_{j_{v}}\right)^{2}=\min
$$

\therefore : annot solve this problem, but we shall show how to choose index k wiel the first k-1 indices are eiven so that the sum of squares of residuals is maximally reduced. This is the stape-wice regression problem. We derine

Tet ${\underset{\sim}{c}}^{(1)}=\underset{\sim}{v}$ and ${\underset{\sim}{c}}^{(k+1)}=p^{(k)}{\underset{\sim}{c}}_{(k)}^{(k)}$. Now ${\underset{R}{\sim}}_{(k) \underset{\sim}{\underset{\sim}{x}}}(k-1)={\underset{\sim}{c}}^{(k)}$ where $\hat{\forall}(\therefore-1)$ is trf least squares estimate based on (k-1) columns of A and $\left.\therefore \ddots_{1}^{(k)}, c_{(k)}^{(k)}, \ldots, c_{k-1}^{(k)}\right)$. Thus by (2.2)

$$
\begin{aligned}
& \left\|{\underset{\sim}{c}}^{(k+1)}-\tilde{R}^{(k+1)}{\underset{\sim}{\hat{x}}}^{(k)}\right\|_{2}^{c}=\sum_{j=k+1}^{m}\left(c_{j}^{(k+1)}\right)^{2} \\
& =\sum_{j=k}^{m}\left(c_{j}^{(k+1)}\right)^{2}-\left(c_{k}^{(k+1)}\right)^{2} \\
& =\sum_{j=k}^{m}\left(c_{j}^{(k)}\right)^{2}-\left(c_{k}^{(k+1)}\right)^{2}
\end{aligned}
$$

since length is preserved under an orthogonal transformation. Consequentiy, we wish to choose that column of $A^{(k)}$ which will maximize $\left|c_{k}^{(k+1)}\right|$. Let

$$
t_{j}^{(k)}=\left(\sum_{i=k}^{m} a_{i, j}^{(k)} c_{i}^{(k)}\right) \quad \text { for } \quad j=k+1, \ldots, n
$$

Then since $\left|c_{k}^{(k+1)}\right|=\left|\left(\sum_{i=k}^{m} a_{i k}^{(k)} c_{i}^{(k)}\right) / \mathrm{s}_{k}^{(k)}\right|$, one should choose that column of $A^{(k)}$ for which $\left(t_{j}^{(k)}\right)^{2} / s_{j}^{(k)}$ is maximized. After $P^{(k)}$ is applied to $A^{(k)}$, one can adjust $t_{j}^{(k)}$ as follows:

$$
t_{j}^{(k+1)}=t_{j}^{(k)}-a_{k j}^{(k+1)} c_{k}^{(k+1)}
$$

In many statistical applications, if $\left(t_{j}^{(k)}\right)^{2} / s_{j}^{(k)}$ is sufficiently small, then no further transformations are performed.

4. Statistical calculations

In many statistical calculations, it is necessary to compute certain auxiliary information associated with $A^{T} A$. These can readily be obtained from the orthogonal decomposition. Thus

$$
\operatorname{det}\left(A^{T} A\right)=\left(r_{11} \times r_{22} \times \ldots \times r_{n n}\right)^{2}
$$

Bince

$$
A^{T^{\prime}} A=\tilde{R_{R}} \tilde{R}^{\tilde{R}}, \quad\left(A^{T} A\right)^{-1}=\tilde{R}^{-1} \tilde{R}-T
$$

The inverse of \tilde{R} can be readily obtained since \tilde{R} is an upper triangular matrix. It is possible to calculate $\left(A^{T} A\right)^{-1}$ directly from \tilde{R}. Let

$$
\left(A^{T} A\right)^{-1}=X=\left(\underset{\sim}{x},{\underset{\sim}{2}}^{x_{2}}, \ldots,{\underset{\sim}{x}}_{n}\right)
$$

Then from the relationship

$$
\tilde{\mathrm{F}} \mathrm{X}=\tilde{\mathrm{R}}^{-T}
$$

$$
S^{T} S=\tilde{R}^{T} R-\underset{\sim}{\alpha} \underset{\sim}{\alpha}=A^{T} A-\underset{\sim}{\alpha} \underset{\sim}{\alpha}
$$

Let

$$
s^{(1)}=s \quad, \quad \text { and } s^{(2)}=z_{1, n+1} S^{(1)}
$$

We choose $\cos \theta$ so that $\left\{S^{(2)}\right\}_{n+1,1}=0$ ．Thus

$$
\begin{aligned}
& \left\{s^{(2)}\right\}_{1,1}=\sqrt{ }\left(r_{11}^{2}-\alpha_{1}^{2}\right) \\
& \left\{s^{(2)}\right\}_{1, j}=\left(r_{11} r_{1 j}-\alpha_{1} \alpha_{j}\right) / \sqrt{ }\left(r_{11}^{2}-\alpha_{1}^{2}\right) \quad j=2,3, \ldots, n \\
& \left\{s^{(2)}\right\}_{n+1, j}=i\left(\alpha_{1} r_{1 j}-\alpha_{j} r_{11}\right) / \sqrt{ }\left(r_{11}^{2}-\alpha_{1}^{2}\right) \quad j=2,3, \ldots, n .
\end{aligned}
$$

Note no complex arithmetic is really necessary．The process is continued as follows：
Let

9

Then

$$
S^{(k+1)}=Z_{k, n+1} S^{(k)} \quad, \quad k=1,2, \ldots, n,
$$

and $\cos \theta_{k}$ is determined so that $\left\{S^{(k+1)}\right\}_{k, n+1}=0$. Thus roughly $3 n^{2}$ multiplications and divisions and n square roots are required to form the new \tilde{R}.

Suppose it is desirable to add an additional variable so that the $\underset{\sim}{\operatorname{Ratrix}} A$ is augmented by a vector $\underset{\sim}{g}$ (say). The first n columns of $\tilde{R}^{(n)}$ are unchanged. Now one computes

$$
\underset{\sim}{h}=P^{(n)} \ldots p^{(2)} p^{(1)} \underset{\sim}{g}
$$

From $\underset{\sim}{n}$ one can compute $p^{(n+1)}$ and apply it to $p^{(n)} \ldots p^{(1)}$. This technique is also useful when an auxiliary serial storage (e.g. magnetic tape) is used.

It is also possible to drop one of the variables in a simple fashion after \tilde{R} has been computed. For example, suppose we wish to drop variable 1 , then

$$
\tilde{R}=\left[\begin{array}{cccc}
r_{12} & \cdot & \cdot & r_{1 n} \\
r_{22} & \cdot & \cdot & \cdot \\
& \cdot & \\
& & \\
& & r_{n n}
\end{array}\right]_{n \times(n-1)}
$$

By using plane rotations, similar to those given by (4.1), it is possible to reduce \tilde{R} to the triangular form again.
5. Gram-Scrmidt orthogonalization

In $\S 2$, it was shown that it is possitle to write

$$
\begin{equation*}
Q A=R \tag{5.1}
\end{equation*}
$$

The matrix Q is constructed as a product of Householder transformations.
From (5.1), we see that

$$
A=Q^{T} R \equiv P S
$$

where $P^{T} P=I_{n}, S: \nabla$. Each row of S and each column of P is uniquely determined up to a scalar factor of modulus one. In order to avoid computing square roots, we modify the algorithms so that S is an upper triangular matrix with ones on the diagonal. Thus $P^{T} P=D$, a diagonal matrix. The calculation of P and S may be calculated in two ways.
a) Classical Gram-Schmidt Algorithm (CGSA)
The elements of S are computed one column at a time. Let

$$
A^{(k)}=\left[{\underset{\sim}{1}}_{1},{\underset{\sim}{p}}_{2}, \ldots, p_{k-1},{\underset{\sim}{k}}, \ldots,{\underset{\sim}{n}}_{n}^{a}\right]
$$

and assume

$$
{\underset{\sim}{p}}_{i}^{T} \underset{\sim}{p}=\delta_{i j} d_{i} \quad, \quad 1 \leq i, j \leq k-1
$$

At step k, we compute

$$
\begin{aligned}
& s_{i k}=\left({\underset{\sim}{p}}_{i}^{T} a_{\sim}^{a} / d_{i}\right), \quad 1 \leq i \leq k-1 \\
& \underline{p}_{k}={\underset{\sim}{a}}_{a_{k}}-\sum_{i=1}^{k-1} s_{i k}{\underset{\sim}{p}}_{i}, \quad{\underset{q}{k}}=\left\|{\underset{\sim}{p}}_{k}\right\|_{2}^{2} .
\end{aligned}
$$

b) Modified Gram-Schmidt Algorithm (MGSA)
Here the elements of S are computed one row at a time. We define
and assume

At step k, we take ${\underset{\sim}{p}}_{k}={\underset{\sim}{a}}_{k}^{(k)}$, and compute
In both procedures, $s_{k k}=1$. The two procedures in the absence of rourdoff errors, produce the same decomposition. However, they have completely different numericel properties when $n>2$. If A is at all "ill-conditioned", then using the CGSA, the computed columnis of P will soon lose their orthogonality. Consequently, one would never use the CGSA without reorthogonalioation, which greatly increases the amount of computation. Recrthogonalization is never needed wnen using the MGSA. A careful roundoff analysis is eiven by BJORK [1967]. RICE [1960] has shown experimentally that the MGSA produces excellent results.
The MGSA has the advantaces that it is relatively easy to program, and cxperimentally (cf. JORDAN [1968]), the least squares solution seems to be slightly more accurate than the Huseholder procedure. However, it requires rouphly $\mathrm{mn}^{2} / 2$ operations which is slightly more than that necessary in ie Householder procedure. Furthermore, it is not as simple as the Houscholder procedure to add ooservations, and the vectors generated by the Housekolder procedure are more nearly orthogonal than those generated by MGSA.

5. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the least squares problem. For this purpose it is convenient to introduce the condition number $K(A)$ of a non-square matrix A. This is defined by

$$
\because(A)=\sigma_{]} / \sigma_{n}, \quad \sigma_{1}=\max _{x \neq 0}\|A x\|_{2} /\|x\|_{2}, \quad \sigma_{n}=\min _{x \neq 0}\left\|A \operatorname{Ax}_{\sim}\right\|_{2} /\|x\|_{2}
$$

sc that σ_{1}^{2} and σ_{n}^{2} are the greatest and the least eigenvaiues of $A^{T} A$. From its definition it is clear that $\kappa(A)$ is invariant with respect to unitary transformations. If \tilde{R} is defined as in (2.1) then

$$
\sigma_{1}(\tilde{R})=\sigma_{1}(A) \quad, \quad \sigma_{n}(\tilde{R})=\sigma_{n}(A), \quad k(\tilde{R})=\kappa(A),
$$

while

$$
\sigma_{1}(\tilde{\mathrm{R}})=\|\tilde{\mathrm{R}}\|_{2} \quad \text { and } \quad \sigma_{n}(\tilde{R})=1 /\left\|\tilde{R}^{-1}\right\|_{2}
$$

The commenest method of solving least squares problems is via the normal equations

$$
\begin{equation*}
A^{T} \underset{\sim}{A x}=A^{T} \underset{\sim}{b} \tag{6.1}
\end{equation*}
$$

The watrix $A^{\prime} A$ is square and we hav

$$
k\left(A^{T} A\right)=\kappa^{2}(A)
$$

This means that if A has a condition number of the order of $\quad \int^{2 / 2}$ then $A^{T} A$ has a condition number of order 2^{t} and it will not be possible using t-digit arithmetic to solve (6.1). The method of orthoconal transformations replaces the least squares problem by the solution of the equations $\underset{\sim}{R} x=\tilde{T}$ and $f(\tilde{R})=r(A)$. It would therefore snem to have substantial advantages since we avoid working with a matrix witn condition number $\kappa^{2}(A)$.

We now show that this last remark is an oversimplification. To this end, we compare the solution of the original system $[A: \underset{\sim}{\cup}]$ with that of a perturbed system. It is convenient to assume that

$$
\sigma_{1}=\|A\|_{2}=\| b_{i_{12}}^{\prime}=1
$$

this is not in any sense a restriction since we can make $\|A\|_{2}$ and $\|\mathrm{b}\|_{2}$ of order unity merely by scaling by an appropriate power of two. We now have

$$
\kappa(A)=\kappa(\tilde{R})=\left\|\tilde{R}^{-1}\right\|_{2}=1 / \sigma_{n}
$$

Consider the perturbed system

$$
(A+\varepsilon E: \underset{\sim}{b}+\varepsilon \underset{\sim}{e}),\|E\|_{2}=\|\underset{\sim}{e}\|_{2}=1,
$$

where ε is to be arbitrarily small. The sol:tion $\underset{\sim}{x}$ of the perturbed system satisfies the equation

$$
\begin{equation*}
\left.(A+\varepsilon E)^{T}(A+\varepsilon E) \underset{\sim}{\bar{x}}=(A+\varepsilon E)^{T} \underset{\sim}{b}+\varepsilon \underset{\sim}{e}\right) \tag{6.2}
\end{equation*}
$$

I: \hat{x} is the exact solution of the original system and Q is the exact orthogonal transformation corresponding to A we have

$$
\notin=\left[\begin{array}{c}
\tilde{R} \\
\cdots \\
\ddot{0}
\end{array}\right], \quad Q(A+\varepsilon E)=\left[\begin{array}{c}
\tilde{R}+\varepsilon F \\
\cdots \cdots \cdots \\
\varepsilon G
\end{array}\right], \quad Q e=\left[\begin{array}{c}
\tilde{\tilde{n}} \\
\cdots \\
\underline{g}
\end{array}\right]
$$

and

$$
\underset{\sim}{r}=r-\underset{\sim}{\hat{x}} \quad, \quad A^{T} \underset{\sim}{r}=\underset{\sim}{\theta}
$$

Equation (6.2) therefore becomes

$$
(A+\varepsilon E)^{T}(A+\varepsilon E)=\left(A^{T}+\varepsilon E^{T}\right)(\underset{\sim}{x}+\underset{\sim}{r}+\varepsilon \underset{\sim}{e})
$$

giving

Aerlectine ε^{2} where advantageous,

$$
(\tilde{R}+\varepsilon F)^{T}(\tilde{R}+\varepsilon F) \underset{\sim}{\bar{X}}=(\tilde{R}+\varepsilon F)^{M} \underset{\sim}{\tilde{R}} \underset{\sim}{x}+\varepsilon(\tilde{R}+\varepsilon F)^{T} \underset{\sim}{\underset{\sim}{r}}+\varepsilon E^{T} \underset{\sim}{r}+O\left(\varepsilon^{2}\right)
$$

$$
\underset{\sim}{\bar{x}}=(\tilde{\mathrm{F}}+\varepsilon F)^{-1} \underset{\sim}{\tilde{R} \bar{x}}+\varepsilon(\tilde{\mathrm{K}}+\varepsilon F)^{-1} \underset{\sim}{f}+\varepsilon\left(\tilde{\mathrm{R}} \tilde{\mathrm{R}}^{\tilde{R}}\right)^{-1} \varepsilon^{T} \underset{\sim}{r}+O\left(\varepsilon \varepsilon^{2}\right)
$$

$$
=\underset{\sim}{\hat{x}}-\varepsilon \tilde{R}^{-1} \underset{\sim}{\underset{\sim}{\hat{x}}}+\varepsilon \tilde{R}^{-1} \underset{\sim}{\mathrm{f}}+\varepsilon\left(\tilde{T}^{\sim} \tilde{R}\right)^{-1} E_{\underline{T}}^{\underline{r}}+O\left(\varepsilon \varepsilon^{2}\right)
$$

givins

$$
\begin{aligned}
\|\underset{\sim}{x}-\hat{\sim}\|_{2} & \leq \varepsilon\left\|\tilde{R}^{-1}\right\|_{2}\|F\|_{2}\|\underset{\sim}{x}\|_{2}+\varepsilon\left\|\tilde{R}^{-1}\right\|_{2}\|\underset{\sim}{r}\|_{2}+\varepsilon\left\|\tilde{R}^{-1}\right\|_{2}^{2}\|E\|_{2}\|\underset{\sim}{r}\|_{2}+O\left(\varepsilon^{2}\right) \\
& \leq \varepsilon K(A)\|\sim\|_{2}\left\|_{2}+\varepsilon \kappa(A)+\varepsilon K^{2}(A)\right\|_{\sim}^{r} \|_{2}+O\left(\varepsilon^{2}\right) .
\end{aligned}
$$

Ve observe that the bounds include a term $\varepsilon K^{2}(\mathrm{~A})\|\underset{\sim}{r}\|_{2}$. It is easy to verify by means of a 3×2 matrix A that this bound is realistic and that, an error of this order of magnitude does indeed result from almost any such perturbation E of A. We conclude that although the use of the orthogonal transformation avoids some of the ill eifects inherent ir the use of the normal equations the value $\kappa^{2}(A)$ is still relevant to some extent.

When the equations are compatible $\|r\|_{2}=0$ and the term in $\kappa^{2}(A)$ dicappears. In the non-singular linear equation case $\underset{\sim}{r}$ is always null and hence it is always $\kappa(A)$ rather than $\kappa^{2}(A)$ which is relevant.

Since the sensitivity of the solution depends on the condition number, it is frequently desirable to replace the oricinal unknowns $\underset{\sim}{x}$ by a new vector of unk:owns $D^{-1} \underset{\sim}{x}$ where D is a diagonal matrix with non-zero diamonal elements. Thus we wish to find $\underset{\sim}{\hat{y}}$ for which

$$
\|\underset{\sim}{b}-C \hat{\sim}\|_{2}=\min .
$$

$$
\text { * } \quad\left[\begin{array}{c|c}
\alpha I & A \\
\hline A^{T} & 0
\end{array}\right]=\left[\begin{array}{c|c}
\sqrt{\alpha} I & 0 \\
\hdashline \frac{1}{\sqrt{\alpha} A^{T}} & \frac{1}{\sqrt{\alpha}} \bar{R}^{T}
\end{array}\right]\left[\begin{array}{c|c}
\sqrt{\alpha} I & \frac{1}{\sqrt{\alpha}} A \\
\hline 0 & -\frac{1}{\sqrt{\alpha}} \tilde{R}
\end{array}\right] \equiv I U \text {. (7.2) }
$$

Once an approximate solution to $C y=\underset{\sim}{g}$ has been obtained, it is irequently possible to improve the accuracy of the approximate solution. Iet $\underset{\sim}{y}$ be an approximate solution, and let $\underset{\sim}{v} \underset{\sim}{g}-\overline{\mathrm{y}}$, Then if $\underset{\sim}{y}=\underset{\sim}{y}+\delta$, satist'ies tne equation

$$
C \cup=\underset{\sim}{v}
$$

Hqu. . on (7.3) ean be solved approximately from the decomposition (7.2). Of vourse, it is not possible to solve precisely for $\underset{\sim}{b}$ so that the process may be repeated.
ine are now in a position to use the iterative refincment method
(:t. MOLER [1967], WILKINSON [1967]) for solving linear equations. Thus one mirdet proceed as follows:

1) Solve for $\underset{\sim}{x}(0)$ using one of the orthgonalization procedures outlined in $\{2$ or $5 . \tilde{R}$ must be saved but it is not necessary to retain Q. Then

$$
{\underset{\sim}{n}}^{(0)}=\frac{1}{\alpha}(\underset{\sim}{b-A x}(0))
$$

\because The vector $\underset{\sim}{y}(s+1)$ is determined from the relationship

$$
{\underset{\sim}{y}}^{(s+1)}={\underset{\sim}{y}}^{(s)}+\underset{\sim}{E}(s)
$$

whiere

$$
\begin{equation*}
{\underset{\sim}{c}}^{(s)}\left(\underset{\sim}{r}-\operatorname{Cy}_{\sim}^{y}(s) \equiv \underset{\sim}{v}(s)\right. \tag{7.4}
\end{equation*}
$$

This calculation is simplified by solving

$$
\begin{aligned}
& \ddot{\sim}^{(s)}=\underset{\sim}{v}(s) \\
& (s)=z^{(s)}
\end{aligned}
$$

The vector ${\underset{\sim}{v}}^{(s)}$ must be calcula+ ed using double precision accuracy and then rounding to single precision.
3) Terminate the iteration wen $\pi_{\sim}^{(s)}$! $\|_{\sim}^{N}(s)$ is less man .. prescribed number.

Note that the computed residual vector is an approximation to the residual vector when the exact solution \hat{x} is known. This may diticer from the residual vector computed from the approximate solution to the least squares problem.

There are three sources of error in the process: (1) computation of the vector $\underset{\sim}{\ddot{\sim}}(\mathrm{s})$, (2) solution $\dot{i}^{\text {(}}$ the system of equations tor the correction vector $\underset{\sim}{S}(s)$, and (3) addition of the correction vection to the approximation $\underset{\sim}{\underset{\sim}{y}}{ }^{(s)}$. It is absolutely necessary to compute the components of the vector $\underset{\sim}{v}(s)$ using donble precision inner products and then to round to single precision avcuracy. The convergence of the iterative refine. st process has been discussed in detail by MOTER [1967]. Generally speaking, for a large class of matrices for $k \geq k_{0}$ all components of $y(s)$ are the correctly rounded single precision approximations to the components of $\underset{\sim}{y}$. There are exceptions to this, however, (ef. KAHAN [1965]). Experimentally, it has been observed, in most instances, that if $\|\underset{\sim}{\delta}(0)\|_{\infty} / \| \underset{\sim}{y}(0)_{\|_{\infty}} \leq 2^{-p}$ where

$$
\|\underset{\sim}{y}\|_{\infty}=\max _{1 \leq i \leq n}\left|y_{i}\right|
$$

then $k_{0} \geq[t / p]$. We shall return to the subject of iterative refinement when we discuss the solution of linear ieast squares problen with linear constraints.

A variant of the above procedure has been analyzed by BJORCK [1967b], [1968], and he has also given an ALGOL procedure. This has proved to be a very effective method for obtaining highly accurate solutions to linear least squares problems.

8. Least squares problems with constraints

Frequently, one wishes to determine $\underset{\sim}{\hat{x}}$ so that $\|\underset{\sim}{b-A} \underset{\sim}{\hat{x}}\|_{2}$ is minimized subject to the condition that $\underset{\sim}{\hat{x}}=\underset{\sim}{h}$ where G is a $\tilde{p} x \tilde{n}^{\sim}$ matrix of rank p. ne can, of course, eliminate p of the columns of A by Gaussian elimination after a pxp non-singular subnatrix of G has been determined and then sojve
the resulting normal equations. This, unfortunately, would not be a numerically stable scheme since no row interchanges between A and G would be permitted.

If one uses lagrange multipliers, then one must solve the $(n+p) \times(n+p)$ system of equations.

$$
\left[\begin{array}{c|c}
A^{T} A & G^{T} \tag{8.1}\\
\hline G & 0
\end{array}\right]\left[\begin{array}{c}
\underset{\hat{x}}{\underset{\sim}{\lambda}} \\
\underset{\sim}{\lambda}
\end{array}\right]=\left[\begin{array}{c}
A^{T} \\
\underset{\sim}{\sim} \\
\underset{\sim}{h}
\end{array}\right]
$$

where $\underset{\sim}{\lambda}$ is the vector of lagrange multipliers. Since $\underset{\sim}{\hat{x}}=\left(A^{T} A\right)^{-1} A^{T} \underset{\sim}{b}-\left(A^{T} A\right)^{-1} G^{T} \underset{\sim}{\lambda}$,

$$
G\left(A^{T} A\right)^{-1} G^{T} \underset{\sim}{\lambda}=G z-\underset{\sim}{G}
$$

where

$$
\underset{\sim}{z}=\left(A^{T} A\right)^{-1} A^{T} \underset{\sim}{b}
$$

Note $\underset{\sim}{z}$ is ine least squares solution of the original problem without constraints and one would frequently wish to compare this vector with the 1 inal solutirn $\underset{\sim}{\underset{\sim}{x}}$. The vector $\underset{\sim}{z}$, of course, should be computed by the orthogonalization procedures discussed earlier.

Since $A^{T} A=\tilde{R}^{T} \tilde{R}, G\left(A^{T} A\right)^{-1} G^{T}=W^{T} W$ where $W=\tilde{R}^{-T} G^{T}$. After W is computed, it should be reduced to a pxp upper triangular matrix K by orthogonalization. The matrix equation

$$
\mathrm{K}^{\mathrm{T}} \underset{\sim}{\mathrm{~N}}=\underset{\sim}{G z-h}
$$

should be solved by the obvious method. Finally, one computes

$$
\underset{\sim}{\hat{x}}=\underset{\sim}{z}-\left(A^{T} A\right)^{-1} C^{T} \underset{\sim}{\lambda}
$$

ahom $\left(A^{T} A\right)^{-1} G^{\prime}{ }_{\lambda}$ can be easily computed by using \tilde{R}^{-1}.
It is also possible to use the techniques described in §7. Again, let $\underset{\sim}{r}=\underset{\sim}{r-A \underset{\sim}{x}}$ so that from (3.1)
$\left[\begin{array}{c|c|c}I & A & 0 \\ \hline A^{T} & 0 & G^{T} \\ \hline 0 & G & 0\end{array}\right]\left[\begin{array}{c}\underset{\sim}{r} \\ \underset{\sim}{\hat{x}} \\ \underset{\sim}{\sim} \\ \underset{\sim}{\lambda}\end{array}\right]=\left[\begin{array}{c}\underset{\sim}{b} \\ \underset{\sim}{\theta} \\ \underset{\sim}{\underset{\sim}{x}} \\ \underset{\sim}{h}\end{array}\right]$
or

$$
\mathrm{D}_{\sim}^{z}=\underset{\sim}{g} .
$$

Note D is an $(m+n+p) \times(m+n+p)$ matrix. We may simplify the solution of (8.2), however, by noting that
$\left[\begin{array}{c|c|c}I & A & 0 \\ \hline A^{T} & 0 & G^{T} \\ \hline 0 & G & 0\end{array}\right]=\left[\begin{array}{c|c|c}I & 0 & 0 \\ \hline A^{T} & -\tilde{R}^{T} & 0 \\ \hdashline 0 & B^{T} & S^{T}\end{array}\right]\left[\begin{array}{c|c|c}I & A & 0 \\ \hdashline 0 & \widetilde{R} & -B \\ \hline 0 & 0 & S\end{array}\right]$
where $B=\left(G \tilde{R}^{-1}\right)^{T}=P S$ and $P^{T} P=I$ with $S: D$. The decomposition (3.3) can be used very effectively in conjunction with the method of iterati: refinement. $B J^{\prime \prime O R C K}$ and GOLUB [1967] have given a variant of the above procedure whish requires Q and P.

9. Linear least squares solutions with inequality constraints

Again let A, G be given real matrices of orders $m \times n$, $p \times n$, with $m \geq n$, and let $\underset{\sim}{b}, \underset{\sim}{n}$ be given real vectors of orders m, p. For any vector $\underset{\sim}{x}$ we define

$$
\underset{\sim}{r}=\underline{r}-A x
$$

and we wish to determine an $\underset{\sim}{x}$ such that

$$
{\underset{\sim}{r}}^{T} \underset{\sim}{r}=\min
$$

subsect to

$$
\underset{\sim}{G x} \geq \underset{\sim}{n}
$$

Our problem can therefore be stated as follows: find $\underset{\sim}{r}, \underset{\sim}{x}, \underset{\sim}{w}$ such that

$$
\begin{aligned}
\underset{\sim}{r}+\underset{\sim}{x} & =\underset{\sim}{b} \\
G \underset{\sim}{x}-\underset{\sim}{w} & =\underset{\sim}{\mathrm{h}} \\
\underset{\sim}{w} & \geq \underset{\sim}{0} \\
{\underset{\sim}{r}}^{T} \underset{\sim}{r} & =\min
\end{aligned}
$$

These problems can be solved by quadratic programming but we present an algorithm in this section which may lead to a much smaller system of equations and which yields highly accurate resillts.
If we define

$$
f(\underset{\sim}{r}, \underset{\sim}{w}, \underset{\sim}{x}, \underset{\sim}{y}, \underset{\sim}{z})=\frac{1}{2}{\underset{\sim}{r}}^{T} r-{\underset{\sim}{x}}^{T}(\underset{\sim}{r}+\underset{\sim}{x}-b)-{\underset{\sim}{z}}^{T}(\underset{\sim}{(G x-w})
$$

where we require without loss of generality that $\underset{\sim}{z} \geq \underset{\sim}{\theta}$, then an equivalent proklem is to determine $\underset{\sim}{r}, \underset{\sim}{w}, \underset{\sim}{x}, \underset{\sim}{y}, \underset{\sim}{z}$ such that
and

$$
\underset{\sim}{\mathrm{w}}, \underset{\sim}{z} \geq \underset{\sim}{\ominus}
$$

$$
f \text { is stationary. }
$$

Equating to zero the partial derivatives of f with respect to $\underset{\sim}{r}, \underset{\sim}{x}, \underset{\sim}{y}, \underset{\sim}{z}$ respectively, we get

$$
\begin{aligned}
\underset{\sim}{r}-\underset{\sim}{y} & =\underset{\sim}{\theta} \\
-A^{T} \underset{\sim}{y}-G^{T} \underset{\sim}{z} & =\underset{\sim}{\theta} \\
\underset{\sim}{r}+\underset{\sim}{x}-\underset{\sim}{b} & =\underset{\sim}{\theta} \\
\underset{\sim}{x} \underset{\sim}{x}-\underset{\sim}{w}-\underset{\sim}{r} & =\underset{\sim}{\theta}
\end{aligned}
$$

Furtier, let the elements of $\underset{\sim}{w, \underset{\sim}{z}}$ be $w_{i}, z_{i} \quad(i=1,2, \ldots, p)$. Then

$$
\frac{\partial i}{\partial W_{i}}=z_{i}
$$

ICW if $w_{i}>0$ in the optimal solution, the constraint $w_{i} \geq 0$ is not Eindin and we have

$$
\frac{\partial f^{\prime}}{\partial W_{i}}=0
$$

i.e.,

$$
\mathrm{w}_{i}>0 \Rightarrow \mathrm{z}_{\mathrm{i}}=0
$$

Since $z_{i} \geq 0$, this further means thet

$$
z_{i}>0 \Rightarrow w_{i}=0
$$

(For otherwise, $z_{i}>0 \Rightarrow w_{i}>0 \Rightarrow z_{i}=0$ wh:ch is a contradiction.) Accordingly, our problem has become one of finding a solution of the system

$$
\begin{align*}
& \underset{\sim}{r}+A \underset{\sim}{x} \quad=\underset{\sim}{b} \tag{9.1}\\
& A_{\underset{\sim}{r}}^{T}+G^{T} \underset{\sim}{z} \quad=\underset{\sim}{\theta} \tag{9.2}\\
& \underset{\sim}{G x} \quad-\underset{\sim}{w}=\underset{\sim}{h} \tag{9.3}
\end{align*}
$$

such that

$$
\underset{\sim}{z} \geq \underset{\sim}{\theta}, \quad \underset{\sim}{w} \geq \underset{\sim}{\theta}, \quad \underset{\sim}{z} \underset{\sim}{w}=0 .
$$

We now determine an orthogonal matrix Q and an upper-triargular matrix R such that

$$
A=Q R
$$

where R is :1xn and non-singular if $\operatorname{rank}(A)=n$. Then

$$
A^{T} A=R^{T} Q^{T} Q R=R^{T} R
$$

Letting, $B=\left(G R^{-1}\right)^{T}$ and eliminating $\underset{\sim}{r}$ from (9.1) and (9.2) it is easily verified that

$$
\begin{equation*}
\underset{\sim}{x}=\underset{\sim}{\hat{x}}+R^{-1} \underset{\sim}{B z} \tag{9.4}
\end{equation*}
$$

where

$$
\underset{\sim}{\hat{x}}=\left(R^{T} R\right)^{-1} A^{T} \underset{\sim}{v}
$$

is the unconstrained least squares solution (i.e., the solution of (9.1) and (9.2) with $\underset{\sim}{z}=\underset{\sim}{\theta}$). $\underset{\sim}{\hat{x}}$ is found by the methods of 87 .

We now determine $\tilde{\sim}$ if $\underset{\sim}{\hat{x}}$ satisfies the original inequalities: if we define $\underset{\sim}{q}=G \underset{\sim}{-h}$ and find that $\underset{\sim}{q} \geq \underset{\sim}{\theta}$ then the constraints are satisfied and $\underset{\sim}{\hat{x}}$ solves the problem.

Otherwise, we substitute (9.4) in (9.3) and obtain

$$
G\left(\underset{\sim}{\hat{x}}+\mathrm{R}^{-1} \underset{\sim}{\mathrm{Bz}}\right)-\underset{\sim}{w}=\underset{\sim}{h}
$$

$o r$
where we further require

Thus we find that $\underset{\sim}{z}, \underset{\sim}{w}$ solve the linear complementarity problem (ICP) defined by (9.5). This is a fundamental mathematical programming problem and several algorithms have been developed for finding solutions (e.g. see IEMAE [1968], COTTIE [1968], COTTIE and DANIZIG [1968]). The matrix $M=B^{T} B$ is positive semi-definite, and this is one of the cases when, for example, the principal pivoting method in COTTLE [1968] guarantees termination with a solution, or with an indication that none exists.

Once $\underset{\sim}{z}$ has been found it would be a simple matter to substitute into (9.1), (9.2) and find $\underset{\sim}{r}, \underset{\sim}{x}$ from

$$
\left.\begin{array}{rl}
\underset{\sim}{r}+\underset{\sim}{x} & =\underset{\sim}{b} \tag{9.6}\\
A^{T} \underset{\sim}{r} & =-G^{T} \underset{\sim}{T}
\end{array}\right\}
$$

In practice, however, if we are oncerned with the accuracy of our estimate of x we use the solution of the LCP (9.5) only to determine which elements of $\underset{\sim}{\sim}$ are exactly zerc. These are the ${\underset{w}{i}}^{\text {which are non-basic in the }}$ solution of (9.5). (There is certainly at least one such w_{i}, for otherwise we would have $\underset{\sim}{z}=\underset{\sim}{\theta}, \underset{\sim}{\underset{\sim}{w}} \geq \underset{\sim}{\theta}$, which is the case checked for earlier in determining whether or not $\underset{\sim}{\hat{x}}$ solved the problem.)

We now delete from (9.3) those constraints for which w_{i} is basic, obtaining an $\ell \times n$ system of equations

$$
\underset{\sim}{\tilde{G}} \underset{\sim}{x}=\underset{\sim}{\tilde{h}}
$$

```
where \(1 \leq \ell \leq p\).
If \(\underset{\sim}{\underset{z}{z}}\) is the vector \(\underset{\sim}{z}\) with the corresponding elements deleted, the remaining step is to solve the system
```

$$
\begin{align*}
& \underset{\sim}{r}+\underset{\sim}{\mathrm{A}}=\underset{\sim}{\mathrm{b}} \\
& \mathrm{~A}^{\mathrm{T}} \underset{\sim}{r} \tag{9.7}\\
& \underset{\sim}{\mathrm{G}} \underset{\sim}{x} \tilde{\mathrm{G}}^{\mathrm{T}} \underset{\sim}{z}
\end{align*}=\underset{\sim}{\theta}
$$

where we are now workine with original data and ean therefore expect a more accurate solution than could be obtained from (9.6). We can now apply the methods of $\S 8$ to this system of equa'iors.

The standard methods for soiving the linear complementarity problem employ the elements of $\underset{\sim}{w}$ as the initial set of vasic variables, with all elements of $\underset{\sim}{z}$ initially non-basic. In general, it is probable tha only a small proportion of the inequalities in the original problem will be constraining the system, which means that only a small proportion of the w_{i} will be non-zero. Hence it might be expected in general that only a small number of iterations (relative to p) should be required to bring some of the z_{i} into the basis and reach a feasible solution.

In our particular form of the provlem, since the matrix $M=S^{T} B$ has its largest eleaients on the diagonal, accuracy can be conserved, to within the limits of the error in forming M, by interchanging rows whenever a column of M is brought into the basis in such a way that the diagonal elements of M become diagonal elements of the basis matrix. This is easily done if the LU decomposition of the basis is calculated each iteration as in the treatment of the simplex method by BARTEIS [1968] and BARTEIS and GOLUB [1969].

Note that $B=\left(G R^{-1}\right)^{T}$ can be detemined column by column via repeated back-substitution on the system

$$
R^{T} B=G^{T}
$$

The algoritim presented here can be used for any quadratic programming protlem when a positive definitc quadratic form is given. Suppose we wish to determine an $\underset{\sim}{x}$ such that

$$
\left.\begin{array}{ll}
& \underset{\sim}{x^{T}} \underset{\sim}{x}+{\underset{\sim}{d}}^{T} \underset{\sim}{x}=\min . \\
\text { subject to } \quad & \underset{\sim}{x} \geq \underset{\sim}{h}
\end{array}\right\}
$$

$\left.\begin{array}{ll} & \underset{\sim}{x} T \underset{\sim}{x}+{\underset{\sim}{d}}^{T} \underset{\sim}{x}=\min . \\ \text { subject to } \quad \underset{\sim}{x} \geq \underset{\sim}{h}\end{array}\right\}$
Since C is positive definite, we may write

$$
\mathrm{C}=\mathrm{R}^{\mathrm{T}} \mathrm{R}
$$

where $R(\nabla)$ is the Cholesky factor of C. Such a decomposition can easiliv be computed. If we now define $\underset{\sim}{b}=-\frac{1}{2} R^{-T} \underset{\sim}{d}$ (and calculate $\underset{\sim}{b}$ from $R^{T} \underset{\sim}{t}=-\frac{1}{2} \underset{\sim}{d}$) we find that
and consequently if we de ermine an $\underset{\sim}{x}$ such that

$$
\mid \underset{\sim}{b}-F x \|_{2}=\min .
$$

$$
\text { subject }=0 \quad \underset{\sim}{G x} \geq \underset{\sim}{x}
$$

$$
\text { :en } \underset{\sim}{x} \text { will satisfy }(9.8) \text { as required. }
$$

10. Singular systems

If the rank of A is less than n and if column interchanges are mer:ormed to maximize the diagonal elements of R, then

$$
A^{(r+1)}=\left[\begin{array}{c|c}
\tilde{\Omega}_{r \times r} & S_{(n-r) \times r} \\
\hline 0 & 0
\end{array}\right]
$$

When $r \operatorname{nk}(A)=r$. A sequence of Househoider transformations may now be arriicd on the right of $A^{(r+1)}$ so that the elements of $S(n-r) \times r$ become minilated. Thus dropping subscripts and superscripts, we have

$$
A Z=T=\left[\begin{array}{c|c}
\tilde{T} & 0 \\
\hline 0 & 0
\end{array}\right]
$$

wher, \tilde{z} is an rer upper triangular matrix. Now

$$
\begin{aligned}
& =\underset{\sim}{Z^{T}} \underset{\sim}{i}+\underset{\sim}{d^{T}} \underset{\sim}{x}+\underset{\sim}{x} \underset{\sim}{x}
\end{aligned}
$$

$$
\begin{aligned}
\left\|_{\sim}^{b}-\underset{\sim}{A x}\right\|_{2} & =\left\|\underset{\sim}{b}-Q^{T} T Z^{T} \underset{\sim}{T}\right\|_{2} \\
& =\|\underset{\sim}{c}-T \underset{\sim}{y}\|_{2}
\end{aligned}
$$

where $\underset{\sim}{c}=\underset{\sim}{b}$ and $\underset{\sim}{y}=Z^{T} \underset{\sim}{x}$. Since T is of rank r, there is no unique solution so that we impose the condition that $\|\underset{\sim}{\hat{x}}\|_{2}=\min$. But $\|\underset{\sim}{y}\|_{2}=\|\underset{\sim}{x}\|_{2}$ since z is orthogonal, and $\|\underset{\sim}{\|}\|_{2}=\min$. when

$$
y_{r+1}=y_{r+2}=\cdots=y_{m}=0 .
$$

Thus

$$
\underset{\sim}{\hat{x}}=z\left[\begin{array}{c|c}
\tilde{\mathrm{T}}^{-1} & 0 \\
\hline 0 & 0
\end{array}\right]_{\sim}^{Q b}
$$

This solution has been given by FADEEV, et. al. [1968] and HANSON and IAWSON [1968]. There still remains the problem of determinine the rant: numerically, and this will be discussed in §12.

il. Singular value decomposition

Let A be a real, $m \times n$ matrix (for notational convenience we assume that $m \geq n$). It is well known (cf. IANCZOS [1951]) that

$$
\begin{equation*}
A=U \Sigma V^{T} \tag{11.1}
\end{equation*}
$$

where

$$
U^{T}=I_{m} \quad, \quad w^{T}=I_{n}
$$

and

$$
\Sigma=\left[\frac{\bigcap_{1} \cdot \ddots^{\sigma_{1}}}{\bigcap^{\circ}}\right]_{j(m-n) \times n}
$$

The matrix U consists of the orthonormalized eigenvectors of $A A^{T}$, and the matrix V consists of the orthonormalized eigenractors of $A^{T} A$. The

```
    diarcnal elements of \Sigma are the non-negative squar roots oi the eifenvalues \(\because A^{T} A\); they are called sincular values or principal values oi \(A\). We assume
```

\qquad

```
Thus i: \(\operatorname{rank}(A)=r, \quad \sigma_{r+1}=\sigma_{r+2}=\ldots=\sigma_{n}=c\). The decomposition (11.1) is called the singular value decomposition (SVD). Iet
\[
\tilde{A}=\left[\begin{array}{ll}
0 & A  \tag{11.2}\\
A^{T} & 0
\end{array}\right]
\]
It sur. be slown that the non-zero eigenvilues of \(\widetilde{A}\) always occur in \(\pm\) pirs, viz.
\[
\begin{equation*}
\lambda_{j}(\tilde{A})= \pm \sigma_{j}(A) \quad(j=1,2, \ldots, r) \tag{11.3}
\end{equation*}
\]

\section*{12. Applications of the SVD}
\[
\mid A \|_{i}^{\prime}=\left(\Sigma\left|a_{i j}\right|^{2}\right)^{1 / 2}
\]
\(\therefore \quad \therefore \quad u_{1}\) te the set of all \(n \times n\) orthogonal matrices. For an arbitrary nx:. rat mairix \(A\), determine \(Q \in U_{n}\) such that
\[
|A-Q| \leq\|A-X\| \text { for any } X \in u_{n}
\]
I. iac ieen shown by FAN and HOFFMAN [1955] that if
\[
A=U Z V^{n}, \text { then } Q=i \pi^{T} \quad .
\]
```

3) An important generalization of problem A occurs in factor analysis. For arbitrary $n \times n$ real matrices A and B, determine $Q \in U_{n}$ such that
$\|A-B Q\| \leq\|A-B X\| \quad$ for any $\quad X \in u_{n} \quad$ •
It has been shown by GREEN [1952] and by SCHBIVEMANN [1956] that if

$$
B^{T} A=U \Sigma V^{T}, \text { then } Q=U V^{T}
$$

C) Let $m_{n, n}^{(k)}$ br, the set of all man matrices of rank k. Assume $A \in m_{m, n}^{(r)}$. Determine $B E m_{m, n}^{(k)}(k \leq r)$ such that

$$
\|A-B\| \leq\|A-X\| \quad \text { for all } \quad X \in m_{m, n}^{(k)}
$$

It has been shown by ECKART and YOUNG [1936] that if

$$
\begin{equation*}
A=U \Sigma V^{T}, \text { then } B=U \Omega_{k} V^{T} \tag{12.1}
\end{equation*}
$$

where

Vine that

$$
\begin{equation*}
\|A-B\|=\left\|\Sigma-\Omega_{k}\right\|=\left(\sigma_{k+1}^{2}+\ldots+\sigma_{r}^{2}\right)^{1 / 2} \tag{12.3}
\end{equation*}
$$

D) An $n \times m$ matrix X is said to be the pseudo-inverse of an $m \times n$ matrix A if X satisfies the following four properties:

$$
\begin{aligned}
\text { i) } A X A & =A, \\
\text { ii) } X A X & =X, \\
\text { iii) }(A X)^{T} & =A^{Y}, \\
\text { iv) }(X A)^{T} & =X A .
\end{aligned}
$$

We denote the pseudo-inverse by A^{+}. We wish to determine A^{+}numerically. It can be shown (cf. PENROSE [1955]) that A^{+}can always be determined and is unique. It is easy to verify that

$$
\begin{equation*}
\mathrm{A}^{+}=\mathrm{V} \Lambda \mathrm{U}^{\mathrm{T}} \tag{12.4}
\end{equation*}
$$

where

[^0]Now, we wish to construct a matrix \hat{B} such that

$$
\|\mathrm{A}-\hat{\mathrm{B}}\| \leq \eta
$$

and

$$
\operatorname{rank}(\hat{B})=\text { minimum } .
$$

This can be ac mplished with the aid of the solution to problem (c). Let

$$
B_{k}=U \Omega_{k} V^{I^{\prime}}
$$

where Ω_{k} is defined as in (12.2). Then using (12.3),

$$
\hat{B}=B_{p}
$$

if

$$
\left(\sigma_{p+1}^{2}+\sigma_{p+2}^{2}+\cdots+\sigma_{n}^{2}\right)^{1 / 2} \leq \eta
$$

and

$$
\left(\sigma_{p}^{2}+\sigma_{p+1}^{2}+\ldots+\sigma_{n}^{2}\right)^{1 / 2}>\eta
$$

Since $\operatorname{rank}(\hat{B})=p$ by construction,

$$
\hat{B}^{+}=V \Omega_{p}^{+} U^{T}
$$

Thus, we take \hat{B}^{+}as our approximation to A^{+}.
E) Let A be a given matrix, and $\underset{\sim}{b}$ be a known vector. Determine $\underset{\sim}{\hat{x}}$ so that amongst all $\underset{\sim}{x}$ for which $\|\underset{\sim}{b}-A \underset{\sim}{x}\|_{2}=\min , \quad\|\hat{\sim}\|_{2}=\min$. It is easy to verify that

$$
\underset{\sim}{\hat{x}}=A^{+} \underset{\sim}{b} \quad .
$$

13. Calculation of the SVD

It was shown by GOLUB and KAHAN [1965] that it is possible to construct a sequence of orthogonal matrices

$$
\left\{P^{(k)}\right\}_{k=1}^{n}, \quad\left\{Q^{(k)^{n}} \int_{k=1}^{n-1}\right.
$$

via Householder transformation so that

$$
P^{(n)} P^{(n-1)} \ldots P^{(1)} A Q{ }^{(1)} Q^{(2)} \ldots Q^{(n-1)} \equiv P^{T} A Q=J
$$

and J is an $m \times n$ bi-diagonal matrix of the form

The singular values of J are the same as those of A. Thus if the singular value decomposition of

$$
J=X \Sigma Y^{T}
$$

When

$$
A=P X I Y^{T} Q^{T}
$$

ro that

$$
U=P X \quad, \quad V=Q I
$$

GOLUE [1968] has given an algorithm for computing the SVD of J; the alerorithm is based on the highly effective QR algorithm of FRANCIS [1961, 1962] lor computing the eigenvalues.

It is not. necessary to compute the complete SVD when a vector $\underset{\sim}{b}$ is riven. Since $\underset{\sim}{\hat{x}}=V \Sigma^{+} U_{\sim}^{T} \underset{\sim}{b}$, it is only necessary to compute V, Σ and $\tilde{U}^{T} \underset{\sim}{b}$; noin, this has a strong flavor of principal component analysis. An ALGOL trocedure for the SVD has beeen given by GOLUB and REINSCH [1969].

14. Quadrat:c constrairts

We wish to determine $\underset{\sim}{\underset{\sim}{x}}$ so that

$$
\|\underset{\sim}{\mathrm{b}}-\mathrm{A} \underset{\sim}{\hat{A}}\|_{2}=\min .
$$

when

$$
\|\hat{\sim}\|_{2}=\alpha .
$$

Siuch problems occur in a number of sitwations, e.g. in the numerical solutio: cs integral equations of the first kind (af. PHILLIPS [1962]), and in the sclution of non-linear least squares problems (cf. MARQUARDT [1963]). Using Lagrange multipliers, we are led to the equation

$$
\left(A^{T} A-\lambda * I\right) \underset{\sim}{\hat{x}}=A^{T} \underset{\sim}{b}
$$

wiere the real constant λ^{*} is determined as the smallest root of

$$
\begin{equation*}
\alpha^{2}-{\underset{\sim}{D}}^{T} A\left(A^{T} A-\lambda I\right)^{-2} A^{T} \underset{\sim}{T}=0 . \tag{14.1}
\end{equation*}
$$

Usime the decomposition $A=J \Sigma V^{T}$ and $\underset{\sim}{c}=U^{T} \underset{\sim}{b}$, equation (14.1) becomes

$$
\alpha^{2}-{\underset{\sim}{c}}^{T} \Sigma\left(\Sigma^{2}-\lambda I\right)^{-2} \Sigma \underset{\sim}{c}=0 .
$$

A combination of bisection and Newton iteration may be used to determine λ^{*}. I. $\therefore=$ casiny shown that $\lambda^{*}<\sigma_{\min }^{2}$ (cr. FORSYTHE and GOLIB [1965]).

It is also possible to detormine λ^{*} as a solution to an eigenvaluc Froblom usine a technique given by FORSYTHE and GOLUB [1965]. Consider the den' $=t$:

$$
\text { d: }:\left[\begin{array}{ll}
X & Y \\
Z & W
\end{array}\right]=\operatorname{det}(X) \operatorname{det}\left(W-Z X^{-1} Y\right)
$$

wich is valid for any partitioned matrix with X and W square and det. $(\mathrm{X}) \neq 0$. Thas (14.1) is equivalent to the determinantal equation

$$
\operatorname{det}\left[\begin{array}{cc}
\left(A^{T} A-\lambda I\right)^{2} & A^{T} \underset{\sim}{\underset{\sim}{2}} \\
\underset{\sim}{b} A & \alpha^{2}
\end{array}\right]=0
$$

How there existe a vector $\underset{\sim}{p}$ and a mumer q surl trat

$$
\left(A^{T} A-\lambda I\right)^{2} \underset{\sim}{p}+A^{T} \underset{\sim}{q}=\underset{\sim}{q} \quad, \quad{\underset{\sim}{x}}^{T} A \underset{\sim}{p}+\alpha^{2} \underset{q}{ }=0
$$

A simple elimination snows that λ^{*} misis satisfy the determinantal equation

$$
\begin{equation*}
\operatorname{det}\left[\left(A^{T} A-\lambda I\right)^{2}-\alpha^{-2} A^{T} \dot{\sim} \hat{A} A\right]=0 \tag{14,2}
\end{equation*}
$$

It is possible to transform (IL.E) into a 2nx $2 n$ ordinary eigenvajue rrazlem.

Once λ^{*} is determined, th. $2 x i i^{*}$ ion $\hat{\forall}$ can be computed from the ETID O: A • Thus,

$$
\hat{\because}=\bar{v}\left(\Sigma-i^{*-\sum^{-1}}\right)^{-1} \ddot{Z}
$$

Re Perences

Bartels, R. H. [1968], "A numerical investigation of the simplex method", Technical Report No. CS 104, Computer Science Dept., Stanford University, California.
Fartels, R. H. and G. H. Golub [1969], "The simplex m thod of linear programming using LU decomposition", Comn. ACM 1̌, 5, pp. 266-268.
BjUrck, A. [1967a], "Sclving linear least squares problems by Gram-Schmidt orthogonalization", BIT, 7, pp. 1-2l.
 BIT, 7, pp. 257-278.
5,jorek, A. [1968], "Iterative refinement of linear least squares solutions II", BIT, 8, pp. 8-30.
Eibrok, A. and G. H. Gclub [1967], "Iterative refinement of Iinear least squares solutions by Houschoider transformation", BIT, 7, pp. 322-337.
Misinger, P. and G. H. Golub [1965], "Linear least squares solutions by Householder transformations", Num. Math., 7, pp. 269-276.
$\therefore \therefore t 10$, R. W. [1968], "The prineipal pivoting method of quadratic programming", Mathematics of the Decision Sciences, Part 1 , r. B. Dantzig and A. F. Veinott, eds., pp. 1i4-152.
Jotle, R. W. and G. B. Dantzie [1968], "Complementary pivot theory of mathematical programming", in Mathematics of the Decision Sciences, Part 1, G. B. Dantzig and A. F. Veinott, eds., pp. 115-136.
t. art, C. and G. Young [190], "ine upproximation of one matrix by another of lower rank", Psychometrika, 1, pp. 211-218.
radeer, D. K., V. N. Kublanovskays, and V. N. Fadeeva [1968], "Sur les zystemes lineaires alpcbriques de matrices rectangulaires et malsonditionnees", in Proramation en Mathematiques Numeriques, liditions d: Centre National de la Recherche Scientirique, paris VII.
\because, f, and A. Hofman [1555], "Some metric incqualities in the space of matrices", Proc. Amer. Math. Soc., 6, pp. lll-1l6.
$\because \cdots-1,6, G$. E. and G. H. Golik [1, 5j], "On the stationary values of a secord-degree polynomial or the unit. sphere", J. SIAM, 13, pp. 1050-106.
Frraitic, G. E. and C. Moler [1gir], Computer Solution of Linear Algebraia Syinme, Prentice-liall, Enelewood Clifts, New Jersey.
تrar:ie, j. [ly, ige2], "The QR transformation. A unitary analogue to the LR transformation", Comput. J., 4, pp. 265-271.
(r.]ub, G. H. [1965], "Numerical methods for solving linear least squares problems", Num. Math., 7, pp. 206-21t.

Golub, G. H. and W. Kahan [.2055], "Cuiojating the sing"dar values and pseudo-inverse of a matrix', J. SIAM, Numer. Anal. Ser. E, 2, pp. 205-224.

Golub, G. H. and J. Wilkinson [1966], "Iterative refinement of least squares solution", Num. Math., 9, pp. 239-148.

Goluo, G. H. [1968], "Least squares, singular values and matrix approximations", Aplikace Matematiky, 13, pp. 44-51.

Colub, G. H. and C. Reinsch [1969], "Singular value decomposition and least squares solution", Technical Report No. CS 131, Computer Science Dept., Stanford University, California.

Green, B. [1952], "The orthogonal approximation of an oblique structure in factor analysis", Psychometrika, 17, pp. 429-440.

Earson, R. arar. Iarson [ing], "Extonizions and applications of the Houscholder algorithm for solving linear least squares problems", こet Propulsion Laboratory.

Anacholder, A. S. [1958], "Unitary trianeularization of a nonsymmetric

\therefore Inax. T. [1968], "Experiments on error growth associated with some linear least-equares procedures", Math. Comp., 22, pp. 579-588.

Ean, w. [1966], "Numerical linear algebra", Canad. Math. Bull., 9, pp. 757-801.

Yaz:cr, P., G. Ribière, and J. Sogno [10f8], "Méthode du gradient projeté itilisant la triangularisation unitairc". Publication no. FT/Ll.3.8/AI Centre National de la Recherche Soientirique Institut Blaise Pascal.
 Sap. \therefore
\therefore, C. E. [1, 6 , "On complemenar; pivot theory", Mathematics of the

 mp:ar trom the foint of \because wot the iser", JASA, 6a, pp. 819-341.
 mr:me re", I. SIAM, il, RH. ©i-ith].

Oper, $\quad \therefore . \quad[i \mu 7]$, "Itcrative refinement il: floating point", J. Assoc. Compai. 1/24., 14 , pp. シ1 - 221.

F ance, F. [1055], "A enoralizd inverse for matrices", Proc. Cambridge Thilos. Sue., 51, pr. hot-it1’.

Phillips, P. [1962], "A technique for the numerical solution of certain integral equations of the first kind", J. Assoc. Comput. Macn., 9, pp. 84-97.

Rice, J. [1966], "Experiments on Gram-Schmidt Orthogonalization", Math. Comp., 20, pp. 325-328.

SchUnemann, P. [1966], "A generalized solution of the orthogonal procrustes: problem", Psychometrika, 31, pp. 1-10.
van der Sluis, A. [1968], "Condition numbers and equilibration of matrices", (unpublished report from Utrecht University, ERCU 37-4).

Wilkinson, J. H. [1963], Roundins Frrors in Algebraic Processes, Prentice-Hall, Englewood Cliffs, New Jersey.

Wilkinson, J. H. [1957], "The solution of ill-conditional linear equations", Mathematical Methods for Digital Computers, Vol. II, A. Ralston, Ph.D. and H. Wilf, Ph.D., edis., John Wiley, New York, pp. 65-93.

Unclassified
Security Claserification

[^0]: .- I:i recent years there have been a number of algorithms proposed for computin the pseudo-inverse of a matrix. These algorithms usually depend ippor a knowledge of the rank of the natrix or upon some suitably chosen param:ter. Fcr example in the latter case, if one uses (12.4) to compute the pseudo-inverse, then after one has computed the singular value drampositicn numerically it is necessary to determine which of the singular $\because 1 \because$:es are zerc by testing against some tolerance.

 Aiternatively, suppose we know that the given matrix A can be represcrted as

 $$
 A=B+8 B
 $$

 where if is a matrix of perturbations and

 $$
 \|5 B\| \leq \eta
 $$

