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Abstract 

Recently, J.Y. Girard discovered that usual logical connectors such as =~ (implica- 
tion) could be broken up into more elementary linear connectors. This provided a new 
linear logic [Girard86] where hypothesis are (in some sense) used once and only once. 
The most surprising is that all the power of the usual logic can be recovered by means 
of recursive logical operators (connector "of course"). 

There are two versions of the linear logic: the intuitionistie one and the classical 
one. It seems that the second provides a appropriate formalism for parallelism and 
communication. This approach is entirely new and requires a further development. 
Here we restrict our attention to the intultionlstic version and to the consequences of 
the linear constraint to the computation process. 

We give two equivalent presentations of the (propositional part of) linear logic: a 
sequent calculus and a (categorical) combinator system. 

Then we introduce inductive and projective connectors, in particular the connector 
I (read "of course"). It plays a fundamental role in the encoding of usual intuitionistic 
logic into linear logic. 

There is a cut elimination theorem for the sequent calculus that corresponds to an 
evaluation mechanism for the combinator system. We present a very simple (abstract) 
machine that performs linear computations with the following features: 

• A very natural lazy evaluation mechanism. 

• No need of garbage collector. 

Finally, we discuss the relevance of linear logic to implement functional languages. 
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1 A sequent  calculus for the  linear intuit ionist ic  logic 

First, we present the elementary part of the linear intuitionistic logic in a 'Gentzen like' 
formalism [Gentzen]. 

The connectors are 1 (tensor unit), ® (tensor product), t (direct un i t ) ,  & (direct 
product), 0 (direct zero), @ (direct sum) and -~ (linear implication). Thus there are two 
different conjunctions (the tensor product and the direct product). 

In the following rules A, B, C denote formulas and F, A denote sequences A1, ..., An of 
formulas. A sequent A1, ..., An b A means that A is a consequent of A1 ® ... ® An. 

1 .1  S t r u c t u r a l  r u l e s  

F b  A A , A b  B 

A P A (identity) F, A b B (cut) 

F , A , B , A  ~- C 

F, B, A, A ~- C (exchange) 

1 .2  L o g i c a l  r u l e s  

F~-A  F I - A  A b B  F,A,  B P C  
~-1 F , I ~ - A  r ,A~-  A ® B  F , A ® B b  C 

F b A  F ~ - B  F , A P C  F , B ~ - C  
F ~- t F ~- A&B F, A&B P C F, A&B ~- C 

r b A  F b B  P, A P C  F , B P C  
F , 0 P A  F P  A ~ B  F b  A $ B  F , A $ B ~ - C  

F, A b B  P b A  A, B b C  
F b A - . B  r ,  A,A--.B P C 

The essential difference with the usual intuitionistic calculus is the absence of two 
essentially non linear structural rules: 

F b B F,A,A ~ B 
r ,  A ~- B (weakening) r ,  .4 b B (contraction) 

See appendix A for comparison. 

T h e o r e m  1 This calculus admits cut elimination: "every proof without hypothesis can be 
transformed into a cut free proof". 
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The proof is essentially the same as Gentzen's one (for usual intuitionistic logic). It  is 
even simpler because of the absence of weakening and contraction. 

Let us remind that  the cut elimination property has very pleazant consequences: the 
consistency 1 of the system and the subformula property (a cut free proof contains only 
subformulas of the sequent that  it proves). 

1 .3  E x a m p l e s  o f  p r o o f s  

From now on, Heyting (logic, formula, proof) means usual intuitionistic. 

A first (very crude) interpretation of the system is to see 1 and t as the true proposition, 
® and & as a conjunction, 0 as the false proposition, @ as a disjunction and -* as an 
implication. With this translation, every provable linear formula becomes obviously a 
provable HeFting formula. 

For example, the linear formula (A&B)--*A (here A and B are atomic formulas) has 
the following (linear) proof: 

A ? A  
A&B F- A 

~- (A&B)-~A 

Of course, the corresponding Heyting formula (A A B) =~ A is also provable. 
But the converse is absolutely false: The linear formula (A ® B)-*A is not (linearly) 

provable. Yet the corresponding Heyting formula (A A B) =~ A is still provable. 
Let us show that  (A ® B)-*A is not provable: Take a cut free proof of [- (A ® B)-*A. 

The end of your proof has to be: 
A , B ~  A 

A ® B [ - A  
~- (A ® B ) ~ A  

In linear logic, it is impossible to prove A , B  ~- A (in a cut free proof, the last rule has 
to be an exchange . . .  and you cannot find a beginning for this proof). 

One of the notable features of the linear logic is the following distributivity property 
(A -- B means that A ~- B and B ~- A are both provable): 

A® (B @C) - CA® B) @ (A ®C) 

Of course it is not true if you replace ® by &. 
A cut free proof for the left to right sense is: 

A~-A B~-B  A~ 'A  C~-C 
A , B ~ - A ® B  A , C ~ - A ® C  

A , B ~ - ( A ® B ) @ ( A ® C )  A , C ~ - ( A ® B ) @ ( A ® C )  

A , B @ C ~  ( A ® B ) @ ( A ® C )  

A ® ( B e C )  ~ ( A ® B ) @ ( A G e )  

Such a cut free proof is easy to find in a bo t tom up fashion. 

tin our case) the consistency is obvious (it is just a propositional calculus). Moreover there is a very 
simple translation of the linear logic into the usual one that preserves provability (see section 1.8). 
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2 Combinators  for the linear logic 

Linear  combina tors  are an a l ternat ive  presenta t ion  for the linear logic 2. 
A combina tor  is a "name" for an assert ion A --* B (B is consequent of A),  where A, B 

are formulas. In some sense, combinators  are more e lementary  than  sequent rules. Sequent 
proofs are be t t e r  for the  human,  but  combinators  are closer to the  machine.  

2.1 Sequential  combinators 

x : A - - - * B  y : B - - * C  

i d : A - + A  y o x : A - - * C  

2.2 P a r a l l e l  a n d  a r r a n g e  c o m b i n a t o r s  

x : A - - + B  y : C - - + D  

1 : 1 - - +  1 x ® y : A ® C - - + B ® D  

o l : A ~ I ® A : c l  o r : A ~ A @ l : c r  

e x : A ® B ~  B ® A : e x  a l :  A ® (B ® C) ~ (A@ B) ® C : a r  

2.3 Logical combinators 

x : X - ~ A  y : X ~ B  

() : X -~  t (x,  y)  : X - *  A & B  f s t  : A & B  -~  A s n d  : A & B  ~ B 

inl  : A -+ A @ B . i n r  : B -+ A @ B 

x : A ~ X  y : B - + X  

{x, y} : A @ B --* X 

x : X ® A ~ B  

l c u r  x : X ~ A - * B  l a p p  : ( A ~ B )  ® A ---r B 

For comparison see appendix  B. 

P r o p o s i t i o n  1 The two formal isms (sequents and combinators) are equivalent: 

Every  combinator ~ : A --~ B gives a proof of  A ~- B ,  and every proof of a sequent 
A1, . . . ,A, ,  ~- B gives a combinator ~9 : A1 ® ... ® A,, --* B .  

2They are the exact analogues of what are categorical combinator8 for Heyting logic (see appendix B) 
[Lambek80,Curien85,Curien86]. For a category theoretical view, see appendix C. 
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The  proof  is s t ra ig thforward .  In the  following rules, r is cumbersome,  bu t  you can 

push it to the  r ight  side using the connector  -*: 

P, A b C  P , B b C  

F , 0 b A  F , A @ B b  C 

3 T h e  c o n n e c t o r  "of  c o u r s e "  

The linear const ra in t  is very strong. To recover the expressiveness of Heyting logic, it is 
necessary to  in t roduce a new connector:  ! (read "of course"). 

More generally,  we can enrich the  linear logic with inductive and projective connectors,  
two dual  not ions  t ha t  we i l lust ra te  in the  following sections: 

3 . 1  I n d u c t i v e  c o n n e c t o r s  

Let us const ruct  a " type" of na tu ra l  numbers  in our linear logic. 
The  first solut ion is a recursive definit ion (a na tu ra l  number  is zero or the  successor of 

a na tu ra l  number) :  

N a t  = 1 @ N a t  

However, this definit ion does not  capture  the fact t ha t  N a t  is the  "best" solution of 
this  "equat ion".  In par t icu la r ,  you need recursive definitions to  const ruct  usual functions 
over integers.  

A more adequa te  solut ion is to in t roduce explici t  combinators :  

x : I ~ X  y : X ~ X  

z e r o  : 1 ~ N a t  succ  : N a t  --~ N a t  n r e c  x y : N a t  --* X 

Let  us give, for example ,  a (non recursive) definit ion of the  addi t ion:  

c l  : 1 ® N a t  --* N a t  

l c u r  cl : 1 --* N a t - * N a t  

l a p p  : ( N a t - * N a t )  ® N a t  -+ N a t  succ  : N a t  --* N a t  

s u c c  o l a p p  : ( N a t - e N a t )  ® N a t  ~ N a t  

l c u r ( s u c c  o l a p p )  : N a t - * N a t  ~ N a t - e N a t  

add = l a p p  o ( ( n r e c ( l c u r c l ) ( l c u r ( s u c c  o l a p p ) ) )  ® id)  : N a t  ® N a t  ~ N a t  

Other  inductive connectors can be  in t roduced,  for example  the  connector  L i s t  wi th  the 

following recursive definition: 

A L i s t  = 1 6) (A ® (A L i s t ) )  

The  reader  may  find the corresponding combinators  . . .  
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3.2 Projective connectors 

If you replace $ by &, you obtain the dual notion of projective connector. 
For example the connector ! has the following recursive definition: 

!A = A&I&(!A®!A) 

As for N a t ,  we introduce new combinators: 

x : X - - * A  y : X - - * l  z : X - + X ® X  

m a k e  x y z : X -*!A 

r e a d  :!A --* A kill :!A --~ 1 d u p l  :!A - , !A®!A 

The connector ! is a "trick" to eliminate the linear constraint.  
First, !A is a "universal coalgebra" over A: 

P r o p o s i t i o n  2 The following combinator can be constructed: 

x :!A --* B 
lift x :!A --*!B 

! is also a sort of "exponential" operator (it links together the two conjunctions & and 
®): 

P r o p o s i t i o n  3 !t - 1 and !(A&B) =-!A®!B 
In other words, the following eombinators can be constructed: 

s u b l  :!t ~ 1 : c r y s  c r a c  :!(A&B) ~ ! A®! B  : g l u e  

See appendix D for detailed constructions. 

3.3 Encoding of Heyting logic into linear logic 

We saw in section 1.3 a translation of linear logic into Heyting logic. Conversely, Heyting 
logic can be merged into linear logic (with the connector !). 

First we give a translation of Heyting formulas into linear ones: 

• IAI = A (A is an atomic formula) 

• It I = t and IA A B[ = [AI&IB [ 

• If] = 0 and [Av B I =!IAI~![B I 

• [A =~ B] =![AI-.[B [ 

P r o p o s i t i o n  4 A Heyting formula A is provable if and only if IA[ is (linearly) provable. 
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The proof uses the following lemma3: 

L e m r n a  1 Let A , B  be two Heyting formulas. Every categorical combinator x : A --* B 
gives a linear combinator: Ixt :!IAI --+ tB]. 

For example, if x :  A A B ~ C gives Ixl :!(IAI&IB]) --+ C, then c u r  x :  A ~ B ~ C 

gives lcur( [x  I o g lue)  :!lA I --*!IBI--*C- 
In fact, the necessary combinators are exactly those introduced by propositions 2 

and 3. 

4 C o m p u t a t i o n  

4 . 1  T h e  e v a l u a t i o n  m e c h a n i s m  

Our purpose is to show that  the linear logic is well-suited for lazy evaluation (following 

the philosophy of [Lafont86]). 

Lazy types are: 

t A & B  0 A @ B  A--eB 

Values of lazy types are not  computed but  frozen. A frozen value is made of a constructor 
and another  value, and it is unfrozen by a destructor. 

Constructors are: 

() ( ~ , ¢ )  in l  i n r  l c u r  

Destructors are: 

fs t  s n d  {} { ~ , ¢ }  l a p p  

Values are terms: 

• 0 

• (u, v) where u, v axe values 

• q, • u where ,? is a constructor and u a value 

We inductively define a relation u : A (u "is a value" of A) for a value u and a linear 
formula A: 

u : A  v : B  " 1 : A - - * B  u : A  

0 : 1  ( u , v ) : A ® B  " ~ . u : S  

~ : A ~ B  u : A  

We define an operation: ~ u : B 

3Note that a tteyting formula A is provable when there exists a categorical combinator t --* A, and a 
linear formula A is (linearly} provable when there exists a linear combLnator 1 -~ A. 
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s i d u = u  ( ~ o ¢ ) u = ~ ( ¢ u )  

• 1 0 =  0 ( ~ ® ¢ ) ( u , v ) = ( ~ u , ¢ v )  

• o l  ~ = (0, ~) c1((), ~) = ~ o r  ~ = (~, 0) c r ( ~ ,  0 )  = 

ex(u ,v)  = (v,u) al(u, (v,w)) = ((u,v),w) ar((u, v), w) = (u, (v,w)) 

• 0 ~ = ( ) .  u (~, ¢) ~ = (~, ¢). u 
f s t ( ( ~ , ¢ ) . u )  = ~ u  s n d ( ( ~ , ¢ ) . u ) = ¢ u  

s i n l u = i n l . u  i n r u = i n r . u  
{¢o,¢}(inl .u)  = ~ u  { ~ , ¢ } ( i n r . u )  = C u  

• ( I c u r  ~) u = ( lcur  ~ ) .  u l app ( ( l cu r  ~ ) -  u, v) -- ~(u, v) 

T h e o r e m  2 The previous definition is well founded: Computations using these rules al- 
ways terminate. 

The proof uses induction over combinators, values a~d formulas. 

The theorem extends to inductive and projective connectors. For example for the 
connector [: 

( m a k e  ~ ¢ p) u = (make  ~ ¢ p) .  u 
r e a d ( ( m a k e  ~ ¢ p) .  u) = ~ u 
k i l l ( (make  ~o ¢ p) .  u) = ¢ u 
d u p l ( ( m a k e  ~ ¢ p) .  u) = ( (make  ~ ¢ p) ® ( m a k e  ~ ¢ p))(p u) 

Finally, we may add primitive types with primitive values and primitive combinators, 
for example a type N u m  with: 

• 0 : N u m  l : N u m  2 : N u m . . .  
m i n u s  : N u m  ~ N u m  s u m  : N u m  ® N u m  --* N u m  . . .  

4 . 2  T h e  L i n e a r  A b s t r a c t  M a c h i n e  

The Linear Abstract Machine is a cousin of the Categorical Abstract Machine [CAM]. But 
the linear constraint allows a radically different allocation of the memory space. 

The memory space is divided into three areas: 

• The code area is static (the code doesn't change during the execution) and is organized 
as a graph. 

• The environment area is dynamic with two part: the current tree (or actual environ- 
ment) and the free list (or memory heap). 

s The dump (or stack) is dynamic and linear. 
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The  main point  is tha t  the actual environment  is organized as a tree 4, and the space 
allocation is completely provided (no need of garbage collector, see section 5). 

As usual,  the code is a list of e lementary instructions (notations: e :: C denotes the list 
whose head is e and whose tail is C, [] denotes the empty  list and q denotes a constructor).  

Linear Abstract  Machine 

Before After 
code environment  dump code environment  dump 

pushl :: C (u, v) D C u v :: D 
consl :: C u v :: D C (u, v) D 
pushr :: C (u, v) D C v u :: D 
consr :: C v u :: D C (u, v) D 

ol :: C u D 
el :: C (0 ,  ~') D 
or :: C u D 
er :: C (u, 0)  D 
ex :: C (u, v) D 
al :: C (u, (v, w)) D 
ar :: C ((u, v), w) D 

D 

C ( 0 , u )  D 
C u D 

C (u, O) D 
C u D 
C (v,u) D 
c ((u,v),w) D 
c (u, (v, w)) D 

~ / : :C  u C q . u  D 
:: c ( p a i r ( c ' , c " ) ) . , ,  D 

and :: C (pair( C', C") ) . u D 
altv( C', C") :: C inl . u D 
altv(C',  C") :: C inr .  u D 

lapp :: c ((lcurC'). u,v) D 

C' u C :: D 

C" u C :: D 

C' u C :: D 

C" u C :: D 

C' (u, v) C :: D 
[] u C :: D C u D 
[] u [] Return  u 

Every linear combinator  ~ gives code II~II for the LAM (notation: @ denotes the 
concatenat ion of lists): 

• I l i d l l  = [] I[~ o ¢11 = I1¢11@11~11 

• t t l l I  = I l i d H  = [] 
II~ ® ¢1] = II( id ® ¢) o (ta ® id)N = [pu~hl]~]]~H@[consl;pushr]@l]¢ll@[consr] 

For the other connectors,  the t ranslat ion is obvious: 

• II(~,~b}tl = [pair(N~N, II¢]t)] NfstN = [ f s t ] . . .  

4 . 3  C o m p i l a t i o n  o f  i n d u c t i v e  a n d  p r o j e c t i v e  c o m b i n a t o r s  

There  is no specific LAM instruction for inductive and projective combinators .  In fact 
they can be compiled into looping code. 

Let us consider for example  the connector ], with its recursive definition: 

4In a strong sense, that means a connected graph without cycle and without shared nodes. 
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!A = A&I&(!A®!A) 

!A is a direct product with three projections (Here, t r d  denotes the third projection): 

r e a d  = fs t  :!A - ,  A kill = snd  :!A -~ 1 d u p l  = t r d  :!A ~!A®!A 

The combinator m a k e  is compiled into the following looping combinator: 
m a k e  x y z = rn where rn -- (x, y, (m ® m) o z) 

5 R e l e v a n c e  of  l inear logic for c o m p u t a t i o n  

5.1 Lazyness 

We have to clarify the difference between Heyting logic and linear logic, and the simplifi- 
cation linear logic gives. 

In Heyting logic, there is only one conjunction A: 
A strict value of A A B is a pair (u, v) where u is a value of A and v a value of B. Such 

a value may be too "evaluated" if you apply the destructor fs t  or snd.  
A lazy value of A ^ B is a frozen va lue /~ ,  ¢/" u where u is a value of a type X and ~, ¢ 

are combinators, ~ : X ~ A and ¢ : X ~ B. Such a value may be too little "evaluated" 
if you apply the destructor app .  

Of course, it is possible to unfreeze frozen values when necessary, but this mechanism 
seems rather complicated and unnatural, compared to the strict evaluation mechanism 
[CAM,MaSu]. 

The problem is that  two essentially different kinds of destructors (the projections and 
the application) may operate over values of type (A =~ B) A A. 

In linear logic, the dilemma disappears: 
Values of A ® B are strict values, and the two components are necessary: There is no 

projection A ® B --* A or A ® B --* B. 
Values of A&B are lazy values, and the only possible destructors for such a value are 

fst  and snd.  

5.2 Memory allocation 

Implementations of symbolic (LISP) or functional (NIL) languages need a separate mech- 
anism (the garbage collector) to recover the .memory space used by abandoned pieces of 
data. Garbage collecting takes time and sometimes place. Moreover, it complicates the 
implementation . . .  

In linear logic, the connector corresponding to the management of environment is ® 
(& is lazy). Thus, projections and pairing don't  act on the environment. This allows the 
environment to be kept in a tree whose nodes are never abandoned or shared. 

More precisely, the transitions of the Linear Abstract Machine are left and right linear 
with respect to the environment (but not to the code). Left linearity is expected for an 
abstract machine, but right tinearity is rather surprising. 
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In our "implementation", we add a fourth register (the free list) to the Linear Abstract 
Machine. Some instructions (eonsl, consr, ol, or and the constructors) take a free location 
from the free list. Other instructions (pushl, pushr, el, er, f st, snd, altv, lapp) return 
a location to the free list (this is legitimate because nodes are not shared). The other 
instructions (like ex) act as physical modifications. 

Of course, we don't  need a garbage collector because nodes are never abandoned. 

5 . 3  C o m p i l a t i o n  o f  f u n c t i o n a l  l a n g u a g e s  

We saw in section 3.3 a translation of categorical combinators into linear combinators. 
But there is a classical translation of functional programs into categorical combinators 
[CAM,MaSu]. That  gives a compilation of functional programs into the Linear Abstract 
Machine. 

Unfortunately, this compilation is not realistic. In fact, a very simple program gives 
a big piece of code. For example, the categorical combinator ~ o ¢ is translated into the 
linear combinator I~l o (lift [¢1), and lift is not a primitive combinator (see appendix D), 
and m a k e  is not a primitive instruction (see section 4.3) . . .  

Of course, this translation is too brutish. The problem is to understand how the 
linearity that  occurs in a program (and there is a lot of linearity in classical algorithms) 
can be recognized (by the machine or by the programmer) for our linear implementation. 

A possible continuation for this article should be the elaboration of a realistic optimized 
translation, or rather the development of a new programming style, in a new high level 
language adapted to our linear implementation. This new language should hold simulta- 
neously elegance of functional languages and efficiency of procedural languages. 



Appendix 
A T h e  s e q u e n t  c a l c u l u s  

l o g i c  

A . 1  S t r u c t u r a l  r u l e s  

F ~ - A  A,  A k B  

A k A (identity) F, A ~- B 
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f o r  t h e  u s u a l  i n t u i t i o n i s t i c  

F,A,B,A k C 
(cut) F, B, A, A k C (exchange) 

r ~- B F , A , A  k B 

F, A V B (weakening) F, A k B (contraction) 

A . 2  L o g i c a l  r u l e s  

r k A  A~-B F , A ~ - C  F , B k C  

~- t r ,  A e  A A B  F, A A B ~ -  C F , A ^ B k  c 

F P A  P~-B F, A k C  A, B k C  
f P  A F k A V B  P b A V B  F,A ,  A V B b C  

F , A } - B  r b A  A , B ~ - C  

P k A ~ B  F , A , A  ~ B k  C 

B 

B . 1  

C a t e g o r i c a l  c o m b i n a t o r s  

S e q u e n t i a l  c o m b i n a t o r s  

x : A ~ B  y : B ~ C  

i d : A - . A  y o x : A - - - ~ C  

B . 2  L o g i c a l  c o m b i n a t o r s  

x : X - - , A  y : X - - ~ B  

0 : x - ~  t (x,y>: x ~ A A B 

{ } : f - * X  i n l : A ~ A V B  

x : X A A - - *  B 
cur  x : X --+ A =~ B 

fs t  : A A B -~ A 

i n r : B ~ A V B  

s n d : A A B - - ~  B 

x : A - ~ X  y : B - - + X  

{x,y} : A V B --* X 

app : (A =~ B) A A --* B 
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C Linear  c a t e g o r i e s  

c.1 Terminology 

A symmetric monoidal category is a category C with a bifunctor ® : C x C --~ C and an 
object 1 E ¢ such that: 

l ® X ~ Z  X ® Y ~ Y ® X  ( X e Y ) ® Z ~ X ® ( Y ® Z )  

Here ~ denotes a natural isomorphism. In addition, there are several coherence axioms 
that constrain those natural isomorphims (for example: a o a = id, p o a = ~, ® id). 

A symmetric monoidal closed category is a symmetric monoidal category C such that, 
for every A E C, the functor X ~ X ® A has a right adjoint Y ~ A-*Y. That means: 

H o m ( Z  ® A, Y) - Horn(X,  A-*Y) 

Finally, a linear category is a symmetric monoidal closed category with finite products 
and coproducts 5. 

c.2 Examples 

Of course, a category with finite products (or coproducts) is a monoidal category. Therefore 
a category with finite products, finite coproducts and exponentials is a linear category 6. 
For example S E T  is a linear category: @ and & are the cartesian product, @ is the disjoint 
union, and I -*J  = jx. 

A more interesting model is the category of modules over a ring: ® is the tensor 
product, & the direct product, @ the direct sum, and A--*B = Horn(A,  B). Of course, & 
and @ are identical. 

Another example is the category T O P  of topological spaces. T O P  is not cartesian 
closed but it is a linear category: & is the cartesian product and ~ is the disjoint union. 
E ® F is E x F with the finest topology that makes sections x ~-~ (x, y) and y ~ (x, y) 
continuous. E-*F is the space of continuous maps E -* F with the pointwise convergence 
topology. 

D S o m e  u s e f u l  l inear  c o m b i n a t o r s  

t r a n s  = a r  o ((al o (id ® ex) oa r )  ® id) o a l :  (A ® B) ® (C ® D) -* (A ® C) ® (B ® D) 

x :!A --* B kill :!A --* 1 dupl  :!A ~!A®!A 
lift x = m a k e  x kill dupl  :!A -*!B 

5The categorical notion corresponding to ~!" is more complex. It makes use of the notion of internal 
comoY~o~'d, 

6This justifies the  t ranslat ion of section 1.3. Moreover, in such a category, ~!~ exists (it 's the identity 
functor).  
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subl  = kill :!t ~ 1 

< > : l - - + t  i d : l - - + l  o 1 : 1 - - + ( 1 ® 1 )  

c rys  = m a k e  () i d o l  : 1 ~ ! t  

fs t  : A & B  ~ A snd  : A & B  ~ B 
!fst :!(A&B) --~IA !snd :!(A&B) ~ ! B  

!fst®!snd :!(A&B)®!(A&B) --:.IA®!B 

e rac  = (!fst®!snd) o dup l  :!(A&B) --~!A®!B 

r e a d  :!A -+ A kill :!B -+ 1 
r e a d ® k i l l : ! A ® ! B - - + A ® l  c r : A ® l - - + A  

cr o ( read ® kill) :!A®!B --+ A 

kill :!A --+ 1 r e a d  :!B -+ B 
kill ® r e a d  :!A®!B -+ l ® B e l : I ® B - - + B  

el o (kill ® read)  :!A®!B -+ B 

kill :!A --~ 1 kill :!B --* 1 
kill  ® kill :!A®!B ~ 1 ® 1 cl : 1 ® 1 --~ 1 

cl o (kill ® kill) :!A®!B --~ 1 

dup l  :!A ~ ! A ® ! A  dup l  :!B ~ ! B ® ! B  

dup l  ® dup l  :]A®!B ~ (!A®!A) ® (IB®!B) 

glue = m a k e  (cr o ( read  ® kill), el o (kill ® read) )  (cl o (kill ® kill)) ( t r ans  o (dupl  ® 
dupl))  :!A®!B --+!(A&B) 
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