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Preface

The basic topic of this book is solving problems from system and control theory using
convex optimization. We show that a wide variety of problems arising in system
and control theory can be reduced to a handful of standard convex and quasiconvex
optimization problems that involve matrix inequalities. For a few special cases there
are “analytic solutions” to these problems, but our main point is that they can be
solved numerically in all cases. These standard problems can be solved in polynomial-
time (by, e.g., the ellipsoid algorithm of Shor, Nemirovskii, and Yudin), and so are
tractable, at least in a theoretical sense. Recently developed interior-point methods
for these standard problems have been found to be extremely efficient in practice.
Therefore, we consider the original problems from system and control theory as solved.

This book is primarily intended for the researcher in system and control theory,
but can also serve as a source of application problems for researchers in convex op-
timization. Although we believe that the methods described in this book have great
practical value, we should warn the reader whose primary interest is applied control
engineering. This is a research monograph: We present no specific examples or nu-
merical results, and we make only brief comments about the implications of the results
for practical control engineering. To put it in a more positive light, we hope that this
book will later be considered as the first book on the topic, not the most readable or
accessible.

The background required of the reader is knowledge of basic system and control
theory and an exposure to optimization. Sontag’s book Mathematical Control The-

ory [Son90] is an excellent survey. Further background material is covered in the
texts Linear Systems [Kai80] by Kailath, Nonlinear Systems Analysis [Vid92] by
Vidyasagar, Optimal Control: Linear Quadratic Methods [AM90] by Anderson and
Moore, and Convex Analysis and Minimization Algorithms I [HUL93] by Hiriart–
Urruty and Lemaréchal.

We also highly recommend the book Interior-point Polynomial Algorithms in Con-

vex Programming [NN94] by Nesterov and Nemirovskii as a companion to this book.
The reader will soon see that their ideas and methods play a critical role in the basic
idea presented in this book.
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Chapter 1

Introduction

1.1 Overview

The aim of this book is to show that we can reduce a very wide variety of prob-
lems arising in system and control theory to a few standard convex or quasiconvex
optimization problems involving linear matrix inequalities (LMIs). Since these result-
ing optimization problems can be solved numerically very efficiently using recently
developed interior-point methods, our reduction constitutes a solution to the original
problem, certainly in a practical sense, but also in several other senses as well. In com-
parison, the more conventional approach is to seek an analytic or frequency-domain
solution to the matrix inequalities.

The types of problems we consider include:

• matrix scaling problems, e.g., minimizing condition number by diagonal scaling

• construction of quadratic Lyapunov functions for stability and performance anal-
ysis of linear differential inclusions

• joint synthesis of state-feedback and quadratic Lyapunov functions for linear
differential inclusions

• synthesis of state-feedback and quadratic Lyapunov functions for stochastic and
delay systems

• synthesis of Lur’e-type Lyapunov functions for nonlinear systems

• optimization over an affine family of transfer matrices, including synthesis of
multipliers for analysis of linear systems with unknown parameters

• positive orthant stability and state-feedback synthesis

• optimal system realization

• interpolation problems, including scaling

• multicriterion LQG/LQR

• inverse problem of optimal control

In some cases, we are describing known, published results; in others, we are extending
known results. In many cases, however, it seems that the results are new.

By scanning the list above or the table of contents, the reader will see that Lya-
punov’s methods will be our main focus. Here we have a secondary goal, beyond
showing that many problems from Lyapunov theory can be cast as convex or quasi-
convex problems. This is to show that Lyapunov’s methods, which are traditionally

1



2 Chapter 1 Introduction

applied to the analysis of system stability, can just as well be used to find bounds on
system performance, provided we do not insist on an “analytic solution”.

1.2 A Brief History of LMIs in Control Theory

The history of LMIs in the analysis of dynamical systems goes back more than 100
years. The story begins in about 1890, when Lyapunov published his seminal work
introducing what we now call Lyapunov theory. He showed that the differential equa-
tion

d

dt
x(t) = Ax(t) (1.1)

is stable (i.e., all trajectories converge to zero) if and only if there exists a positive-
definite matrix P such that

AT P + PA < 0. (1.2)

The requirement P > 0, AT P +PA < 0 is what we now call a Lyapunov inequality on
P , which is a special form of an LMI. Lyapunov also showed that this first LMI could
be explicitly solved. Indeed, we can pick any Q = QT > 0 and then solve the linear
equation AT P+PA = −Q for the matrix P , which is guaranteed to be positive-definite
if the system (1.1) is stable. In summary, the first LMI used to analyze stability of a
dynamical system was the Lyapunov inequality (1.2), which can be solved analytically
(by solving a set of linear equations).

The next major milestone occurs in the 1940’s. Lur’e, Postnikov, and others in
the Soviet Union applied Lyapunov’s methods to some specific practical problems
in control engineering, especially, the problem of stability of a control system with a
nonlinearity in the actuator. Although they did not explicitly form matrix inequalities,
their stability criteria have the form of LMIs. These inequalities were reduced to
polynomial inequalities which were then checked “by hand” (for, needless to say, small
systems). Nevertheless they were justifiably excited by the idea that Lyapunov’s
theory could be applied to important (and difficult) practical problems in control
engineering. From the introduction of Lur’e’s 1951 book [Lur57] we find:

This book represents the first attempt to demonstrate that the ideas ex-
pressed 60 years ago by Lyapunov, which even comparatively recently ap-
peared to be remote from practical application, are now about to become a
real medium for the examination of the urgent problems of contemporary
engineering.

In summary, Lur’e and others were the first to apply Lyapunov’s methods to practical
control engineering problems. The LMIs that resulted were solved analytically, by
hand. Of course this limited their application to small (second, third order) systems.

The next major breakthrough came in the early 1960’s, when Yakubovich, Popov,
Kalman, and other researchers succeeded in reducing the solution of the LMIs that
arose in the problem of Lur’e to simple graphical criteria, using what we now call
the positive-real (PR) lemma (see §2.7.2). This resulted in the celebrated Popov
criterion, circle criterion, Tsypkin criterion, and many variations. These criteria could
be applied to higher order systems, but did not gracefully or usefully extend to systems
containing more than one nonlinearity. From the point of view of our story (LMIs in
control theory), the contribution was to show how to solve a certain family of LMIs
by graphical methods.

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



1.2 A Brief History of LMIs in Control Theory 3

The important role of LMIs in control theory was already recognized in the early
1960’s, especially by Yakubovich [Yak62, Yak64, Yak67]. This is clear simply from
the titles of some of his papers from 1962–5, e.g., The solution of certain matrix

inequalities in automatic control theory (1962), and The method of matrix inequalities

in the stability theory of nonlinear control systems (1965; English translation 1967).
The PR lemma and extensions were intensively studied in the latter half of the

1960s, and were found to be related to the ideas of passivity, the small-gain criteria
introduced by Zames and Sandberg, and quadratic optimal control. By 1970, it was
known that the LMI appearing in the PR lemma could be solved not only by graphical
means, but also by solving a certain algebraic Riccati equation (ARE). In a 1971
paper [Wil71b] on quadratic optimal control, J. C. Willems is led to the LMI

[

AT P + PA + Q PB + CT

BT P + C R

]

≥ 0, (1.3)

and points out that it can be solved by studying the symmetric solutions of the ARE

AT P + PA − (PB + CT )R−1(BT P + C) + Q = 0,

which in turn can be found by an eigendecomposition of a related Hamiltonian matrix.
(See §2.7.2 for details.) This connection had been observed earlier in the Soviet Union,
where the ARE was called the Lur’e resolving equation (see [Yak88]).

So by 1971, researchers knew several methods for solving special types of LMIs:
direct (for small systems), graphical methods, and by solving Lyapunov or Riccati
equations. From our point of view, these methods are all “closed-form” or “analytic”
solutions that can be used to solve special forms of LMIs. (Most control researchers
and engineers consider the Riccati equation to have an “analytic” solution, since the
standard algorithms that solve it are very predictable in terms of the effort required,
which depends almost entirely on the problem size and not the particular problem
data. Of course it cannot be solved exactly in a finite number of arithmetic steps for
systems of fifth and higher order.)

In Willems’ 1971 paper we find the following striking quote:

The basic importance of the LMI seems to be largely unappreciated. It
would be interesting to see whether or not it can be exploited in compu-
tational algorithms, for example.

Here Willems refers to the specific LMI (1.3), and not the more general form that
we consider in this book. Still, Willems’ suggestion that LMIs might have some
advantages in computational algorithms (as compared to the corresponding Riccati
equations) foreshadows the next chapter in the story.

The next major advance (in our view) was the simple observation that:

The LMIs that arise in system and control theory can be formulated as
convex optimization problems that are amenable to computer solution.

Although this is a simple observation, it has some important consequences, the most
important of which is that we can reliably solve many LMIs for which no “analytic
solution” has been found (or is likely to be found).

This observation was made explicitly by several researchers. Pyatnitskii and Sko-
rodinskii [PS82] were perhaps the first researchers to make this point, clearly and
completely. They reduced the original problem of Lur’e (extended to the case of mul-
tiple nonlinearities) to a convex optimization problem involving LMIs, which they

This electronic version is for personal use and may not be duplicated or distributed.



4 Chapter 1 Introduction

then solved using the ellipsoid algorithm. (This problem had been studied before, but
the “solutions” involved an arbitrary scaling matrix.) Pyatnitskii and Skorodinskii
were the first, as far as we know, to formulate the search for a Lyapunov function as
a convex optimization problem, and then apply an algorithm guaranteed to solve the
optimization problem.

We should also mention several precursors. In a 1976 paper, Horisberger and Be-
langer [HB76] had remarked that the existence of a quadratic Lyapunov function that
simultaneously proves stability of a collection of linear systems is a convex problem
involving LMIs. And of course, the idea of having a computer search for a Lya-
punov function was not new—it appears, for example, in a 1965 paper by Schultz et
al. [SSHJ65].

The final chapter in our story is quite recent and of great practical importance: the
development of powerful and efficient interior-point methods to solve the LMIs that
arise in system and control theory. In 1984, N. Karmarkar introduced a new linear
programming algorithm that solves linear programs in polynomial-time, like the ellip-
soid method, but in contrast to the ellipsoid method, is also very efficient in practice.
Karmarkar’s work spurred an enormous amount of work in the area of interior-point
methods for linear programming (including the rediscovery of efficient methods that
were developed in the 1960s but ignored). Essentially all of this research activity con-
centrated on algorithms for linear and (convex) quadratic programs. Then in 1988,
Nesterov and Nemirovskii developed interior-point methods that apply directly to con-
vex problems involving LMIs, and in particular, to the problems we encounter in this
book. Although there remains much to be done in this area, several interior-point
algorithms for LMI problems have been implemented and tested on specific families
of LMIs that arise in control theory, and found to be extremely efficient.

A summary of key events in the history of LMIs in control theory is then:

• 1890: First LMI appears; analytic solution of the Lyapunov LMI via Lyapunov
equation.

• 1940’s: Application of Lyapunov’s methods to real control engineering prob-
lems. Small LMIs solved “by hand”.

• Early 1960’s: PR lemma gives graphical techniques for solving another family
of LMIs.

• Late 1960’s: Observation that the same family of LMIs can be solved by solving
an ARE.

• Early 1980’s: Recognition that many LMIs can be solved by computer via
convex programming.

• Late 1980’s: Development of interior-point algorithms for LMIs.

It is fair to say that Yakubovich is the father of the field, and Lyapunov the grandfather
of the field. The new development is the ability to directly solve (general) LMIs.

1.3 Notes on the Style of the Book

We use a very informal mathematical style, e.g., we often fail to mention regularity or
other technical conditions. Every statement is to be interpreted as being true modulo
appropriate technical conditions (that in most cases are trivial to figure out).

We are very informal, perhaps even cavalier, in our reduction of a problem to
an optimization problem. We sometimes skip “details” that would be important if
the optimization problem were to be solved numerically. As an example, it may be

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



1.4 Origin of the Book 5

necessary to add constraints to the optimization problem for normalization or to ensure
boundedness. We do not discuss initial guesses for the optimization problems, even
though good ones may be available. Therefore, the reader who wishes to implement

an algorithm that solves a problem considered in this book should be prepared to
make a few modifications or additions to our description of the “solution”.

In a similar way, we do not pursue any theoretical aspects of reducing a problem
to a convex problem involving matrix inequalities. For example, for each reduced
problem we could state, probably simplify, and then interpret in system or control
theoretic terms the optimality conditions for the resulting convex problem. Another
fascinating topic that could be explored is the relation between system and control
theory duality and convex programming duality. Once we reduce a problem arising
in control theory to a convex program, we can consider various dual optimization
problems, lower bounds for the problem, and so on. Presumably these dual problems
and lower bounds can be given interesting system-theoretic interpretations.

We mostly consider continuous-time systems, and assume that the reader can
translate the results from the continuous-time case to the discrete-time case. We
switch to discrete-time systems when we consider system realization problems (which
almost always arise in this form) and also when we consider stochastic systems (to
avoid the technical details of stochastic differential equations).

The list of problems that we consider is meant only to be representative, and
certainly not exhaustive. To avoid excessive repetition, our treatment of problems
becomes more terse as the book progresses. In the first chapter on analysis of lin-
ear differential inclusions, we describe many variations on problems (e.g., computing
bounds on margins and decay rates); in later chapters, we describe fewer and fewer
variations, assuming that the reader could work out the extensions.

Each chapter concludes with a section entitled Notes and References, in which we
hide proofs, precise statements, elaborations, and bibliography and historical notes.
The completeness of the bibliography should not be overestimated, despite its size
(over 500 entries). The appendix contains a list of notation and a list of acronyms
used in the book. We apologize to the reader for the seven new acronyms we introduce.

To lighten the notation, we use the standard convention of dropping the time
argument from the variables in differential equations. Thus, ẋ = Ax is our short
form for dx/dt = Ax(t). Here A is a constant matrix; when we encounter time-
varying coefficients, we will explicitly show the time dependence, as in ẋ = A(t)x.
Similarly, we drop the dummy variable from definite integrals, writing for example,
∫ T

0
uT ydt for

∫ T

0
u(t)T y(t)dt. To reduce the number of parentheses required, we adopt

the convention that the operators Tr (trace of a matrix) and E (expected value) have
lower precedence than multiplication, transpose, etc. Thus, TrAT B means Tr

(

AT B
)

.

1.4 Origin of the Book

This book started out as a section of the paper Method of Centers for Minimizing

Generalized Eigenvalues, by Boyd and El Ghaoui [BE93], but grew too large to be
a section. For a few months it was a manuscript (that presumably would have been
submitted for publication as a paper) entitled Generalized Eigenvalue Problems Aris-

ing in Control Theory. Then Feron, and later Balakrishnan, started adding material,
and soon it was clear that we were writing a book, not a paper. The order of the
authors’ names reflects this history.

This electronic version is for personal use and may not be duplicated or distributed.





Chapter 2

Some Standard Problems
Involving LMIs

2.1 Linear Matrix Inequalities

A linear matrix inequality (LMI) has the form

F (x)
∆
= F0 +

m
∑

i=1

xiFi > 0, (2.1)

where x ∈ Rm is the variable and the symmetric matrices Fi = FT
i ∈ Rn×n, i =

0, . . . ,m, are given. The inequality symbol in (2.1) means that F (x) is positive-
definite, i.e., uT F (x)u > 0 for all nonzero u ∈ Rn. Of course, the LMI (2.1) is
equivalent to a set of n polynomial inequalities in x, i.e., the leading principal minors
of F (x) must be positive.

We will also encounter nonstrict LMIs, which have the form

F (x) ≥ 0. (2.2)

The strict LMI (2.1) and the nonstrict LMI (2.2) are closely related, but a precise
statement of the relation is a bit involved, so we defer it to §2.5. In the next few
sections we consider strict LMIs.

The LMI (2.1) is a convex constraint on x, i.e., the set {x | F (x) > 0} is convex.
Although the LMI (2.1) may seem to have a specialized form, it can represent a
wide variety of convex constraints on x. In particular, linear inequalities, (convex)
quadratic inequalities, matrix norm inequalities, and constraints that arise in control
theory, such as Lyapunov and convex quadratic matrix inequalities, can all be cast in
the form of an LMI.

Multiple LMIs F (1)(x) > 0, . . . , F (p)(x) > 0 can be expressed as the single LMI
diag(F (1)(x), . . . , F (p)(x)) > 0. Therefore we will make no distinction between a set
of LMIs and a single LMI, i.e., “the LMI F (1)(x) > 0, . . . , F (p)(x) > 0” will mean “the
LMI diag(F (1)(x), . . . , F (p)(x)) > 0”.

When the matrices Fi are diagonal, the LMI F (x) > 0 is just a set of linear
inequalities. Nonlinear (convex) inequalities are converted to LMI form using Schur
complements. The basic idea is as follows: the LMI

[

Q(x) S(x)

S(x)T R(x)

]

> 0, (2.3)

7



8 Chapter 2 Some Standard Problems Involving LMIs

where Q(x) = Q(x)T , R(x) = R(x)T , and S(x) depend affinely on x, is equivalent to

R(x) > 0, Q(x) − S(x)R(x)−1S(x)T > 0. (2.4)

In other words, the set of nonlinear inequalities (2.4) can be represented as the
LMI (2.3).

As an example, the (maximum singular value) matrix norm constraint ‖Z(x)‖ < 1,
where Z(x) ∈ Rp×q and depends affinely on x, is represented as the LMI

[

I Z(x)

Z(x)T I

]

> 0

(since ‖Z‖ < 1 is equivalent to I − ZZT > 0). Note that the case q = 1 reduces to a
general convex quadratic inequality on x.

The constraint c(x)T P (x)−1c(x) < 1, P (x) > 0, where c(x) ∈ Rn and P (x) =
P (x)T ∈ Rn×n depend affinely on x, is expressed as the LMI

[

P (x) c(x)

c(x)T 1

]

> 0.

More generally, the constraint

TrS(x)T P (x)−1S(x) < 1, P (x) > 0,

where P (x) = P (x)T ∈ Rn×n and S(x) ∈ Rn×p depend affinely on x, is handled by
introducing a new (slack) matrix variable X = XT ∈ Rp×p, and the LMI (in x and
X):

TrX < 1,

[

X S(x)T

S(x) P (x)

]

> 0.

Many other convex constraints on x can be expressed in the form of an LMI; see the
Notes and References.

2.1.1 Matrices as variables

We will often encounter problems in which the variables are matrices, e.g., the Lya-
punov inequality

AT P + PA < 0, (2.5)

where A ∈ Rn×n is given and P = P T is the variable. In this case we will not write out
the LMI explicitly in the form F (x) > 0, but instead make clear which matrices are
the variables. The phrase “the LMI AT P +PA < 0 in P” means that the matrix P is
a variable. (Of course, the Lyapunov inequality (2.5) is readily put in the form (2.1),
as follows. Let P1, . . . , Pm be a basis for symmetric n× n matrices (m = n(n + 1)/2).
Then take F0 = 0 and Fi = −AT Pi − PiA.) Leaving LMIs in a condensed form
such as (2.5), in addition to saving notation, may lead to more efficient computation;
see §2.4.4.

As another related example, consider the quadratic matrix inequality

AT P + PA + PBR−1BT P + Q < 0, (2.6)

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



2.2 Some Standard Problems 9

where A, B, Q = QT , R = RT > 0 are given matrices of appropriate sizes, and
P = PT is the variable. Note that this is a quadratic matrix inequality in the variable
P . It can be expressed as the linear matrix inequality

[

−AT P − PA − Q PB

BT P R

]

> 0.

This representation also clearly shows that the quadratic matrix inequality (2.6) is
convex in P , which is not obvious.

2.1.2 Linear equality constraints

In some problems we will encounter linear equality constraints on the variables, e.g.

P > 0, AT P + PA < 0, TrP = 1, (2.7)

where P ∈ Rk×k is the variable. Of course we can eliminate the equality constraint to
write (2.7) in the form F (x) > 0. Let P1, . . . , Pm be a basis for symmetric k×k matrices
with trace zero (m = (k(k + 1)/2) − 1) and let P0 be a symmetric k × k matrix with
TrP0 = 1. Then take F0 = diag(P0,−AT P0−P0A) and Fi = diag(Pi,−AT Pi−PiA)
for i = 1, . . . ,m.

We will refer to constraints such as (2.7) as LMIs, leaving any required elimination
of equality constraints to the reader.

2.2 Some Standard Problems

Here we list some common convex and quasiconvex problems that we will encounter
in the sequel.

2.2.1 LMI problems

Given an LMI F (x) > 0, the corresponding LMI Problem (LMIP) is to find xfeas such
that F (xfeas) > 0 or determine that the LMI is infeasible. (By duality, this means:
Find a nonzero G ≥ 0 such that TrGFi = 0 for i = 1, . . . ,m and TrGF0 ≤ 0; see the
Notes and References.) Of course, this is a convex feasibility problem. We will say
“solving the LMI F (x) > 0” to mean solving the corresponding LMIP.

As an example of an LMIP, consider the “simultaneous Lyapunov stability prob-
lem” (which we will see in §5.1): We are given Ai ∈ Rn×n, i = 1, . . . , L, and need to
find P satisfying the LMI

P > 0, AT
i P + PAi < 0, i = 1, . . . , L,

or determine that no such P exists. Determining that no such P exists is equivalent
to finding Q0, . . . , QL, not all zero, such that

Q0 ≥ 0, . . . , QL ≥ 0, Q0 =
L

∑

i=1

(

QiA
T
i + AiQi

)

, (2.8)

which is another (nonstrict) LMIP.

This electronic version is for personal use and may not be duplicated or distributed.



10 Chapter 2 Some Standard Problems Involving LMIs

2.2.2 Eigenvalue problems

The eigenvalue problem (EVP) is to minimize the maximum eigenvalue of a matrix
that depends affinely on a variable, subject to an LMI constraint (or determine that
the constraint is infeasible), i.e.,

minimize λ

subject to λI − A(x) > 0, B(x) > 0

where A and B are symmetric matrices that depend affinely on the optimization
variable x. This is a convex optimization problem.

EVPs can appear in the equivalent form of minimizing a linear function subject
to an LMI, i.e.,

minimize cT x

subject to F (x) > 0
(2.9)

with F an affine function of x. In the special case when the matrices Fi are all diagonal,
this problem reduces to the general linear programming problem: minimizing the
linear function cT x subject to a set of linear inequalities on x.

Another equivalent form for the EVP is:

minimize λ

subject to A(x,λ) > 0

where A is affine in (x,λ). We leave it to the reader to verify that these forms are
equivalent, i.e., any can be transformed into any other.

As an example of an EVP, consider the problem (which appears in §6.3.2):

minimize γ

subject to

[

−AT P − PA − CT C PB

BT P γI

]

> 0, P > 0

where the matrices A ∈ Rn×n, B ∈ Rn×p, and C ∈ Rm×n are given, and P and γ are
the optimization variables. From our remarks above, this EVP can also be expressed
in terms of the associated quadratic matrix inequality:

minimize γ

subject to AT P + PA + CT C + γ−1PBBT P < 0, P > 0

2.2.3 Generalized eigenvalue problems

The generalized eigenvalue problem (GEVP) is to minimize the maximum generalized
eigenvalue of a pair of matrices that depend affinely on a variable, subject to an LMI
constraint. The general form of a GEVP is:

minimize λ

subject to λB(x) − A(x) > 0, B(x) > 0, C(x) > 0

where A, B and C are symmetric matrices that are affine functions of x. We can
express this as

minimize λmax(A(x), B(x))

subject to B(x) > 0, C(x) > 0

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



2.2 Some Standard Problems 11

where λmax(X,Y ) denotes the largest generalized eigenvalue of the pencil λY − X
with Y > 0, i.e., the largest eigenvalue of the matrix Y −1/2XY −1/2. This GEVP is
a quasiconvex optimization problem since the constraint is convex and the objective,
λmax(A(x), B(x)), is quasiconvex. This means that for feasible x, x̃ and 0 ≤ θ ≤ 1,

λmax(A(θx + (1 − θ)x̃), B(θx + (1 − θ)x̃)) ≤
max {λmax(A(x), B(x)),λmax(A(x̃), B(x̃))} .

Note that when the matrices are all diagonal and A(x) and B(x) are scalar, this
problem reduces to the general linear-fractional programming problem, i.e., minimiz-
ing a linear-fractional function subject to a set of linear inequalities. In addition,
many nonlinear quasiconvex functions can be represented in the form of a GEVP with
appropriate A, B, and C; see the Notes and References.

An equivalent alternate form for a GEVP is

minimize λ

subject to A(x,λ) > 0

where A(x,λ) is affine in x for fixed λ and affine in λ for fixed x, and satisfies the
monotonicity condition λ > µ =⇒ A(x,λ) ≥ A(x, µ). As an example of a GEVP,
consider the problem

maximize α

subject to −AT P − PA − 2αP > 0, P > 0

where the matrix A is given, and the optimization variables are the symmetric matrix
P and the scalar α. (This problem arises in §5.1.)

2.2.4 A convex problem

Although we will be concerned mostly with LMIPs, EVPs, and GEVPs, we will also
encounter the following convex problem, which we will abbreviate CP:

minimize log detA(x)−1

subject to A(x) > 0, B(x) > 0
(2.10)

where A and B are symmetric matrices that depend affinely on x. (Note that when
A > 0, log detA−1 is a convex function of A.)

Remark: Problem CP can be transformed into an EVP, since det A(x) > λ can
be represented as an LMI in x and λ; see [NN94, §6.4.3]. As we do with variables
which are matrices, we leave these problems in the more natural form.

As an example of CP, consider the problem:

minimize log detP−1

subject to P > 0, vT
i Pvi ≤ 1, i = 1, . . . , L

(2.11)

here vi ∈ Rn are given and P = P T ∈ Rn×n is the variable.
We will encounter several variations of this problem, which has the following

interpretation. Let E denote the ellipsoid centered at the origin determined by P ,

This electronic version is for personal use and may not be duplicated or distributed.



12 Chapter 2 Some Standard Problems Involving LMIs

E
∆
=

{

z
∣

∣ zT Pz ≤ 1
}

. The constraints are simply vi ∈ E . Since the volume of E is pro-

portional to (detP )−1/2, minimizing log detP−1 is the same as minimizing the volume
of E . So by solving (2.11), we find the minimum volume ellipsoid, centered at the ori-
gin, that contains the points v1, . . . , vL, or equivalently, the polytope Co{v1, . . . , vL},
where Co denotes the convex hull.

2.2.5 Solving these problems

The standard problems (LMIPs, EVPs, GEVPs, and CPs) are tractable, from both
theoretical and practical viewpoints:

• They can be solved in polynomial-time (indeed with a variety of interpretations
for the term “polynomial-time”).

• They can be solved in practice very efficiently.

By “solve the problem” we mean: Determine whether or not the problem is fea-
sible, and if it is, compute a feasible point with an objective value that exceeds the
global minimum by less than some prespecified accuracy.

2.3 Ellipsoid Algorithm

We first describe a simple ellipsoid algorithm that, roughly speaking, is guaranteed
to solve the standard problems. We describe it here because it is very simple and,
from a theoretical point of view, efficient (polynomial-time). In practice, however, the
interior-point algorithms described in the next section are much more efficient.

Although more sophisticated versions of the ellipsoid algorithm can detect in-
feasible constraints, we will assume that the problem we are solving has at least one
optimal point, i.e., the constraints are feasible. (In the feasibility problem, we consider
any feasible point as being optimal.) The basic idea of the algorithm is as follows. We
start with an ellipsoid E (0) that is guaranteed to contain an optimal point. We then
compute a cutting plane for our problem that passes through the center x(0) of E(0).
This means that we find a nonzero vector g(0) such that an optimal point lies in the
half-space

{

z
∣

∣ g(0)T (z − x(0)) ≤ 0
}

(or in the half-space
{

z
∣

∣ g(0)T (z − x(0)) < 0
}

,
depending on the situation). (We will explain how to do this for each of our problems
later.) We then know that the sliced half-ellipsoid

E(0) ∩
{

z
∣

∣

∣ g(0)T (z − x(0)) ≤ 0
}

contains an optimal point. Now we compute the ellipsoid E (1) of minimum volume
that contains this sliced half-ellipsoid; E (1) is then guaranteed to contain an optimal
point. The process is then repeated.

We now describe the algorithm more explicitly. An ellipsoid E can be described
as

E =
{

z
∣

∣ (z − a)T A−1(z − a) ≤ 1
}

where A = AT > 0. The minimum volume ellipsoid that contains the half-ellipsoid
{

z
∣

∣ (z − a)T A−1(z − a) ≤ 1, gT (z − a) ≤ 0
}

is given by

Ẽ =
{

z
∣

∣

∣ (z − ã)T Ã−1(z − ã) ≤ 1
}

,

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



2.3 Ellipsoid Algorithm 13

where

ã = a − Ag̃

m + 1
, Ã =

m2

m2 − 1

(

A − 2

m + 1
Ag̃g̃T A

)

,

and g̃ = g/
√

gT Ag. (We note that these formulas hold only for m ≥ 2. In the case of
one variable, the minimum length interval containing a half-interval is the half-interval
itself; the ellipsoid algorithm, in this case, reduces to the familiar bisection algorithm.)

The ellipsoid algorithm is initialized with x(0) and A(0) such that the corresponding
ellipsoid contains an optimal point. The algorithm then proceeds as follows: for
k = 1, 2, . . .

compute a g(k) that defines a cutting plane at x(k)

g̃ :=
(

g(k)T A(k)g(k)
)−1/2

g(k)

x(k+1) := x(k) − 1
m+1A(k)g̃

A(k+1) := m2

m2−1

(

A(k) − 2
m+1A(k)g̃g̃T A(k)

)

This recursion generates a sequence of ellipsoids that are guaranteed to contain an
optimal point. It turns out that the volume of these ellipsoids decreases geometrically.
We have

vol(E(k)) ≤ e−
k

2m vol(E(0)),

and this fact can be used to prove polynomial-time convergence of the algorithm. (We
refer the reader to the papers cited in the Notes and References for precise statements
of what we mean by “polynomial-time” and indeed, “convergence,” as well as proofs.)

We now show how to compute cutting planes for each of our standard problems.

LMIPs: Consider the LMI

F (x) = F0 +

m
∑

i=1

xiFi > 0.

If x does not satisfy this LMI, there exists a nonzero u such that

uT F (x)u = uT

(

F0 +
m

∑

i=1

xiFi

)

u ≤ 0.

Define g by gi = −uT Fiu, i = 1, . . . ,m. Then for any z satisfying gT (z − x) ≥ 0 we
have

uT F (z)u = uT

(

F0 +

m
∑

i=1

ziFi

)

u = uT F (x)u − gT (z − x) ≤ 0.

It follows that every feasible point lies in the half-space {z | gT (z − x) < 0}, i.e., this
g defines a cutting plane for the LMIP at the point x.

EVPs: Consider the EVP

minimize cT x

subject to F (x) > 0

This electronic version is for personal use and may not be duplicated or distributed.



14 Chapter 2 Some Standard Problems Involving LMIs

Suppose first that the given point x is infeasible, i.e., F (x) )> 0. Then we can con-
struct a cutting plane for this problem using the method described above for LMIPs.
In this case, we are discarding the half-space {z | gT (z − x) ≥ 0} because all such
points are infeasible.

Now assume that the given point x is feasible, i.e., F (x) > 0. In this case, the
vector g = c defines a cutting plane for the EVP at the point x. Here, we are discarding
the half-space {z | gT (z − x) > 0} because all such points (whether feasible or not)
have an objective value larger than x, and hence cannot be optimal.

GEVPs: We consider the formulation

minimize λmax(A(x), B(x))

subject to B(x) > 0, C(x) > 0

Here, A(x) = A0 +
∑m

i=1 xiAi, B(x) = B0 +
∑m

i=1 xiBi and C(x) = C0 +
∑m

i=1 xiCi.
Now suppose we are given a point x. If the constraints are violated, we use the method
described for LMIPs to generate a cutting plane at x.

Suppose now that x is feasible. Pick any u )= 0 such that

(λmax(A(x), B(x))B(x) − A(x))u = 0.

Define g by

gi = −uT (λmax(A(x), B(x))Bi − Ai)u, i = 1, . . . ,m.

We claim g defines a cutting plane for this GEVP at the point x. To see this, we note
that for any z,

uT (λmax(A(x), B(x))B(z) − A(z))u = −gT (z − x).

Hence, if gT (z − x) ≥ 0 we find that

λmax(A(z), B(z)) ≥ λmax(A(x), B(x))

which establishes our claim.

CPs: We now consider our standard CP (2.10). When the given point x is infeasible
we already know how to generate a cutting plane. So we assume that x is feasible. In
this case, a cutting plane is given by the gradient of the objective

− log detA(x) = − log det

(

A0 +

m
∑

i=1

xiAi

)

at x, i.e., gi = −TrAiA(x)−1. Since the objective function is convex we have for all
z,

log detA(z)−1 ≥ log detA(x)−1 + gT (z − x).

In particular, gT (z − x) > 0 implies log detA(z)−1 > log detA(x)−1, and hence z
cannot be optimal.

2.4 Interior-Point Methods

Since 1988, interior-point methods have been developed for the standard problems.
In this section we describe a simple interior-point method for solving an EVP, given
a feasible starting point. The references describe more sophisticated interior-point
methods for the other problems (including the problem of computing a feasible starting
point for an EVP).

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



2.4 Interior-Point Methods 15

2.4.1 Analytic center of an LMI

The notion of the analytic center of an LMI plays an important role in interior-point
methods, and is important in its own right. Consider the LMI

F (x) = F0 +
m

∑

i=1

xiFi > 0,

where Fi = FT
i ∈ Rn×n. The function

φ(x)
∆
=

{

log detF (x)−1 F (x) > 0

∞ otherwise,
(2.12)

is finite if and only if F (x) > 0, and becomes infinite as x approaches the boundary
of the feasible set {x|F (x) > 0}, i.e., it is a barrier function for the feasible set. (We
have already encountered this function in our standard problem CP.)

We suppose now that the feasible set is nonempty and bounded, which implies
that the matrices F1, . . . , Fm are linearly independent (otherwise the feasible set will
contain a line). It can be shown that φ is strictly convex on the feasible set, so it has
a unique minimizer, which we denote x⋆:

x⋆ ∆
= arg min

x

φ(x). (2.13)

We refer to x⋆ as the analytic center of the LMI F (x) > 0. Equivalently,

x⋆ = arg max

F (x) > 0

detF (x), (2.14)

that is, F (x⋆) has maximum determinant among all positive-definite matrices of the
form F (x).

Remark: The analytic center depends on the LMI (i.e., the data F0, . . . , Fm)
and not its feasible set: We can have two LMIs with different analytic centers but
identical feasible sets. The analytic center is, however, invariant under congruence
of the LMI: F (x) > 0 and T T F (x)T > 0 have the same analytic center provided
T is nonsingular.

We now turn to the problem of computing the analytic center of an LMI. (This
is a special form of our problem CP.) Newton’s method, with appropriate step length
selection, can be used to efficiently compute x⋆, starting from a feasible initial point.
We consider the algorithm:

x(k+1) := x(k) − α(k)H(x(k))−1g(x(k)), (2.15)

where α(k) is the damping factor of the kth iteration, and g(x(k)) and H(x(k)) denote
the gradient and Hessian of φ, respectively, at x(k). In [NN94, §2.2], Nesterov and
Nemirovskii give a simple step length rule appropriate for a general class of barrier
functions (called self-concordant), and in particular, the function φ. Their damping
factor is:

α(k) :=

{

1 if δ(x(k)) ≤ 1/4,

1/(1 + δ(x(k))) otherwise,
(2.16)
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16 Chapter 2 Some Standard Problems Involving LMIs

where

δ(x)
∆
=

√

g(x)T H(x)−1g(x)

is called the Newton decrement of φ at x. Nesterov and Nemirovskii show that this
step length always results in x(k+1) feasible, i.e., F (x(k+1)) > 0, and convergence of
x(k) to x⋆.

Indeed, they give sharp bounds on the number of steps required to compute x⋆

to a given accuracy using Newton’s method with the step length (2.16). They prove
that φ(x(k)) − φ(x⋆) ≤ ǫ whenever

k ≥ c1 + c2 log log(1/ǫ) + c3

(

φ(x(0)) − φ(x⋆)
)

, (2.17)

where c1, c2, and c3 are three absolute constants, i.e., specific numbers. The first
and second terms on the right-hand side do not depend on any problem data, i.e.,
the matrices F0, . . . , Fm, and the numbers m and n. The second term grows so slowly
with required accuracy ǫ that for all practical purposes it can be lumped together with
the first and considered an absolute constant. The last term on the right-hand side
of (2.17) depends on how “centered” the initial point is.

2.4.2 The path of centers

Now consider the standard EVP:

minimize cT x

subject to F (x) > 0

Let λopt denote its optimal value, so for each λ > λopt the LMI

F (x) > 0, cT x < λ (2.18)

is feasible. We will also assume that the LMI (2.18) has a bounded feasible set, and
therefore has an analytic center which we denote x⋆(λ):

x⋆(λ)
∆
= arg min

x

(

log detF (x)−1 + log
1

λ − cT x

)

.

The curve given by x⋆(λ) for λ > λopt is called the path of centers for the EVP.
It can be shown that it is analytic and has a limit as λ → λopt, which we denote xopt.
The point xopt is optimal (or more precisely, the limit of a minimizing sequence) since
for λ > λopt, x⋆(λ) is feasible and satisfies cT x⋆(λ) < λ.

The point x⋆(λ) is characterized by

∂

∂xi

∣

∣

∣

∣

x!(λ)

(

log detF (x)−1 + log
1

λ − cT x

)

= −TrF (x⋆(λ))−1Fi +
ci

λ − cT x⋆(λ)
= 0, i = 1, . . . ,m.

(2.19)

2.4.3 Method of centers

The method of centers is a simple interior-point algorithm that solves an EVP, given a
feasible starting point. The algorithm is initialized with λ(0) and x(0), with F (x(0)) > 0
and cT x(0) < λ(0), and proceeds as follows:

λ(k+1) := (1 − θ)cT x(k) + θλ(k)

x(k+1) := x⋆(λ(k+1))

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



2.4 Interior-Point Methods 17

where θ is a parameter with 0 < θ < 1.
The classic method of centers is obtained with θ = 0. In this case, however, x(k)

does not (quite) satisfy the new inequality cT x < λ(k+1). With θ > 0, however, the
current iterate x(k) is feasible for the inequality cT x < λ(k+1), F (x) > 0, and therefore
can be used as the initial point for computing the next iterate x⋆(λ(k+1)) via Newton’s
method. Since computing an analytic center is itself a special type of CP, we can view
the method of centers as a way of solving an EVP by solving a sequence of CPs (which
is done using Newton’s method).

We now give a simple proof of convergence. Multiplying (2.19) by (x
(k)
i − xopt

i )
and summing over i yields:

TrF (x(k))−1
(

F (x(k)) − F (xopt)
)

=
1

λ(k) − cT x(k)
cT (x(k) − xopt).

Since TrF (x(k))−1F (xopt) ≥ 0, we conclude that

n ≥ 1

λ(k) − cT x(k)
(cT x(k) − λopt).

Replacing cT x(k) by (λ(k+1) − θλ(k))/(1 − θ) yields

(λ(k+1) − λopt) ≤ n + θ

n + 1
(λ(k) − λopt),

which proves that λ(k) approaches λopt with at least geometric convergence. Note that
we can also express the inequality above in the form

cT x(k) − λopt ≤ n(λ(k) − cT x(k)),

which shows that the stopping criterion

until
(

λ(k) − cT x(k) < ǫ/n
)

guarantees that on exit, the optimal value has been found within ǫ.
We make a few comments here, and refer the reader to the Notes and References for

further elaboration. First, this variation on the method of centers is not polynomial-
time, but more sophisticated versions are. Second, and perhaps more important, we
note that two simple modifications of the method of centers as described above yield
an algorithm that is fairly efficient in practice. The modifications are:

• Instead of the Nesterov–Nemirovskii step length, a step length chosen to mini-
mize φ along the Newton search direction (i.e., an exact line-search) will yield
faster convergence to the analytic center.

• Instead of defining x⋆(λ) to be the analytic center of the LMI F (x) > 0, cT x < λ,
we define it to be the analytic center of the LMI F (x) > 0 along with q copies
of cT x < λ, where q > 1 is an integer. In other words we use

x⋆(λ)
∆
= arg min

x

(

log detF (x)−1 + q log
1

λ − cT x

)

.

Using q > 1, say q ≈ n where F (x) ∈ Rn×n, yields much faster reduction of λ

per iteration.

Among interior-point methods for the standard problems, the method of centers
is not the most efficient. The most efficient algorithms developed so far appear to be
primal-dual algorithms (and variations) and the projective method of Nemirovskii; see
the Notes and References.
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18 Chapter 2 Some Standard Problems Involving LMIs

2.4.4 Interior-point methods and problem structure

An important feature of interior-point methods is that problem structure can be ex-
ploited to increase efficiency. The idea is very roughly as follows. In interior-point
methods most of the computational effort is devoted to computing the Newton direc-
tion of a barrier or similar function. It turns out that this Newton direction can be
expressed as the solution of a weighted least-squares problem of the same size as the
original problem. Using conjugate-gradient and other related methods to solve these
least-squares systems gives two advantages. First, by exploiting problem structure in
the conjugate-gradient iterations, the computational effort required to solve the least-
squares problems is much smaller than by standard “direct” methods such as QR or
Cholesky factorization. Second, it is possible to terminate the conjugate-gradient iter-
ations before convergence, and still obtain an approximation of the Newton direction
suitable for interior-point methods. See the Notes and References for more discussion.

An example will demonstrate the efficiencies that can be obtained using the tech-
niques sketched above. The problem is an EVP that we will encounter in §6.2.1.

We are given matrices A1, . . . , AL ∈ Rn×n, symmetric matrices D1, . . . ,DL, E ∈
Rn×n. We consider the EVP

minimize TrEP

subject to AT
i P + PAi + Di < 0, i = 1, . . . , L

(2.20)

In this problem the variable is the matrix P , so the dimension of the optimization
variable is m = n(n + 1)/2. When the Lyapunov inequalities are combined into one
large LMI F (x) > 0, we find that F (x) ∈ RN×N with N = Ln. This LMI has much
structure: It is block-diagonal with each block a Lyapunov inequality.

Vandenberghe and Boyd have developed a (primal-dual) interior-point method
that solves (2.20), exploiting the problem structure. They prove the worst-case esti-
mate of O(m2.75L1.5) arithmetic operations to solve the problem to a given accuracy.
In comparison, the ellipsoid method solves (2.20) to a given accuracy in O(m3.5L)
arithmetic operations (moreover, the constant hidden in the O(·) notation is much
larger for the ellipsoid algorithm).

Numerical experiments on families of problems with randomly generated data
and families of problems arising in system and control theory show that the actual
performance of the interior-point method is much better than the worst-case estimate:
O(mαLβ) arithmetic operations, with α ≈ 2.1 and β ≈ 1.2. This complexity estimate
is remarkably small. For example, the cost of solving L Lyapunov equations of the
same size is O(m1.5L). Therefore, the relative cost of solving L coupled Lyapunov
inequalities, compared to the cost of solving L independent Lyapunov inequalities
is O(m0.6L0.2). This example illustrates one of our points: The computational cost
of solving one of the standard problems (which has no “analytic solution”) can be
comparable to the computational cost of evaluating the solution of a similar problem
that has an “analytic solution”.

2.5 Strict and Nonstrict LMIs

We have so far assumed that the optimization problems LMIP, EVP, GEVP, and CP
involve strict LMIs. We will also encounter these problems with nonstrict LMIs, or
more generally, with a mixture of strict and nonstrict LMIs.
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2.5 Strict and Nonstrict LMIs 19

As an example consider the nonstrict version of the EVP (2.9), i.e.

minimize cT x

subject to F (x) ≥ 0

Intuition suggests that we could simply solve the strict EVP (by, say, an interior-point
method) to obtain the solution of the nonstrict EVP. This is correct in most but not
all cases.

If the strict LMI F (x) > 0 is feasible, then we have

{x ∈ Rm | F (x) ≥ 0} = {x ∈ Rm | F (x) > 0}, (2.21)

i.e., the feasible set of the nonstrict LMI is the closure of the feasible set of the strict
LMI. It follows that

inf
{

cT x | F (x) ≥ 0
}

= inf
{

cT x | F (x) > 0
}

. (2.22)

So in this case, we can solve the strict EVP to obtain a solution of the nonstrict EVP.
This is true for the problems GEVP and CP as well.

We will say that the LMI F (x) ≥ 0 is strictly feasible if its strict version is feasible,
i.e., if there is some x0 ∈ Rm such that F (x0) > 0. We have just seen that when an
LMI is strictly feasible, we can replace nonstrict inequality with strict inequality in the
problems EVP, GEVP, and CP in order to solve them. In the language of optimization
theory, the requirement of strict feasibility is a (very strong) constraint qualification.

When an LMI is feasible but not strictly feasible, (2.21) need not hold, and the
EVPs with the strict and nonstrict LMIs can be very different. As a simple example,
consider F (x) = diag(x,−x) with x ∈ R. The right-hand side of (2.22) is +∞ since
the strict LMI F (x) > 0 is infeasible. The left-hand side, however, is always 0, since
the LMI F (x) ≥ 0 has the single feasible point x = 0. This example shows one of the
two pathologies that can occur: The nonstrict inequality contains an implicit equality
constraint (in contrast with an explicit equality constraint as in §2.1.2).

The other pathology is demonstrated by the example F (x) = diag(x, 0) with
x ∈ R and c = −1. Once again, the strict LMI is infeasible so the right-hand side
of (2.22) is +∞. The feasible set for the nonstrict LMI is the interval [0, ∞) so the
right-hand side is −∞. The problem here is that F (x) is always singular. Of course,
the nonstrict LMI F (x) ≥ 0 is equivalent (in the sense of defining equal feasible sets) to
the “reduced” LMI F̃ (x) = x ≥ 0. Note that this reduced LMI satisfies the constraint
qualification, i.e., is strictly feasible.

2.5.1 Reduction to a strictly feasible LMI

It turns out that any feasible nonstrict LMI can be reduced to an equivalent LMI that
is strictly feasible, by eliminating implicit equality constraints and then reducing the
resulting LMI by removing any constant nullspace.

The precise statement is: Let F0, . . . , Fm ∈ Rn×n be symmetric. Then there
is a matrix A ∈ Rm×p with p ≤ m, a vector b ∈ Rm, and symmetric matrices
F̃0, . . . , F̃p ∈ Rq×q with q ≤ n such that:

F (x) ≥ 0 ⇐⇒
x = Az + b for some z ∈ Rp with

F̃ (z)
∆
= F̃0 +

p
∑

i=1

ziF̃i ≥ 0
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20 Chapter 2 Some Standard Problems Involving LMIs

where the LMI F̃ (z) ≥ 0 is either infeasible or strictly feasible. See the Notes and
References for a proof.

The matrix A and vector b describe the implicit equality constraints for the LMI
F (x) ≥ 0. Similarly, the LMI F̃ (z) ≥ 0 can be interpreted as the original LMI with
its constant nullspace removed (see the Notes and References). In most of the prob-
lems encountered in this book, there are no implicit equality constraints or nontrivial
common nullspace for F , so we can just take A = I, b = 0, and F̃ = F .

Using this reduction we can, at least in principle, always deal with strictly feasible
LMIs. For example we have

inf
{

cT x
∣

∣ F (x) ≥ 0
}

= inf
{

cT (Az + b)
∣

∣

∣
F̃ (z) ≥ 0

}

= inf
{

cT (Az + b)
∣

∣

∣
F̃ (z) > 0

}

since the LMI F̃ (z) ≥ 0 is either infeasible or strictly feasible.

2.5.2 Example: Lyapunov inequality

To illustrate the previous ideas we consider the simplest LMI arising in control theory,
the Lyapunov inequality:

AT P + PA ≤ 0, P > 0, (2.23)

where A ∈ Rk×k is given, and the symmetric matrix P is the variable. Note that this
LMI contains a strict inequality as well as a nonstrict inequality.

We know from system theory that the LMI (2.23) is feasible if and only if all
trajectories of ẋ = Ax are bounded, or equivalently, if the eigenvalues of A have
nonpositive real part, and those with zero real part are nondefective, i.e., correspond
to Jordan blocks of size one. We also know from system theory that the LMI (2.23) is
strictly feasible if and only if all trajectories of ẋ = Ax converge to zero, or equivalently,
all the eigenvalues of A have negative real part.

Consider the interesting case where the LMI (2.23) is feasible but not strictly
feasible. From the remarks above, we see that by a change of coordinates we can put
A in the form

Ã
∆
= T−1AT

= diag

([

0 ω1Ik1

−ω1Ik1
0

]

, . . . ,

[

0 ωrIkr

−ωrIkr
0

]

, 0kr+1
, Astab

)

where 0 < ω1 < · · · < ωr, 0kr+1
denotes the zero matrix in Rkr+1×kr+1 , and all the

eigenvalues of the matrix Astab ∈ Rs×s have negative real part. Roughly speaking,
we have separated out the stable part of A, the part corresponding to each imaginary
axis eigenvalue, and the part associated with eigenvalue zero.
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Using standard methods of Lyapunov theory it can be shown that

{

P
∣

∣ AT P + PA ≤ 0, P > 0
}

=























































T−T P̃ T−1

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

P̃ = diag

([

P1 Q1

QT
1 P1

]

, . . . ,

[

Pr Qr

QT
r Pr

]

, Pr+1, Pstab

)

Pi ∈ Rki×ki , i = 1, . . . , r + 1, QT
i = −Qi, i = 1, . . . , r

[

Pi Qi

QT
i Pi

]

> 0, i = 1, . . . , r, Pr+1 > 0, Pstab > 0

AT
stabPstab + PstabAstab ≤ 0























































.

From this characterization we can find a reduced LMI that is strictly feasible. We
can take the symmetric matrices P1, . . . , Pr+1, Pstab and the skew-symmetric matrices
Q1, . . . , Qr as the “free” variable z; the affine mapping from z into x simply maps
these matrices into

P = T−T diag

([

P1 Q1

QT
1 P1

]

, . . . ,

[

Pr Qr

QT
r Pr

]

, Pr+1, Pstab

)

T−1. (2.24)

Put another way, the equality constraints implicit in the LMI (2.23) are that P must
have this special structure.

Now we substitute P in the form (2.24) back into the original LMI (2.23). We
find that

AT P + PA = T T diag
(

0, AT
stabPstab + PstabAstab

)

T

where the zero matrix has size 2k1+· · ·+2kr+kr+1. We remove the constant nullspace
to obtain the reduced version, i.e., AT

stabPstab + PstabAstab ≤ 0. Thus, the reduced
LMI corresponding to (2.23) is

[

Pi Qi

QT
i Pi

]

> 0, i = 1, . . . , r, Pr+1 > 0,

Pstab > 0, AT
stabPstab + PstabAstab ≤ 0.

(2.25)

This reduced LMI is strictly feasible, since we can take P1, . . . , Pr+1 as identity matri-
ces, Q1, . . . , Qr as zero matrices, and Pstab as the solution of the Lyapunov equation
AT

stabPstab + PstabAstab + I = 0.
In summary, the original LMI (2.23) has one symmetric matrix of size k as variable

(i.e., the dimension of the original variable x is m = k(k + 1)/2). The reduced
LMI (2.25) has as variable the symmetric matrices P1, . . . , Pr+1, Pstab and the skew-
symmetric matrices Q1, . . . , Qr, so the dimension of the variable z in the reduced LMI
is

p =

r
∑

i=1

k2
i +

kr+1(kr+1 + 1)

2
+

s(s + 1)

2
< m.

The original LMI (2.23) involves a matrix inequality of size n = 2k (i.e., two inequali-
ties of size k). The reduced LMI (2.25) involves a matrix inequality of size k + s < n.
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22 Chapter 2 Some Standard Problems Involving LMIs

2.6 Miscellaneous Results on Matrix Inequalities

2.6.1 Elimination of semidefinite terms

In the LMIP

find x such that F (x) > 0, (2.26)

we can eliminate any variables for which the corresponding coefficient in F is semidef-
inite. Suppose for example that Fm ≥ 0 and has rank r < n. Roughly speaking, by
taking xm extremely large, we can ensure that F is positive-definite on the range of
Fm, so the LMIP reduces to making F positive-definite on the nullspace of Fm.

More precisely, let Fm = UUT with U full-rank, and let Ũ be an orthogonal
complement of U , e.g., UT Ũ = 0 and [U Ũ ] is of maximum rank (which in this case
just means that [U Ũ ] is nonsingular). Of course, we have

F (x) > 0 ⇐⇒
[

Ũ U
]T

F (x)
[

Ũ U
]

> 0.

Since

[

Ũ U
]T

F (x)
[

Ũ U
]

=

[

ŨT F̃ (x̃)Ũ ŨT F̃ (x̃)U

UT F̃ (x̃)Ũ UT F̃ (x̃)U + xm(UT U)2

]

,

where x̃ = [x1 · · ·xm−1]
T and F̃ (x̃)

∆
= F0 + x1F1 + · · · + xm−1Fm−1, we see that

F (x) > 0 if and only if ŨT F̃ Ũ(x̃) > 0, and xm is large enough that

UT F̃ (x̃)U + xm(UT U)2 > UT F̃ (x̃)Ũ
(

ŨT F̃ (x̃)Ũ
)−1

ŨT F̃ (x̃)U.

Therefore, the LMIP (2.26) is equivalent to

find x1, . . . , xm−1 such that ŨT F̃ (x1, . . . , xm−1)Ũ > 0.

2.6.2 Elimination of matrix variables

When a matrix inequality has some variables that appear in a certain form, we can
derive an equivalent inequality without those variables. Consider

G(z) + U(z)XV (z)T + V (z)XT U(z)T > 0, (2.27)

where the vector z and the matrix X are (independent) variables, and G(z) ∈ Rn×n,
U(z) and V (z) do not depend on X. Matrix inequalities of the form (2.27) arise in
the controller synthesis problems described in Chapter 7.

Suppose that for every z, Ũ(z) and Ṽ (z) are orthogonal complements of U(z)
and V (z) respectively. Then (2.27) holds for some X and z = z0 if and only if the
inequalities

Ũ(z)T G(z)Ũ(z) > 0, Ṽ (z)T G(z)Ṽ (z) > 0 (2.28)

hold with z = z0. In other words, feasibility of the matrix inequality (2.27) with
variables X and z is equivalent to the feasibility of (2.28) with variable z; we have
eliminated the matrix variable X from (2.27) to form (2.28). Note that if U(z) or
V (z) has rank n for all z, then the first or second inequality in (2.28) disappears. We
prove this lemma in the Notes and References.
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We can express (2.28) in another form using Finsler’s lemma (see the Notes and
References):

G(z) − σU(z)U(z)T > 0, G(z) − σV (z)V (z)T > 0

for some σ ∈ R.
As an example, we will encounter in §7.2.1 the LMIP with LMI

Q > 0, AQ + QAT + BY + Y T BT < 0, (2.29)

where Q and Y are the variables. This LMIP is equivalent to the LMIP with LMI

Q > 0, AQ + QAT < σBBT ,

where the variables are Q and σ ∈ R. It is also equivalent to the LMIP

Q > 0, B̃T
(

AQ + QAT
)

B̃ < 0,

with variable Q, where B̃ is any matrix of maximum rank such that B̃T B = 0. Thus
we have eliminated the variable Y from (2.29) and reduced the size of the matrices in
the LMI.

2.6.3 The S-procedure

We will often encounter the constraint that some quadratic function (or quadratic
form) be negative whenever some other quadratic functions (or quadratic forms) are
all negative. In some cases, this constraint can be expressed as an LMI in the data
defining the quadratic functions or forms; in other cases, we can form an LMI that is
a conservative but often useful approximation of the constraint.

The S-procedure for quadratic functions and nonstrict inequalities

Let F0, . . . , Fp be quadratic functions of the variable ζ ∈ Rn:

Fi(ζ)
∆
= ζT Tiζ + 2uT

i ζ + vi, i = 0, . . . , p,

where Ti = TT
i . We consider the following condition on F0, . . . , Fp:

F0(ζ) ≥ 0 for all ζ such that Fi(ζ) ≥ 0, i = 1, . . . , p. (2.30)

Obviously if

there exist τ1 ≥ 0, . . . , τp ≥ 0 such that

for all ζ, F0(ζ) −
p

∑

i=1

τiFi(ζ) ≥ 0,
(2.31)

then (2.30) holds. It is a nontrivial fact that when p = 1, the converse holds, provided
that there is some ζ0 such that F1(ζ0) > 0.

Remark: If the functions Fi are affine, then (2.31) and (2.30) are equivalent;
this is the Farkas lemma.

Note that (2.31) can be written as
[

T0 u0

uT
0 v0

]

−
p

∑

i=1

τi

[

Ti ui

uT
i vi

]

≥ 0.
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24 Chapter 2 Some Standard Problems Involving LMIs

The S-procedure for quadratic forms and strict inequalities

We will use another variation of the S-procedure, which involves quadratic forms and
strict inequalities. Let T0, . . . , Tp ∈ Rn×n be symmetric matrices. We consider the
following condition on T0, . . . , Tp:

ζT T0ζ > 0 for all ζ )= 0 such that ζT Tiζ ≥ 0, i = 1, . . . , p. (2.32)

It is obvious that if

there exists τ1 ≥ 0, . . . , τp ≥ 0 such that T0 −
p

∑

i=1

τiTi > 0, (2.33)

then (2.32) holds. It is a nontrivial fact that when p = 1, the converse holds, provided
that there is some ζ0 such that ζT

0 T1ζ0 > 0. Note that (2.33) is an LMI in the variables
T0 and τ1, . . . , τp.

Remark: The first version of the S-procedure deals with nonstrict inequalities
and quadratic functions that may include constant and linear terms. The second
version deals with strict inequalities and quadratic forms only, i.e., quadratic
functions without constant or linear terms.

Remark: Suppose that T0, u0 and v0 depend affinely on some parameter ν. Then
the condition (2.30) is convex in ν. This does not, however, mean that the problem
of checking whether there exists ν such that (2.30) holds has low complexity. On
the other hand, checking whether (2.31) holds for some ν is an LMIP in the
variables ν and τ1, . . . , τp. Therefore, this problem has low complexity. See the
Notes and References for further discussion.

S-procedure example

In Chapter 5 we will encounter the following constraint on the variable P :

for all ξ )= 0 and π satisfying πT π ≤ ξT CT Cξ,
[

ξ

π

]T [

AT P + PA PB

BT P 0

][

ξ

π

]

< 0.
(2.34)

Applying the second version of the S-procedure, (2.34) is equivalent to the existence
of τ ≥ 0 such that





AT P + PA + τCT C PB

BT P −τI



 < 0.

Thus the problem of finding P > 0 such that (2.34) holds can be expressed as an
LMIP (in P and the scalar variable τ).

2.7 Some LMI Problems with Analytic Solutions

There are analytic solutions to several LMI problems of special form, often with im-
portant system and control theoretic interpretations. We briefly describe some of these
results in this section. At the same time we introduce and define several important
terms from system and control theory.
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2.7 Some LMI Problems with Analytic Solutions 25

2.7.1 Lyapunov’s inequality

We have already mentioned the LMIP associated with Lyapunov’s inequality, i.e.

P > 0, AT P + PA < 0

where P is variable and A ∈ Rn×n is given. Lyapunov showed that this LMI is feasible
if and only the matrix A is stable, i.e., all trajectories of ẋ = Ax converge to zero as
t → ∞, or equivalently, all eigenvalues of A must have negative real part. To solve this
LMIP, we pick any Q > 0 and solve the Lyapunov equation AT P + PA = −Q, which
is nothing but a set of n(n + 1)/2 linear equations for the n(n + 1)/2 scalar variables
in P . This set of linear equations will be solvable and result in P > 0 if and only if
the LMI is feasible. In fact this procedure not only finds a solution when the LMI is
feasible; it parametrizes all solutions as Q varies over the positive-definite cone.

2.7.2 The positive-real lemma

Another important example is given by the positive-real (PR) lemma, which yields
a “frequency-domain” interpretation for a certain LMIP, and under some additional
assumptions, a numerical solution procedure via Riccati equations as well. We give a
simplified discussion here, and refer the reader to the References for more complete
statements.

The LMI considered is:

P > 0,

[

AT P + PA PB − CT

BT P − C −DT − D

]

≤ 0, (2.35)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, and D ∈ Rp×p are given, and the matrix
P = PT ∈ Rn×n is the variable. (We will encounter a variation on this LMI in §6.3.3.)
Note that if D + DT > 0, the LMI (2.35) is equivalent to the quadratic matrix
inequality

AT P + PA + (PB − CT )(D + DT )−1(PB − CT )T ≤ 0. (2.36)

We assume for simplicity that A is stable and the system (A,B,C) is minimal.
The link with system and control theory is given by the following result. The

LMI (2.35) is feasible if and only if the linear system

ẋ = Ax + Bu, y = Cx + Du (2.37)

is passive, i.e.,

∫ T

0

u(t)T y(t) dt ≥ 0

for all solutions of (2.37) with x(0) = 0.
Passivity can also be expressed in terms of the transfer matrix of the linear sys-

tem (2.37), defined as

H(s)
∆
= C(sI − A)−1B + D

for s ∈ C. Passivity is equivalent to the transfer matrix H being positive-real, which
means that

H(s) + H(s)∗ ≥ 0 for all Re s > 0.
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26 Chapter 2 Some Standard Problems Involving LMIs

When p = 1 this condition can be checked by various graphical means, e.g., plotting
the curve given by the real and imaginary parts of H(iω) for ω ∈ R (called the Nyquist

plot of the linear system). Thus we have a graphical, frequency-domain condition for
feasibility of the LMI (2.35). This approach was used in much of the work in the 1960s
and 1970s described in §1.2.

With a few further technical assumptions, including D + DT > 0, the LMI (2.35)
can be solved by a method based on Riccati equations and Hamiltonian matrices.
With these assumptions the LMI (2.35) is feasible if and only if there exists a real
matrix P = P T satisfying the ARE

AT P + PA + (PB − CT )(D + DT )−1(PB − CT )T = 0, (2.38)

which is just the quadratic matrix inequality (2.36) with equality substituted for in-
equality. Note that P > 0.

To solve the ARE (2.38) we first form the associated Hamiltonian matrix

M =

[

A − B(D + DT )−1C B(D + DT )−1BT

−CT (D + DT )−1C −AT + CT (D + DT )−1BT

]

.

Then the system (2.37) is passive, or equivalently, the LMI (2.35) is feasible, if and
only if M has no pure imaginary eigenvalues. This fact can be used to form a Routh–
Hurwitz (Sturm) type test for passivity as a set of polynomial inequalities in the data
A, B, C, and D.

When M has no pure imaginary eigenvalues we can construct a solution Pare as
follows. Pick V ∈ R2n×n so that its range is a basis for the stable eigenspace of
M , e.g., V = [v1 · · · vn] where v1, . . . , vn are a set of independent eigenvectors of M
associated with its n eigenvalues with negative real part. Partition V as

V =

[

V1

V2

]

,

where V1 and V2 are square; then set Pare = V2V
−1
1 . The solution Pare thus obtained

is the minimal element among the set of solutions of (2.38): if P = P T satisfies (2.38),
then P ≥ Pare. Much more discussion of this method, including the precise technical
conditions, can be found in the References.

2.7.3 The bounded-real lemma

The same results appear in another important form, the bounded-real lemma. Here
we consider the LMI

P > 0,

[

AT P + PA + CT C PB + CT D

BT P + DT C DT D − I

]

≤ 0. (2.39)

where A ∈ Rn×n, B ∈ Rn×p, C ∈ Rp×n, and D ∈ Rp×p are given, and the matrix
P = PT ∈ Rn×n is the variable. For simplicity we assume that A is stable and
(A,B,C) is minimal.

This LMI is feasible if and only the linear system (2.37) is nonexpansive, i.e.,

∫ T

0

y(t)T y(t) dt ≤
∫ T

0

u(t)T u(t) dt
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for all solutions of (2.37) with x(0) = 0, This condition can also be expressed in
terms of the transfer matrix H. Nonexpansivity is equivalent to the transfer matrix
H satisfying the bounded-real condition, i.e.,

H(s)∗H(s) ≤ I for all Re s > 0.

This is sometimes expressed as ‖H‖∞ ≤ 1 where

‖H‖∞ ∆
= sup { ‖H(s)‖ | Re s > 0}

is called the H∞ norm of the transfer matrix H.
This condition is easily checked graphically, e.g., by plotting ‖H(iω)‖ versus ω ∈ R

(called a singular value plot for p > 1 and a Bode magnitude plot for p = 1).
Once again we can relate the LMI (2.39) to an ARE. With some appropriate tech-

nical conditions (see the Notes and References) including DT D < I, the LMI (2.39)
is feasible if and only the ARE

AT P + PA + CT C + (PB + CT D)(I − DT D)−1(PB + CT D)T = 0 (2.40)

has a real solution P = P T . Once again this is the quadratic matrix inequality
associated with the LMI (2.39), with equality instead of the inequality.

We can solve this equation by forming the Hamiltonian matrix

M =

[

A + B(I − DT D)−1DT C B(I − DT D)−1BT

−CT (I − DDT )−1C −AT − CT D(I − DT D)−1BT

]

.

Then the system (2.37) is nonexpansive, or equivalently, the LMI (2.39) is feasible,
if and only if M has no imaginary eigenvalues. In this case we can find the minimal
solution to (2.40) as described in §2.7.2.

2.7.4 Others

Several other LMI problems have analytic solutions, e.g., the ones that arise in the
synthesis of state-feedback for linear systems, or estimator gains for observers. As a
simple example consider the LMI

P > 0, AP + PAT < BBT

where A ∈ Rn×n and B ∈ Rn×p are given and P is the variable. This LMI is feasible
if and only if the pair (A,B) is stabilizable, i.e., there exists a matrix K ∈ Rp×n such
that A + BK is stable. There are simple methods for determining whether this is the
case, and when it is, of constructing an appropriate P . We will describe this and other
results in Chapter 7.

Several standard results from linear algebra can also be interpreted as analytic
solutions to certain LMI problems of special form. For example, it is well-known
that among all symmetric positive-definite matrices with given diagonal elements,
the diagonal matrix has maximum determinant. This gives an analytic solution to a
special (and fairly trivial) CP (see §3.5).

Notes and References

LMIs

The term “Linear Matrix Inequality” was coined by J. C. Willems and is widely used now.
As we mentioned in §1.2, the term was used in several papers from the 1970s to refer to the
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28 Chapter 2 Some Standard Problems Involving LMIs

specific LMI (1.3). The term is also consistent with the title of an early paper by Bellman
and Ky Fan: On Systems of Linear Inequalities in Hermitian Matrix Variables [BF63] (see
below).

A more accurate term might be “Affine Matrix Inequality”, since the matrix is an affine
and not linear function of the variable. We think of the term “Linear Matrix Inequality” as
analogous to the term “Linear Inequalities” used to describe aT

i x ≤ bi, i = 1, . . . , p.

When m = 1, an LMI is nothing but a matrix pencil. The theory of matrix pencils is very old
and quite complete, and there is an extensive literature (see, e.g., Golub and Van Loan [GL89]
and the references therein). For the case of m = 1 all of our standard problems are readily
solved, e.g., by simultaneous diagonalization of F0 and F1 by an appropriate congruence.
The case m = 1 does not arise on its own in any interesting problem from system or control
theory, but it does arise in the “line-search (sub)problem”, i.e., when we restrict one of our
standard problems to a specific line. In this context the variable represents the “step length”
to be taken in an iteration of an algorithm, and it useful to know that such problems can be
solved extremely efficiently.

Schur complements for nonstrict inequalities

The Schur complement result of section §2.1 can be generalized to nonstrict inequalities as
follows. Suppose Q and R are symmetric. The condition

[

Q S

ST R

]

≥ 0 (2.41)

is equivalent to

R ≥ 0, Q − SR†ST ≥ 0, S(I − RR†) = 0,

where R† denotes the Moore–Penrose inverse of R.

To see this, let U be an orthogonal matrix that diagonalizes R, so that

UT RU =

[

Σ 0

0 0

]

,

where Σ > 0 and diagonal. Inequality (2.41) holds if and only if

[

I 0

0 UT

][

Q S

ST R

][

I 0

0 U

]

=







Q S1 S2

ST
1 Σ 0

ST
2 0 0






≥ 0,

where [S1 S2] = SU , with appropriate partitioning. We must then have S2 = 0, which holds
if and only if S(I − RR†) = 0, and

[

Q S1

ST
1 Σ

]

≥ 0,

which holds if and only if Q − SR†ST ≥ 0.

Formulating convex problems in terms of LMIs

The idea that LMIs can be used to represent a wide variety of convex constraints can be
found in Nesterov and Nemirovskii’s report [NN90b] (which is really a preliminary version
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of their book [NN94]) and software manual [NN90a]. They formalize the idea of a “positive-
definite representable” function; see §5.3, §5.4, and §6.4 of their book [NN94]. The idea
is also discussed in the article [Ali92b] and thesis [Ali91] of Alizadeh. In [BE93], Boyd
and El Ghaoui give a list of quasiconvex functions that can be represented as generalized
eigenvalues of matrices that depend affinely on the variable.

Infeasibility criterion for LMIs

The LMI F (x) > 0 is infeasible means the affine set {F (x) | x ∈ Rm} does not intersect the
positive-definite cone. From convex analysis, this is equivalent to the existence of a linear
functional ψ that is positive on the positive-definite cone and nonpositive on the affine set
of matrices. The linear functionals that are positive on the positive-definite cone are of the
form ψ(F ) = TrGF , where G ≥ 0 and G &= 0. From the fact that ψ is nonpositive on the
affine set {F (x)|x ∈ Rm}, we can conclude that TrGFi = 0, i = 1, . . . , m and TrGF0 ≤ 0.
These are precisely the conditions for infeasibility of an LMI that we mentioned in §2.2.1.

For the special case of multiple Lyapunov inequalities, these conditions are given Bellman
and Ky Fan [BF63] and Kamenetskii and Pyatnitskii [KP87a, KP87b].

It is straightforward to derive optimality criteria for the other problems, using convex anal-
ysis. Some general references for convex analysis are the books [Roc70, Roc82] and survey
article [Roc93] by Rockafellar. The recent text [HUL93] gives a good overview of convex
analysis; LMIs are used as examples in several places.

Complexity of convex optimization

The important role of convexity in optimization is fairly widely known, but perhaps not
well enough appreciated, at least outside the former Soviet Union. In a standard (Western)
treatment of optimization, our standard problems LMIP, EVP, GEVP, and CP would be
considered very difficult since they are nondifferentiable and nonlinear. Their convexity
properties, however, make them tractable, both in theory and in practice.

In [Roc93, p194], Rockafellar makes the important point:

One distinguishing idea which dominates many issues in optimization theory is
convexity . . . An important reason is the fact that when a convex function is
minimized over a convex set every locally optimal solution is global. Also, first-
order necessary conditions turn out to be sufficient. A variety of other properties
conducive to computation and interpretation of solutions ride on convexity as
well. In fact the great watershed in optimization isn’t between linearity and
nonlinearity, but convexity and nonconvexity.

Detailed discussion of the (low) complexity of convex optimization problems can be found
in the books by Grötschel, Lovász, Schrijver [GLS88], Nemirovskii and Yudin [NY83], and
Vavasis [Vav91].

Complete and detailed worst-case complexity analyses of several algorithms for our standard
problems can be found in Chapters 3, 4, and 6 of Nesterov and Nemirovskii [NN94].

Ellipsoid algorithm

The ellipsoid algorithm was developed by Shor, Nemirovskii, and Yudin in the 1970s [Sho85,
NY83]. It was used by Khachiyan in 1979 to prove that linear programs can be solved in
polynomial-time [Kha79, GL81, GLS88]. Discussion of the ellipsoid method, as well as
several extensions and variations, can be found in [BGT81] and [BB91, ch14]. A detailed
history of its development, including English and Russian references, appears in chapter 3 of
Akgül [Akg84].
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Optimization problems involving LMIs

One of the earliest papers on LMIs is also, in our opinion, one of the best: On systems of
linear inequalities in Hermitian matrix variables, by Bellman and Ky Fan [BF63]. In this
paper we find many results, e.g., a duality theory for the multiple Lyapunov inequality EVP
and a theorem of the alternative for the multiple Lyapunov inequality LMIP. The paper
concentrates on the associated mathematics: there is no discussion of how to solve such
problems, or any potential applications, although they do comment that such inequality
systems arise in Lyapunov theory. Given Bellman’s legendary knowledge of system and
control theory, and especially Lyapunov theory, it is tempting to conjecture that Bellman
was aware of the potential applications. But so far we have found no evidence for this.

Relevant work includes Cullum et al. [CDW75], Craven and Mond [CM81], Polak and
Wardi [PW82], Fletcher [Fle85], Shapiro [Sha85], Friedland et al. [FNO87], Goh and
Teo [GT88], Panier [Pan89], Allwright [All89], Overton and Womersley [Ove88, Ove92,
OW93, OW92], Ringertz [Rin91], Fan and Nekooie [FN92, Fan93] and Hiriart–Urruty and
Ye [HUY92].

LMIPs are solved using various algorithms for convex optimization in Boyd and Yang [BY89],
Pyatnitskii and Skorodinskii [PS83], Kamenetskii and Pyatnitskii [KP87a, KP87b].

A survey of methods for solving problems involving LMIs used by researchers in control theory
can be found in the paper by Beck [Bec91]. The software packages [BDG+91] and [CS92a]
use convex programming to solve many robust control problems. Boyd [Boy94] outlines how
interior-point convex optimization algorithms can be used to build robust control software
tools. Convex optimization problems involving LMIs have been used in control theory since
about 1985: Gilbert’s method [Gil66] was used by Doyle [Doy82] to solve a diagonal scaling
problem; another example is the musol program of Fan and Tits [FT86].

Among other methods used in control to solve problems involving multiple LMIs is the
“method of alternating convex projections” described in the article by Grigoriadis and Skel-
ton [GS92]. This method is essentially a relaxation method, and requires an analytic ex-
pression for the projection onto the feasible set of each LMI. It is not a polynomial-time
algorithm; its complexity depends on the problem data, unlike the ellipsoid method or the
interior-point methods described in [NN94], whose complexities depend on the problem size
only . However, the alternating projections method is reported to work well in many cases.

Interior-point methods for LMI problems

Interior-point methods for various LMI problems have recently been developed by several re-
searchers. The first were Nesterov and Nemirovskii [NN88, NN90b, NN90a, NN91a, NN94,
NN93]; others include Alizadeh [Ali92b, Ali91, Ali92a], Jarre [Jar93c], Vandenberghe and
Boyd [VB93b], Rendl, Vanderbei, and Wolkowocz [RVW93], and Yoshise [Yos94].

Of course, general interior-point methods (and the method of centers in particular) have a
long history. Early work includes the book by Fiacco and McCormick [FM68], the method
of centers described by Huard et al. [LH66, Hua67], and Dikin’s interior-point method
for linear programming [Dik67]. Interest in interior-point methods surged in 1984 when
Karmarkar [Kar84] gave his interior-point method for solving linear programs, which appears
to have very good practical performance as well as a good worst-case complexity bound. Since
the publication of Karmarkar’s paper, many researchers have studied interior-point methods
for linear and quadratic programming. These methods are often described in such a way
that extensions to more general (convex) constraints and objectives are not clear. However,
Nesterov and Nemirovskii have developed a theory of interior-point methods that applies to
more general convex programming problems, and in particular, every problem that arises
in this book; see [NN94]. In particular, they derive complexity bounds for many different
interior-point algorithms, including the method of centers, Nemirovskii’s projective algorithm
and primal-dual methods. The most efficient algorithms seem to be Nemirovskii’s projective
algorithm and primal-dual methods (for the case of linear programs, see [Meh91]).

Other recent articles that consider interior-point methods for more general convex program-
ming include Sonnevend [Son88], Jarre [Jar91, Jar93b], Kortanek et al. [KPY91], Den
Hertog, Roos, and Terlaky [DRT92], and the survey by Wright [Wri92].
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Interior-point methods for GEVPs are described in Boyd and El Ghaoui [BE93] (variation
on the method of centers), and Nesterov and Nemirovskii [NN91b] and [NN94, §4.4] (a
variation on Nemirovskii’s projective algorithm). Since GEVPs are not convex problems,
devising a reliable stopping criterion is more challenging than for the convex problems LMIP,
EVP, and CP. A detailed complexity analysis (in particular, a statement and proof of the
polynomial-time complexity of GEVPs) is given in [NN91b, NN94]. See also [Jar93a].

Several researchers have recently studied the possibility of switching from an interior-point
method to a quadratically convergent local method in order to improve on the final conver-
gence; see [Ove92, OW93, OW92, FN92, NF92].

Interior-point methods for CPs and other related extremal ellipsoid volume problems can be
found in [NN94, §6.5].

Interior-point methods and problem structure

Many researchers have developed algorithms that take advantage of the special structure
of the least-squares problems arising in interior-point methods for linear programming. As
far as we know, the first (and so far, only) interior-point algorithm that takes advantage
of the special (Lyapunov) structure of an LMI problem arising in control is described in
Vandenberghe and Boyd [VB93b, VB93a]. Nemirovskii’s projective method can also take
advantage of such structure; these two algorithms appear to be the most efficient algorithms
developed so far for solving the LMIs that arise in control theory.

Software for solving LMI problems

Gahinet and Nemirovskii have recently developed a software package called LMI-Lab [GN93]
based on an earlier FORTRAN code [NN90a], which allows the user to describe an LMI
problem in a high-level symbolic form (not unlike the formulas that appear throughout this
book!). LMI-Lab then solves the problem using Nemirovskii’s projective algorithm, taking
advantage of some of the problem structure (e.g., block structure, diagonal structure of some
of the matrix variables).

Recently, El Ghaoui has developed another software package for solving LMI problems. This
noncommercial package, called LMI-tool, can be used with matlab. It is available via anony-
mous ftp (for more information, send mail to elghaoui@ensta.fr). Another version of LMI-
tool, developed by Nikoukhah and Delebecque, is available for use with the matlab-like
freeware package scilab; in this version, LMI-tool has been interfaced with Nemirovskii’s
projective code. scilab can be obtained via anonymous ftp (for more information, send mail
to Scilab@inria.fr).

A commercial software package that solves a few specialized control system analysis and
design problems via LMI formulation, called optin, was recently developed by Olas and
Associates; see [OS93, Ola94].

Reduction to a strictly feasible LMI

In this section we prove the following statement. Let F0, . . . , Fm ∈ Rn×n be symmetric
matrices. Then there is a matrix A ∈ Rm×p with p ≤ m, a vector b ∈ Rm, and symmetric
matrices F̃0, . . . , F̃p ∈ Rq×q with q ≤ n such that:

F (x) ≥ 0 if and only if x = Az + b for some z ∈ Rp and F̃ (z)
∆

= F̃0 +

p
∑

i=1

ziF̃i ≥ 0.

In addition, if the LMI F (x) ≥ 0 is feasible, then the LMI F̃ (z) ≥ 0 is strictly feasible.
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32 Chapter 2 Some Standard Problems Involving LMIs

Consider the LMI

F (x) = F0 +

m
∑

i=1

xiFi ≥ 0, (2.42)

where Fi ∈ Rn×n, i = 0, . . . , m. Let X denote the feasible set {x | F (x) ≥ 0}.

If X is empty, there is nothing to prove; we can take p = m, A = I, b = 0, F̃0 = F0, . . . , F̃p =
Fp.

Henceforth we assume that X is nonempty. If X is a singleton, say X = {x0}, then with

p = 1, A = 0, b = x0, F̃0 = 1, and F̃1 = 0, the statement follows.

Now consider the case when X is neither empty nor a singleton. Then, there is an affine
subspace A of minimal dimension p ≥ 1 that contains X. Let a1, . . . ap a basis for the linear
part of A. Then every x ∈ A can be written as x = Az+b where A = [a1 · · · ap] is full-rank
and b ∈ Rm. Defining G0 = F (b), Gi = F (ai)−F0, i = 1, . . . , p, and G(z) = G0+

∑p

i=1
ziGi,

we see that F (x) ≥ 0 if and only if there exists z ∈ Rp satisfying x = Az + b and G(z) ≥ 0.

Let Z
∆

= {z ∈ Rp | G(z) ≥ 0}. By construction, Z has nonempty interior. Let z0 a point in
the interior of Z and let v lie in the nullspace of G(z0). Now, vT G(z)v is a nonnegative affine
function of z ∈ Z and is zero at an interior point of Z. Therefore, it is identically zero over
Z, and hence over Rp. Therefore, v belongs to the intersection B of the nullspaces of the
Gi, i = 0, . . . , p. Conversely, any v belonging to B will satisfy vT G(z)v = 0 for any z ∈ Rp.
B may therefore be interpreted as the “constant” nullspace of the LMI (2.42). Let q be the
dimension of B.

If q = n (i.e., G0 = · · · = Gp = 0), then obviously F (x) ≥ 0 if and only if x = Az + b. In this

case, the statement is satisfied with F̃0 = I ∈ Rp×p, F̃i = 0, i = 1, . . . , p.

If q < n, let v1, . . . , vq a basis for B. Complete the basis v1, . . . , vq by vq+1, . . . , vn to

obtain a basis of Rn. Define U = [vq+1 · · · vn], F̃i = UT GiU , i = 1, . . . , p and F̃ (z) =

F̃0 +
∑p

i=1
ziF̃i. Then, the LMI G(z) ≥ 0 is equivalent to the LMI F̃ (z) ≥ 0, and by

construction, there exists z0 such that F̃ (z0) > 0. This concludes the proof.

Elimination procedure for matrix variables

We now prove the matrix elimination result stated in §2.6.2: Given G, U , V , there exists X
such that

G + UXV T + V XT UT > 0 (2.43)

if and only if

ŨT GŨ > 0, Ṽ T GṼ > 0 (2.44)

holds, where Ũ and Ṽ are orthogonal complements of U and V respectively.

It is obvious that if (2.43) holds for some X, so do inequalities (2.44). Let us now prove the
converse.

Suppose that inequalities (2.44) are feasible. Suppose now that inequality (2.43) is not feasible
for any X. In other words, suppose that

G + UXV T + V XT UT &> 0,

for every X. By duality, this is equivalent to the condition

there exists Z &= 0 with Z ≥ 0, V T ZU = 0, and TrGZ ≤ 0. (2.45)
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Now let us show that Z ≥ 0 and V T ZU = 0 imply that

Z = Ṽ HHT Ṽ T + ŨKKT ŨT (2.46)

for some matrices H, K (at least one of which is nonzero, since otherwise Z = 0). This
will finish our proof, since (2.44) implies that TrGZ > 0 for Z of the form (2.46), which
contradicts TrGZ ≤ 0 in (2.45).

Let R be a Cholesky factor of Z, i.e. Z = RRT . The condition V T ZU = 0 is equivalent to

V T RRT U = (V T R)(UT R)T = 0.

This means that there exists a unitary matrix T , and matrices M and N such that

V T RT = [0 M ] and UT RT = [N 0] ,

where the number of columns of M and N add up to that of R. In other words, RT can be
written as

RT = [A B]

for some matrices A, B such that V T A = 0, UT B = 0. From the definition of Ṽ and Ũ ,
matrices A, B can be written A = Ṽ H, B = ŨK for some matrices H, K, and we have

Z = RRT = (RT )(RT )T = AAT + BBT = Ṽ HHT Ṽ T + ŨKKT ŨT ,

which is the desired result.

The equivalence between the conditions

Ũ(z)T G(z)Ũ(z) > 0

and

G(z) − σU(z)U(z)T > 0 for some real scalar σ

is through Finsler’s lemma [Fin37] (see also §3.2.6 of [Sch73]), which states that if xT Qx > 0
for all nonzero x such that xT Ax = 0, where Q and A are symmetric, real matrices, then
there exists a real scalar such that Q − σA > 0.

Finsler’s lemma has also been directly used to eliminate variables in certain matrix inequali-
ties (see for example [PH86, KR88, BPG89b]); it is closely related to the S-procedure. We
also note another result on elimination of matrix variables, due to Parrott [Par78].

The elimination lemma is related to a matrix dilation problem considered in [DKW82], which
was used in control problems in [PZPB91, PZP+92, Gah92, Pac94, IS93a, Iwa93] (see
also the Notes and References of Chapter 7).

The S-procedure

The problem of determining if a quadratic form is nonnegative when other quadratic forms are
nonnegative has been studied by mathematicians for at least seventy years. For a complete
discussion and references, we refer the reader to the survey article by Uhlig [Uhl79]. See also
the book by Hestenes [Hes81, p354-360] and Horn and Johnson [HJ91, p78-86] for proofs
of various S-procedure results.

The application of the S-procedure to control problems dates back to 1944, when Lur’e
and Postnikov used it to prove the stability of some particular nonlinear systems. The
name “S-procedure” was introduced much later by Aizerman and Gantmacher in their 1964
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book [AG64]; since then Yakubovich has given more general formulations and corrected
errors in some earlier proofs [Yak77, FY79].

The proof of the two S-procedure results described in this chapter can be found in the
articles by Yakubovich [FY79, Yak77, Yak73]. Recent and important developments about
the S-procedure can be found in [Yak92] and references therein.

Complexity of S-procedure condition

Suppose that T0, u0, and v0 depend affinely on some variable ν; the condition (2.30) is
convex in ν. Indeed, for fixed ζ, the constraint F0(ζ) ≥ 0 is a linear constraint on ν and the
constraint (2.30) is simply an infinite number of these linear constraints. We might therefore
imagine that the problem of checking whether there exists ν such that (2.30) holds has low
complexity since it can be cast as a convex feasibility problem. This is wrong. In fact, merely
verifying that the condition (2.30) holds for fixed data Ti, ui, and vi, is as hard as solving
a general indefinite quadratic program, which is NP-complete. We could determine whether
there exists ν such that (2.30) holds with polynomially many steps of the ellipsoid algorithm;
the problem is that finding a cutting plane (which is required for each step of the ellipsoid
algorithm) is itself an NP-complete problem.

Positive-real and bounded-real lemma

In 1961, Popov gave the famous Popov frequency-domain stability criterion for the absolute
stability problem [Pop62]. Popov’s criterion could be checked via graphical means, by verify-
ing that the Nyquist plot of the “linear part” of the nonlinear system was confined to a specific
region in the complex plane. Yakubovich [Yak62, Yak64] and Kalman [Kal63a, Kal63b]
established the connection between the Popov criterion and the existence of a positive-
definite matrix satisfying certain matrix inequalities. The PR lemma is also known by various
names such as the Yakubovich–Kalman–Popov–Anderson Lemma or the Kalman–Yakubovich
Lemma. The PR lemma is now standard material, described in several books on control and
systems theory, e.g., Narendra and Taylor [NT73], Vidyasagar [Vid92, pp474–478], Faurre
and Depeyrot [FD77], Anderson and Vongpanitlerd [AV73, ch5–7], Brockett [Bro70], and
Willems [Wil70].

In its original form, the PR Lemma states that the transfer function c(sI − A)−1b of the
single-input single-output minimal system (A, b, c) is positive-real, i.e.

Re c(sI − A)−1b ≥ 0 for all Re s > 0 (2.47)

if and only if there exists P > 0 such that AT P +PA ≤ 0 and Pb = cT . The condition (2.47)
can be checked graphically.

Anderson [And67, And66b, And73] extended the PR lemma to multi-input multi-output
systems, and derived similar results for nonexpansive systems [And66a]. Willems [Wil71b,
Wil74a] described connections between the PR lemma, certain quadratic optimal control
problems and the existence of symmetric solutions to the ARE; it is in [Wil71b] that we find
Willems’ quote on the role of LMIs in quadratic optimal control (see page 3).

The connections between passivity, LMIs and AREs can be summarized as follows. We
consider A, B, C, and D such that all eigenvalues of A have negative real part, (A, B) is
controllable and D + DT > 0. The following statements are equivalent:

1. The system

ẋ = Ax + Bu, y = Cx + Du, x(0) = 0

is passive, i.e., satisfies
∫ T

0

u(t)T y(t)dt ≥ 0

for all u and T ≥ 0.
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2. The transfer matrix H(s) = C(sI − A)−1B + D is positive-real, i.e.,

H(s) + H(s)∗ ≥ 0

for all s with Re s ≥ 0.

3. The LMI
[

AT P + PA PB − CT

BT P − C −(D + DT )

]

≤ 0 (2.48)

in the variable P = P T is feasible.

4. There exists P = P T satisfying the ARE

AT P + PA + (PB − CT )(D + DT )−1(PB − CT )T = 0. (2.49)

5. The sizes of the Jordan blocks corresponding to the pure imaginary eigenvalues of the
Hamiltonian matrix

M =

[

A − B(D + DT )−1C B(D + DT )−1BT

−CT (D + DT )−1C −AT + CT (D + DT )−1BT

]

are all even.

The equivalence of 1, 2, 3, and 4 can be found in Theorem 4 of [Wil71b] and also [Wil74a].
The equivalence of 5 is found in, for example, Theorem 1 of [LR80]. Origins of this result can
be traced back to Reid [Rei46] and Levin [Lev59]; it is explicitly stated in Potter [Pot66].
An excellent discussion of this result and its connections with spectral factorization theory
can be found in [AV73]; see also [Fra87, BBK89, Rob89]. Connections between the ex-
tremal points of the set of solutions of the LMI (2.48) and the solutions of the ARE (2.49)
are explored in [Bad82]. The method for constructing Pare from the stable eigenspace of
M , described in §2.7.2, is in [BBK89]; this method is an obvious variation of Laub’s algo-
rithm [Lau79, AL84], or Van Dooren’s [Doo81]. A less stable numerical method can be found
in [Rei46, Lev59, Pot66, AV73]. For other discussions of strict passivity, see the articles
by Wen [Wen88], Lozano–Leal and Joshi [LLJ90]. It is also possible to check passivity (or
nonexpansivity) of a system symbolically using Sturm methods, which yields Routh–Hurwitz
like algorithms; see Siljak [Sil71, Sil73] and Boyd, Balakrishnan, and Kabamba [BBK89].

The PR lemma is used in many areas, e.g., interconnected systems [MH78] and stochastic
processes and stochastic realization theory [Fau67, Fau73, AM74].
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Chapter 3

Some Matrix Problems

3.1 Minimizing Condition Number by Scaling

The condition number of a matrix M ∈ Rp×q, with p ≥ q, is the ratio of its largest
and smallest singular values, i.e.,

κ(M)
∆
=

(

λmax(M
T M)

λmin(MT M)

)1/2

for M full-rank, and κ(M) = ∞ otherwise. For square invertible matrices this reduces
to κ(M) = ‖M‖‖M−1‖.

We consider the problem:

minimize κ (LMR)

subject to L ∈ Rp×p, diagonal and nonsingular

R ∈ Rq×q, diagonal and nonsingular

(3.1)

where L and R are the optimization variables, and the matrix M ∈ Rp×q is given.
We will show that this problem can be transformed into a GEVP. We assume without
loss of generality that p ≥ q and M is full-rank.

Let us fix γ > 1. There exist nonsingular, diagonal L ∈ Rp×p and R ∈ Rq×q

such that κ(LMR) ≤ γ if and only if there are nonsingular, diagonal L ∈ Rp×p and
R ∈ Rq×q and µ > 0 such that

µI ≤ (LMR)T (LMR) ≤ µγ2I.

Since we can absorb the factor 1/
√

µ into L, this is equivalent to the existence of

nonsingular, diagonal L ∈ Rp×p and R ∈ Rq×q such that

I ≤ (LMR)T (LMR) ≤ γ2I,

which is the same as

(RRT )−1 ≤ MT (LT L)M ≤ γ2(RRT )−1. (3.2)

This is equivalent to the existence of diagonal P ∈ Rp×p, Q ∈ Rq×q with P > 0,
Q > 0 and

Q ≤ MT PM ≤ γ2Q. (3.3)
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To see this, first suppose that L ∈ Rp×p and R ∈ Rq×q are nonsingular and diagonal,
and (3.2) holds. Then (3.3) holds with P = LT L and Q = (RRT )−1. Conversely,
suppose that (3.3) holds for diagonal P ∈ Rp×p and Q ∈ Rq×q with P > 0, Q > 0.
Then, (3.2) holds for L = P 1/2 and R = Q−1/2.

Hence we can solve (3.1) by solving the GEVP:

minimize γ2

subject to P ∈ Rp×p and diagonal, P > 0,

Q ∈ Rq×q and diagonal, Q > 0

Q ≤ MT PM ≤ γ2Q

Remark: This result is readily extended to handle scaling matrices that have
a given block-diagonal structure, and more generally, the constraint that one or
more blocks are equal. Complex matrices are readily handled by substituting M ∗

(complex-conjugate transpose) for MT .

3.2 Minimizing Condition Number of a

Positive-Definite Matrix

A related problem is minimizing the condition number of a positive-definite matrix
M that depends affinely on the variable x, subject to the LMI constraint F (x) > 0.
This problem can be reformulated as the GEVP

minimize γ

subject to F (x) > 0, µ > 0, µI < M(x) < γµI
(3.4)

(the variables here are x, µ, and γ).
We can reformulate this GEVP as an EVP as follows. Suppose

M(x) = M0 +

m
∑

i=1

xiMi, F (x) = F0 +

m
∑

i=1

xiFi.

Defining the new variables ν = 1/µ, x̃ = x/µ, we can express (3.4) as the EVP with
variables ν = 1/µ, x̃ = x/µ and γ:

minimize γ

subject to νF0 +

m
∑

i=1

x̃iFi > 0, I < νM0 +

m
∑

i=1

x̃iMi < γI

3.3 Minimizing Norm by Scaling

The optimal diagonally scaled norm of a matrix M ∈ Cn×n is defined as

ν(M)
∆
= inf

{∥

∥DMD−1
∥

∥

∣

∣ D ∈ Cn×n is diagonal and nonsingular
}

,

where ‖M‖ is the norm (i.e., largest singular value) of the matrix M . We will show
that ν(M) can be computed by solving a GEVP.
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3.4 Rescaling a Matrix Positive-Definite 39

Note that

ν(M) = inf

{

γ

∣

∣

∣

∣

∣

(

DMD−1
)∗ (

DMD−1
)

< γ2I

for some diagonal, nonsingular D

}

= inf
{

γ
∣

∣ M∗D∗DM ≤ γ2D∗D for some diagonal, nonsingular D
}

= inf
{

γ
∣

∣ M∗PM ≤ γ2P for some diagonal P = P T > 0
}

.

Therefore ν(M) is the optimal value of the GEVP

minimize γ

subject to P > 0 and diagonal, M∗PM < γ2P

Remark: This result can be extended in many ways. For example, the more
general case of block-diagonal similarity-scaling, with equality constraints among
the blocks, is readily handled. As another example, we can solve the problem of
simultaneous optimal diagonal scaling of several matrices M1, . . . , Mp: To com-
pute

inf

{

max

i = 1, . . . , p

∥

∥DMiD
−1

∥

∥

∣

∣

∣

∣

∣

D ∈ Cn×n is diagonal

and nonsingular

}

,

we simply compute the optimal value of the GEVP

minimize γ

subject to P > 0 and diagonal, M∗
i PMi < γ2P, i = 1, . . . , p

Another closely related quantity, which plays an important role in the stability
analysis of linear systems with uncertain parameters, is

inf

{

γ

∣

∣

∣

∣

∣

P > 0, M∗PM + i(M∗G − GM) < γ2P,

P and G diagonal and real

}

, (3.5)

which can also be computed by solving a GEVP.

3.4 Rescaling a Matrix Positive-Definite

We are given a matrix M ∈ Cn×n, and ask whether there is a diagonal matrix D > 0
such that the Hermitian part of DM is positive-definite. This is true if and only if
the LMI

M∗D + DM > 0, D > 0 (3.6)

is feasible. So determining whether a matrix can be rescaled positive-definite is an
LMIP.

When this LMI is feasible, we can find a feasible scaling D with the smallest
condition number by solving the EVP

minimize µ

subject to D diagonal, M∗D + DM > 0, I < D < µ2I
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Remark: The LMI (3.6) can also be interpreted as the condition for the existence
of a diagonal quadratic Lyapunov function that proves stability of −M ; see the
Notes and References and §10.3.

3.5 Matrix Completion Problems

In a matrix completion problem some entries of a matrix are fixed and the others are
to be chosen so the resulting (“completed”) matrix has some property, e.g., is Toeplitz
and positive-definite. Many of these problems can be cast as LMIPs. The simplest
example is positive-definite completion: Some entries of a symmetric matrix are given,
and we are to complete the matrix to make it positive-definite. Evidently this is an
LMIP.

We can easily recover some known results about this problem. We can assume that
the diagonal entries are specified (otherwise we simply make them very large, i.e., elim-
inate them; see §2.6.1). Then the set of all positive-definite completions, if nonempty,
is bounded. Hence the associated LMI has an analytic center A⋆ (see §2.4.1). The
matrix A⋆ is characterized by TrA⋆−1B = 0 for every B = BT that has zero entries
where A has specified entries (see §2.4.2). Thus the matrix A⋆−1 has a zero entry
in every location corresponding to an unspecified entry in the original matrix, i.e.,
it has the same sparsity structure as the original matrix. Depending on the pattern
of specified entries, this condition can lead to an “analytic solution” of the problem.
But of course an arbitrary positive-definite completion problem is readily solved as an
LMIP.

Let us mention a few simple generalizations of this matrix completion problem
that have not been considered in the literature but are readily solved as LMIPs, and
might be useful in applications.

Suppose that for each entry of the matrix we specify an upper and lower bound,
in other words, we consider an “interval matrix”. For entries that are completely
specified, the lower and upper bound coincide; for entries that are completely free
the lower bound is −∞ and the upper bound is +∞. The problem of completing
the matrix, subject to the bounds on each entry, to make it positive-definite (or a
contraction, i.e., have norm less than one) is readily formulated as an LMIP.

As another example, suppose we are given a set of matrices that have some given
sparsity pattern. We want to determine a matrix with the complementary sparsity
pattern that, when added to each of the given matrices, results in a positive-definite
(or contractive, etc.) matrix. We might call this the “simultaneous matrix completion
problem” since we seek a completion that serves for multiple original matrices. This
problem is also readily cast as an LMIP.

As a more specific example, suppose we are given upper and lower bounds for
some of the correlation coefficients of a stationary time-series, and must determine
some complementary correlation coefficients that are consistent with them. In other
words, we have a Toeplitz matrix with some entries within given intervals, while the
others are completely free (unspecified). We must determine these free entries so that
the Toeplitz matrix is positive-definite, for any choice of the specified elements in the
intervals. This is an LMIP.
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3.6 Quadratic Approximation of a Polytopic Norm 41

3.6 Quadratic Approximation of a Polytopic Norm

Consider a piecewise linear norm ‖ · ‖pl on Rn defined by

‖z‖pl
∆
= max

i=1,...,p

∣

∣aT
i z

∣

∣ ,

where ai ∈ Rn for i = 1, . . . , p.

For any P > 0, the quadratic norm defined by ‖z‖P
∆
=

√
zT Pz = ‖P 1/2z‖ satisfies

1/
√

α‖z‖P ≤ ‖z‖pl ≤
√

α‖z‖P for all z,

for some constant α ≥ 1. Thus, the quadratic norm
√

zT Pz approximates ‖z‖pl within
a factor of α. We will show that the problem of finding P that minimizes α, i.e., the
problem of determining the optimal quadratic norm approximation of ‖ · ‖pl, is an
EVP.

Let v1, . . . , vL be the vertices of the unit ball Bpl of ‖ · ‖pl, so that

Bpl
∆
= {z | ‖z‖pl ≤ 1} = Co {v1, . . . , vL}

and let BP denote the unit ball of ‖ · ‖P . Then

1/
√

α‖z‖P ≤ ‖z‖pl ≤
√

α‖z‖P (3.7)

is equivalent to

1/
√

αBP ⊆ Bpl ⊆
√

αBP .

The first inclusion, 1/
√

αBP ⊆ Bpl, is equivalent to

aT
i P−1ai ≤ α, i = 1, . . . , p,

and the second, Bpl ⊆
√

αBP , is equivalent to

vT
i Pvi ≤ α, i = 1, . . . , L.

Therefore we can minimize α such that (3.7) holds for some P > 0 by solving the EVP

minimize α

subject to vT
i Pvi ≤ α, i = 1, . . . , L,

[

P ai

aT
i α

]

≥ 0, i = 1, . . . , p

Remark: The number of vertices L of the unit ball of ‖ · ‖pl can grow exponen-
tially in p and n. Therefore the result is uninteresting from the point of view of
computational complexity and of limited practical use except for problems with
low dimensions.
The optimal factor α in this problem never exceeds

√
n. Indeed, by computing

the maximum volume ellipsoid that lies inside the unit ball of ‖ · ‖pl, (which does
not require us to find the vertices vi, i = 1, . . . , L), we can find (in polynomial-
time) a norm for which α is less than

√
n. See the Notes and References for more

details.
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3.7 Ellipsoidal Approximation

The problem of approximating some subset of Rn with an ellipsoid arises in many
fields and has a long history; see the Notes and References. To pose such a problem
precisely we need to know how the subset is described, whether we seek an inner or
outer approximation, and how the approximation will be judged (volume, major or
minor semi-axis, etc.).

In some cases the problem can be cast as a CP or an EVP, and hence solved
exactly. As an example consider the problem of finding the ellipsoid centered around
the origin of smallest volume that contains a polytope described by its vertices. We
saw in §2.2.4 that this problem can be cast as a CP.

In other cases, we can compute an approximation of the optimal ellipsoid by
solving a CP or an EVP. In some of these cases, the problem is known to be NP-hard,
so it is unlikely that the problem can be reduced (polynomially) to an LMI problem.
It also suggests that the approximations obtained by solving a CP or EVP will not be
good for all instances of problem data, although the approximations may be good on
“typical” problems, and hence of some use in practice.

As an example consider the problem of finding the ellipsoid of smallest volume
that contains a polytope described by a set of linear inequalities, i.e., { x | aT

i x ≤
bi, i = 1, . . . , p }. (This is the same problem as described above, but with a different
description of the polytope.) This problem is NP-hard. Indeed, consider the problem
of simply verifying that a given, fixed ellipsoid contains a polytope described by a
set of linear inequalities. This problem is equivalent to the general concave quadratic
programming problem, which is NP-complete.

In this section we consider subsets formed from ellipsoids E1, . . . , Ep in various
ways: union, intersection, and addition. We approximate these sets by an ellipsoid E0.

We describe an ellipsoid E in two different ways. The first description uses convex
quadratic functions:

E = {x | T (x) ≤ 0, } , T (x) = xT Ax + 2xT b + c, (3.8)

where A = AT > 0 and bT A−1b − c > 0 (which ensures that E is nonempty and does
not reduce to a single point). Note that this description is homogeneous, i.e., we can
scale A, b and c by any positive factor without affecting E .

The volume of E is given by

vol(E)2 = β det
(

(bT A−1b − c)A−1
)

where β is a constant that depends only on the dimension of x, i.e., n. The diameter
of E (i.e., twice the maximum semi-axis length) is

2
√

(bT A−1b − c)λmax(A−1).

We will also describe an ellipsoid as the image of the unit ball under an affine
mapping with symmetric positive-definite matrix:

E =
{

x
∣

∣ (x − xc)
T P−2(x − xc) ≤ 1

}

= { Pz + xc | ‖z‖ ≤ 1 } , (3.9)

where P = P T > 0. (This representation is unique, i.e., P and xc are uniquely
determined by the ellipsoid E .) The volume of E is then proportional to detP , and
its diameter is 2λmax(P ).

Each of these descriptions of E is readily converted into the other. Given a repre-
sentation (3.8) (i.e., A, b, and c) we form the representation (3.9) with

P =
√

bT A−1b − c A−1/2, xc = −A−1b.
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Given the representation (3.9), we can form a representation (3.8) of E with

A = P−2, b = −P−2xc, c = xT
c P−2xc − 1.

(This forms one representation of E ; we can form every representation of E by scaling
these A, b, c by positive factors.)

3.7.1 Outer approximation of union of ellipsoids

We seek a small ellipsoid E0 that covers the union of ellipsoids E1, . . . , Ep (or equiva-
lently, the convex hull of the union, i.e., Co

⋃p
i=1 Ei). We will describe these ellipsoids

via the associated quadratic functions Ti(x) = xT Aix + 2xT bi + ci. We have

E0 ⊇
p

⋃

i=1

Ei (3.10)

if and only if Ei ⊆ E0 for i = 1, . . . , p. This is true if and only if, for each i, every x
such that Ti(x) ≤ 0 satisfies T0(x) ≤ 0. By the S-procedure, this is true if and only if
there exist nonnegative scalars τ1, . . . , τp such that

for every x, T0(x) − τiTi(x) ≤ 0, i = 1, . . . , p,

or, equivalently, such that
[

A0 b0

bT
0 c0

]

− τi

[

Ai bi

bT
i ci

]

≤ 0, i = 1, . . . , p.

Since our representation of E0 is homogeneous, we will now normalize A0, b0 and c0

in a convenient way: such that bT
0 A−1

0 b0 − c0 = 1. In other words we set

c0 = bT
0 A−1

0 b0 − 1 (3.11)

and parametrize E0 by A0 and b0 alone. Thus our condition becomes:
[

A0 b0

bT
0 bT

0 A−1
0 b0 − 1

]

− τi

[

Ai bi

bT
i ci

]

≤ 0, i = 1, . . . , p.

Using Schur complements, we obtain the equivalent LMI







A0 b0 0

bT
0 −1 bT

0

0 b0 −A0






− τi







Ai bi 0

bT
i ci 0

0 0 0






≤ 0, i = 1, . . . , p, (3.12)

with variables A0, b0, and τ1, . . . , τp. To summarize, the condition (3.10) is equivalent
to the existence of nonnegative τ1, . . . , τp such that (3.12) holds. (Since A0 > 0, it
follows that the τi must, in fact, be positive.)

With the normalization (3.11), the volume of E0 is proportional to
√

detA−1
0 .

Thus we can find the smallest volume ellipsoid containing the union of ellipsoids E1,
. . . , Ep by solving the CP (with variables A0, b0, and τ1, . . . , τp)

minimize log detA−1
0

subject to A0 > 0, τ1 ≥ 0, . . . , τp ≥ 0, (3.12)
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This ellipsoid is called the Löwner–John ellipsoid for
⋃p

i=1 Ei, and satisfies several
nice properties (e.g., affine invariance, certain bounds on how well it approximates
Co

⋃

Ei); see the Notes and References.
We can find the ellipsoid (or equivalently, sphere) of smallest diameter that con-

tains
⋃

Ei by minimizing λmax(A
−1
0 ) subject to the constraints of the previous CP,

which is equivalent to solving the EVP

maximize λ

subject to A0 > λI, τ1 ≥ 0, . . . , τp ≥ 0, (3.12)

The optimal diameter is 2/
√

λopt, where λopt is an optimal value of the EVP above.

3.7.2 Outer approximation of the intersection of ellipsoids

Simply verifying that

E0 ⊇
p

⋂

i=1

Ei (3.13)

holds, given E0, E1, . . . , Ep, is NP-complete, so we do not expect to recast it as one
of our LMI problems. A fortiori, we do not expect to cast the problem of finding the
smallest volume ellipsoid covering the intersection of some ellipsoids as a CP.

We will describe three ways that we can compute suboptimal ellipsoids for this
problem by solving CPs. The first method uses the S-procedure to derive an LMI
that is a sufficient condition for (3.13) to hold.

Once again we normalize our representation of E0 so that (3.11) holds. From the
S-procedure we obtain the condition: there exist positive scalars τ1, . . . , τp such that

[

A0 b0

bT
0 bT

0 A−1
0 b0 − 1

]

−
p

∑

i=1

τi

[

Ai bi

bT
i ci

]

≤ 0,

which can be written as the LMI (in variables A0, b0, and τ1, . . . , τp):






A0 b0 0

bT
0 −1 bT

0

0 b0 −A0






−

p
∑

i=1

τi







Ai bi 0

bT
i ci 0

0 0 0






≤ 0. (3.14)

This LMI is sufficient but not necessary for (3.13) to hold, i.e., it characterizes some
but not all of the ellipsoids that cover the intersection of E1, . . . , Ep. We can find the
best such outer approximation (i.e., the one of smallest volume) by solving the CP
(with variables A0, b0, and τ1, . . . , τp)

minimize log detA−1
0

subject to A0 > 0, τ1 ≥ 0, . . . , τp ≥ 0, (3.14)
(3.15)

Remark: The intersection
⋂p

i=1
Ei is empty or a single point if and only if there

exist nonnegative τ1, . . . , τp, not all zero, such that

p
∑

i=1

τi

[

Ai bi

bT
i ci

]

≥ 0.

In this case (3.15) is unbounded below.
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Another method that can be used to find a suboptimal solution for the problem of
determining the minimum volume ellipsoid that contains the intersection of E1, . . . , Ep

is to first compute the maximum volume ellipsoid that is contained in the intersection,
which can be cast as a CP (see the next section). If this ellipsoid is scaled by a factor
of n about it center then it is guaranteed to contain the intersection. See the Notes
and References for more discussion.

Yet another method for producing a suboptimal solution is based on the idea of
the analytic center (see §2.4.1). Suppose that E1, . . . , Ep are given in the form (3.9),
with x1, . . . , xp and P1, . . . , Pp. The LMI

F (x) = diag

([

I P−1
1 (x − x1)

(x − x1)
T P−1

1 1

]

, . . .

. . . ,

[

I P−1
p (x − xp)

(x − xp)
T P−1

p 1

])

> 0

in the variable x has as feasible set the interior of
⋂p

i=1 Ei. We assume now that the
intersection

⋂p
i=1 Ei has nonempty interior (i.e., is nonempty and not a single point).

Let x⋆ denote its analytic center, i.e.,

x⋆ = arg min

F (x) > 0

log detF (x)−1

and let H denote the Hessian of log detF (x)−1 at x⋆. Then it can be shown that

E0
∆
=

{

x
∣

∣ (x − x⋆)T H(x − x⋆) ≤ 1
}

⊆
p

⋂

i=1

Ei.

In fact we can give a bound on how poorly E0 approximates the intersection. It can
be shown that

{

x
∣

∣ (x − x⋆)T H(x − x⋆) ≤ (3p + 1)2
}

⊇
p

⋂

i=1

Ei.

Thus, when E0 is enlarged by a factor of 3p + 1, it covers
⋂p

i=1 Ei. See the Notes and
References for more discussion of this.

3.7.3 Inner approximation of the intersection of ellipsoids

The ellipsoid E0 is contained in the intersection of the ellipsoids E1, . . . , Ep if and only
if for every x satisfying

(x − x0)
T P−2

0 (x − x0) ≤ 1,

we have

(x − xi)
T P−2

i (x − xi) ≤ 1, i = 1, . . . , p.

Using the S-procedure, this is equivalent to the existence of nonnegative λ1, . . . ,λp

satisfying

for every x, (x − xi)
T P−2

i (x − xi)

−λi(x − x0)
T P−2

0 (x − x0) ≤ 1 − λi, i = 1, . . . , p.
(3.16)
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We prove in the Notes and References section that (3.16) is equivalent to







−P 2
i xi − x0 P0

(xi − x0)
T λi − 1 0

P0 0 −λiI






≤ 0, i = 1, . . . , p. (3.17)

Therefore, we obtain the largest volume ellipsoid contained in the intersection of
the ellipsoids E1, . . . , Ep by solving the CP (with variables P0, x0, λ1, . . . ,λp)

minimize log detP−1
0

subject to P0 > 0, λ1 ≥ 0, . . . ,λp ≥ 0, (3.17)

Among the ellipsoids contained in the intersection of E1, . . . , Ep, we can find one
that maximizes the smallest semi-axis by solving

minimize λ

subject to λI > P0 > 0, λ1 ≥ 0, . . . ,λp ≥ 0, (3.17)

Equivalently, this yields the sphere of largest diameter contained in the intersection.

3.7.4 Outer approximation of the sum of ellipsoids

The sum of the ellipsoids E1, . . . , Ep is defined as

A
∆
= {x1 + · · · + xp | x1 ∈ E1, . . . , xp ∈ Ep .}

We seek a small ellipsoid E0 containing A.
The ellipsoid E0 contains A if and only if for every x1, . . . , xp such that Ti(xi) ≤ 0,

i = 1, . . . , p, we have

T0

(

p
∑

i=1

xi

)

≤ 0.

By application of the S-procedure, this condition is true if

there exist τi ≥ 0, i = 1, . . . , p such that

for every xi, i = 1, . . . , p, T0

(

p
∑

i=1

xi

)

−
p

∑

i=1

τiTi(xi) ≤ 0.
(3.18)

Once again we normalize our representation of E0 so that (3.11) holds. Let x
denote the vector made by stacking x1, . . . , xp, i.e.,

x =









x1

...

xp









.

Then both T0 (
∑p

i=1 xi) and
∑p

i=1 τiTi(xi) are quadratic functions of x. Indeed, let
Ei denote the matrix such that xi = Eix, and define

E0 =

p
∑

i=1

Ei, Ãi = ET
i AiEi, b̃i = ET

i bi, i = 0, . . . , p.
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With this notation, we see that condition (3.18) is equivalent to

there exist τi ≥ 0, i = 1, . . . , p such that

[

Ã0 b̃0

b̃T
0 bT

0 A−1
0 b0 − 1

]

−
p

∑

i=1

τi

[

Ãi b̃i

b̃T
i ci

]

≤ 0.

(3.19)

This condition is readily written as an LMI in variables A0, b0, τ1, . . . , τp using Schur
complements:







Ã0 b̃0 0

b̃T
0 −1 bT

0

0 b0 −A0






−

p
∑

i=1

τi







Ãi b̃i 0

b̃T
i ci 0

0 0 0






≤ 0. (3.20)

Therefore, we compute the minimum volume ellipsoid, proven to contain the
sum of E1, . . . , Ep via the S-procedure, by minimizing log detA−1

0 subject to A0 > 0
and (3.20). This is a CP.

Notes and References

Matrix scaling problems

The problem of scaling a matrix to reduce its condition number is considered in Forsythe
and Straus [FS55] (who describe conditions for the scaling T to be optimal in terms of a
new variable R = T−∗T−1, just as we do). Other references on the problem of improving
the condition number of a matrix via diagonal or block-diagonal scaling are [Bau63, GV74,
Sha85, Wat91]. We should point out that the results of §3.1 are not practically useful in
numerical analysis, since the cost of computing the optimal scalings (via the GEVP) exceeds
the cost of solving the problem for which the scalings are required (e.g., solving a set of linear
equations).

A special case of the problem of minimizing the condition number of a positive-definite matrix
is considered in [EHM92, EHM93]. Finally, Khachiyan and Kalantari ([KK92]) consider the
problem of diagonally scaling a positive semidefinite matrix via interior-point methods and
give a complete complexity analysis for the problem.

The problem of similarity-scaling a matrix to minimize its norm appears often in control
applications (see for example [Doy82, Saf82]). A recent survey article on this topic is by
Packard and Doyle [PD93]. A related quantity is the one-sided multivariable stability margin,
described in [TSC92]; the problem of computing this quantity can be easily transformed
into a GEVP. The quantity (3.5), used in the analysis of linear systems with parameter
uncertainties, was introduced by Fan, Tits and Doyle in [FTD91] (see also [BFBE92]). Some
closely related quantities were considered in [SC93, SL93a, CS92b]; see also Chapter 8 in
this book, where a different approach to the same problem and its extensions is considered.
We also mention some other related quantities found in the articles by Kouvaritakis and
Latchman [KL85a, KL85b, LN92], and Rotea and Prasanth [RP93, RP94], which can be
computed via GEVPs.

Diagonal quadratic Lyapunov functions

The problem of rescaling a matrix M with a diagonal matrix D > 0 such that its Her-
mitian part is positive-definite is considered in the articles by Barker et al. [BBP78] and
Khalil [Kha82]. The problem is the same as determining the existence of diagonal quadratic
Lyapunov function for a given linear system; see [Ger85, Hu87, BY89, Kra91]. In [KB93],
Kaszkurewicz and Bhaya give an excellent survey on the topic of diagonal Lyapunov func-
tions, including many references and examples from mathematical ecology, power systems,
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48 Chapter 3 Some Matrix Problems

and digital filter stability. Diagonal Lyapunov functions arise in the analysis of positive
orthant stability; see §10.3.

Matrix completion problems

Matrix completions problems are addressed in the article of Dym and Gohberg [DG81], in
which the authors examine conditions for the existence of completions of band matrices such
that the inverse is also a band matrix. In [GJSW84], their results are extended to a more
general class of partially specified matrices. In both papers the “sparsity pattern” result
mentioned in §3.5 appears. In [BJL89], Barrett et al. provide an algorithm for finding the
completion maximizing the determinant of the completed matrix (i.e., the analytic center A!

mentioned in §3.5). In [HW93], Helton and Woerdeman consider the problem of minimum
norm extension of Hankel matrices. In [GFS93], Grigoriadis, Frazho and Skelton consider
the problem of approximating a given symmetric matrix by a Toeplitz matrix and propose a
solution to this problem via convex optimization. See also [OSA93].

Dancis ([Dan92, Dan93] and Johnson and Lunquist [JL92]) study completion problems in
which the rank or inertia of the completed matrix is specified. As far as we know, such
problems cannot be cast as LMIPs.

A classic paper on the contractive completion problem (i.e., completing a matrix so its norm
is less than one) is Davis, Kahan, and Weinberger in [DKW82], in which an analytic solution
is given for contractive completion problems with a special block form. The result in this
paper is closely related to (and also more general than) the matrix elimination procedure
given in §2.6.2. See [Woe90, NW92, BW92] for more references on contractive completion
problems.

Maximum volume ellipsoid contained in a symmetric polytope

In this section, we establish some properties of the maximum volume ellipsoid contained in
a symmetric polytope described as:

P =
{

z
∣

∣

∣

∣aT
i z

∣

∣ ≤ 1, i = 1, . . . , p
}

.

Consider an ellipsoid described by E = {x
∣

∣ xT Q−1x ≤ 1} where Q = QT > 0. Its volume is

proportional to
√

det Q. The condition E ⊆ P can be expressed aT
i Qai ≤ 1 for i = 1, . . . , p.

Hence we obtain the maximum volume ellipsoid contained in P by solving the CP

minimize log det Q−1

subject to Q > 0, aT
i Qai ≤ 1, i = 1, . . . , p

Suppose now that Q is optimal. From the standard optimality conditions, there are nonneg-
ative λ1, . . . , λp such that

Q−1 =

p
∑

i=1

λi

aT
i Qai

aia
T
i ,

and λi = 0 if aT
i Qai = 1. Multiplying by Q1/2 on the left and right and taking the trace

yields
∑p

i=1
λi = n.

For any x ∈ Rn, we have

xT Q−1x =

p
∑

i=1

λi
(xT ai)

2

aT
i Qai

.
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For each i, either λi = 0 or aT
i Qai = 1, so we conclude

xT Q−1x =

p
∑

i=1

λi(x
T ai)

2.

Suppose now that x belongs to P. Then

xT Q−1x ≤
p

∑

i=1

λi = n.

Equivalently, P ⊆ √
nE , so we have:

E ⊆ P ⊆
√

nE ,

i.e., the maximum volume ellipsoid contained in P approximates P within the scale factor√
n.

Ellipsoidal approximation

The problem of computing the minimum volume ellipsoid in Rn that contains a given convex
set was considered by John and Löwner, who showed that the optimal ellipsoid, when shrunk
about its center by a factor of n, is contained in the given set (see [Joh85, GLS88]). Such
ellipsoids are called Löwner–John ellipsoids. In the case of symmetric sets, the factor n can
be improved to

√
n (using an argument similar to the one in the Notes and References section

above). A closely related problem is finding the maximum volume ellipsoid contained in a
convex set. Similar results hold for these ellipsoids.

Special techniques have been developed to compute smallest spheres and ellipsoids containing
a given set of points in spaces of low dimension; see e.g., Preparata and Shamos [PS85, p.255]
or Post [Pos84].

Minimum volume ellipsoids containing a given set arise often in control theory. Schweppe
and Schlaepfer [Sch68, SS72] use ellipsoids containing the sum and the intersection of two
given ellipsoids in the problem of state estimation with norm-bounded disturbances. See also
the articles by Bertsekas and Rhodes [BR71], Chernousko [Che80a, Che80b, Che80c] and
Kahan [Kah68]. In [RB92], ellipsoidal approximations of robot linkages and workspace are
used to rapidly detect or avoid collisions.

Minimum volume ellipsoids have been widely used in system identification; see the ar-
ticles by Fogel [Fog79], Fogel and Huang [FH82], Deller [Del89], Belforte, Bona and
Cerone [BBC90], Lau, Kosut and Boyd [LKB90, KLB90, KLB92], Cheung, Yurkovich
and Passino [CYP93] and the book by Norton [Nor86].

In the ellipsoid algorithm we encountered the minimum volume ellipsoid that contains a given
half-ellipsoid; the references on the ellipsoid algorithm describe various extensions.

Efficient interior-point methods for computing minimum volume outer and maximum volume
inner ellipsoids for various sets are described in Nesterov and Nemirovskii [NN94]. See
also [KT93].

Ellipsoidal approximation via analytic centers

Ellipsoidal approximations via barrier functions arise in the theory of interior-point algo-
rithms, and can be traced back to Dikin [Dik67] and Karmarkar [Kar84] for polytopes
described by a set of linear inequalities. For the case of more general LMIs, see Nesterov and
Nemirovskii [NN94], Boyd and El Ghaoui [BE93], and Jarre [Jar93c].

These approximations have the property that they are easy to compute, and come with
provable bounds on how suboptimal they are. These bounds have the following form: if
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50 Chapter 3 Some Matrix Problems

the inner ellipsoid is stretched about its center by some factor α (which depends only on
the dimension of the space, the type and size of the constraints) then the resulting ellipsoid
covers the feasible set. The papers cited above give different values of α; one may be better
than another, depending on the number and type of constraints.

In contrast, the maximum volume inner ellipsoid, i.e., the Löwner–John ellipsoid, is more dif-
ficult to compute (still polynomial, however) but the factor α depends only on the dimension
of the space and not on the type or number of constraints, and is always smaller than the
ones obtained via barrier functions. So an ellipsoidal approximation from a barrier function
can serve as a “cheap substitute” for the Löwner–John ellipsoid.

Proof of lemma in §3.7.3

We prove that the statement

for every x, (x − x1)
T P−2

1 (x − x1) − λ(x − x0)
T P−2

0 (x − x0) ≤ 1 − λ (3.21)

where P0, P1 are positive matrices, λ ≥ 0, is equivalent to the matrix inequality







−P 2
1 x1 − x0 P0

(x1 − x0)
T λ − 1 0

P0 0 −λI






≤ 0. (3.22)

The maximum over x of

(x − x1)
T P−2

1 (x − x1) − λ(x − x0)
T P−2

0 (x − x0) (3.23)

is finite if and only if P 2
0 −λP 2

1 ≤ 0 (which implies that λ > 0) and there exists x∗ satisfying

P−2
1 (x∗ − x1) = λP−2

0 (x∗ − x0), (3.24)

or, equivalently, satisfying

(P 2
0 /λ − P 2

1 )P−2
1 (x∗ − x1) = x1 − x0. (3.25)

In this case, x∗ is a maximizer of (3.23). Using (3.24), condition (3.21) implies

(x∗ − x1)
T P−2

1 (P 2
1 − P 2

0 /λ)P−2
1 (x∗ − x1) ≤ 1 − λ.

Using Schur complements, this last condition is equivalent to

[

λ − 1 (x∗ − x1)
T P−2

1 (P 2
0 /λ − P 2

1 )

(P 2
0 /λ − P 2

1 )P−2
1 (x∗ − x1) P 2

0 /λ − P 2
1

]

≤ 0.

Using (3.25), this implies

[

λ − 1 (x1 − x0)
T

x1 − x0 P 2
0 /λ − P 2

1

]

≤ 0,

which is equivalent to (3.22). Conversely, it is easy to show that (3.22) implies (3.21).
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Chapter 4

Linear Differential Inclusions

4.1 Differential Inclusions

A differential inclusion (DI) is described by:

ẋ ∈ F (x(t), t), x(0) = x0, (4.1)

where F is a set-valued function on Rn×R+. Any x : R+ → Rn that satisfies (4.1) is
called a solution or trajectory of the DI (4.1). Of course, there can be many solutions
of the DI (4.1). Our goal is to establish that various properties are satisfied by all
solutions of a given DI. For example, we might show that every trajectory of a given
DI converges to zero as t → ∞.

By a standard result called the Relaxation Theorem, we may as well assume
F (x, t) is a convex set for every x and t. The DI given by

ẋ ∈ CoF (x(t), t), x(0) = x0 (4.2)

is called the relaxed version of the DI (4.1). Since CoF (x(t), t) ⊇ F (x(t), t), every
trajectory of the DI (4.1) is also a trajectory of relaxed DI (4.2). Very roughly speak-
ing, the Relaxation Theorem states that for many purposes the converse is true. (See
the References for precise statements.) As a specific and simple example, it can be
shown that for every DI we encounter in this book, the reachable or attainable sets of
the DI and its relaxed version coincide, i.e., for every T ≥ 0

{x(T ) | x satisfies (4.1)} = {x(T ) | x satisfies (4.2)} .

In fact we will not need the Relaxation Theorem, or rather, we will always get it
“for free”—every result we establish in the next two chapters extends immediately to
the relaxed version of the problem. The reason is that when a quadratic Lyapunov
function is used to establish some property for the DI (4.1), then the same Lyapunov
function establishes the property for the relaxed DI (4.2).

4.1.1 Linear differential inclusions

A linear differential inclusion (LDI) is given by

ẋ ∈ Ωx, x(0) = x0, (4.3)

where Ω is a subset of Rn×n. We can interpret the LDI (4.3) as describing a family
of linear time-varying systems. Every trajectory of the LDI satisfies

ẋ = A(t)x, x(0) = x0, (4.4)
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52 Chapter 4 Linear Differential Inclusions

for some A : R+ → Ω. Conversely, for any A : R+ → Ω, the solution of (4.4) is a
trajectory of the LDI (4.3). In the language of control theory, the LDI (4.3) might be
described as an “uncertain time-varying linear system,” with the set Ω describing the
“uncertainty” in the matrix A(t).

4.1.2 A generalization to systems

We will encounter a generalization of the LDI described above to linear systems with
inputs and outputs. We will consider a system described by

ẋ = A(t)x + Bu(t)u + Bw(t)w, x(0) = x0,

z = Cz(t)x + Dzu(t)u + Dzw(t)w
(4.5)

where x : R+ → Rn, u : R+ → Rnu , w : R+ → Rnw , z : R+ → Rnz . x is referred
to as the state, u is the control input, w is the exogenous input and z is the output.
The matrices in (4.5) satisfy

[

A(t) Bu(t) Bw(t)

Cz(t) Dzu(t) Dzw(t)

]

∈ Ω. (4.6)

for all t ≥ 0, where Ω ⊆ R(n+nz)×(n+nu+nw). We will be more specific about the form
of Ω shortly.

In some applications we can have one or more of the integers nu, nw, and nz equal
to zero, which means that the corresponding variable is not used. For example, the
LDI ẋ ∈ Ωx results when nu = nw = nz = 0. In order not to introduce another term
to describe the set of all solutions of (4.5) and (4.6), we will call (4.5) and (4.6) a
system described by LDIs or simply, an LDI.

4.2 Some Specific LDIs

We now describe some specific families of LDIs that we will encounter in the next two
chapters.

4.2.1 Linear time-invariant systems

When Ω is a singleton, the LDI reduces to the linear time-invariant (LTI) system

ẋ = Ax + Buu + Bww, x(0) = x0,

z = Czx + Dzuu + Dzww,

where

Ω =

{[

A Bu Bw

Cz Dzu Dzw

]}

. (4.7)

Although most of the results of Chapters 5–7 are well-known for LTI systems, some
are new; we will discuss these in detail when we encounter them.

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.
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4.2.2 Polytopic LDIs

When Ω is a polytope, we will call the LDI a polytopic LDI or PLDI. Most of our
results require that Ω be described by a list of its vertices, i.e., in the form

Co

{[

A1 Bu,1 Bw,1

Cz,1 Dzu,1 Dzw,1

]

, . . . ,

[

AL Bu,L Bw,L

Cz,L Dzu,L Dzw,L

]}

. (4.8)

where the matrices (4.8) are given.
If instead Ω is described by a set of l linear inequalities, then the number of

vertices, i.e., L, will generally increase very rapidly (exponentially) with l. Therefore
results for PLDIs that require the description (4.8) are of limited interest for problems
in which Ω is described in terms of linear inequalities.

4.2.3 Norm-bound LDIs

Another special class of LDIs is the class of norm-bound LDIs (NLDIs), described by

ẋ = Ax + Bpp + Buu + Bww, x(0) = x0,

q = Cqx + Dqpp + Dquu + Dqww,

z = Czx + Dzpp + Dzuu + Dzww,

p = ∆(t)q, ‖∆(t)‖ ≤ 1.

(4.9)

where ∆ : R+ → Rnp×nq , with ‖∆(t)‖ ≤ 1 for all t. We will often rewrite the
condition p = ∆(t)q, ‖∆‖ ≤ 1 in the equivalent form pT p ≤ qT q.

For the NLDI (4.9) the set Ω has the form

Ω =
{

Ã + B̃∆ (I − Dqp∆)
−1

C̃
∣

∣

∣
‖∆‖ ≤ 1

}

,

where

Ã =

[

A Bu Bw

Cz Dzu Dzw

]

, B̃ =

[

Bp

Dzp

]

, C̃ =
[

Cq Dqu Dqw

]

.(4.10)

Thus, Ω is the image of the (matrix norm) unit ball under a (matrix) linear-fractional
mapping. Note that Ω is convex. The set Ω is well defined if and only if DT

qpDqp < I,
in which case we say that the NLDI is well-posed . In the sequel we will consider only
well-posed NLDIs.

The equations (4.9) can be interpreted as an LTI system with inputs u, w, output
z, and a time-varying feedback matrix ∆(t) connected between q and p.

Remark: In the sequel, we often drop some terms in (4.9): Dqw and Dzp will
always be zero, and very often Dqp, Dzw, Dzu and Dqu will be assumed zero.
These assumptions greatly simplify the formulas and treatment. It is not hard to
work out the corresponding formulas and results for the more general case.
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54 Chapter 4 Linear Differential Inclusions

4.2.4 Diagonal norm-bound LDIs

A useful variation on the NLDI is the diagonal norm-bound LDI (DNLDI), in which
we further restrict the matrix ∆ to be diagonal. It is given by

ẋ = Ax + Bpp + Buu + Bww, x(0) = x0,

q = Cqx + Dqpp + Dquu + Dqww,

z = Czx + Dzpp + Dzuu + Dzww,

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , nq.

(4.11)

We will often express the condition pi = δi(t)qi, |δi(t)| ≤ 1 in the simpler form
|pi| ≤ |qi|. Here we have the componentwise inequalities |pi| ≤ |qi| instead of the single
inequality ‖p‖ ≤ ‖q‖ appearing in the NLDI. In the language of control theory, we
describe a DNLDI as a linear system with nq scalar, uncertain, time-varying feedback
gains, each of which is bounded by one. The DNLDI is described by the set

Ω =
{

Ã + B̃∆ (I − Dqp∆)
−1

C̃
∣

∣

∣
‖∆‖ ≤ 1, ∆ diagonal

}

, (4.12)

where Ã, B̃ and C̃ are given by (4.10).
The condition of well-posedness for a DNLDI is that I−Dqp∆ should be invertible

for all diagonal ∆ with ‖∆‖ ≤ 1. This is equivalent to det(I − Dqp∆) > 0 when ∆

takes on its 2nq extreme values, i.e., |∆ii| = 1. Although this condition is explicit, the
number of inequalities grows exponentially with nq. In fact, determining whether a
DNLDI is well-posed is NP-hard; see the Notes and References.

It turns out that for a DNLDI, CoΩ is a polytope. In fact,

CoΩ = Co
{

Ã + B̃∆ (I − Dqp∆)
−1

C̃
∣

∣

∣ ∆ diagonal, |∆ii| = 1
}

,

i.e., the vertices of CoΩ are among 2nq images of the extreme points of ∆ under the
matrix linear-fractional mapping. Therefore a DNLDI can be described as a PLDI, at
least in principle. But there is a very important difference between the two descriptions
of the same LDI: the number of vertices required to give the PLDI representation of
an LDI increases exponentially with nq (see the Notes and References of Chapter 5
for more discussion).

Remark: More elaborate variations on the NLDI are sometimes useful. Doyle
introduced the idea of “structured feedback,” in which the matrix ∆ is restricted
to have a given block-diagonal form, and in addition, there can be equality con-
straints among some of the blocks. When we have a single block, we have an
NLDI; when it is diagonal (with no equality constraints), we have a DNLDI.
Most of the results we present for NLDIs and DNLDIs can be extended to these
more general types of LDIs.

4.3 Nonlinear System Analysis via LDIs

Much of our motivation for studying LDIs comes from the fact that we can use them
to establish various properties of nonlinear, time-varying systems using a technique
known as “global linearization”. The idea is implicit in the work on absolute stability
originating in the Soviet Union in the 1940s.

Consider the system

ẋ = f(x, u,w, t), z = g(x, u,w, t). (4.13)
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Suppose that for each x, u, w, and t there is a matrix G(x, u,w, t) ∈ Ω such that

[

f(x, u,w, t)

g(x, u,w, t)

]

= G(x, u,w, t)







x

u

w






(4.14)

where Ω ⊆ R(n+nz)×(n+nu+nw). Then of course every trajectory of the nonlinear
system (4.13) is also a trajectory of the LDI defined by Ω. If we can prove that every
trajectory of the LDI defined by Ω has some property (e.g., converges to zero), then
a fortiori we have proved that every trajectory of the nonlinear system (4.13) has this
property.

4.3.1 A derivative condition

Conditions that guarantee the existence of such a G are f(0, 0, 0, 0) = 0, g(0, 0, 0, 0) =
0, and









∂f

∂x

∂f

∂u

∂f

∂w

∂g

∂x

∂g

∂u

∂g

∂w









∈ Ω for all x, u, w, t. (4.15)

In fact we can make a stronger statement that links the difference between a pair
of trajectories of the nonlinear system and the trajectories of the LDI given by Ω.
Suppose we have (4.15) but not necessarily f(0, 0, 0, 0) = 0, g(0, 0, 0, 0) = 0. Then for
any pair of trajectories (x,w, z) and (x̃, w̃, z̃) we have

[

ẋ − ˙̃x

z − z̃

]

∈ CoΩ







x − x̃

u − ũ

w − w̃






,

i.e., (x − x̃, w − w̃, z − z̃) is a trajectory of the LDI given by CoΩ.
These results follow from a simple extension of the mean-value theorem: if φ :

Rn → Rn satisfies

∂φ

∂x
∈ Ω

throughout Rn, then for any x and x̃ we have

φ(x) − φ(x̃) ∈ CoΩ(x − x̃). (4.16)

To see this, let c ∈ Rn. By the mean-value theorem we have

cT (φ(x) − φ(x̃)) = cT ∂φ

∂x
(ζ)(x − x̃)

for some ζ that lies on the line segment between x and x̃. Since by assumption

∂φ

∂x
(ζ) ∈ Ω,

we conclude that

cT (φ(x) − φ(x̃)) ≤ sup

A ∈ CoΩ

cT A(x − x̃).

Since c was arbitrary, we see that φ(x)− φ(x̃) is in every half-space that contains the
convex set CoΩ(x − x̃), which proves (4.16).
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4.3.2 Sector conditions

Sometimes the nonlinear system (4.13) can be expressed in the form

ẋ = Ax + Bpp + Buu + Bww,

q = Cqx + Dqpp + Dquu + Dqww,

z = Czx + Dzpp + Dzuu + Dzww,

pi = φi(qi, t), i = 1, . . . , nq,

(4.17)

where φi : R × R+ → R satisfy the sector conditions

αiq
2 ≤ qφi(q, t) ≤ βiq

2

for all q and t ≥ 0, where αi and βi are given. In words, the system consists of a linear
part together with nq time-varying sector-bounded scalar nonlinearities.

The variables pi and qi can be eliminated from (4.17) provided the matrix I−Dqp∆

is nonsingular for all diagonal ∆ with αi ≤ ∆ii ≤ βi. In this case, we say the system
is well-posed.

Assume now that the system (4.17) is well-posed, and let (4.13) be the equations
obtained by eliminating the variables p and q. Define

Ω =
{

Ã + B̃∆ (I − Dqp∆)
−1

C̃
∣

∣

∣ ∆ diagonal, ∆ii ∈ [αi,βi]
}

,

where Ã, B̃ and C̃ are given by (4.10). Then, the condition (4.14) holds.

Notes and References

Differential inclusions

The books by Aubin and Cellina [AC84], Kisielewicz [Kis91], and the classic text by Filip-
pov [Fil88] cover the theory of differential inclusions. See also the article by Roxin [Rox65]
and references therein. Background material, e.g., set-valued analysis, can be found in the
book by Aubin and Frankowska [AF90].

The term linear differential inclusion is a bit misleading, since LDIs do not enjoy any particu-
lar linearity or superposition properties. We use the term only to point out the interpretation
as an uncertain time-varying linear system. Many authors refer to LDIs using some subset
of the phrase “uncertain linear time-varying system”. A more accurate term, suggested to
us and used by A. Filippov and E. Pyatnitskii, is selector-linear differential inclusion.

PLDIs come up in several articles on control theory, e.g., [MP89, KP87a, KP87b, BY89].

Integral quadratic constraints

The pointwise quadratic constraint p(t)T p(t) ≤ q(t)T q(t) that occur in NLDIs can be gener-

alized to the integral quadratic constraint
∫ t

0
pT p dτ ≤

∫ t

0
qT q dτ ; see §8.2 and §8.3.

Global linearization

The idea of replacing a nonlinear system by a time-varying linear system can be found in Liu
et al. [Liu68, LSL69]. They call this approach global linearization. Of course, approximating
the set of trajectories of a nonlinear system via LDIs can be very conservative, i.e., there are
many trajectories of the LDI that are not trajectories of the nonlinear system. We will see
in Chapter 8 how this conservatism can be reduced in some special cases.

The idea of global linearization is implicit in the early Soviet literature on the absolute
stability problem, e.g., Lur’e and Postnikov [LP44, Lur57] and Popov [Pop73].
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Modeling systems as PLDIs

One of the key issues in robust control theory is how to model or measure plant “uncertainty”
or “variation”. We propose a simple method that should work well in some cases. At the
least, the method is extremely simple and natural.

Suppose we have a real system that is fairly well modeled as a linear system. We collect
many sets of input/output measurements, obtained at different times, under different op-
erating conditions, or perhaps from different instances of the system (e.g., different units
from a manufacturing run). It is important that we have data sets from enough plants or
plant conditions to characterize or at least give some idea of the plant variation that can be
expected.

For each data set we develop a linear system model of the plant. To simplify the problem
we will assume that the state in this model is accessible, so the different models refer to the
same state vector. These models should be fairly close, but of course not exactly the same.
We might find for example that the transfer matrices of these models at s = 0 differ by about
10%, but at high frequencies they differ considerably more. More importantly, this collection
of models contains information about the “structure” of the plant variation.

We propose to model the system as a PLDI with the vertices given by the measured or
estimated linear system models. In other words, we model the plant as a time-varying linear
system, with system matrices that can jump around among any of the models we estimated.
It seems reasonable to conjecture that a controller that works well with this PLDI is likely
to work well when connected to the real system. Such controllers can be designed by the
methods described in Chapter 7.

Well-posedness of DNLDIs

See [BY89] for a proof that a DNLDI is well-posed if and only if det(I −Dqp∆) > 0 for every
∆ with |∆ii| = 1; the idea behind this proof can be traced back to Zadeh and Desoer [ZD63,
§9.17]; see also [Sae86]. An equivalent condition is in terms of P0 matrices (a matrix is P0

if every principal minor is nonnegative; see [FP62, FP66, FP67]): A DNLDI is well-posed if
and only if I + Dqp is invertible, and (I + Dqp)−1(I −Dqp) is a P0 matrix [Gha90]. Another
equivalent condition is that (I + Dqp, I − Dqp) is a W0 pair (see [Wil70]). The problem
of determining whether a general matrix is P0 is thought to be very difficult, i.e., of high
complexity [CPS92, p149].

Standard branch-and-bound techniques can be applied to the problem of determining well-
posedness of DNLDIs; see for example [Sd86, GS88, SP89, BBB91, BB92]. Of course these
methods have no theoretical advantage over simply checking that the 2nq determinants are
positive. But in practice they may be more efficient, especially when used with computation-
ally cheap sufficient conditions (see below).

There are several sufficient conditions for well-posedness of a DNLDI that can be checked in
polynomial-time. Fan, Tits, and Doyle [FTD91] show that if the LMI

DT
qpPDqp < P, P diagonal, P > 0, (4.18)

is feasible, then the DNLDI is well-posed. Condition (4.18) is equivalent to the existence of a
diagonal (scaling) matrix R such that ‖RDqpR−1‖ < 1. In [FTD91], the authors also give a
sufficient condition for well-posedness of more general “structured” LDIs, e.g., when equality
constraints are imposed on the matrix ∆ in (4.11). These conditions can also be obtained
using the S-procedure; see [Fer93].

Representing DNLDIs as PLDIs

For a well-posed DNLDI, CoΩ is a polytope, which means that the DNLDI (4.12) can also
be represented as a PLDI. More specifically, we have

CoΩ = Co
{

Ã + B̃∆ (I − Dqp∆)−1 C̃
∣

∣ ∆ diagonal, |∆ii| = 1
}

,
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58 Chapter 4 Linear Differential Inclusions

where Ã, B̃ and C̃ are given by (4.10). Note that the set on the right-hand side is a polytope
with at most 2nq vertices. We now prove this result.

Define

K =
{

Ã + B̃∆ (I − Dqp∆)−1 C̃
∣

∣ ∆ diagonal, |∆ii| = 1
}

,

which is a set containing at most 2nq points. By definition

CoΩ = Co
{

Ã + B̃∆ (I − Dqp∆)−1 C̃
∣

∣ ∆ diagonal, |∆ii| ≤ 1
}

.

Clearly we have CoΩ ⊇ CoK. We will now show that every extreme point of CoΩ is
contained in CoK, which will imply that CoK ⊇ CoΩ, completing the proof.

Let Wext be an extreme point of CoΩ. Then there exists a linear function ψ such that Wext

is the unique maximizer of ψ over CoΩ. In fact, Wext ∈ Ω, since otherwise, the half-space
{W | ψ(W ) < ψ(Wext)− ǫ}, where ǫ > 0 is sufficiently small, contains Ω but not Wext, which
contradicts Wext ∈ CoΩ.

Now, for W ∈ Ω, ψ(W ) is a bounded linear-fractional function of the first diagonal entry
∆11 of ∆, for fixed ∆22, . . . , ∆nqnq , i.e., it equals (a + b∆11)/(c + d∆11) for some a, b, c and
d. Moreover, the denominator c + d∆11 is nonzero for ∆11 ∈ [−1, 1], since the DNLDI is
well-posed. Therefore, for every fixed ∆22, . . . , ∆nqnq , the function ψ achieves a maximum at
an extreme value of ∆11, i.e., ∆11 = ±1. Extending this argument to ∆22, . . . , ∆nqnq leads

us to the following conclusion: Wext = Ã + B̃S (I − DqpS)−1 C̃, where S satisfies Sii = ±1.
In other words, Wext ∈ CoK, which concludes our proof.

We have already noted that the description of a DNLDI as a PLDI will be much larger than
its description as a DNLDI; see the Notes and References of Chapter 5, and also [BY89] and
[PS82, KP87a, Kam83].

Approximating PLDIs by NLDIs

It is often useful to conservatively approximate a PLDI as an NLDI. One reason, among
many, is the potentially much smaller size of the description as an NLDI compared to the
description of the PLDI. We consider the PLDI

ẋ = A(t)x, A(t) ∈ ΩPLDI
∆
= Co {A1, . . . , AL} , (4.19)

with x(t) ∈ Rn, and the NLDI

ẋ = (A + Bp∆(t)Cq)x, ‖∆(t)‖ ≤ 1, (4.20)

with associated set ΩNLDI
∆
= {A + Bp∆Cq | ‖∆‖ ≤ 1}. Our goal is to find A, Bp, and Cq

such that ΩPLDI ⊆ ΩNLDI with the set ΩNLDI as small as possible in some appropriate sense.
This will give an efficient outer approximation of the PLDI (4.19) by the NLDI (4.20). Since
ΩPLDI ⊆ ΩNLDI implies that every trajectory of the PLDI is a trajectory of the NLDI, every
result we establish for all trajectories of the NLDI holds for all trajectories of the PLDI. For
L very large, it is much easier to work with the NLDI than the PLDI.

For simplicity, we will only consider the case with Bp ∈ Rn×n and invertible. Evidently there
is substantial redundancy in our representation of the NLDI (4.20): We can replace Bp by
αBp and Cq by Cq/α where α &= 0. (We can also replace Bp and Cq with BpU and V Cq

where U and V are any orthogonal matrices, without affecting the set ΩNLDI, but we will
not use this fact.)

We have ΩPLDI ⊆ ΩNLDI if for every ξ and k = 1, . . . , L, there exists π such that

Bpπ = (Ak − A)ξ, π
T
π ≤ ξ

T CT
q Cqξ.
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This yields the equivalent condition

(Ak − A)T B−T
p B−1

p (Ak − A) ≤ CT
q Cq, k = 1, . . . , L,

which, in turn, is equivalent to

BpBT
p > 0,

[

CT
q Cq (Ak − A)T

Ak − A BpBT
p

]

≥ 0, k = 1, . . . , L.

Introducing new variables V = CT
q Cq and W = BpBT

p , we get the equivalent LMI in A, V
and W

W > 0,

[

V (Ak − A)T

Ak − A W

]

≥ 0, k = 1, . . . , L. (4.21)

Thus we have ΩPLDI ⊆ ΩNLDI if condition (4.21) holds.

There are several ways to minimize the size of ΩNLDI ⊇ ΩPLDI. The most obvious is to
minimize TrV + TrW subject to (4.21), which is an EVP in A, V and W . This objective
is clearly related to several measures of the size of ΩNLDI, but we do not know of any simple
interpretation.

We can formulate the problem of minimizing the diameter of ΩNLDI as an EVP. We define the
diameter of a set Ω ⊆ Rn×n as max {‖F − G‖ | F, G ∈ Ω}. The diameter of ΩNLDI is equal

to 2
√

λmax(V )λmax(W ). We can exploit the scaling redundancy in Cq to assume without loss
of generality that λmax(V ) ≤ 1, and then minimize λmax(W ) subject to (4.21) and V ≤ I,
which is an EVP. It can be shown that the resulting optimal V opt satisfies λmax(V

opt) = 1,
so that we have in fact minimized the diameter of ΩNLDI subject to ΩPLDI ⊆ ΩNLDI.
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Chapter 5

Analysis of LDIs:
State Properties

In this chapter we consider properties of the state x of the LDI

ẋ = A(t)x, A(t) ∈ Ω, (5.1)

where Ω ⊆ Rn×n has one of four forms:

• LTI systems: LTI systems are described by ẋ = Ax.

• Polytopic LDIs: PLDIs are described by ẋ = A(t)x, A(t) ∈ Co {A1, . . . , AL}.

• Norm-bound LDIs: NLDIs are described by

ẋ = Ax + Bpp, q = Cqx + Dqpp, p = ∆(t)q, ‖∆(t)‖ ≤ 1,

which we will rewrite as

ẋ = Ax + Bpp, pT p ≤ (Cqx + Dqpp)T (Cqx + Dqpp). (5.2)

We assume well-posedness, i.e., ‖Dqp‖ < 1.

• Diagonal Norm-bound LDIs: DNLDIs are described by

ẋ = Ax + Bpp, q = Cqx + Dqpp,

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , nq.
(5.3)

which can be rewritten as

ẋ = Ax + Bpp, q = Cqx + Dqpp, |pi| ≤ |qi|, i = 1, . . . , nq.

Again, we assume well-posedness.

5.1 Quadratic Stability

We first study stability of the LDI (5.1), that is, we ask whether all trajectories of
system (5.1) converge to zero as t → ∞. A sufficient condition for this is the existence
of a quadratic function V (ξ) = ξT P ξ, P > 0 that decreases along every nonzero
trajectory of (5.1). If there exists such a P , we say the LDI (5.1) is quadratically

stable and we call V a quadratic Lyapunov function.
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62 Chapter 5 Analysis of LDIs: State Properties

Since

d

dt
V (x) = xT

(

A(t)T P + PA(t)
)

x,

a necessary and sufficient condition for quadratic stability of system (5.1) is

P > 0, AT P + PA < 0 for all A ∈ Ω. (5.4)

Multiplying the second inequality in (5.4) on the left and right by P−1, and defining
a new variable Q = P−1, we may rewrite (5.4) as

Q > 0, QAT + AQ < 0 for all A ∈ Ω. (5.5)

This dual inequality is an equivalent condition for quadratic stability. We now show
that conditions for quadratic stability for LTI systems, PLDIs, and NLDIs can be
expressed in terms of LMIs.

• LTI systems: Condition (5.4) becomes

P > 0, AT P + PA < 0. (5.6)

Therefore, checking quadratic stability for an LTI system is an LMIP in the variable
P . This is precisely the (necessary and sufficient) Lyapunov stability criterion for LTI
systems. (In other words, a linear system is stable if and only if it is quadratically sta-
ble.) Alternatively, using (5.5), stability of LTI systems is equivalent to the existence
of Q satisfying the LMI

Q > 0, AQ + QAT < 0. (5.7)

Of course, each of these (very special) LMIPs can be solved analytically by solving a
Lyapunov equation (see §1.2 and §2.7).

• Polytopic LDIs: Condition (5.4) is equivalent to

P > 0, AT
i P + PAi < 0, i = 1, . . . , L. (5.8)

Thus, determining quadratic stability for PLDIs is an LMIP in the variable P . The
dual condition (5.5) is equivalent to the LMI in the variable Q

Q > 0, QAT
i + AiQ < 0, i = 1, . . . , L. (5.9)

• Norm-bound LDIs: Condition (5.4) is equivalent to P > 0 and

[

ξ

π

]T [

AT P + PA PBp

BT
p P 0

][

ξ

π

]

< 0 (5.10)

for all nonzero ξ satisfying

[

ξ

π

]T




−CT
q Cq −CT

q Dqp

−DT
qpCq I − DT

qpDqp





[

ξ

π

]

≤ 0. (5.11)

In order to apply the S-procedure we show that the set

A = {(ξ,π) | ξ )= 0, (5.11)}
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equals the set

B = {(ξ,π) | (ξ,π) )= 0, (5.11)} .

It suffices to show that {(ξ,π) | ξ = 0, π )= 0, (5.11)} = ∅. But this is immediate:
If π )= 0, then condition (5.11) cannot hold without having ξ )= 0, since I−DT

qpDqp > 0.
Therefore, the condition that dV (x)/dt < 0 for all nonzero trajectories is equivalent
to (5.10) being satisfied for any nonzero (ξ,π) satisfying (5.11). (This argument recurs
throughout this chapter and will not be repeated.) Using the S-procedure, we find
that quadratic stability of (5.2) is equivalent to the existence of P and λ satisfying

P > 0, λ ≥ 0,





AT P + PA + λCT
q Cq PBp + λCT

q Dqp

(PBp + λCT
q Dqp)

T −λ(I − DT
qpDqp)



 < 0.
(5.12)

Thus, determining quadratic stability of an NLDI is an LMIP. Since LMI (5.12) implies
that λ > 0, we may, by defining P̃ = P/λ, obtain an equivalent condition

P̃ > 0,





AT P̃ + P̃A + CT
q Cq P̃Bp + CT

q Dqp

(P̃Bp + CT
q Dqp)

T −(I − DT
qpDqp)



 < 0, (5.13)

an LMI in the variable P̃ . Thus, quadratic stability of the NLDI has the frequency-
domain interpretation that the H∞ norm of the LTI system

ẋ = Ax + Bpp, q = Cqx + Dqpp

is less than one.
With the new variables Q = P−1, µ = 1/λ, quadratic stability of NLDIs is also

equivalent to the existence of µ and Q satisfying the LMI

µ ≥ 0, Q > 0,

[

AQ + QAT + µBpB
T
p µBpD

T
qp + QCT

q

(µBpD
T
qp + QCT

q )T −µ(I − DqpD
T
qp)

]

< 0.
(5.14)

Remark: Note that our assumption of well-posedness is in fact incorporated in
the LMI (5.12) since it implies I − DqpDT

qp > 0. Therefore the NLDI (5.2) is
well-posed and quadratically stable if and only if the LMIP (5.12) has a solution.

In the remainder of this chapter we will assume that Dqp in (5.2) is zero; the
reader should bear in mind that all the following results hold for nonzero Dqp as well.

• Diagonal Norm-bound LDIs: For the DNLDI (5.3), we can obtain only a
sufficient condition for quadratic stability. The condition dV (x)/dt < 0 for all nonzero
trajectories is equivalent to

ξT (AT P + PA)ξ + 2ξT PBpπ < 0

for all nonzero (ξ,π) satisfying

π2
i ≤ (Cq,iξ + Dqp,iπ)

T
(Cq,iξ + Dqp,iπ) , i = 1, . . . , L,
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64 Chapter 5 Analysis of LDIs: State Properties

where we have used Cq,i and Dqp,i to denote the ith rows of Cq and Dqp respec-
tively. Using the S-procedure, we see that this condition is implied by the existence
of nonnegative λ1, . . . ,λnq

such that

ξT (AT P + PA)ξ + 2ξT PBpπ

+

L
∑

i=1

λi

(

(Cq,iξ + Dqp,iπ)
T

(Cq,iξ + Dqp,iπ) − π2
i

)

< 0

for all nonzero (ξ,π). With Λ = diag(λ, . . . ,λnq
), this is equivalent to

[

AT P + PA + CT
q ΛCq PBp + CT

q ΛDqp

BT
p P + DT

qpΛCq DT
qpΛDqp − Λ

]

< 0. (5.15)

Therefore, if there exist P > 0 and diagonal Λ ≥ 0 satisfying (5.15), then the
DNLDI (5.3) is quadratically stable. Checking this sufficient condition for quadratic
stability is an LMIP. Note that from (5.15), we must have Λ > 0.

Equivalently, quadratic stability is implied by the existence of Q > 0, M =
diag(µ1, . . . , µnq

) > 0 satisfying the LMI
[

AQ + QAT + BpMBT
p QCT

q + BpMDT
qp

CqQ + DqpMBT
p −M + DqpMDT

qp

]

< 0, (5.16)

another LMIP.

Remark: Quadratic stability of a DNLDI via the S-procedure has a simple
frequency-domain interpretation. Denoting by H the transfer matrix H(s) =
Dqp + Cq(sI − A)−1Bp, and assuming (A, Bp, Cq) is minimal, quadratic stabil-
ity is equivalent to the fact that, for some diagonal, positive-definite matrix Λ,
‖Λ1/2HΛ

−1/2‖∞ < 1. Λ
−1/2 can then be interpreted as a scaling. (See the Notes

and References for more details on the connection between the S-procedure and
scaling.)

Remark: Here too our assumption of well-posedness is in fact incorporated
in the LMI (5.15) or (5.16). The bottom right block is precisely the sufficient
condition for well-posedness mentioned on page 57. Therefore the DNLDI (5.2)
is well-posed and quadratically stable if the LMI (5.15) or (5.16) is feasible.

Note the similarity between the corresponding LMIs for the NLDI and the DNLDI;
the only difference is that the diagonal matrix appearing in the LMI associated with
the DNLDI is fixed as the scaled identity matrix in the LMI associated with the NLDI.
In general it is straightforward to derive the corresponding (sufficient) condition for
DNLDIs from the result for NLDIs. In the remainder of the book, we will often restrict
our attention to NLDIs, and pay only occasional attention to DNLDIs; we leave to
the reader the task of generalizing all the results for NLDIs to DNLDIs.

Remark: An LTI system is stable if and only if it is quadratically stable. For
more general LDIs, however, stability does not imply quadratic stability (see the
Notes and References at the end of this chapter). It is true that an LDI is
stable if and only if there exists a convex Lyapunov function that proves it; see
the Notes and References.
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5.1.1 Coordinate transformations

We can give another interpretation of quadratic stability in terms of state-space coor-
dinate transformations. Consider the change of coordinates x = T x̄, where detT )= 0.
In the new coordinate system, (5.1) is described by the matrix Ā(t) = T−1A(t)T .
We ask the question: Does there exist T such that in the new coordinate system, all
(nonzero) trajectories of the LDI are always decreasing in norm, i.e., d‖x̄‖/dt < 0?
It is easy to show that this is true if and only if there exists a quadratic Lyapunov
function V (ξ) = ξT P ξ for the LDI, in which case we can take any T with TT T = P−1,
for example, T = P−1/2 (these T ’s are all related by right orthogonal matrix multi-
plication). With this interpretation, it is natural to seek a coordinate transformation
matrix T that makes all nonzero trajectories decreasing in norm, and has the small-
est possible condition number κ(T ). This turns out to be an EVP for LTI systems,
polytopic and norm-bound LDIs.

To see this, let P = T−T T−1, so that κ(T )2 = κ(P ). Minimizing the condition
number of T subject to the requirement that d‖x̄‖/dt < 0 for all nonzero trajectories is
then equivalent to minimizing the condition number of P subject to d(xT Px)/dt < 0.
(Any T with TT T = P−1

opt where Popt is an optimal solution, is optimal for the original
problem.) For each of our systems (LTI systems, PLDIs and NLDIs), the change of
coordinates with smallest condition number is obtained by solving the following EVPs:

• LTI systems: The EVP in the variables P and η is

minimize η

subject to (5.6), I ≤ P ≤ ηI

(In this formulation, we have taken advantage of the homogeneity of the LMI (5.6) in
the variable P .)

• Polytopic LDIs: The EVP in the variables P and η is

minimize η

subject to (5.8), I ≤ P ≤ ηI

• Norm-bound LDIs: The EVP in the variables P , η and λ is

minimize η

subject to (5.12), I ≤ P ≤ ηI

5.1.2 Quadratic stability margins

Quadratic stability margins give a measure of how much the set Ω can be expanded
about some center with the LDI remaining quadratically stable.

• Polytopic LDIs: For the PLDI

ẋ = (A0 + A(t))x, A(t) ∈ α Co {A1, . . . , AL} ,

we define the quadratic stability margin as the largest nonnegative α for which it is
quadratically stable. This quantity is computed by solving the following GEVP in P
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and α:

maximize α

subject to P > 0, α ≥ 0,

AT
0 P + PA0 + α

(

AT
i P + PAi

)

< 0, i = 1, . . . , L

• Norm-bound LDIs: The quadratic stability margin of the system

ẋ = Ax + Bpp, pT p ≤ α2xT CT
q Cqx,

is defined as the largest α ≥ 0 for which the system is quadratically stable, and is
computed by solving the GEVP in P , λ and β = α2:

maximize β

subject to P > 0, β ≥ 0,

[

AT P + PA + βλCT
q Cq PBp

BT
p P −λI

]

< 0

Defining P̃ = P/λ, we get an equivalent EVP in P̃ and β:

maximize β

subject to P̃ > 0, β ≥ 0,

[

AT P̃ + P̃A + βCT
q Cq P̃Bp

BT
p P̃ −I

]

< 0

Remark: The quadratic stability margin obtained by solving this EVP is just
1/‖Cq(sI − A)−1Bp‖∞.

5.1.3 Decay rate

The decay rate (or largest Lyapunov exponent) of the LDI (5.1) is defined to be the
largest α such that

lim
t→∞

eαt‖x(t)‖ = 0

holds for all trajectories x. Equivalently, the decay rate is the supremum of

lim inf
t→∞

− log ‖x(t)‖
t

over all nonzero trajectories. (Stability corresponds to positive decay rate.)
We can use the quadratic Lyapunov function V (ξ) = ξT P ξ to establish a lower

bound on the decay rate of the LDI (5.1). If dV (x)/dt ≤ −2αV (x) for all trajectories,
then V (x(t)) ≤ V (x(0))e−2αt, so that ‖x(t)‖ ≤ e−αtκ(P )1/2‖x(0)‖ for all trajectories,
and therefore the decay rate of the LDI (5.1) is at least α.

• LTI systems: The condition that dV (x)/dt ≤ −2αV (x) for all trajectories is
equivalent to

AT P + PA + 2αP ≤ 0. (5.17)

Therefore, the largest lower bound on the decay rate that we can find using a quadratic
Lyapunov function can be found by solving the following GEVP in P and α:

maximize α

subject to P > 0, (5.17)
(5.18)
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This lower bound is sharp, i.e., the optimal value of the GEVP (5.18) is the decay rate
of the LTI system (which is the stability degree of A, i.e., negative of the maximum
real part of the eigenvalues of A).

As an alternate condition, there exists a quadratic Lyapunov function proving
that the decay rate is at least α if and only if there exists Q satisfying the LMI

Q > 0, AQ + QAT + 2αQ ≤ 0. (5.19)

• Polytopic LDIs: The condition that dV (x)/dt ≤ −2αV (x) for all trajectories is
equivalent to the LMI

AT
i P + PAi + 2αP ≤ 0, i = 1, . . . , L. (5.20)

Therefore, the largest lower bound on the decay rate provable via quadratic Lyapunov
functions is obtained by maximizing α subject to (5.20) and P > 0. This is a GEVP
in P and α.

As an alternate condition, there exists a quadratic Lyapunov function proving
that the decay rate is at least α if and only if there exists Q satisfying the LMI

Q > 0, AiQ + QAT
i + 2αQ ≤ 0, i = 1, . . . , L. (5.21)

• Norm-bound LDIs: Applying the S-procedure, the condition that dV (x)/dt ≤
−2αV (x) for all trajectories is equivalent to the existence of λ ≥ 0 such that

[

AT P + PA + λCT
q Cq + 2αP PBp

BT
p P −λI

]

≤ 0. (5.22)

Therefore, we obtain the largest lower bound on the decay rate of (5.2) by maximizing
α over the variables α, P and λ, subject to P > 0, λ ≥ 0 and (5.22), a GEVP.

The lower bound has a simple frequency-domain interpretation: Define the α-

shifted H∞ norm of the system by

‖H‖∞,α
∆
= sup { ‖H(s)‖ | Re s > −α} .

Then the optimal value of the GEVP is equal to the largest α such that ‖H‖∞,α < 1.
This can be seen by rewriting (5.22) as

[

(A + αI)
T

P + P (A + αI) + λCT
q Cq PBp

BT
p P −λI

]

≤ 0,

and noting that the H∞ norm of the system (A + αI,Bp, Cq) equals ‖H‖∞,α.
An alternate necessary and sufficient condition for the existence of a quadratic

Lyapunov function proving that the decay rate of (5.2) is at least α is that there
exists Q and µ satisfying the LMI

Q > 0, µ ≥ 0,

[

AQ + QAT + µBpB
T
p + 2αQ QCT

q

CqQ −µI

]

≤ 0.
(5.23)

This electronic version is for personal use and may not be duplicated or distributed.



68 Chapter 5 Analysis of LDIs: State Properties

5.2 Invariant Ellipsoids

Quadratic stability can also be interpreted in terms of invariant ellipsoids. For Q > 0,
let E denote the ellipsoid centered at the origin

E =
{

ξ ∈ Rn
∣

∣ ξT Q−1ξ ≤ 1
}

.

The ellipsoid E is said to be invariant for the LDI (5.1) if for every trajectory x of the
LDI, x(t0) ∈ E implies x(t) ∈ E for all t ≥ t0. It is easily shown that this is the case
if and only if Q satisfies

QAT + AQ ≤ 0, for all A ∈ Ω,

or equivalently,

AT P + PA ≤ 0, for all A ∈ Ω, (5.24)

where P = Q−1. Thus, for LTI systems, PLDIs and NLDIs, invariance of E is charac-
terized by LMIs in Q or P , its inverse.

Remark: Condition (5.24) is just the nonstrict version of condition (5.4).

• LTI systems: The corresponding LMI in P is

P > 0, AT P + PA ≤ 0, (5.25)

and the LMI in Q is

Q > 0, AQ + PAT ≤ 0, (5.26)

• Polytopic LDIs: The corresponding LMI in P is

P > 0, AT
i P + PAi ≤ 0, i = 1, . . . , L, (5.27)

and the LMI in Q is

Q > 0, QAT
i + AiQ ≤ 0, i = 1, . . . , L. (5.28)

• Norm-bound LDIs: Applying the S-procedure, invariance of the ellipsoid E is
equivalent to the existence of λ such that

P > 0, λ ≥ 0,





AT P + PA + λCT
q Cq PBp + λCT

q Dqp

(PBp + λCT
q Dqp)

T −λ(I − DT
qpDqp)



 ≤ 0.
(5.29)

Invariance of the ellipsoid E is equivalent to the existence of µ such that

µ ≥ 0, Q > 0, and

[

AQ + QAT + µBpB
T
p µBpD

T
qp + QCT

q

(µBpD
T
qp + QCT

q )T −µ(I − DqpD
T
qp)

]

≤ 0.
(5.30)

In summary, the condition that E be an invariant ellipsoid can be expressed in
each case as an LMI in Q or its inverse P .
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5.2.1 Smallest invariant ellipsoid containing a polytope

Consider a polytope described by its vertices, P = Co{v1, . . . , vp}. The ellipsoid E
contains the polytope P if and only if

vT
j Q−1vj ≤ 1, j = 1, . . . , p.

This condition may be expressed as an LMI in Q
[

1 vT
j

vj Q

]

≥ 0, j = 1, . . . , p, (5.31)

or as an LMI in P = Q−1 as

vT
j Pvj ≤ 1, j = 1, . . . , p. (5.32)

Minimum volume

The volume of E is, up to a constant that depends on n,
√

detQ. We can minimize
this volume by solving appropriate CPs.

• LTI systems: The CP in P is

minimize log detP−1

subject to (5.25), (5.32)

• Polytopic LDIs: The CP in P is

minimize log detP−1

subject to (5.27), (5.32)
(5.33)

• Norm-bound LDIs: The CP in P and λ is

minimize log detP−1

subject to (5.29), (5.32)

Minimum diameter

The diameter of the ellipsoid E is 2
√

λmax(Q). We can minimize this quantity by
solving appropriate EVPs.

• LTI systems: The EVP in the variables Q and λ is

minimize λ

subject to (5.26), (5.31), Q ≤ λI

• Polytopic LDIs: The EVP in Q and λ is

minimize λ

subject to (5.28), (5.31), Q ≤ λI
(5.34)

• Norm-bound LDIs: The EVP in Q, λ and µ is

minimize λ

subject to (5.30), (5.31), Q ≤ λI
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Remark: These results have the following use. The polytope P represents our
knowledge of the state at time t0, i.e., x(t0) ∈ P (this knowledge may reflect
measurements or prior assumptions). An invariant ellipsoid E containing P then
gives a bound on the state for t ≥ t0, i.e., we can guarantee that x(t) ∈ E for all
t ≥ t0.

5.2.2 Largest invariant ellipsoid contained in a polytope

We now consider a polytope described by linear inequalities:

P =
{

ξ ∈ Rn
∣

∣ aT
k ξ ≤ 1, k = 1, . . . , q

}

.

The ellipsoid E is contained in the polytope P if and only if

max
{

aT
k ξ | ξ ∈ E

}

≤ 1, k = 1, . . . , q.

This is equivalent to

aT
k Qak ≤ 1, k = 1, . . . , q, (5.35)

which is a set of linear inequalities in Q. The maximum volume of invariant ellipsoids
contained in P can be found by solving CPs:

• LTI systems: For LTI systems, the CP in the variable Q is

minimize log detQ−1

subject to (5.26), (5.35)

(Since the volume of E is, up to a constant,
√

detQ, minimizing log detQ−1 will
maximize the volume of E).

• Polytopic LDIs: For PLDIs, the CP in the variable Q is

minimize log detQ−1

subject to (5.28), (5.35)

• Norm-bound LDIs: For NLDIs, the CP in the variables Q and µ is

minimize log detQ−1

subject to (5.30), (5.35)

We also can find the maximum minor diameter (that is, the length of the minor
axis) of invariant ellipsoids contained in P by solving EVPs:

• LTI systems: For LTI systems, the EVP in the variables Q and λ is

maximize λ

subject to (5.26), (5.35), λI ≤ Q

• Polytopic LDIs: For PLDIs, the EVP in the variables Q and λ is

maximize λ

subject to (5.28), 5.35), λI ≤ Q
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• Norm-bound LDIs: For NLDIs, the EVP in the variables Q, µ and λ is

maximize λ

subject to (5.30), (5.35), λI ≤ Q

Remark: These results can be used as follows. The polytope P represents the
allowable (or safe) operating region for the system. The ellipsoids found above
can be interpreted as regions of safe initial conditions, i.e., initial conditions for
which we can guarantee that the state always remains in the safe operating region.

5.2.3 Bound on return time

The return time of a stable LDI for the polytope P is defined as the smallest T such
that if x(0) ∈ P, then x(t) ∈ P for all t ≥ T . Upper bounds on the return time can
be found by solving EVPs.

• LTI systems: Let us consider a positive decay rate α. If Q > 0 satisfies

QAT + AQ + 2αQ ≤ 0,

then E is an invariant ellipsoid, and moreover x(0) ∈ E implies that x(t) ∈ e−αtE for
all t ≥ 0. Therefore if T is such that

e−αTE ⊆ P ⊆ E ,

we can conclude that if x(0) ∈ P, then x(t) ∈ P for all t ≥ T , so that T is an upper
bound on the return time. If we use both representations of the polytope,

P =
{

x ∈ Rn
∣

∣ aT
k x ≤ 1, k = 1, . . . , q

}

= Co{v1, . . . , vp},

the constraint e−αTE ⊆ P is equivalent to the LMI in Q and γ

aT
i Qai ≤ γ, k = 1, . . . , q, (5.36)

where γ = e2αT , and the problem of finding the smallest such γ and therefore the
smallest T (for a fixed α) is an EVP in the variables γ and Q:

minimize γ

subject to (5.19), (5.31), (5.36)

• Polytopic LDIs: For PLDIs, the smallest bound on the return time provable via
invariant ellipsoids, with a given decay rate α, is obtained by solving the EVP in the
variables Q and γ

minimize γ

subject to (5.21), (5.31), (5.36)

• Norm-bound LDIs: For NLDIs, the smallest bound on the return time provable
via invariant ellipsoids, with a given decay rate α, is obtained by solving the EVP in
the variables Q, γ and µ

minimize γ

subject to (5.23), (5.31), (5.36)
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Notes and References

Quadratic stability for NLDIs

Lur’e and Postnikov [LP44] gave one of the earliest stability analyses for NLDIs: They
considered the stability of the system

ẋ = Ax + bpp, q = cqx, p = φ(q, t)q, (5.37)

where p and q are scalar. This problem came to be popularly known as the problem of
“absolute stability in automatic control”. In the original setting of Lur’e and Postnikov, φ was
assumed to be a time-invariant nonlinearity. Subsequently, various additional assumptions
were made about φ, generating different special cases and solutions. (The family of systems of
the form (5.37), where φ(q, t) can be any sector [−1, 1] nonlinearity, is an NLDI.) Pyatnitskii,
in [Pya68], points out that by 1968, over 200 papers had been written about the system (5.37).

Among these, the ones most relevant to this book are undoubtedly from Yakubovich. As
far as we know, Yakubovich was the first to make systematic use of LMIs along with the
S-procedure to prove stability of nonlinear control systems (see references [Yak62, Yak64,
Yak67, Yak66, Yak77, Yak82]). The main idea of Yakubovich was to express the re-
sulting LMIs as frequency-domain criteria for the transfer function G(s) = cq(sI − A)−1bp.
(Yakubovich calls this method the “method of matrix inequalities”.) These criteria are most
useful when dealing with experimental data arising from frequency response measurements;
they are described in detail in the book by Narendra and Taylor [NT73]. See also [Bar70b].
Popov [Pop73] and Willems [Wil71b, Wil74a] outline the relationship between the problem
of absolute stability of automatic control and quadratic optimal control.

The case when p and q are vector-valued signals has been considered much more recently;
see for instance, [ZK88, ZK87, KR88, BH89]. In [KPZ90, PD90], the authors remark
that quadratic stability of NLDIs is equivalent to the H∞ condition (5.13). However, as
stated in [PD90], there is no fundamental difference between these and the older results
of Yakubovich and Popov; the newer results can be regarded as extensions of the works
of Yakubovich and Popov to feedback synthesis and to the case of “structured perturba-
tions” [RCDP93, PZP+92].

While all the results presented in this chapter are based on Lyapunov stability techniques,
they have very strong connections with the input-output approach to study the stability
of nonlinear, uncertain systems. This approach was sparked by Popov [Pop62], who used
it to study the Lur’e system. Other major contributors include Zames [Zam66a, Zam66b,
ZF67], Sandberg [San64, San65a, San65b] and Brockett [Bro65, Bro66, BW65]. See
also the papers and the book by Willems [Wil69a, Wil69b, Wil71a]. The advantage of
the input-output approach is that the systems are not required to have finite-dimensional
state [Des65, DV75, Log90]; the corresponding stability criteria are usually most easily
expressed in the frequency domain, and result in infinite-dimensional convex optimization
problems. Modern approaches from this viewpoint include Doyle’s µ-analysis [Doy82] and
Safonov’s Km-analysis [Saf82, SD83, SD84], implemented in the robustness analysis soft-
ware packages µ-tools and Km-tools [BDG+91, CS92a], which approximately solve these
infinite-dimensional problems. See also [AS79, SS81].

Quadratic stability for PLDIs

This topic is much more recent than NLDIs, the likely reason being that the LMI expressing
quadratic stability of a general PLDI (which is just a number of simultaneous Lyapunov
inequalities (5.8)) cannot be converted to a Riccati inequality or a frequency-domain criterion.
One of the first occurrences of PLDIs is in [HB76], where Horisberger and Belanger note
that the problem of quadratic stability for a PLDI is convex (the authors write down the
corresponding LMIs). For other results and computational procedures for PLDIs see [PS82,
PS86, BY89, KP87a, Kam83, EZKN90, KB93, AGG94]; the article [KP87a], where the
authors develop a subgradient method for proving quadratic stability of a PLDI, which is
further refined in [Mei91]; the paper [PS86], where the discrete-time counterpart of this
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problem is considered. See also the articles by Gu et al. [GZL90, GL93b, Gu94], Garofalo
et al. [GCG93], and the survey article by Barmish et al. [BK93].

Necessary and sufficient conditions for LDI stability

Much attention has also focused on necessary and sufficient conditions for stability of LDIs
(as opposed to quadratic stability); see for example [PR91b] or [MP86]. Earlier references on
this topic include [Pya70b] which connects the problem of stability of an LDI to an optimal
control problem, and [Pya70a, BT79, BT80], where the discrete-time counterpart of this
problem is considered.

Vector Lyapunov functions

The technique of vector Lyapunov functions also yields search problems that can be expressed
as LMIPs. One example is given in [CFA90]. Here we already have quadratic Lyapunov
functions for a number of subsystems; the problem is to find an appropriate positive linear
combination that proves, e.g., stability of an interconnected system.

Finally, let us point out that quadratic Lyapunov functions have been used to determine
estimates of regions of stability for general nonlinear systems. See for example [Gha94,
BD85].

Stable LDIs that are not quadratically stable

An LTI system is stable if and only if it is quadratically stable; this is just Lyapunov’s
stability theorem for linear systems (see e.g., [Lya47, p277]). It is possible, however, for an
LDI to be stable without being quadratically stable. Here is a PLDI example:

ẋ = A(t)x, A(t) ∈ Co {A1, A2} ,

A1 =

[

−100 0

0 −1

]

, A2 =

[

8 −9

120 −18

]

.

From (2.8), this PLDI is not quadratically stable if there exist Q0 ≥ 0, Q1 ≥ 0 and Q2 ≥ 0,
not all zero, such that

Q0 = A1Q1 + Q1A
T
1 + A2Q2 + Q2A

T
2 .

It can be verified that the matrices

Q0 =

[

5.2 2

2 24

]

, Q1 =

[

0.1 3

3 90

]

, Q2 =

[

2.7 1

1 1

]

satisfy these duality conditions.

However, the piecewise quadratic Lyapunov function

V (x) = max
{

xT P1x, xT P2x
}

,

P1 =

[

14 −1

−1 1

]

, P2 =

[

0 0

0 1

]

,
(5.38)

proves that the PLDI is stable. To show this, we use the S-procedure. A necessary and
sufficient condition for the Lyapunov function V defined in (5.38) to prove the stability of
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the PLDI is the existence of four nonnegative numbers λ1, λ2, λ3, λ4 such that

AT
1 P1 + P1A1 − λ1(P2 − P1) < 0,

AT
2 P1 + P1A2 − λ2(P2 − P1) < 0,

AT
1 P2 + P2A1 + λ3(P2 − P1) < 0, AT

2 P2 + P2A2 + λ4(P2 − P1) < 0.

(5.39)

It can be verified that λ1 = 50, λ2 = 0, λ3 = 1, λ4 = 100 are such numbers.

For other examples of stable LDIs that are not quadratically stable, see Brockett [Bro65,
Bro77, Bro70] and Pyatnitskii [Pya71]. In [Bro77], Brockett uses the S-procedure to
prove that a certain piecewise quadratic form is a Lyapunov function and finds LMIs similar
to (5.39); see also [Vid78].

Finally, an LDI is stable if and only if there is a convex Lyapunov function that proves it.
One such Lyapunov function is

V (ξ) = sup {‖x(t)‖ | x satisfies (5.1), x(0) = ξ, t ≥ 0} .

See Brayton and Tong [BT79, BT80], and also [Zub55, MV63, DK71, VV85, PR91b,
PR91a, Rap90, Rap93, MP89, Mol87]. In general, computing such Lyapunov functions is
computationally intensive, if not intractable.

Nonlinear systems and fading memory

Consider the nonlinear system

ẋ = f(x, w, t), (5.40)

with

∂f

∂x
∈ Ω for all x, w, t

where Ω is convex. Suppose the LDI ẋ ∈ Ωx is stable, i.e., all trajectories converge to zero as
t → ∞. This implies the system has fading memory, that is, for fixed input w, the difference
between any two trajectories of (5.40) converges to zero. In other words, the system “forgets”
its initial condition. (See [BC85].)

Fix an input w and let x and x̃ denote any two solutions of (5.40). Using the mean-value
theorem from §4.3.1, we have

d

dt
(x − x̃) = f(x, w, t) − f(x̃, w, t) = A(t)(x − x̃)

for some A(t) ∈ Ω. Since the LDI is stable, x(t) − x̃(t) converges to zero as t → ∞.

Relation between S-procedure for DNLDIs and scaling

We discuss the interpretation of the diagonal matrix Λ in (5.15) as a scaling matrix .

Every trajectory of the DNLDI (5.3) is also a trajectory (and vice versa) of the DNLDI

ẋ = Ax + BpT−1p,

q = TCqx + TDqpT−1p,

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , nq

(5.41)

for any diagonal nonsingular T . Therefore, if DNLDI (5.41) is stable for some diagonal
nonsingular T , then so is DNLDI (5.3). T is referred to as a scaling matrix.
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Treating DNLDI (5.41) as an NLDI, and applying the condition (5.13) for quadratic stability,
we require, for some diagonal nonsingular T ,

P > 0,

[

AT P + PA + CT
q T 2Cq PBpT−1 + CT

q T 2DqpT−1

(PBpT−1 + CT
q T 2DqpT−1)T −(I − T−1DT

qpT 2DqpT−1)

]

< 0,

An obvious congruence, followed by the substitution T 2 = Λ, yields the LMI condition in
P > 0 and diagonal Λ > 0:

[

AT P + PA + CT
q ΛCq PBp + CqΛDqp

BT
P P + DT

qpΛCq DT
qpΛDq − Λ

]

< 0.

This is precisely LMI (5.15), the condition for stability of the DNLDI (5.3) obtained using
the S-procedure. This relation between scaling and the diagonal matrices arising from the
S-procedure is described in Boyd and Yang [BY89].

Pyatnitskii and Skorodinskii [PS82, PS83], and Kamenetskii [Kam83] reduce the problem of
numerical search for appropriate scalings and the associated Lyapunov functions to a convex
optimization problem. Saeki and Araki [SA88] also conclude convexity of the scaling problem
and use the properties of M-matrices to obtain a solution.

Representing a DNLDI as a PLDI: Implications for quadratic stability

We saw in Chapter 4 that a DNLDI can be represented as a PLDI, where the number L of
vertices can be as large as 2nq . From the results of §5.1, checking quadratic stability for this
PLDI requires the solution of L simultaneous Lyapunov inequalities in P > 0 (LMI (5.8)). If
the system is represented as a DNLDI, a sufficient condition for quadratic stability is given
by the LMI (5.15), in the variables P > 0 and Λ > 0.

Comparing the two conditions for quadratic stability, we observe that while the quadratic
stability condition (5.8) for LDI (5.3), obtained by representing it as a PLDI, is both necessary
and sufficient (i.e., not conservative), the size of the LMI grows exponentially with nq, the
size of ∆. On the other hand, the size of the LMI (5.15) grows polynomially with nq, but
this LMI yields only a sufficient condition for quadratic stability of LDI (5.3). Discussion of
this issue can be found in Kamenetskii [Kam83] and Pyatnitskii and Skorodinskii [PS82].
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Chapter 6

Analysis of LDIs:
Input/Output Properties

6.1 Input-to-State Properties

We first consider input-to-state properties of the LDI

ẋ = A(t)x + Bw(t)w, [A(t) Bw(t)] ∈ Ω, (6.1)

where w is an exogenous input signal.

• LTI systems: The system has the form ẋ = Ax + Bww.

• Polytopic LDIs: Here the description is

ẋ = A(t)x + Bw(t)w, [A(t) Bw(t)] ∈ Co {[A1 Bw,1] , . . . , [AL Bw,L]} .

• Norm-bound LDIs: NLDIs have the form

ẋ = Ax + Bpp + Bww, q = Cqx, p = ∆(t)q, ‖∆(t)‖ ≤ 1,

or equivalently,

ẋ = Ax + Bpp + Bww, q = Cqx, pT p ≤ qT q.

• Diagonal Norm-bound LDIs: DNLDIs have the form

ẋ = Ax + Bpp + Bww, q = Cqx,

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , nq,

or equivalently,

ẋ = Ax + Bpp + Bww, q = Cqx, |pi| ≤ |qi|, i = 1, . . . , nq.

6.1.1 Reachable sets with unit-energy inputs

Let Rue denote the set of reachable states with unit-energy inputs for the LDI (6.1),
i.e.,

Rue
∆
=















x(T )

∣

∣

∣

∣

∣

∣

∣

∣

x, w satisfy (6.1), x(0) = 0

∫ T

0

wT w dt ≤ 1, T ≥ 0















.
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We will bound Rue by ellipsoids of the form

E =
{

ξ | ξT P ξ ≤ 1
}

, (6.2)

where P > 0.
Suppose that the function V (ξ) = ξT P ξ, with P > 0, satisfies

dV (x)/dt ≤ wT w for all x, w satisfying (6.1). (6.3)

Integrating both sides from 0 to T , we get

V (x(T )) − V (x(0)) ≤
∫ T

0

wT w dt.

Noting that V (x(0)) = 0 since x(0) = 0, we get

V (x(T )) ≤
∫ T

0

wT w dt ≤ 1,

for every T ≥ 0, and every input w such that
∫ T

0
wT w dt ≤ 1. In other words, the

ellipsoid E contains the reachable set Rue.

• LTI systems: Condition (6.3) is equivalent to the LMI in P

P > 0,

[

AT P + PA PBw

BT
wP −I

]

≤ 0, (6.4)

which can also be expressed as an LMI in Q = P−1

Q > 0, AQ + QAT + BwBT
w ≤ 0. (6.5)

Remark: For a controllable LTI system, the reachable set is the ellipsoid
{ξ | ξT W−1

c ξ ≤ 1}, where Wc is the controllability Gramian, defined by

Wc
∆
=

∫ ∞

0

eAtBwBT
weAT t dt.

Since Wc satisfies the Lyapunov equation

AWc + WcA
T + BwBT

w = 0, (6.6)

we see that Q = Wc satisfies (6.5). Thus the ellipsoidal bound is sharp for LTI
systems.

• Polytopic LDIs: For PLDIs, condition (6.3) holds if and only if

P > 0 and

[

A(t)T P + PA(t) PBw(t)

Bw(t)T P −I

]

≤ 0 for all t ≥ 0. (6.7)

Inequality (6.7) holds if and only if

P > 0,

[

AT
i P + PAi PBw,i

BT
w,iP −I

]

≤ 0, i = 1, . . . , L. (6.8)

Thus the ellipsoid E contains Rue if the LMI (6.8) holds.
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Alternatively, we can write (6.8) as

Q > 0, QAT
i + AiQ + Bw,iB

T
w,i ≤ 0, i = 1, . . . , L, (6.9)

where Q = P−1. Note that this condition implies that E is invariant.

• Norm-bound LDIs: Condition (6.3) holds if and only if P > 0 and

ξT (AT P + PA)ξ + 2ξT P (Bpπ + Bwω) − ωT ω ≤ 0

hold for every ω and for every ξ and π satisfying

πT π − ξT CT
q Cqξ ≤ 0.

Using the S-procedure, this is equivalent to the existence of P and λ satisfying

P > 0, λ ≥ 0,







AT P + PA + λCT
q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −I






≤ 0. (6.10)

Equivalently, defining Q = P−1, condition (6.3) holds if and only if there exist Q and
µ satisfying

Q > 0, µ ≥ 0,

[

AQ + QAT + BwBT
w + µBpB

T
p QCT

q

CqQ −µI

]

≤ 0. (6.11)

• Diagonal Norm-bound LDIs: Condition (6.3) holds if and only if P > 0 and
for all ξ and π that satisfy

π2
i ≤ (Cq,iξ)

T
(Cq,iξ) , i = 1, . . . , nq,

we have for all ω,

ξT (AT P + PA)ξ + 2ξT P (Bpπ + Bwω) − ωT ω ≤ 0.

It follows from the S-procedure that this condition holds if there exist P and Λ =
diag(λ, . . . ,λnq

) satisfying

P > 0, Λ ≥ 0,







AT P + PA + CT
q ΛCq PBp PBw

BT
p P −Λ 0

BT
wP 0 −I






≤ 0.

Equivalently, defining Q = P−1, condition (6.3) holds if there exist Q and a diagonal
matrix M such that

Q > 0, M ≥ 0,

[

AQ + QAT + BwBT
w + BpMBT

p QCT
q

CqQ −M

]

≤ 0. (6.12)

For the remainder of this section we leave the extension to DNLDIs to the reader.
The results described above give us a set of ellipsoidal outer approximations of

Rue. We can optimize over this set in several ways.
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Smallest outer approximations

• LTI systems: For LTI systems, we can minimize the volume over ellipsoids E with
P satisfying (6.3) by minimizing log detP−1 over the variable P subject to (6.4). This
is a CP.

If (A,Bw) is uncontrollable, the volume of the reachable set is zero, and this CP
will be unbounded below. If (A,Bw) is controllable, then the CP finds the exact
reachable set, which corresponds to P = W−1

c .

• Polytopic LDIs: For PLDIs, the minimum volume ellipsoid of the form (6.2)
with P satisfying (6.3), is found by minimizing log detP−1 subject to (6.8). This is a
CP.

• Norm-bound LDIs: For NLDIs, the minimum volume ellipsoid of the form (6.2),
satisfying (6.3), is obtained by minimizing log detP−1 over the variables P and λ

subject to (6.10). This is again a CP.
We can also minimize the diameter of ellipsoids of the form (6.2), satisfying (6.3),

by replacing the objective function log detP−1 in the CPs by the objective function
λmax(P

−1). This yields EVPs.

Testing if a point is outside the reachable set

The point x0 lies outside the reachable set if there exists an ellipsoidal outer approx-
imation of Rue that does not contain it. For LTI systems, x0 does not belong to the
reachable set if there exists P satisfying xT

0 Px0 > 1 and (6.4). This is an LMIP. Of
course, if (A,Bw) is controllable, then x0 does not belong to the reachable set if and
only if xT

0 W−1
c x0 > 1, where Wc is defined by the equation (6.6).

For PLDIs, a sufficient condition for a point x0 to lie outside the reachable set
Rue can be checked via an LMIP in the variable P : xT

0 Px0 > 1 and (6.8). For NLDIs,
x0 lies outside the reachable set Rue if there exist P and λ satisfying xT

0 Px0 > 1
and (6.10), another LMIP.

Testing if the reachable set lies outside a half-space

The reachable set Rue lies outside the half-space H =
{

ξ ∈ Rn
∣

∣ aT ξ > 1
}

if and only
if an ellipsoid E containing Rue lies outside H, that is, the minimum value of ξT Q−1ξ

over ξ satisfying aT ξ > 1 exceeds one. We easily see that

min
{

ξT Q−1ξ
∣

∣ aT ξ > 1
}

= 1/(aT Qa).

Therefore, for LTI systems, H does not intersect the reachable set if there exists
Q satisfying aT Qa < 1 and (6.5). This is an LMIP. If (A,Bw) is controllable, then H
does not intersect the reachable set if and only if aT Wca < 1, where Wc is defined by
the equation (6.6).

For PLDIs, a sufficient condition for H not to intersect the reachable set Rue

can be checked via an LMIP in the variable Q: aT Qa < 1 and (6.9). For NLDIs, H
does not intersect the reachable set Rue if there exists Q and µ satisfying aT Qa < 1
and (6.11). This is an LMIP.

Testing if the reachable set is contained in a polytope

Since a polytope can be expressed as an intersection of half-spaces (these determine
its “faces”), we can immediately use the results of the previous subsection in order to
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check if the reachable set is contained in a polytope. (Note we only obtain sufficient
conditions.) We remark that we can use different ellipsoidal outer approximations to
check different faces.

6.1.2 Reachable sets with componentwise unit-energy inputs

We now turn to a variation of the previous problem; we consider the set of reachable
states with inputs whose components have unit-energy, that is, we consider the set

Ruce
∆
=











x(T )

∣

∣

∣

∣

∣

∣

∣

x, w satisfy (6.1), x(0) = 0,
∫ T

0

w2
i dt ≤ 1, i = 1, . . . , nw, T ≥ 0











.

Suppose there is a positive-definite quadratic function V (ξ) = ξT P ξ, and R =
diag(r1, . . . , rnw

) such that

P > 0, R ≥ 0, TrR = 1,
d

dt
V (x) ≤ wT Rw for all x and w satisfying (6.1).

(6.13)

Then the ellipsoid E given by (6.2) contains the reachable set. To prove this, we
integrate both sides of the last inequality from 0 to T , to get

V (x(T )) − V (x(0)) ≤
∫ T

0

wT Rw dt.

Noting that V (x(0)) = 0 since x(0) = 0, we get

V (x(T )) ≤
∫ T

0

wT Rw dt ≤ 1.

Let us now consider condition (6.13) for the various LDIs:

• LTI systems: For LTI systems, condition (6.13) is equivalent to the LMI in P
and R:

P > 0, R ≥ 0 and diagonal, TrR = 1,

[

AT P + PA PBw

BT
wP −R

]

≤ 0.
(6.14)

Therefore, if there exist P and R such that (6.14) is satisfied, then the ellipsoid E
contains the reachable set Ruce.

Alternatively, using the variable Q = P−1, we can write an equivalent LMI in Q
and R:

Q > 0, R ≥ 0 and diagonal, TrR = 1,

[

QAT + AQ Bw

BT
w −R

]

≤ 0.
(6.15)

Remark: It turns out that with LTI systems, the reachable set is equal to the
intersection of all such ellipsoids. (For more details on this, see the Notes and
References.)
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• Polytopic LDIs: For PLDIs, condition (6.13) holds if and only if

P > 0, R ≥ 0 and diagonal, TrR = 1,

[

AT
i P + PAi PBw,i

BT
w,iP −R

]

≤ 0, i = 1, . . . , L.
(6.16)

Therefore, if there exist P and R such that (6.16) holds, then the ellipsoid E =
{

ξ | ξT P ξ ≤ 1
}

contains Ruce.
With Q = P−1, condition (6.13) is equivalent to

Q > 0, R ≥ 0 and diagonal, TrR = 1,

[

QAT
i + AiQ Bw,i

BT
w,i −R

]

≤ 0, i = 1, . . . , L.
(6.17)

• Norm-bound LDIs: For NLDIs, applying the S-procedure, condition (6.13) holds
if and only if there exist P , λ and R such that

P > 0, R ≥ 0 and diagonal, TrR = 1, λ ≥ 0,







AT P + PA + λCT
q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −R






≤ 0.

(6.18)

Therefore, if there exists P , λ and R such that (6.18) is satisfied, then the ellipsoid E
contains the reachable set Ruce.

With Q = P−1, condition (6.13) is also equivalent to the existence of Q, R and µ
such that

Q > 0, R ≥ 0 and diagonal, TrR = 1, µ ≥ 0,







AQ + QAT + µBpB
T
p QCT

q Bw

CqQ −µI 0

BT
w 0 −R






≤ 0.

(6.19)

As in the previous section, we can find the minimum volume and minimum di-
ameter ellipsoids among all ellipsoids of the form (6.2), satisfying condition (6.13), by
solving CPs and EVPs, respectively. We can also check that a point does not belong
to the reachable set or that a half-space does not intersect the reachable set, by solving
appropriate LMIPs.

6.1.3 Reachable sets with unit-peak inputs

We consider reachable sets with inputs w that satisfy wT w ≤ 1. Thus, we are inter-
ested in the set

Rup
∆
=

{

x(T )

∣

∣

∣

∣

∣

x, w satisfy (6.1), x(0) = 0,

wT w ≤ 1, T ≥ 0

}

.

Suppose that there exists a quadratic function V (ξ) = ξT P ξ with

P > 0, and dV (x)/dt ≤ 0 for all x, w

satisfying (6.1), wT w ≤ 1 and V (x) ≥ 1.
(6.20)
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Then, the ellipsoid E given by (6.2) contains the reachable set Rup. Let us consider
now condition (6.20) for the various LDIs:

• LTI systems: For LTI systems, condition (6.20) is equivalent to P > 0 and

ξT (AT P + PA)ξ + ξT PBww + wT BT
wP ξ ≤ 0

for any ξ and w satisfying

wT w ≤ 1 and ξT P ξ ≥ 1.

Using the S-procedure, we conclude that condition (6.20) holds if there exist α ≥ 0
and β ≥ 0 such that for all x and w,

[

x

w

]T [

AT P + PA + αP PBw

BT
wP −βI

][

x

w

]

+ β − α ≤ 0, (6.21)

or equivalently






AT P + PA + αP PBw 0

BT
wP −βI 0

0 0 β − α






≤ 0. (6.22)

Clearly we must have α ≥ β. Next, if (6.22) holds for some (α0,β0), then it holds for
all α0 ≥ β ≥ β0. Therefore, we can assume without loss of generality that β = α, and
rewrite (6.21) as

[

AT P + PA + αP PBw

BT
wP −αI

]

≤ 0. (6.23)

Therefore, if there exists P and α satisfying

P > 0, α ≥ 0, and (6.23), (6.24)

then the ellipsoid E contains the reachable set Rup. Note that inequality (6.23) is not
an LMI in α and P ; however, for fixed α it is an LMI in P .

Alternatively, condition (6.23) is equivalent to the following inequality in Q = P −1

and α:
[

QAT + AQ + αQ Bw

BT
w −αI

]

≤ 0. (6.25)

• Polytopic LDIs: Condition (6.20) holds if P > 0 and there exists α ≥ 0 satisfying
[

AT
i P + PAi + αP PBw,i

BT
w,iP −αI

]

≤ 0, i = 1, . . . , L. (6.26)

Therefore, if there exists P and α satisfying

P > 0, α ≥ 0, and (6.26), (6.27)

then the ellipsoid E contains the reachable set Rup. Once again, we note that condi-
tion (6.26) is not an LMI in α and P , but is an LMI in P for fixed α. We can also
rewrite condition (6.26) in terms of Q = P−1 as the equivalent inequality

[

QAT
i + AiQ + αQ Bw,i

BT
w,i −αI

]

≤ 0, i = 1, . . . , L. (6.28)
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• Norm-bound LDIs: For NLDIs, condition (6.20) holds if and only if P > 0 and

ξT (AT P + PA)ξ + 2ξT P (Bwω + Bpπ) ≤ 0

for every ω, ξ and π satisfying

ωT ω ≤ 1, ξT P ξ ≥ 1, πT π − ξT CT
q Cqξ ≤ 0.

Therefore, using the S-procedure, a sufficient condition for (6.20) to hold is that there
exist α ≥ 0 and λ ≥ 0 such that







AT P + PA + αP + λCT
q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −αI






≤ 0. (6.29)

If there exists P , α and λ satisfying

P > 0, α ≥ 0, λ ≥ 0, and (6.29), (6.30)

the ellipsoid EP−1 contains the reachable set Rup. We note again that inequality (6.29)
is not an LMI in P and α, but is an LMI in P for fixed α.

Defining Q = P−1, condition (6.20) is also implied by the existence of µ ≥ 0 and
α ≥ 0 such that







QAT + AQ + αQ + µBT
p Bp QCT

q Bw

CqQ −µI 0

BT
w 0 −αI






≤ 0. (6.31)

(In fact, the existence of λ ≥ 0 and α ≥ 0 satisfying (6.29) is equivalent to the existence
of µ ≥ 0 and α ≥ 0 satisfying (6.31).)

For fixed α, we can minimize the volume or diameter among all ellipsoids E satis-
fying condition (6.24) for LTI systems, condition (6.27) for PLDIs and condition (6.30)
for NLDIs by forming the appropriate CPs, or EVPs, respectively.

Remark: Inequality (6.23) can also be derived by combining the results of §6.1.1
with an exponential time-weighting of the input w. See the Notes and References
for details.
As in §6.1.2, it is possible to determine outer ellipsoidal approximations of the
reachable set of LTI systems, PLDIs and NLDIs, subject to componentwise unit-
peak inputs.

6.2 State-to-Output Properties

We now consider state-to-output properties for the LDI

ẋ = A(t)x, z = Cz(t)x (6.32)

where
[

A(t)

Cz(t)

]

∈ Ω. (6.33)

• LTI systems: LTI systems have the form ẋ = Ax, z = Czx.
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• Polytopic LDIs: PLDIs have the form ẋ = A(t)x, z = Cz(t)x, where
[

A(t)

Cz(t)

]

∈ Co

{[

A1

C1

]

, . . . ,

[

AL

CL

]}

.

• Norm-bound LDIs: NLDIs have the form

ẋ = Ax + Bpp, q = Cqx, z = Czx p = ∆(t)q, ‖∆(t)‖ ≤ 1,

or equivalently

ẋ = Ax + Bpp, q = Cqx, z = Czx, pT p ≤ qT q.

• Diagonal Norm-bound LDIs: DNLDIs have the form

ẋ = Ax + Bpp, q = Cqx,

z = Czx, pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , nq,

or equivalently

ẋ = Ax + Bpp, q = Cqx,

z = Czx, |pi| ≤ |qi|, i = 1, . . . , nq.

6.2.1 Bounds on output energy

We seek the maximum output energy given a certain initial state,

max

{∫ ∞

0

zT z dt

∣

∣

∣

∣

ẋ = A(t)x, z = Cz(t)x

}

, (6.34)

where x(0) is given, and the maximum is taken over A(t), Cz(t) such that (6.33) holds.
Suppose there exists a quadratic function V (ξ) = ξT P ξ such that

P > 0 and
d

dt
V (x) ≤ −zT z, for every x and z satisfying (6.32). (6.35)

Then, integrating both sides of the second inequality in (6.35) from 0 to T , we get

V (x(T )) − V (x(0)) ≤ −
∫ T

0

zT z dt.

for every T ≥ 0. Since V (x(T )) ≥ 0, we conclude that V (x(0)) = x(0)T Px(0) is an
upper bound on the maximum energy of the output z given the initial condition x(0).

We now derive LMIs that provide upper bounds on the output energy for the
various LDIs.

• LTI systems: In the case of LTI systems, condition (6.35) is equivalent to

P > 0, AT P + PA + CT
z Cz ≤ 0. (6.36)

Therefore, we obtain the best upper bound on the output energy provable via quadratic
functions by solving the EVP

minimize x(0)T Px(0)

subject to P > 0, (6.36)
(6.37)
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In this case the solution can be found analytically, and it is exactly equal to the output
energy, which is x(0)T Wox(0), where Wo is the observability Gramian of the system,
defined by

Wo
∆
=

∫ ∞

0

eAT tCT
z Cze

At dt.

Since Wo satisfies the Lyapunov equation

AT Wo + WoA + CT
z Cz = 0, (6.38)

it satisfies (6.35).
With Q = P−1, condition (6.35) is equivalent to

Q > 0,

[

AQ + QAT QCT
z

CzQ −I

]

≤ 0. (6.39)

If Q satisfies (6.39), then an upper bound on the output energy (6.34) is x(0)T Q−1x(0).

• Polytopic LDIs: For PLDIs, condition (6.35) is equivalent to

P > 0, A(t)T P + PA(t) + Cz(t)
T Cz(t) ≤ 0 for all t ≥ 0. (6.40)

Inequalities (6.40) hold if and only if the following LMI in the variable P holds:

P > 0, AT
i P + PAi + CT

z,iCz,i ≤ 0, i = 1, . . . , L. (6.41)

Therefore the EVP corresponding to finding the best upper bound on the output
energy provable via quadratic functions is

minimize x(0)T Px(0)

subject to P > 0, (6.41)
(6.42)

Defining Q = P−1, condition (6.35) is also equivalent to the LMI in Q

Q > 0,

[

AiQ + QAT
i QCT

z,i

Cz,iQ −I

]

≤ 0.

• Norm-bound LDIs: For NLDIs, condition (6.35) is equivalent to P > 0 and

ξT (AT P + PA + CT
z Cz)ξ + 2ξT PBpπ ≤ 0

for every ξ and π that satisfy πT π ≤ ξT CT
q Cqξ. Using the S-procedure, an equivalent

condition is the existence of P and λ such that

P > 0, λ ≥ 0,

[

AT P + PA + CT
z Cz + λCT

q Cq PBp

BT
p P −λI

]

≤ 0.
(6.43)

Therefore we obtain the smallest upper bound on the output energy (6.34) provable
via quadratic functions satisfying condition (6.35) by solving the following EVP in the
variables P and λ

minimize x(0)T Px(0)

subject to P > 0, λ ≥ 0, (6.43)
(6.44)
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With Q = P−1, condition (6.35) is also equivalent to the existence of µ ≥ 0 satisfying

Q > 0,







AQ + QAT + µBpB
T
p QCT

z QCT
q

CzQ −I 0

CqQ 0 −µI






≤ 0.

• Diagonal Norm-bound LDIs: For DNLDIs, condition (6.35) is equivalent to

ξT (AT P + PA + CT
z Cz)ξ + 2ξT PBpπ ≤ 0,

for every ξ and π that satisfy

π2
i ≤ (Cq,iξ)

T
(Cq,iξ) , i = 1, . . . , nq.

Using the S-procedure, a sufficient condition is that there exists a diagonal Λ ≥ 0
such that

[

AT P + PA + CT
z Cz + CT

q ΛCq PBp

BT
p P −Λ

]

≤ 0. (6.45)

Therefore we obtain the smallest upper bound on the output energy (6.34) provable
via quadratic functions satisfying condition (6.35) and the S-procedure by solving the
following EVP in the variables P and Λ:

minimize x(0)T Px(0)

subject to P > 0, Λ ≥ 0 and diagonal, (6.45)

With Q = P−1, condition (6.35) is also equivalent to the existence of a diagonal matrix
M ≥ 0 satisfying







AQ + QAT + BpMBT
p QCT

z QCT
q

CzQ −I 0

CqQ 0 −M






≤ 0.

Once again, we leave it to the reader to extend the results in the remainder of the
section to DNLDIs.

Maximum output energy extractable from a set

As an extension, we seek bounds on the maximum extractable energy from x(0), which
is known only to lie in a polytope P = Co{v1, . . . , vp}.

We first note that since P > 0, x(0)T Px(0) takes its maximum value on one of
the vertices v1, . . . , vp. Therefore, the smallest upper bound on the extractable energy
from P provable via quadratic Lyapunov functions for any of our LDIs is computed
by solving (6.37), (6.42) or (6.44) p times, successively setting x(0) = vi, i = 1, . . . , p.
The maximum of the p resulting optimal values is the smallest upper bound sought.

As a variation, suppose that x(0) is only known to belong to the ellipsoid E =
{ξ | ξT Xξ ≤ 1}. Then, the smallest upper bound on the maximum output energy
extractable from E provable via quadratic functions satisfying (6.35) is obtained by
replacing the objective function x(0)T Px(0) in the EVPs (6.37), (6.42), and (6.44) by
the objective function λmax(X

−1/2PX−1/2), and solving the corresponding EVPs. For
LTI systems, the exact value of the maximum extractable output energy is obtained.
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Finally, if x0 is a random variable with Ex0x
T
0 = X0, then we obtain the small-

est upper bound on the expected output energy provable via quadratic functions by
replacing the objective function x(0)T Px(0) in the EVPs (6.37), (6.42), and (6.44) by
the objective function TrX0P and solving the corresponding EVPs.

6.2.2 Bounds on output peak

It is possible to derive bounds on ‖z(t)‖ using invariant ellipsoids.
Assume first that the initial condition x(0) is known. Suppose E = {ξ | ξT P ξ ≤ 1}

is an invariant ellipsoid containing x(0) for the LDI (6.32). Then

z(t)T z(t) ≤ max
ξ∈E

ξT Cz(t)
T Cz(t)ξ

for all t ≥ 0. We can express maxξ∈E ξT Cz(t)
T Cz(t)ξ as the square root of the

minimum of δ subject to

[

P CT
z

Cz δI

]

≥ 0. (6.46)

• LTI systems: The smallest bound on the output peak that can be obtained via
invariant ellipsoids is the square root of the optimal value of the EVP in the variables
P and δ

minimize δ

subject to P > 0, x(0)T Px(0) ≤ 1,

(6.46), AT P + PA ≤ 0

(6.47)

• Polytopic LDIs: For PLDIs, we obtain the smallest upper bound on ‖z‖ provable
via invariant ellipsoids by taking the square root of the optimal value of the following
EVP in the variables P and δ

minimize δ

subject to P > 0, x(0)T Px(0) ≤ 1, (6.46),

AT
i P + PAi ≤ 0, i = 1, . . . , L

• Norm-bound LDIs: For NLDIs, we obtain the smallest upper bound on ‖z‖
provable via invariant ellipsoids by taking the square root of the optimal value of the
following EVP in the variables P , λ and δ

minimize δ

subject to P > 0, x(0)T Px(0) ≤ 1, λ ≥ 0, (6.46),





AT P + PA + λCT
q Cq PBp

BT
p P −λI



 ≤ 0
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Remark: As variation of this problem, we can impose a decay rate constraint on
the output, that is, given α > 0, we can compute an upper bound on the smallest
γ such that the output z satisfies

‖z(t)‖ ≤ γe−αt,

for all t ≥ 0. This also reduces to an EVP.

6.3 Input-to-Output Properties

We finally consider the input-output behavior of the LDI

ẋ = A(t)x + Bw(t)w, x(0) = x0,

z = Cz(t)x + Dzw(t)w,
(6.48)

where
[

A(t) Bw(t)

Cz(t) Dzw(t)

]

∈ Ω. (6.49)

6.3.1 Hankel norm bounds

In this section, we assume that Dzw(t) = 0 for all t, and consider the quantity

φ
∆
= max







∫ ∞

T

zT z dt

∣

∣

∣

∣

∣

∣

∫ T

0
wT w dt ≤ 1, x(0) = 0,

w(t) = 0, t > T ≥ 0







,

and the maximum is taken over A(t), B(t) and C(t) satisfying (6.49). For an LTI
system,

√
φ equals the Hankel norm, a name that we extend for convenience to LDIs.

An upper bound for φ can be computed by combining the ellipsoidal bounds on
reachable sets from §6.1.1 and the bounds on the output energy from §6.2.1. Suppose
that P > 0 and Q > 0 satisfy

d

dt

(

xT Px
)

≤ wT w,
d

dt

(

xT Qx
)

≤ −zT z (6.50)

for all x, w and z satisfying (6.48). Then, from the arguments in §6.1.1 and §6.2.1, we
conclude that

φ ≤ sup
{∫ ∞

T
zT z dt

∣

∣ x(T )T Px(T ) ≤ 1
}

≤ sup
{

x(T )T Qx(T )
∣

∣ x(T )T Px(T ) ≤ 1
}

= λmax(P
−1/2QP−1/2).

• LTI systems: We compute the smallest upper bound on the Hankel norm provable
via quadratic functions satisfying (6.50) by computing the square root of the minimum
γ such that there exist P > 0 and Q > 0 satisfying

AT P + PA + PBwBT
wP ≤ 0,

AT Q + QA + CT
z Cz ≤ 0,

γP − Q ≥ 0.
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This is a GEVP in the variables γ, P , and Q. It is possible to transform it into an EVP
by introducing the new variable Q̃ = Q/γ. The corresponding EVP in the variables
γ, P , and Q̃ is then to minimize γ subject to

AT P + PA + PBwBT
wP ≤ 0,

AT Q̃ + Q̃A + CT
z Cz/γ ≤ 0,

P − Q̃ ≥ 0

In this case, the optimal value is exactly the Hankel norm. It can be found analytically
as λmax(WcWo) where Wc and Wo are the controllability and observability Gramians,
i.e., the solutions of the Lyapunov equations (6.6) and (6.38), respectively.

• Polytopic LDIs: We compute the smallest upper bound on the Hankel norm
provable via quadratic functions satisfying (6.50) by computing the square root of the
minimum γ such that there exist P > 0 and Q > 0 satisfying

AT
i P + PAi + PBw,iB

T
w,iP ≤ 0,

AT
i Q + QAi + CT

z,iCz,i ≤ 0, i = 1, . . . , L

γP − Q ≥ 0.

This is a GEVP in the variables γ, P , and Q. Defining Q̃ = Q/γ, an equivalent EVP
in the variables γ, P , and Q̃ is to minimize γ subject to

AT
i P + PAi + PBw,iB

T
w,iP ≤ 0,

AT
i Q̃ + Q̃Ai + CT

z,iCz,i/γ ≤ 0, i = 1, . . . , L

P − Q̃ ≥ 0

• Norm-bound LDIs: Similarly, the smallest upper bound on the Hankel norm
provable via quadratic functions satisfying (6.50) is computed by taking the square
root of the minimum γ such that there exist P > 0, Q > 0, λ ≥ 0, and µ ≥ 0 satisfying







AT P + PA + λCT
q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −I






≤ 0,

[

AT Q + QA + CT
z Cz + µCT

q Cq QBp

BT
p Q −µI

]

≤ 0,

γP − Q ≥ 0.

This is a GEVP in the variables γ, P , Q, λ, and µ. If we introduce the new variables
Q̃ = Q/γ, ν = µ/γ and equivalent EVP in the variables γ, P , Q̃, λ, and ν is to
minimize γ such that







AT P + PA + λCT
q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −I






≤ 0,

[

AT Q̃ + Q̃A + CT
z Cz/γ + νCT

q Cq Q̃Bp

BT
p Q̃ −νI

]

≤ 0,

P − Q̃ ≥ 0.
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6.3.2 L2 and RMS gains

We assume Dzw(t) = 0 for simplicity of exposition. We define the L2 gain of the
LDI (6.48) as the quantity

sup
‖w‖2 (=0

‖z‖2

‖w‖2

where the L2 norm of u is ‖u‖2
2 =

∫ ∞

0
uT u dt, and the supremum is taken over

all nonzero trajectories of the LDI, starting from x(0) = 0. The LDI is said to be
nonexpansive if its L2 gain is less than one.

Now, suppose there exists a quadratic function V (ξ) = ξT P ξ, P > 0, and γ ≥ 0
such that for all t,

d

dt
V (x) + zT z − γ2wT w ≤ 0 for all x and w satisfying (6.48). (6.51)

Then the L2 gain of the LDI is less than γ. To show this, we integrate (6.51) from 0
to T , with the initial condition x(0) = 0, to get

V (x(T )) +

∫ T

0

(

zT z − γ2wT w
)

dt ≤ 0.

since V (x(T )) ≥ 0, this implies

‖z‖2

‖w‖2
≤ γ.

Remark: It can be easily checked that if (6.51) holds for V (ξ) = ξT P ξ, P > 0,
then γ is also an upper bound on the RMS gain of the LDI, where the root-mean-
square (RMS) value of ξ is defined as

RMS(ξ)
∆
=

(

lim sup
T→∞

1

T

∫ T

0

ξ
T
ξ dt

)1/2

,

and the RMS gain is defined as

sup
RMS(w) &=0

RMS(z)

RMS(w)
.

Now reconsider condition (6.51) for LDIs.

• LTI systems: Condition (6.51) is equivalent to
[

AT P + PA + CT
z Cz PBw

BT
wP −γ2I

]

≤ 0. (6.52)

Therefore, we compute the smallest upper bound on the L2 gain of the LTI system
provable via quadratic functions by minimizing γ over the variables P and γ satisfying
conditions P > 0 and (6.52). This is an EVP.

Remark: Assuming that (A, Bw, Cz) is minimal, this EVP gives the exact value
of the L2 gain of the LTI system, which also equals the H∞ norm of its transfer
matrix, ‖Cz(sI − A)−1Bw‖∞.
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Assume Bw )= 0 and Cz )= 0; then the existence of P > 0 satisfying (6.52) is
equivalent to the existence of Q > 0 satisfying

[

AQ + QAT + BwBT
w/γ2 QCT

z

CzQ −I

]

≤ 0.

• Polytopic LDIs: Condition (6.51) is equivalent to

[

AT
i P + PAi + CT

z,iCz,i PBw,i

BT
w,iP −γ2I

]

≤ 0, i = 1, . . . , L. (6.53)

Assume there exists i0 for which Bw,i0 )= 0, and j0 for which Cz,j0 )= 0. Then there
exists P > 0 satisfying (6.53) if and only if there exists Q > 0 satisfying

[

QAT
i + AiQ + Bw,iB

T
w,i QCT

z,i

Cz,iQ −γ2I

]

≤ 0, i = 1, . . . , L.

We get the smallest upper bound on the L2 gain provable via quadratic functions by
minimizing γ (over γ and P ) subject to (6.53) and P > 0, which is an EVP.

• Norm-bound LDIs: For NLDIs, condition (6.51) is equivalent to

ξT (AT P + PA + CT
z Cz)ξ + 2ξT P (Bpπ + Bww) − γ2wT w ≤ 0

for all ξ and π satisfying

πT π ≤ ξT CT
q Cqξ.

This is true if and only if there exists λ ≥ 0 such that







AT P + PA + CT
z Cz + λCT

q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −γ2I






≤ 0. (6.54)

Therefore, we obtain the best upper bound on the L2 gain provable via quadratic
functions by minimizing γ over the variables γ, P and λ, subject to P > 0, λ ≥ 0
and (6.54).

If Bw )= 0 and Cz )= 0, then the existence of P > 0 and λ ≥ 0 satisfying (6.54) is
equivalent to the existence of Q > 0 and µ ≥ 0 satisfying







QAT + AQ + BwBT
w + µBpB

T
p QCT

q QCT
z

CqQ −µI 0

CzQ 0 −γ2I






≤ 0.

• Diagonal Norm-bound LDIs: For DNLDIs, condition (6.51) is equivalent to

ξT (AT P + PA + CT
z Cz)ξ + 2ξT P (Bpπ + Bww) − γ2wT w ≤ 0

for all ξ and π satisfying

πT
i πi ≤ (Cq,iξi)

T (Cq,iξi), i = 1, . . . , nq.
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Using the S-procedure, a sufficient condition is that there exist a diagonal Λ ≥ 0 such
that







AT P + PA + CT
z Cz + CT

q ΛCq PBp PBw

BT
p P −Λ 0

BT
wP 0 −γ2I






≤ 0. (6.55)

We obtain the best such upper bound by minimizing γ over the variables γ, P and λ,
subject to P > 0, λ ≥ 0 and (6.55).

If Bw )= 0 and Cz )= 0, then the existence of P > 0 and λ ≥ 0 satisfying (6.54) is
equivalent to the existence of Q > 0 and M = diag(µ1, . . . , µnq

) ≥ 0 satisfying







QAT + AQ + BwBT
w + BpMBT

p QCT
q QCT

z

CqQ −M 0

CzQ 0 −γ2I






≤ 0.

6.3.3 Dissipativity

The LDI (6.48) is said to be passive if every solution x with x(0) = 0 satisfies
∫ T

0

wT z dt ≥ 0

for all T ≥ 0. It is said to have dissipation η if
∫ T

0

(

wT z − ηwT w
)

dt ≥ 0 (6.56)

holds for all trajectories with x(0) = 0 and all T ≥ 0. Thus passivity corresponds to
nonnegative dissipation. The largest dissipation of the system, i.e., the largest number
η such that (6.56) holds, will be called its dissipativity .

Suppose that there is a quadratic function V (ξ) = ξT P ξ, P > 0, such that

for all x and w satisfying (6.48),
d

dt
V (x) − 2wT z + 2ηwT w ≤ 0. (6.57)

Then, integrating (6.57) from 0 to T with initial condition x(0) = 0 yields

V (x(T )) −
∫ T

0

(

2wT z − 2ηwT w
)

dt ≤ 0.

Since V (x(T )) ≥ 0, we conclude
∫ T

0

(

wT z − ηwT w
)

dt ≥ 0,

which implies that the dissipativity of the LDI is at least η. Now reconsider condi-
tion (6.57) for the various LDIs.

• LTI systems: For LTI systems, condition (6.57) is equivalent to
[

AT P + PA PBw − CT
z

BT
wP − Cz 2ηI − (DT

zw + Dzw)

]

≤ 0. (6.58)

We find the largest dissipation that can be guaranteed using quadratic functions by
maximizing η over the variables P and η, subject to P > 0 and (6.58), an EVP.
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Assuming that the system (A,Bw, Cz) is minimal, the optimal value of this EVP
is exactly equal to the dissipativity of the system, which can be expressed in terms of
the transfer matrix H(s) = Cz(sI − A)−1Bw + Dzw as

inf
Res>0

λmin (H(s) + H(s)∗)

2
. (6.59)

This follows from the PR lemma.
Defining Q = P−1, condition (6.58) is equivalent to

[

QAT + AQ Bw − QCT
z

BT
w − CzQ 2ηI − (DT

zw + Dzw)

]

≤ 0. (6.60)

• Polytopic LDIs: For PLDIs, condition (6.57) is equivalent to
[

AT
i P + PAi PBw,i − CT

z,i

BT
w,iP − Cz,i 2ηI − (DT

zw,i + Dzw,i)

]

≤ 0, i = 1, . . . , L. (6.61)

We find the largest dissipation that can be guaranteed via quadratic functions by
maximizing η over the variables P and η satisfying P > 0 and (6.61). This is an EVP;
its optimal value is a lower bound on the dissipativity of the PLDI.

If we define Q = P−1, condition (6.57) is equivalent to
[

QAT
i + AiQ Bw,i − QCT

z,i

BT
w,i − Cz,iQ 2ηI − (DT

zw,i + Dzw,i)

]

≤ 0, i = 1, . . . , L. (6.62)

• Norm-bound LDIs: For NLDIs, using the S-procedure, the condition (6.57) is
true if and only if there exists a nonnegative scalar λ such that







AT P + PA + λCT
q Cq PBw − CT

z PBp

BT
wP − Cz 2ηI − (DT

zw + Dzw) 0

BT
p P 0 −λI






≤ 0. (6.63)

Therefore we can find the largest dissipation provable with a quadratic Lyapunov
function by maximizing η (over η and P ), subject to P > 0 and (6.63). This is an
EVP. Defining Q = P−1, condition (6.57) is equivalent to the existence of µ ≥ 0
satisfying







QAT + AQ + µBpB
T
p Bw − QCT

z QCT
q

BT
w − CzQ 2ηI − (DT

zw + Dzw) 0

CqQ 0 −µI






≤ 0. (6.64)

6.3.4 Diagonal scaling for componentwise results

We assume for simplicity that Dzw(t) = 0. Assuming that the system (6.48) has as
many inputs as outputs, we consider the system

ẋ = A(t)x + Bw(t)T−1w̃, x(0) = 0,

z̃ = TCz(t)x.
(6.65)

where T is a positive-definite diagonal matrix, which has the interpretation of a scal-

ing . We will see that scaling enables us to conclude “componentwise” results for the
system (6.65).
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Consider for example, the “scaled L2 gain”

α = inf
T diagonal,

T > 0

sup
‖w̃‖2 (=0

‖z̃‖2

‖w̃‖2
.

The scaled L2 gain has the following interpretation:

max
i=1,...,nz

sup
‖wi‖2 (=0

‖zi‖
‖wi‖

≤ α.

We show this as follows: For every fixed scaling T = diag(t1, . . . , tnz
),

sup‖w̃‖2 (=0

‖z̃‖2
2

‖w̃‖2
2

= sup‖w‖2 (=0

∑nz

i t2i ‖zi‖2
2

∑nz

i t2i ‖wi‖2
2

≥ sup‖wi‖2 (=0

‖zi‖2
2

‖wi‖2
2

.

Since the inequality is true for all diagonal nonsingular T , the desired inequality
follows. We now show how we can obtain bounds on the scaled L2 gain using LMIs
for LTI systems and LDIs.

• LTI systems: The L2 gain for the LTI system scaled by T is guaranteed to be
less than γ if there exists P > 0 such that the LMI

[

AT P + PA + CT
z SCz PBw

BT
wP −γ2S

]

< 0

holds with S = T T T . The smallest scaled L2 gain of the system can therefore be
computed as a GEVP.

• Polytopic LDIs: For PLDIs, the scaled L2 gain is guaranteed to be lower than
γ if there exists S > 0, with S diagonal, and P > 0 which satisfy

[

AT
i P + PAi + CT

z,iSCz,i PBw,i

BT
w,iP −γ2S

]

< 0, i = 1, . . . , L. (6.66)

The optimal scaled L2 gain γ is therefore obtained by minimizing γ over (γ, P and
S) subject to (6.66), P > 0, S > 0 and S diagonal. This is a GEVP.

• Norm-bound LDIs: For NLDIs, the scaled L2 gain (with scaling T ) is less than γ

if there exist λ ≥ 0, P > 0, and S > 0, S diagonal, such that the following LMI holds:







AT P + PA + CT
z SCz + λCT

q Cq PBp PBw

BT
p P −λI 0

BT
wP 0 −γ2S






≤ 0. (6.67)

Therefore, minimizing γ2 subject to the constraint (6.67) is an EVP.
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Notes and References

Integral quadratic constraints

In §8.2 (and §10.9) we consider a generalization of the NLDI in which the pointwise condition
pT p ≤ qT q is replaced by the integral constraint

∫ ∞

0

pT p dt ≤
∫ ∞

0

qT q dt.

Many of the results derived for NLDIs and DNLDIs then become necessary and sufficient.
Integral quadratic constraints were introduced by Yakubovich. For a general study of these,
we refer the reader to the articles of Yakubovich (see [Yak92] and references therein), and
also Megretsky [Meg93, Meg92a, Meg92b].

Reachable sets for componentwise unit-energy inputs

We study in greater detail the set of states reachable with componentwise unit-energy inputs
for LTI systems (see §6.1.2). We begin by observing that a point x0 belongs to the reachable
set if and only if the optimal value of the problem

minimize max
i

∫ ∞

0

w2
i dt

subject to ẋ = −Ax + Bww, x(0) = x0, lim
t→∞

x(t) = 0

is less than one. This is a multi-criterion convex quadratic problem, considered in §10.8. In
this case, the problem reduces to checking whether the LMI

xT
0 Px0 < 1,

[

AT P + PA PB

BT P −R

]

≤ 0,

P > 0, R > 0, diagonal, TrR = 1

is feasible. This shows that the reachable set is the intersection of ellipsoids
{

ξ | ξT P ξ ≤ 1
}

satisfying equation (6.14).

A variation of this problem is considered in [SZ92], where the authors consider inputs w
satisfying

∫ ∞

0
wwT dt ≤ Q, or equivalently

∫ ∞

0

wT Ww dt ≤ TrWQ for every W ≥ 0.

They get necessary conditions characterizing the corresponding reachable set. We now derive
LMI conditions that are both necessary and sufficient.

As before, x0 belongs to the reachable set if and only the optimal value of the problem

minimize

∫ ∞

0

wT Ww dt

subject to ẋ = −Ax + Bww, x(0) = x0, lim
t→∞

x(t) = 0

is less than TrWQ for every W ≥ 0. This is equivalent to infeasibility of the LMI (in the
variables P and W ):

xT
0 Px0 − TrWQ ≥ 0, P > 0,

[

AT P + PA PB

BT P −W

]

≤ 0.
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These are precisely the conditions obtained in [SZ92].

Reachable sets with unit-peak inputs

Schweppe [Sch73, §4.3.3] considers the more general problem of time-varying ellipsoidal ap-
proximations of reachable sets with unit-peak inputs for time-varying systems; the positive-
definite matrix describing the ellipsoidal approximation satisfies a matrix differential equa-
tion, terms of which closely resemble those in the matrix inequalities described in this book.
Sabin and Summers [SS90] study the approximation of the reachable set via quadratic func-
tions. A survey of the available techniques can be found in the article by Gayek [Gay91].
See also [FG88].

The technique used to derive LMI (6.23) can be interpreted as an exponential time-weighting
procedure. Fix α > 0. Then for every T > 0, rewrite LDI (6.1), with new exponentially

time-weighted variables xT (t) = eα(t−T )/2x(t) and v(t) = eα(t−T )/2w(t) as

ẋT =
(

A(t) +
α

2
I
)

xT + Bw(t)v, xT (0) = 0.

Since w(t)T w(t) ≤ 1, we have
∫ T

0
vT v dτ ≤ 1/α.

Now suppose that P > 0 satisfies condition (6.23), which we rewrite for convenience as

[

(A + αI/2)T P + P (A + αI/2) PBw

BT
wP −αI

]

≤ 0. (6.68)

The results of §6.1.1 imply that xT (T ) satisfies xT (T )T PxT (T ) ≤ 1; therefore, x(T )T Px(T ) ≤
1. Since LMI (6.68) is independent of T , the ellipsoid

{

x | xT Px ≤ 1
}

contains the reachable
set with unit-peak inputs.

Bounds on overshoot

The results of §6.1.3 can be used to find a bound on the step response peak for LDIs. Consider
a single-input single-output LDI, subject to a unit-step input:

ẋ = A(t)x + bw(t), x(0) = 0,

s = cz(t)x,

[

A(t) bw(t)

cz(t) 0

]

∈ Ω.

Since a unit-step is also a unit-peak input, an upper bound on maxt≥0 |s(t)| (i.e., the over-
shoot) can be found by combining the results on reachable sets with unit-peak inputs (§6.1.3)
and bounds on output peak (§6.2.2).

Suppose there exist Q > 0 and α > 0 satisfying (6.25),

A(t)Q + QA(t)T + αQ +
1

α
bw(t)bw(t)T < 0.

Then, from §6.2.2, we conclude that maxt≥0 |s(t)| does not exceed M , where M2 = maxt≥0

cz(t)
T Qcz(t). This can be used to find LMI-based bounds on overshoot for LTI systems,

PLDIs and NLDIs. We note that the resulting bounds can be quite conservative. These
LMIs can be used to determine state-feedback matrices as well (see the Notes and References
of Chapter 7).
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Bounds on impulse response peak for LTI systems

The impulse response h(t) = ceAtb of the single-input single-output LTI system

ẋ = Ax + bu, x(0) = 0, y = cx

is just the output y with initial condition x(0) = b and zero input. Therefore, we can com-
pute a bound on the impulse response peak by combining the results on invariant ellipsoids
from §5.2 with those on the peak value of the output from §6.2.2. The bound obtained this
way can be quite conservative. For instance, consider the LTI system with transfer function

H(s) =
1

s + s1

n
∏

i=2

s − si

s + si
,

where si+1 - si > 0, i.e., the dynamics of this system are widely spaced. The bound on
the peak value of the impulse response of the system computed via the EVP (6.47) turns
out to be 2n − 1 times the actual maximum value of the impulse response, where n is the
dimension of a minimal realization of the system [Fer93]. We conjecture that the bound
can be no more conservative, that is, for every LTI system, the bound on the peak of the
impulse response computed via the EVP (6.47) can be no more than 2n− 1 times the actual
maximum value of the impulse response.

Examples for which the bound obtained via the EVP (6.47) is sharp include the case of passive
LTI systems. In this case, we know there exists a positive-definite P such that AT P +PA ≤ 0,
Pb = cT , so that the maximum value of the impulse response is cb and is attained for t = 0.
This is an illustration of the fact that passive systems have nice “peaking” properties, which
is used in nonlinear control [Kok92].
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Chapter 7

State-Feedback Synthesis for LDIs

7.1 Static State-Feedback Controllers

We consider the LDI

ẋ = A(t)x + Bw(t)w + Bu(t)u, z = Cz(t)x + Dzw(t)w + Dzu(t)u,

[

A(t) Bw(t) Bu(t)

Cz(t) Dzw(t) Dzu(t)

]

∈ Ω,

(7.1)

where Ω has one of our special forms (i.e., singleton, polytope, image of a unit ball
under a matrix linear-fractional mapping). Here u : R+ → Rnu is the control input

and w : R+ → Rnw is the exogenous input signal .
Let K ∈ Rnu×n, and suppose that u = Kx. Since the control input is a linear

function of the state, this is called (linear, constant) state-feedback , and the matrix K
is called the state-feedback gain. This yields the closed-loop LDI

ẋ = (A(t) + Bu(t)K) x + Bw(t)w,

z = (Cz(t) + Dzu(t)K) x + Dzw(t)w.
(7.2)

In this chapter we consider the state-feedback synthesis problem, i.e., the problem of
finding a matrix K so that the closed-loop LDI (7.2) satisfies certain properties or
specifications, e.g., stability.

Remark: Using the idea of global linearization described in §4.3, the methods of
this chapter can be used to synthesize a linear state-feedback for some nonlinear,
time-varying systems. As an example, we can synthesize a state-feedback for the
system

ẋ = f(x, w, u, t), z = g(x, w, u, t),

provided we have







∂f

∂x

∂f

∂w

∂f

∂u

∂g

∂x

∂g

∂w

∂g

∂u






(x, w, u, t) ∈ Ω,

and f(0, 0, 0, t) = 0, g(0, 0, 0, t) = 0, for all x, t, w and u.
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7.2 State Properties

We consider the LDI

ẋ = A(t)x + Bu(t)u, [A(t) Bu(t)] ∈ Ω. (7.3)

• LTI systems: For LTI systems, (7.3) becomes

ẋ = Ax + Buu. (7.4)

• Polytopic LDIs: PLDIs are given by

ẋ = A(t)x + Bu(t)u, [A(t) Bu(t)] ∈ Co {[A1 Bu,1] , . . . . [AL Bu,L]} . (7.5)

• Norm-bound LDIs: For NLDIs, (7.3) becomes

ẋ = Ax + Buu + Bpp, q = Cqx + Dquu + Dqpp

p = ∆(t)q, ‖∆(t)‖ ≤ 1.
(7.6)

Equivalently, we have

ẋ = Ax + Buu + Bpp, q = Cqx + Dqpp + Dquu, pT p ≤ qT q.

• Diagonal Norm-bound LDIs: For DNLDIs, equation (7.3) becomes

ẋ = Ax + Buu + Bpp, q = Cqx + Dqpp + Dquu,

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , L.
(7.7)

Equivalently, we have

ẋ = Ax + Buu + Bpp, q = Cqx + Dqpp + Dquu,

|pi| ≤ |qi|, i = 1, . . . , nq.

7.2.1 Quadratic stabilizability

The system (7.1) is said to be quadratically stabilizable (via linear state-feedback) if
there exists a state-feedback gain K such that the closed-loop system (7.2) is quadrat-
ically stable (hence, stable). Quadratic stabilizability can be expressed as an LMIP.

• LTI systems: Let us fix the matrix K. The LTI system (7.4) is (quadratically)
stable if and only if there exists P > 0 such that

(A + BuK)T P + P (A + BuK) < 0,

or equivalently, there exists Q > 0 such that

Q(A + BuK)T + (A + BuK)Q < 0. (7.8)

Neither of these conditions is jointly convex in K and P or Q, but by a simple change
of variables we can obtain an equivalent condition that is an LMI.

Define Y = KQ, so that for Q > 0 we have K = Y Q−1. Substituting into (7.8)
yields

AQ + QAT + BuY + Y T BT
u < 0, (7.9)
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which is an LMI in Q and Y . Thus, the system (7.4) is quadratically stabilizable if
and only if there exist Q > 0 and Y such that the LMI (7.9) holds. If this LMI is
feasible, then the quadratic function V (ξ) = ξT Q−1ξ proves (quadratic) stability of
system (7.4) with state-feedback u = Y Q−1x.

Remark: We will use the simple change of variables Y = KQ many times in
the sequel. It allows us to recast the problem of finding a state-feedback gain
as an LMIP with variables that include Q and Y ; the state-feedback gain K is
recovered as K = Y Q−1.

An alternate equivalent condition for (quadratic) stabilizability, involving fewer
variables, can be derived using the elimination of matrix variables described in §2.6.2:
There exist Q > 0 and a scalar σ such that

AQ + QAT − σBuBT
u < 0. (7.10)

Since we can always assume σ > 0 in LMI (7.10), and since the LMI is homogeneous
in Q and σ, we can without loss of generality take σ = 1, thus reducing the number of
variables by one. If Q > 0 satisfies the LMI (7.10), a stabilizing state-feedback gain is
given by K = −(σ/2)BT

u Q−1.
From the elimination procedure of §2.6.2, another equivalent condition is

B̃T
u

(

AQ + QAT
)

B̃u < 0, (7.11)

where B̃u is an orthogonal complement of Bu. For any Q > 0 satisfying (7.11), a
stabilizing state-feedback gain is K = −(σ/2)BT

u Q−1, where σ is any scalar such
that (7.10) holds (condition (7.11) implies that such a scalar exists).

For LTI systems, these LMI conditions are necessary and sufficient for stabiliz-
ability. In terms of linear system theory, stabilizability is equivalent to the condition
that every unstable mode be controllable; it is not hard to show that this is equivalent
to feasibility of the LMIs (7.9), (7.11), or (7.10).

• Polytopic LDIs: For the PLDI (7.5), the same argument applies. Quadratic
stabilizability is equivalent to the existence of Q > 0 and Y with

QAT
i + AiQ + Bu,iY + Y T BT

u,i < 0, i = 1, . . . , L. (7.12)

• Norm-bound LDIs: With u = Kx, the NLDI (7.6) is quadratically stable (see
LMI (5.14)) if there exist Q > 0 and µ > 0 such that







(

AQ + QAT + BuKQ

+ QKT BT
u + µBpB

T
p

)

µBpD
T
qp + Q(Cq + DquK)T

µDqpB
T
p + (Cq + DquK)Q −µ(I − DqpD

T
qp)






< 0.

This condition has a simple frequency-domain interpretation: The H∞ norm of the
transfer matrix from p to q for the LTI system ẋ = (A + BuK)x + Bpp, q = (Cq +
DquK)x + Dqpp is less than one.

With Y = KQ, we conclude that the NLDI is quadratically stabilizable if there
exist Q > 0, µ > 0 and Y such that







(

AQ + QAT + µBpB
T
p

+BuY + Y T BT
u

)

µBpD
T
qp + QCT

q + Y T DT
qu

µDqpB
T
p + CqQ + DquY − µ(I − DqpD

T
qp)






< 0. (7.13)
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Using the elimination procedure of §2.6.2, we obtain the equivalent conditions:








(

AQ + QAT

− σBuBT
u + µBpB

T
p

)

QCT
q + µBpD

T
qp − σBuDT

qu

CqQ + µDqpB
T
p − σDquBT

u −µ(I − DqpD
T
qp) − σDquDT

qu









< 0,

−µ(I − DqpD
T
qp) < 0.

(7.14)

The latter condition is always satisfied since the NLDI is well-posed. By homogeneity,
we can set µ = 1. If Q > 0 and σ > 0 satisfy (7.14) with µ = 1, a stabilizing
state-feedback gain is K = (−σ/2)BT

u Q−1.
An alternate, equivalent condition for quadratic stabilizability is expressed in

terms of the orthogonal complement of [BT
u DT

qu]T , which we denote by G̃:

G̃T

[

AQ + QAT + µBpB
T
p QCT

q + µBpD
T
qp

CqQ + µDqpB
T
p −µ(I − DqpD

T
qp)

]

G̃ < 0. (7.15)

(Again, we can freely set µ = 1 in this LMI.)
In the remainder of this chapter we will assume that Dqp in (7.6) is zero in order

to simplify the discussion; all the following results can be extended to the case in
which Dqp is nonzero.

• Diagonal Norm-bound LDIs: With u = Kx, the DNLDI (7.7) is quadratically
stable (see LMI (5.16)) if there exist Q > 0, M = diag(µ1, . . . , µnq

) > 0 satisfying







(

AQ + QAT + BuKQ

+ QKT BT
u + BpMBT

p

)

BpMDT
qp + Q(Cq + DquK)T

DqpMBT
p + (Cq + DquK)Q −(M − DqpMDT

qp)






< 0.

This condition leads to a simple frequency-domain interpretation for quadratic stabi-
lizability of DNLDIs: Let H denote the transfer matrix from p to q for the LTI system
ẋ = (A+BuK)x+Bpp, q = (Cq +DquK)x+Dqpp. Then the DNLDI is quadratically
stabilizable if there exists K such that for some diagonal positive-definite matrix M ,
‖M−1/2HM1/2‖∞ ≤ 1. There is no analytical method for checking this condition.

With Y = KQ, we conclude that the NLDI is quadratically stabilizable if there
exist Q > 0, M > 0 and diagonal, and Y such that







(

AQ + QAT + BpMBT
p

+BuY + Y T BT
u

)

BpMDT
qp + QCT

q + Y T DT
qu

DqpMBT
p + CqQ + DquY − (M − DqpMDT

qp)






< 0.

As before, we can eliminate the variable Y using the elimination procedure of §2.6.2,
and obtain equivalent LMIs in fewer variables.

7.2.2 Holdable ellipsoids

Just as quadratic stability can also be interpreted in terms of invariant ellipsoids, we
can interpret quadratic stabilizability in terms of holdable ellipsoids. We say that the
ellipsoid

E =
{

ξ ∈ Rn
∣

∣ ξT Q−1ξ ≤ 1
}
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is holdable for the system (7.3) if there exists a state-feedback gain K such that E
is invariant for the system (7.3) with u = Kx. Therefore the LMIs described in the
previous section also characterize holdable ellipsoids for the system (7.3).

With this parametrization of quadratic stabilizability and holdable ellipsoids as
LMIs in Q > 0 and Y , we can solve various optimization problems, such as finding
the coordinate transformation that minimizes the condition number of Q, imposing
norm constraints on the input u = Kx, etc.

Remark: In Chapter 5, we saw that quadratic stability and invariant ellipsoids
were characterized by LMIs in a variable P > 0 and also its inverse Q = P −1.
In contrast, quadratic stabilizability and ellipsoid holdability can be expressed
as LMIs only in variables Q and Y ; it is not possible to rewrite these LMIs as
LMIs with Q−1 as a variable. This restricts the extension of some of the results
from Chapter 5 (and Chapter 6) to state-feedback synthesis. As a rule of thumb,
results in the analysis of LDIs that are expressed as LMIs in the variable Q can
be extended to state-feedback synthesis, with a few exceptions; results expressed
as LMIs in P are not. For example, we will not be able to compute the minimum
volume holdable ellipsoid that contains a given polytope P (see problem (5.33))
as an optimization problem over LMIs; however, we will be able to compute the
minimum diameter holdable ellipsoid (see problem (5.34)) containing P.

7.2.3 Constraints on the control input

When the initial condition is known, we can find an upper bound on the norm of
the control input u(t) = Kx(t) as follows. Pick Q > 0 and Y which satisfy the
quadratic stabilizability condition (either (7.9), (7.12) or (7.13)), and in addition
x(0)T Q−1x(0) ≤ 1. This implies that x(t) belongs to E for all t ≥ 0, and conse-
quently,

max
t≥0

‖u(t)‖ = maxt≥0 ‖Y Q−1x(t)‖
≤ maxx∈E ‖Y Q−1x‖
= λmax(Q

−1/2Y T Y Q−1/2).

Therefore, the constraint ‖u(t)‖ ≤ µ is enforced at all times t ≥ 0 if the LMIs

[

1 x(0)T

x(0) Q

]

≥ 0,

[

Q Y T

Y µ2I

]

≥ 0 (7.16)

hold, where Q > 0 and Y satisfy the stabilizability conditions (either (7.9), (7.12)
or (7.13)).

We can extend this to the case where x(0) lies in an ellipsoid or polytope. For
example suppose we require (7.16) to hold for all ‖x(0‖ ≤ 1. This is easily shown to
be equivalent to

Q ≥ I,

[

Q Y T

Y µ2I

]

≥ 0.

As another extension we can handle constraints on

‖u(t)‖max
∆
= max

i
|ui(t)|
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in a similar manner:

max
t≥0

‖u(t)‖max = maxt≥0 ‖Y Q−1x(t)‖max

≤ maxx∈E ‖Y Q−1x‖max

= maxi

(

Y Q−1Y T
)

ii
.

Therefore, the constraint ‖u(t)‖max ≤ µ for t ≥ 0 is implied by the LMI
[

1 x(0)T

x(0) Q

]

≥ 0,

[

X Y

Y T Q

]

≥ 0, Xii ≤ µ2,

where once again, Q > 0 and Y satisfy the stabilizability conditions (either (7.9),
(7.12) or (7.13)).

7.3 Input-to-State Properties

We next consider the LDI

ẋ = A(t)x + Bw(t)w + Bu(t)u. (7.17)

• LTI systems: For LTI systems, equation (7.17) becomes ẋ = Ax + Bww + Buu.

• Polytopic LDIs: PLDIs are given by ẋ = A(t)x + Bw(t)w + Bu(t)u, where
[A(t) Bw(t) Bu(t)] ∈ Co {[A1 Bw,1 Bu,1] , . . . , [AL Bw,L Bu,L]}.

• Norm-bound LDIs: For NLDIs, equation (7.17) becomes

ẋ = Ax + Buu + Bpp + Bww, q = Cqx + Dquu

p = ∆(t)q, ‖∆(t)‖ ≤ 1

which we can also express as

ẋ = Ax + Buu + Bpp + Bww, q = Cqx + Dquu, pT p ≤ qT q.

• Diagonal Norm-bound LDIs: For DNLDIs, equation (7.17) becomes

ẋ = Ax + Buu + Bpp + Bww, q = Cqx + Dquu

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , L.

Equivalently, we have

ẋ = Ax + Buu + Bpp + Bww, q = Cqx + Dquu,

|pi| ≤ |qi|, i = 1, . . . , nq.

7.3.1 Reachable sets with unit-energy inputs

For the system (7.17) with u = Kx, the set of states reachable with unit energy is
defined as

Rue
∆
=











x(T )

∣

∣

∣

∣

∣

∣

∣

x, w, u satisfy (7.17), u = Kx, x(0) = 0,
∫ T

0

wT w dt ≤ 1, T ≥ 0











.
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We will now derive conditions under which there exists a state-feedback gain K guar-
anteeing that a given ellipsoid E = {ξ ∈ Rn

∣

∣ ξT Q−1ξ ≤ 1} contains Rue.

• LTI systems: From §6.1.1, the ellipsoid E contains Rue for the system (7.4) for
some state-feedback gain K if K satisfies

AQ + QAT + BuKQ + QKT BT
u + BwBT

w ≤ 0.

Setting KQ = Y , we conclude that E ⊇ Rue for some K if there exist Y such that

QAT + AQ + BuY + Y T BT
u + BwBT

w ≤ 0.

For any Q > 0 and Y satisfying this LMI, the state-feedback gain K = Y Q−1 is such
that the ellipsoid E contains the reachable set for the closed-loop system.

Using the elimination procedure of §2.6.2, we eliminate the variable Y to obtain
the LMI in Q > 0 and the variable σ:

QAT + AQ − σBuBT
u + BwBT

w ≤ 0. (7.18)

For any Q > 0 and σ satisfying this LMI, a corresponding state-feedback gain is given
by K = −(σ/2)BT

u Q−1. Another equivalent condition for E to contain Rue is

B̃T
u

(

AQ + QAT + BwBT
w

)

B̃u ≤ 0, (7.19)

where B̃u is an orthogonal complement of Bu.

• Polytopic LDIs: For PLDIs, E contains Rue for some state-feedback gain K if
there exist Q > 0 and Y such that the following LMI holds (see LMI (6.9)):

QAT
i + AiQ + Bu,iY + Y T BT

u,i + Bw,iB
T
w,i < 0, i = 1, . . . , L.

• Norm-bound LDIs: For NLDIs, E contains Rue for some state-feedback gain K
if there exist µ > 0 and Y such that the following LMI holds (see LMI (6.11)):

[

QAT + AQ + BuY + Y T BT
u + BwBT

w + µBpB
T
p (CqQ + DquY )T

CqQ + DquY −µI

]

≤ 0.

We can eliminate Y to obtain the LMI in Q > 0 and σ that guarantees that E contains
the reachable set Rue for some state-feedback gain K:







(

AQ + QAT − σBuBT
u

+µBpB
T
p + BwBT

w

)

QCT
q + µBpD

T
qp − σBuDT

qu

CqQ + µDqpB
T
p − σDquBT

u −µ(I − DqpD
T
qp) − σDquDT

qu






< 0. (7.20)

The corresponding state-feedback gain is K = (−σ/2)BT
u Q−1.

An equivalent condition is expressed in terms of G̃, the orthogonal complement
of [BT

u DT
qu]T :

G̃T







(

AQ + QAT

+µBpB
T
p + BwBT

w

)

QCT
q + µBpD

T
qp

CqQ + µDqpB
T
p −µ(I − DqpD

T
qp)






G̃ < 0.
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• Diagonal Norm-bound LDIs: For DNLDIs, E contains Rue for some state-
feedback gain K if there exist Q > 0, M > 0 and diagonal, and Y such that the
following LMI holds (see LMI (6.12)):

[

QAT + AQ + BuY + Y T BT
u + BwBT

w + BpMBT
p (CqQ + DquY )T

CqQ + DquY −M

]

≤ 0.

Using the elimination procedure of §2.6.2, we can eliminate the variable Y to obtain
an equivalent LMI in fewer variables.

Using these LMIs (see §6.1.1 for details):

• We can find a state-feedback gain K such that a given point x0 lies outside the
set of reachable states for the system (7.3).

• We can find a state-feedback gain K such that the set of reachable states for the
system (7.3) lies in a given half-space. This result can be extended to check if
the reachable set is contained in a polytope. In this case, in contrast with the
results in Chapter 6, we must use the same outer ellipsoidal approximation to
check different faces. (This is due to the coupling induced by the new variable
Y = KQ.)

7.3.2 Reachable sets with componentwise unit-energy inputs

With u = Kx, the set of reachable states for inputs with componentwise unit-energy
for the system (7.17) is defined as

Ruce
∆
=











x(T )

∣

∣

∣

∣

∣

∣

∣

x, w, u satisfy (7.17), u = Kx, x(0) = 0,
∫ T

0

wT
i wi dt ≤ 1, T ≥ 0











.

We now consider the existence of the state-feedback gain K such that the ellipsoid
E = {ξ ∈ Rn

∣

∣ ξT Q−1ξ ≤ 1} contains Ruce for LTI systems and LDIs.

• LTI systems: From LMI (6.15), E ⊇ Ruce for the LTI system (7.4) if there exists
diagonal R > 0 with unit trace such that the LMI

[

QAT + AQ + BuY + Y T BT
u Bw

BT
w −R

]

≤ 0.

• Polytopic LDIs: For PLDIs, E ⊇ Ruce for some state-feedback gain K if there
exist Q > 0, Y (= KQ), and a diagonal R > 0 with unit trace (see LMI (6.17)), such
that

[

QAT
i + AiQ + Bu,iY + Y T BT

u,i Bw,i

BT
w,i −R

]

< 0, i = 1, . . . , L.

• Norm-bound LDIs: For NLDIs, E ⊇ Ruce for some state-feedback gain K if there
exist Q > 0, µ > 0, Y and a diagonal R > 0 with unit trace (see LMI (6.19)), such
that







QAT + Y T BT
u + AQ + BuY + µBpB

T
p QCT

q + Y T DT
qu Bw

CqQ + DquY −µI 0

BT
w 0 −R






≤ 0.
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Remark: For LTI systems and NLDIs, it is possible to eliminate the variable Y .

7.3.3 Reachable sets with unit-peak inputs

For a fixed state-feedback gain K, the set of states reachable with inputs with unit-
peak is defined as

Rup
∆
=

{

x(T )

∣

∣

∣

∣

∣

x, w, u satisfy (7.17), u = Kx, x(0) = 0,

w(t)T w(t) ≤ 1, T ≥ 0

}

.

• LTI systems: From condition (6.25), E contains Ruce for the LTI system (7.4) if
there exists α > 0 such that

AQ + QAT + BuY + Y T BT
u + BwBT

w/α + αQ ≤ 0,

where Y = KQ.

• Polytopic LDIs: For PLDIs, E ⊇ Ruce if there exist Q > 0 and Y (see condi-
tion (6.28)) such that

AiQ + QAT
i + Bu,iY + Y T BT

u,i + αQ + Bw,iB
T
w,i/α ≤ 0

for i = 1, . . . , L.

• Norm-bound LDIs: From Chapter 6, E contains Ruce if there exist Q > 0, Y ,
α > 0 and µ > 0 such that







(

AQ + QAT + αQ

+BuY + Y T Bu + µBpB
T
p + BwBT

w/α

)

(CqQ + DquY )T

CqQ + DquY −µI






≤ 0.

This condition is an LMI for fixed α.

Remark: Again, for LTI systems and NLDIs, it is possible to eliminate the
variable Y .

7.4 State-to-Output Properties

We consider state-feedback design to achieve certain desirable state-to-output prop-
erties for the LDI (4.5). We set the exogenous input w to zero in (4.5), and consider

ẋ = A(t)x + Bu(t)u, z = Cz(t)x.

• LTI systems: For LTI systems, the state equations are

ẋ = Ax + Buu, z = Czx + Dzuu. (7.21)

• Polytopic LDIs: For PLDIs we have
[

A(t) Bu(t)

Cz(t) Dzu(t)

]

∈ Co

{[

A1 Bu,1

Cz,1 Dzu,1

]

, . . . ,

[

AL Bu,L

Cz,L Dzu,L

]}

.
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108 Chapter 7 State-Feedback Synthesis for LDIs

• Norm-bound LDIs: NLDIs are given by

ẋ = Ax + Buu + Bpp, z = Czx + Dzuu

q = Cqx + Dquu p = ∆(t)q, ‖∆(t)‖ ≤ 1,

which can be rewritten as

ẋ = Ax + Buu + Bpp, z = Czx + Dzuu

q = Cqx + Dquu, pT p ≤ qT q.

• Diagonal Norm-bound LDIs: Finally, DNLDIs are given by

ẋ = Ax + Buu + Bpp, z = Czx + Dzuu, q = Cqx + Dquu,

pi = δi(t)qi, |δi(t)| ≤ 1, i = 1, . . . , L.

which can be rewritten as

ẋ = Ax + Buu + Bpp, z = Czx + Dzuu, q = Cqx + Dquu,

|pi| ≤ |qi|, i = 1, . . . , nq.

7.4.1 Bounds on output energy

We first show how to find a state-feedback gain K such that the output energy (as
defined in §6.2.1) of the closed-loop system is less than some specified value. We
assume first that the initial condition x0 is given.

• LTI systems: We conclude from LMI (6.39) that for a given state-feedback gain
K, the output energy of system (7.21) does not exceed xT

0 Q−1x0, where Q > 0 and
Y = KQ satisfy

[

AQ + QAT + BuY + Y T BT
u (CzQ + DzuY )T

CzQ + DzuY −I

]

≤ 0, (7.22)

Regarding Y as a variable, we can then find a state-feedback gain that guarantees an
output energy less than γ by solving the LMIP xT

0 Q−1x0 ≤ γ and (7.22).
Of course, inequality (7.22) is closely related to the classical Linear-Quadratic

Regulator (LQR) problem; see the Notes and References.

• Polytopic LDIs: In this case, the output energy is bounded above by xT
0 Q−1x0,

where Q satisfies the LMI








(

AiQ + QAT
i

+Bu,iY + Y T BT
u,i

)

(Cz,iQ + Dzu,iY )T

Cz,iQ + Dzu,iY −I









≤ 0, i = 1, . . . , L

for some Y .

• Norm-bound LDIs: In the case of NLDIs, the output energy is bounded above
by xT

0 Q−1x0, for any Q > 0, Y and µ ≥ 0 such that












(

AQ + QAT + BuY

+Y T BT
u + µBpB

T
p

)

(CzQ + DzuY )T (CqQ + DquY )T

CzQ + DzuY −I 0

CqQ + DquY 0 −µI













≤ 0. (7.23)
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Remark: As before, we can eliminate the variable Y from this LMI.

• Diagonal Norm-bound LDIs: Finally, in the case of DNLDIs, the output energy
is bounded above by xT

0 Q−1x0, for any Q > 0, Y and M ≥ 0 and diagonal such that












(

AQ + QAT + BuY

+Y T BT
u + BpMBT

p

)

(CzQ + DzuY )T (CqQ + DquY )T

CzQ + DzuY −I 0

CqQ + DquY 0 −M













≤ 0.

Given an initial condition, finding a state-feedback gain K so as to minimize the
upper bound on the extractable energy for the various LDIs is therefore an EVP. We
can extend these results to the case when x0 is specified to lie in a polytope or an
ellipsoid (see §6.2.1). If x0 is a random variable with Ex0x

T
0 = X0, EVPs that yield

state-feedback gains that minimize the expected value of the output energy can be
derived.

7.5 Input-to-Output Properties

We finally consider the problem of finding a state-feedback gain K so as to achieve de-
sired properties between the exogenous input w and the output z for the system (7.1).
As mentioned in Chapter 6, the list of problems considered here is far from exhaustive.

7.5.1 L2 and RMS gains

We seek a state-feedback gain K such that the L2 gain

sup
‖w‖2=1

‖z‖2 = sup
‖w‖2 (=0

‖z‖2

‖w‖2

of the closed-loop system is less than a specified number γ.

• LTI systems: As seen in 6.3.2, the L2 gain for LTI systems is equal to the H∞

norm of the corresponding transfer matrix. From §6.3.2, there exists a state-feedback
gain K such that the L2 gain of an LTI system is less than γ, if there exist K and
Q > 0 such that,







(

(A + BuK)Q + Q(A + BuK)T

+BwBT
w

)

Q(Cz + DzuK)T

(Cz + DzuK)Q −γ2I






≤ 0. (7.24)

Introducing Y = KQ, this can be rewritten as
[

AQ + QAT + BuY + Y T BT
u + BwBT

w (CzQ + DzuY )T

CzQ + DzuY −γ2I

]

≤ 0. (7.25)

In the case of LTI systems, this condition is necessary and sufficient. Assuming
CT

z Dzu = 0 and DT
zuDzu invertible, it is possible to simplify the inequality (7.25)

and get the equivalent Riccati inequality

AQ + QAT − Bu(DT
zuDzu)−1BT

u + BwBT
w + QCT

z CzQ/γ2 ≤ 0. (7.26)
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The corresponding Riccati equation is readily solved via Hamiltonian matrices. The
resulting controller, with state-feedback gain K = −(DT

zuDzu)−1BT
u , yields a closed-

loop system with H∞-norm less than γ.

• Polytopic LDIs: From §6.3.2, there exists a state-feedback gain such that the
L2 gain of a PLDI is less than γ if there exist Y and Q > 0 such that







(

AiQ + QAT
i + Bu,iY

+Y T BT
u,i + Bw,iB

T
w,i

)

(Cz,iQ + Dzu,iY )T

Cz,iQ + Dzu,iY −γ2I






≤ 0. (7.27)

• Norm-bound LDIs: For NLDIs, the LMI that guarantees that the L2 gain is less
than γ for some state-feedback gain K is



























AQ + QAT

+BuY + Y T BT
u

+BwBT
w + µBpB

T
p






(CzQ + DzuY )T (CqQ + DquY )T

CzQ + DzuY −γ2I 0

CqQ + DquY 0 −µI





















≤ 0. (7.28)

We can therefore find state-feedback gains that minimize the upper bound on the
L2 gain, provable with quadratic Lyapunov functions, for the various LDIs by solving
EVPs.

7.5.2 Dissipativity

We next seek a state-feedback gain K such that the closed-loop system (7.2) is passive;
more generally, assuming Dzw(t) is nonzero and square, we wish to maximize the
dissipativity, i.e., η satisfying

∫ T

0

(

wT z − ηwT w
)

dt ≥ 0

for all T ≥ 0.

• LTI systems: Substituting Y = KQ, and using LMI (6.60), we conclude that the
dissipation of the LTI system is at least η if the LMI in η, Q > 0 and Y holds:

[

AQ + QAT + BuY + Y T BT
u Bw − QCT

z − Y T DT
zu

BT
w − CzQ − DzuY 2ηI − (Dzw + DT

zw)

]

≤ 0.

• Polytopic LDIs: From (6.62), there exists a state-feedback gain such that the
dissipation exceeds η if there exist Q > 0 and Y such that









(

AiQ + QAT
i

+Bu,iY + Y T BT
u,i

)

Bw,i − QCT
z,i − Y T Dzu,i

BT
w,i − Cz,iQ − Dzu,iY 2ηI − (Dzw,i + DT

zw,i)









≤ 0.
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• Norm-bound LDIs: From (6.64), there exists a state-feedback gain such that the
dissipation exceeds η if there exist Q > 0 and Y such that



















(

AQ + QAT + BuY

+Y T BT
u + µBqB

T
q

) (

Bw − QCT
z

−Y T DT
zu

)

(CqQ + DquY )T

(

BT
w − CzQ

−DzuY

)

−(Dzw + DT
zw − 2ηI) 0

CqQ + DquY 0 −µI



















≤ 0

We can therefore find state-feedback gains that maximize the lower bound on the
dissipativity, provable with quadratic Lyapunov functions, for the various LDIs by
solving EVPs.

Remark: As with §6.3.4, we can incorporate scaling techniques into many of the
results above to derive componentwise results. Since the new LMIs thus obtained
are straightforward to derive, we will omit them here.

7.5.3 Dynamic versus static state-feedback controllers

A dynamic state-feedback controller has the form

˙̄x = Āx̄ + B̄yx, u = C̄ux̄ + D̄uyx, (7.29)

where Ā ∈ Rr×r, B̄y ∈ Rr×n, C̄u ∈ Rnu×r, D̄uy ∈ Rnu×n. The number r is called
the order of the controller. Note that by taking r = 0, this dynamic state-feedback
controller reduces to the state-feedback we have considered so far (which is called
static state-feedback in this context).

It might seem that the dynamic state-feedback controller (7.29) allows us to meet
more specifications than can be met using a static state-feedback. For specifications
based on quadratic Lyapunov functions, however, this is not the case. For exam-
ple, suppose there does not exist a static state-feedback gain that yields closed-loop
quadratic stability. In this case we might turn to the more general dynamic state-
feedback. We could work out the more complicated LMIs that characterize quadratic
stabilizability with dynamic state-feedback. We would find, however, that these more
general LMIs are also infeasible. See the Notes and References.

7.6 Observer-Based Controllers for Nonlinear Systems

We consider the nonlinear system

ẋ = f(x) + Buu, y = Cyx, (7.30)

where x : R+ → Rn is the state variable, u : R+ → Rp is the control variable,
and y : R+ → Rq is the measured or sensed variable. We assume the function
f : Rn → Rn satisfies f(0) = 0 and

∂f

∂x
∈ Co {A1, . . . , AM}

where A1, . . . , AL are given, which is the same as (4.15).
We look for a stabilizing observer-based controller of the form

˙̄x = f(x̄) + Buu + L(Cyx̄ − y), u = Kx̄, (7.31)
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112 Chapter 7 State-Feedback Synthesis for LDIs

i.e., we search for the matrices K (the estimated-state feedback gain) and L (the
observer gain) such that the closed-loop system

[

ẋ

˙̄x

]

=

[

f(x) + BuKx̄

−LCyx + f(x̄) + (BuK + LCy)x̄

]

(7.32)

is stable. The closed-loop system (7.32) is stable if it is quadratically stable, which is
true if there exists a positive-definite matrix P̃ ∈ R2n×2n such that for any nonzero
trajectory x, x̄, we have:

d

dt

[

x

x̄

]T

P̃

[

x

x̄

]

< 0.

In the Notes and References, we prove that this is true if there exist P , Q, Y , and W
such that the LMIs

Q > 0, AiQ + QAT
i + BuY + Y T BT

u < 0, i = 1, . . . ,M (7.33)

and

P > 0, AT
i P + PAi + WCy + CT

y WT < 0, i = 1, . . . ,M (7.34)

hold. To every P , Q, Y , and W satisfying these LMIs, there corresponds a stabilizing
observer-based controller of the form (7.31), obtained by setting K = Y Q−1 and
L = P−1W .

Using the elimination procedure of §2.6.2, we can obtain equivalent conditions in
which the variables Y and W do not appear. These conditions are that some P > 0
and Q > 0 satisfy

AiQ + QAT
i < σBuBT

u , i = 1, . . . ,M (7.35)

and

AT
i P + PAi < µCT

y Cy, i = 1, . . . ,M (7.36)

for some σ and µ. By homogeneity we can freely set σ = µ = 1. For any P > 0, Q > 0
satisfying these LMIs with σ = µ = 1, we can obtain a stabilizing observer-based
controller of the form (7.31), by setting K = −(1/2)BT

u Q−1 and L = −(1/2)P−1Cy.
Another equivalent condition is that

B̃T
u

(

AiQ + QAT
i

)

B̃u < 0, i = 1, . . . ,M

and

C̃y

(

AT
i P + PAi

)

C̃T
y < 0, i = 1, . . . ,M

hold for some P > 0, Q > 0, where B̃u and C̃T
y are orthogonal complements of Bu and

CT
y , respectively. If P and Q satisfy these LMIs, then they satisfy the LMIs (7.36)

and (7.35) for some σ and µ. The observer-based controller with K = −(σ/2)BT
u Q−1

and L = −(µ/2)P−1Cy stabilizes the nonlinear system (7.30).

Notes and References

Lyapunov functions and state-feedback

The extension of Lyapunov’s methods to the state-feedback synthesis problem has a long
history; see e.g., [Bar70a, Lef65]. It is clearly related to the theory of optimal control, in

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



Notes and References 113

which the natural Lyapunov function is the Bellman–Pontryagin “min-cost-to-go” or value
function (see [Pon61, Pon62]). We suspect that the methods described in this chapter can
be interpreted as a search for suboptimal controls in which the candidate value functions
are restricted to a specific class, i.e., quadratic. In the general optimal control problem,
the (exact) value function satisfies a partial differential equation and is hard to compute;
by restricting our search to quadratic approximate value functions we end up with a low
complexity task, i.e., a convex problem involving LMIs.

Several approaches use Lyapunov-like functions to synthesize nonlinear state-feedback control
laws. One example is the “Lyapunov Min-Max Controller” described in [Gut79, GP82,
Cor85, CL90, Wei94]. See also [Zin90, SC91, Rya88, GR88].

Quadratic stabilizability

The term “quadratic stabilizability” seems to have been coined by Hollot and Barmish
in [HB80], where the authors give necessary and sufficient conditions for it; see also [Lei79,
Gut79, BCL83, PB84, Cor85]. Petersen [Pet85], shows that there exist LDIs that are
quadratically stabilizable, though not via linear state-feedback; see also [SP94e]. Hol-
lot [Hol87] describes conditions under which a quadratically stabilizable LDI has infinite
stabilizability margin; see also [SRC93]. Wei [Wei90] derives necessary and sufficient “sign-
pattern” conditions on the perturbations for the existence of a linear feedback for quadratic
stability for a class of single-input uncertain linear dynamical systems. Petersen [Pet87b]
derives a Riccati-based approach for stabilizing NLDIs, which is in fact the state-feedback
H∞ equation (7.28) (this is shown in [Pet87a]).

The change of variables Q = P−1 and Y = KP−1, which enables the extension of many
of the results of Chapters 5 and 6 to state-feedback synthesis, is due to Bernussou, Peres
and Geromel [BPG89a]. See also [GPB91, BPG89b, BPG89a, PBG89, PGB93]. This
change of variables, though not explicitly described, is used in the paper by Thorp and
Barmish [TB81]; see also [HB80, Bar83, Bar85]. For a recent and broad review about
quadratic stabilization of uncertain systems, see [Cor94].

In [Son83], Sontag formulates a general theorem giving necessary and sufficient Lyapunov
type conditions for stabilizability. For LTI systems his criteria reduce to the LMIs in this
chapter.

Quadratic Lyapunov functions for proving performance

The addition of performance considerations in the analysis of LDIs can be traced back to
1955 and even earlier, when Letov [Let61] studied the performance of unknown, nonlinear
and possibly time-varying control systems and calls it “the problem of control quality”. At
that time, the performance criteria were decay rate and output peak deviations for systems
subject to bounded peak inputs (see [Let61, p.234] for details).

In the case of LTI systems, adding performance indices allows one to recover many classical
results of automatic control. The problem of maximizing decay rate is discussed in great
detail in [Yan92]; other references on decay rates and quadratic stability margins are [Gu92b,
Gu92a, GPB91, Gu92b, Sko91b, PZP+92, EBFB92, Cor90]. Arzelier et al. [ABG93]
consider the problem of robust stabilization with pole assignment for PLDIs via cutting-plane
techniques.

The problem of approximating reachable sets for LTI systems under various assumptions on
the energy of the exogenous input has been considered for example by Skelton [SZ92] and
references therein; see also the Notes and References of the previous chapter. See also [OC87].

The idea that the output variance for white noise inputs (and related LQR-like performance
measures) can be minimized using LMIs can be found in [BH88a, BH89, RK91, KR91,
KKR93, BB91, FBBE92, RK93, SI93]. Peres, Souza and Geromel [PSG92, PG93] con-
sider the extension to PLDIs. The counterpart for NLDIs is in Petersen, McFarlane and
Rotea [PM92, PMR93], as well as in Stoorvogel [Sto91].

The problem of finding a state-feedback gain to minimize the scaled L2 gain for LTI sys-
tems is discussed in [EBFB92]. The L2 gain of PLDIs has been studied by Obradovic and
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114 Chapter 7 State-Feedback Synthesis for LDIs

Valavani [OV92], by Peres, Geromel and Souza [PGS91] and also by Ohara, Masubuchi and
Suda [OMS93]. NLDIs have been studied in this context by Petersen [Pet89], and DeSouza
et al. [XFdS92, XdS92, WXdS92, dSFX93], who point out explicitly that quadratic sta-
bility of NLDIs with an L2 gain bound is equivalent to the scaled H∞ condition (6.54); see
also [ZKSN92, Gu93]. For LTI systems, it is interesting to compare the inequality (7.25)
which provides a necessary and sufficient condition for a system to have L2 gain less than
γ with the corresponding matrix inequality found in the article by Stoorvogel and Trentel-
man [ST90]. In particular, the quadratic matrix inequality found there (expressed in our
notation) is

[

AT P + PA + γ2PBwBT
wP + CT

z Cz PBu + CT
z Dzu

BT
u P + DT

zuCz DT
zuDzu

]

≥ 0,

which does not possess any obvious convexity property. We note that the Riccati inequal-
ity (7.26) is also encountered in full-state feedback H∞ control [Pet87a]. Its occurrence in
control theory is much older; it appears verbatim in some articles on the theory of nonzero-
sum differential games; see for example Starr and Ho [SH68], Yakubovich [Yak70, Yak71]
and Mageirou [Mag76].

Kokotovic [Kok92] considers stabilization of nonlinear systems, and provides a motivation for
rendering an LTI system passive via state-feedback (see §6.3.3). In [PP92], the authors give
analytic conditions for making an LTI system passive via state-feedback; see also [SKS93].

Finally, we mention an instance of a Lyapunov function with a built-in performance criterion.
In the book by Aubin and Cellina [AC84, §6], we find:

We shall investigate whether differential inclusions ẋ ∈ F (x(t)), x(0) = x0

have trajectories satisfying the property

∀t > s, V (x(t)) − V (x(s)) +

∫ t

s

W (x(τ), ẋ(τ)) dτ ≤ 0. (7.37)

We shall then say that a function V [· · ·] satisfying this condition is a Lyapunov
function for F with respect to W .

Similar ideas can be found in [CP72]. We shall encounter such Lyapunov functions in §8.2.
Inequality (7.37) is often called a “dissipation inequality” [Wil71b].

The problem of minimizing the control effort given a performance bound on the closed-loop
system can be found in the articles of Schömig, Sznaier and Ly [SSL93], and Grigoriadis,
Carpenter, Zhu and Skelton [GCZS93].

LMI formulation of LQR problem

For the LTI system ẋ = Ax + Buu, z = Czx + Dzuu, the Linear-Quadratic Regulator (LQR)
problem is: Given an initial condition x(0), find the control input u that minimizes the output
energy

∫ ∞

0
zT z dt. We assume for simplicity that (A, B, C) is minimal, DT

zuDzu is invertible

and DT
zuCz = 0.

It turns out that the optimal input u can be expressed as a constant state-feedback u = Kx,
where K = −(DT

zuDzu)−1BT
u Pare and Pare is the unique positive-definite matrix that satisfies

the algebraic Riccati equation

AT Pare + PareA − PareBu(DT
zuDzu)−1BT

u Pare + CT
z Cz = 0. (7.38)

The optimal output energy for an initial condition x(0) is then given by x(0)T Parex(0). With
Qare = P−1

are , we can rewrite (7.38) as

AQare + QareA
T − Bu(DT

zuDzu)−1BT
u + QareC

T
z CzQare = 0, (7.39)
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and the optimal output energy as x(0)T Q−1
arex(0).

In section §7.4.1, we considered the closely related problem of finding a state-feedback gain
K that minimizes an upper bound on the energy of the output, given an initial condition.
For LTI systems, the upper bound equals the output energy, and we showed that in this case,
the minimum output energy was given by minimizing x(0)T Q−1x(0) subject to Q > 0 and

[

AQ + QAT + BuY + Y T BT
u (CzQ + DzuY )T

CzQ + DzuY −I

]

≤ 0. (7.40)

Of course, the optimal value of this EVP must equal the optimal output energy given via
the solution to the Riccati solution (7.39); the Riccati equation can be thus be interpreted as
yielding an analytic solution to the EVP. We can derive this analytic solution for the EVP via
the following steps. First, it can be shown, using a simple completion-of-squares argument
that LMI (7.40) holds for some Q > 0 and Y if and only if it holds for Y = −(DT

zuDzu)−1BT
u ;

in this case, Q > 0 must satisfy

QAT + AQ + QCT
z CzQ − Bu

(

DT
zuDzu

)−1
BT

u ≤ 0. (7.41)

Next, it can be shown by standard manipulations that if Q > 0 satisfies (7.41), then Q ≤ Qare.
Therefore for every initial condition x(0), we have x(0)T Q−1

arex(0) ≤ x(0)T Q−1x(0), and
therefore the optimal value of the EVP is just x(0)T Q−1

arex(0), and the optimal state-feedback
gain is Kopt = YoptQ

−1
are = −(DT

zuDzu)−1BT
u Pare.

It is interesting to note that with P = Q−1, the EVP is equivalent to minimizing x(0)T Px(0)
subject to

AT P + PA + CT
z Cz − PBu

(

DT
zuDzu

)−1
BT

u P ≤ 0, (7.42)

which is not a convex constraint in P . However, the problem of maximizing x(0)T Px(0)
subject P > 0 and the constraint

AT P + PA − PBu(DT
zuDzu)−1BT

u P + CzCT
z ≥ 0,

which is nothing other than (7.42), but with the inequality reversed, is an EVP; it is well-
known (see for example [Wil71b]) that this EVP is another formulation of the LQR problem.

Static versus dynamic state-feedback

An LTI system can be stabilized using dynamic state-feedback if and only if it can be stabi-
lized using static state-feedback (see for example, [Kai80]). In fact, similar statements can
be made for all the properties and for all the LDIs considered in this chapter, provided the
properties are specified using quadratic Lyapunov functions. We will demonstrate this fact
on one simple problem considered in this chapter.

Consider the LTI system

ẋ = Ax + Buu + Bww, x(0) = 0, z = Czx. (7.43)

From §7.5.1, the exists a static state-feedback u = Kx such that the L2 gain from w to z
does not exceed γ if the LMI in variables Q > 0 and Y is feasible:

[

AQ + QAT + BuY + Y T BT
u + BwBT

w QCT
z

CzQ −γ2I

]

≤ 0.
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116 Chapter 7 State-Feedback Synthesis for LDIs

(In fact this condition is also necessary, but this is irrelevant to the current discussion.)
Eliminating Y , we get the equivalent LMI in Q > 0 and scalar σ:

AQ + QAT + BwBT
w +

QCT
z CzQ

γ2
≤ σBuBT

u . (7.44)

We next consider a dynamic state-feedback for the system:

ẋc = Acxc + Bcx, xc(0) = 0, u = Ccxc + Dcx. (7.45)

We will show that there exist matrices Ac, Bc, Cc and Dc such that the L2 gain of the
system (7.43,7.45) does not exceed γ if and only if the LMI (7.44) holds. This will establish
that the smallest upper bound on the L2 gain, provable via quadratic Lyapunov functions,
is the same irrespective of whether a static state-feedback or a dynamic state-feedback is
employed.

We will show only the part that is not obvious. With state vector xcl = [xT xT
c ]T , the

closed-loop system is

ẋcl = Aclxcl + Bclu, xcl(0) = 0, z = Cclxcl,

where Acl = Abig + BbigKbig with

Abig =

[

A 0

0 0

]

, Bbig =

[

0 Bu

I 0

]

, Kbig =

[

Bc Ac

Dc Cc

]

,

Bcl =

[

Bw

0

]

, Ccl = [Cz 0] .

From §6.3.2, the L2 gain of the closed-loop system does not exceed γ if the LMI in Pbig > 0
is feasible:

[

AT
bigP + PbigA + PBbigKbig + KT

bigB
T
bigP + CT

clCcl PBcl

BT
clP −γ2I

]

≤ 0.

Eliminating Kbig from this LMI yields two equivalent LMIs in Pbig > 0 and a scalar τ .

[

AT
bigP + PbigA − τI + CT

clCcl PBcl

BT
clP −γ2I

]

≤ 0,

[

AT
bigP + PbigA − τPBbigB

T
bigP + CT

clCcl PBcl

BT
clP −γ2I

]

≤ 0.

It is easy to verify that the first LMI holds for large enough τ , while the second reduces to
τ > 0 and

AQ11 + Q11A
T +

BwBT
w

γ2
+ Q11CzCT

z Q11 ≤ τBuBT
u ,

where Q11 is the leading n×n block of P−1
big . The last LMI is precisely (7.44) with the change

of variables Q = γ2Q11 and σ = γ2τ .

A similar result is established [PZP+92]; other references that discuss the question of when
dynamic or nonlinear feedback does better than static feedback include Petersen, Khar-
gonekar and Rotea [Pet85, KPR88, RK88, KR88, Pet88, RK89].
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Dynamic output-feedback for LDIs

A natural extension to the results of this chapter is the synthesis of output-feedback to meet
various performance specifications. We suspect, however, that output-feedback synthesis
problems have high complexity and are therefore unlikely to be recast as LMI problems.
Several researchers have considered such problems: Steinberg and Corless [SC85], Galimidi
and Barmish [GB86], and Geromel, Peres, de Souza and Skelton [PGS93]; see also [HCM93].

One variation of this problem is the “reduced-order controller problem”, that is, finding dy-
namic output-feedback controllers with the smallest possible number of states. It is shown
in [PZPB91, EG93, Pac94] that this problem can be reduced to the problem of minimizing
the rank of a matrix P ≥ 0 subject to certain LMIs. The general problem of minimizing the
rank of a matrix subject to an LMI constraint has high complexity; in fact, a special rank
minimization problem can be shown to be equivalent to the NP-hard zero-one linear pro-
gramming problem (see e.g. [Dav94]). Nevertheless several researchers have tried heuristic,
local algorithms for such problems and report practical success. Others studying this topic
include Iwasaki, Skelton, Geromel and de Souza [IS93b, ISG93, GdSS93, SIG93].

Observer-based controllers for nonlinear systems

We prove that the LMIs (7.33) and (7.34) (in the variables P > 0, Q > 0, W and Y ) ensure
the existence of an observer-based controller of the form (7.31) which makes the system (7.30)
quadratically stable.

We start by rewriting the system (7.32) in the coordinates x̄, x̄ − x:

[

˙̄x

˙̄x − ẋ

]

=

[

LCy(x̄ − x) + f(x̄) + BuKx̄

f(x̄) − f(x) + LCy(x̄ − x)

]

. (7.46)

Using the results of §4.3, we can write

[

˙̄x

˙̄x − ẋ

]

∈ Co
{

Ãij

∣

∣ 1 ≤ i ≤ M, 1 ≤ j ≤ M
}

[

x̄

x̄ − x

]

with

Ãij =

[

Ai + BuK LCy

0 Aj + LCy

]

, i, j = 1, . . . , M.

Simple state-space manipulations show the system (7.32) is quadratically stable if and only if
the system (7.46) is quadratically stable. Therefore, the system (7.32) is quadratically stable

if there exists P̃ > 0 such that

ÃT
ijP̃ + P̃ Ãij < 0, i, j = 1, . . . , M. (7.47)

We will now show that the LMI (7.47) has a solution if and only if the LMIs (7.33) and (7.34)
do.

First suppose that (7.47) has a solution P̃ . With P̃ partitioned as n × n blocks,

P̃ =

[

P11 P12

P T
12 P22

]

,

we easily check that the inequality (7.47) implies

(Ai + BuK)T P11 + P11(Ai + BuK) < 0, i = 1, . . . , M. (7.48)
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With the change of variables Q = P−1
11 and Y = BuQ, the inequality (7.48) is equivalent

to (7.33).

Define Q̃ = P̃−1. The inequality (7.47) becomes

ÃijQ̃ + Q̃ÃT
ij < 0, i, j = 1, . . . , M.

Denoting by Q22 the lower-right n × n block of Q̃, we see that this inequality implies

(Ai + LCy)Q22 + Q22(Ai + LCy)T < 0, i = 1, . . . , M. (7.49)

With P = Q−1
22 and W = PL, the inequality (7.49) is equivalent to (7.34).

Conversely, suppose that P , Q, Y and W satisfy the LMIs (7.34) and (7.33) and define
L = P−1W , K = Y Q−1. We now prove there exists a positive λ such that

P̃ =

[

λQ−1 0

0 P

]

satisfies (7.47) and therefore proves the closed-loop system (7.32) is quadratically stable. We
compute

ÃT
ijP̃ + P̃ Ãij =











λ

(

(Ai + BuK)T Q−1

+ Q−1(Ai + BuK)

)

λQ−1LCy

λ(LCy)T Q−1 (Aj + LCy)T P

+ P (Aj + LCy)











,

for i, j = 1, . . . , M . Therefore, using Schur complements, the closed-loop system (7.32) is
quadratically stable if λ > 0 satisfies

λ(Q−1LCy((Aj + LCy)T P + P (Aj + LCy))−1(LCy)T Q−1)

− (A + BuK)T Q−1 − Q−1(A + BuK) > 0

for i, j = 1, . . . , M . This condition is satisfied for any λ > 0 such that

λ min
1≤j≤M

µj > max
1≤i≤M

νi,

where

µj = λmin(Q−1LCy((Aj + LCy)T P + P (Aj + LCy))−1(LCy)T Q−1), j = 1, . . . , M

and

νi = λmax((Ai + BuK)T Q−1 + Q−1(Ai + BuK)), i = 1, . . . , M.

Since (7.34) and (7.33) are satisfied, such a λ always exists.

Problems of observer-based controller design along with quadratic Lyapunov functions that
prove stability have been considered by Bernstein and Haddad [BH93] and Yaz [Yaz93].

Gain-scheduled or parameter-dependent controllers

Several researchers have extended the results on state-feedback synthesis to handle the case
in which the controller parameters can depend on system parameters. Such controllers are
called gain-scheduled or parameter-dependent. We refer the reader to the articles cited for
precise explanations of what these control laws are, and which design problems can be recast
as LMI problems. Lu, Zhou and Doyle in [LZD91] and Becker and Packard [Bec93, BP91]
consider the problem in the context of NLDIs. Other relevant references include [PB92,
Pac94, PBPB93, BPPB93, GA94, IS93a, IS93b, AGB94].
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Chapter 8

Lur’e and Multiplier Methods

8.1 Analysis of Lur’e Systems

We consider the Lur’e system

ẋ = Ax + Bpp + Bww, q = Cqx,

z = Czx, pi(t) = φi(qi(t)), i = 1, . . . , np,
(8.1)

where p(t) ∈ Rnp , and the functions φi satisfy the [0, 1] sector conditions

0 ≤ σφi(σ) ≤ σ2 for all σ ∈ R, (8.2)

or, equivalently,

φi(σ)(φi(σ) − σ) ≤ 0 for all σ ∈ R.

The data in this problem are the matrices A, Bp, Bw, Cq and Cz. The results that
follow will hold for any nonlinearities φi satisfying the sector conditions. In cases
where the φi are known, however, the results can be sharpened.

It is possible to handle the more general sector conditions

αiσ
2 ≤ σφi(σ) ≤ βiσ

2 for all σ ∈ R,

where αi and βi are given. Such systems are readily transformed to the form given
in (8.1) and (8.2) by a loop transformation (see the Notes and References).

An important special case of (8.1), (8.2) occurs when the functions φi are linear,
i.e., φi(σ) = δiσ, where δi ∈ [0, 1]. In the terminology of control theory, this is referred
to as a system with unknown-but-constant parameters. It is important to distinguish
this case from the PLDI obtained with (8.1), φi(σ) = δi(t)σ and δi(t) ∈ [0, 1], which
is referred to as a system with unknown, time-varying parameters.

Our analysis will be based on Lyapunov functions of the form

V (ξ) = ξT P ξ + 2

np
∑

i=1

λi

∫ Ci,qξ

0

φi(σ) dσ, (8.3)

where Ci,q denotes the ith row of Cq. Thus the data describing the Lyapunov function
are the matrix P and the scalars λi, i = 1, . . . , np. We require P > 0 and λi ≥ 0,
which implies that V (ξ) ≥ ξT P ξ > 0 for nonzero ξ.

Note that the Lyapunov function (8.3) depends on the (not fully specified) non-
linearities φi. Thus the data P and λi should be thought of as providing a recipe for
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120 Chapter 8 Lur’e and Multiplier Methods

constructing a specific Lyapunov function given the nonlinearities φi. As an exam-
ple, consider the special case of a system with unknown-but-constant parameters, i.e.,
φi(σ) = δiσ. The Lyapunov function will then have the form

V (ξ) = ξT
(

P + CT
q ∆ΛCq

)

ξ

where ∆ = diag(δ1, . . . , δnp
) and Λ = diag(λ1, . . . ,λnp

). In other words, we are really
synthesizing a parameter-dependent quadratic Lyapunov function for our parameter-
dependent system.

8.1.1 Stability

We set the exogenous input w to zero, and seek P and λi such that

dV (x)

dt
< 0 for all nonzero x satisfying (8.1) and (8.2). (8.4)

Since

dV (x)

dt
= 2

(

xT P +

np
∑

i=1

λipiCi,q

)

(Ax + Bpp) ,

condition (8.4) holds if and only if
(

ξT P +

np
∑

i=1

λiπiCi,q

)

(Aξ + Bpπ) < 0

for all nonzero ξ satisfying

πi(πi − ci,qξ) ≤ 0, i = 1, . . . , np. (8.5)

It is easily shown that

{(ξ,π) | ξ )= 0, (8.5)} = {(ξ,π) | ξ )= 0 or π )= 0, (8.5)} .

The S-procedure then yields the following sufficient condition for (8.4): The LMI in
P > 0, Λ = diag(λ1, . . . ,λnp

) ≥ 0 and T = diag(τ1, . . . , τnp
) ≥ 0

[

AT P + PA PBp + AT CT
q Λ + CT

q T

BT
p P + ΛCqA + TCq ΛCqBp + BT

p CT
q Λ − 2T

]

< 0 (8.6)

holds.

Remark: When we set Λ = 0 we obtain the LMI
[

AT P + PA PBp + CT
q T

BT
p P + TCq −2T

]

< 0,

which can be interpreted as a condition for the existence of a quadratic Lyapunov
function for the Lur’e system, as follows. Perform a loop transformation on the
Lur’e system to bring the nonlinearities to sector [−1, 1]. Then the LMI above
is the same (to within a scaling of the variable T ) as one that yields quadratic
stability of the associated DNLDI; see §5.1.

Remark: Condition (8.6) is only a sufficient condition for the existence of a Lur’e
Lyapunov function that proves stability of system (8.1). It is also necessary when
there is only one nonlinearity, i.e., when np = 1.
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8.1.2 Reachable sets with unit-energy inputs

We consider the set reachable with unit-energy inputs,

Rue
∆
=















x(T )

∣

∣

∣

∣

∣

∣

∣

∣

x, w satisfy (8.3), x(0) = 0

∫ T

0

wT w dt ≤ 1, T ≥ 0















.

The set

F =

{

ξ

∣

∣

∣

∣

∣

ξT P ξ + 2

np
∑

i=1

λi

∫ Ci,qξ

0

φi(σ) dσ ≤ 1

}

contains Rue if

d

dt
V (x) ≤ wT w for all x and w satisfying (8.1) and (8.2). (8.7)

From the S-procedure, the condition (8.7) holds if there exists T = diag(τ1, . . . , τnp
) ≥

0 such that






AT P + PA PBp + AT CT
q Λ + CT

q T PBw

BT
p P + ΛCqA + TCq ΛCqBp + BT

p CT
q Λ − 2T ΛCqBw

BT
wP BT

wCT
q Λ −I






≤ 0 (8.8)

holds, where Λ = diag(λ1, . . . ,λnp
) ≥ 0.

Of course, the ellipsoid E = {ξ ∈ Rn
∣

∣ ξT P ξ ≤ 1} contains F , so that E ⊇
F ⊇ Rue. Therefore, E gives an outer approximation of Rue if the nonlinearities
are not known. If the nonlinearities φi are known, F gives a possibly better outer
approximation. We can use these results to prove that a point x0 does not belong to
the reachable set by solving appropriate LMIPs.

8.1.3 Output energy bounds

We consider the system (8.1) with initial condition x(0), and compute upper bounds
on the output energy

J =

∫ ∞

0

zT z dt

using Lyapunov functions V of the form (8.3).
If

d

dt
V (x) + zT z ≤ 0 for all x satisfying (8.1), (8.9)

then J ≤ V (x(0)). The condition (8.9) is equivalent to

2

(

ξT P +

np
∑

i=1

λiπiCi,q

)

(Aξ + Bpπ) + ξT CT
z Czξ ≤ 0,

for every ξ satisfying

πi(πi − ci,qξ) ≤ 0, i = 1, . . . , np.
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122 Chapter 8 Lur’e and Multiplier Methods

Using the S-procedure, we conclude that the condition (8.9) holds if there exists
T = diag(τ1, . . . , τnp

) ≥ 0 such that
[

AT P + PA + CT
z Cz PBp + AT CT

q Λ + CT
q T

BT
p P + ΛCqA + TCq ΛCqBp + BT

p CT
q Λ − 2T

]

≤ 0. (8.10)

Since V (x(0)) ≤ x(0)T (P + CT
q ΛCq)x(0), an upper bound on J is obtained

by solving the following EVP in the variables P , Λ = diag(λ1, . . . ,λnp
) and T =

diag(τ1, . . . , τnp
):

minimize x(0)T
(

P + CT
q ΛCq

)

x(0)

subject to (8.10), T ≥ 0, Λ ≥ 0, P > 0

If the nonlinearities φi are known, we can obtain possibly better bounds on J by
modifying the objective in the EVP appropriately.

8.1.4 L2 gain

We assume that Dzw = 0 for simplicity. If there exists a Lyapunov function of the
form (8.3) and γ ≥ 0 such that

d

dt
V (x) ≤ γ2wT w − zT z for all x and w satisfying (8.1), (8.11)

then the L2 gain of the system (8.1) does not exceed γ. The condition (8.11) is
equivalent to

2

(

ξT P +

np
∑

i=1

λiπiCi,q

)

(Aξ + Bpπ) ≤ γ2wT w − ξT CT
z Czξ

for any ξ satisfying πi(πi − ci,qξ) ≤ 0, i = 1, . . . , np. Using the S-procedure, this is
satisfied if there exists T = diag(τ1, . . . , τnp

) ≥ 0 such that






AT P + PA + CT
z Cz PBp + AT CT

q Λ + CT
q T PBw

BT
p P + ΛCqA + TCq ΛCqBp + BT

p CT
q Λ − 2T ΛCqBw

BT
wP BT

wCT
q Λ −γ2I






≤ 0. (8.12)

The smallest upper bound on the L2 gain, provable using Lur’e Lyapunov functions,
is therefore obtained by minimizing γ over γ, P , Λ and T subject to P > 0, Λ =
diag(λ1, . . . ,λnp

) ≥ 0, T = diag(τ1, . . . , τnp
) ≥ 0 and (8.12). This is an EVP.

8.2 Integral Quadratic Constraints

In this section we consider an important variation on the NLDI, in which the point-
wise constraint p(t)T p(t) ≤ q(t)T q(t) is replaced with a constraint on the integrals of
p(t)T p(t) and q(t)T q(t):

ẋ = Ax + Bpp + Buu + Bww,

q = Cqx + Dqpp + Dquu + Dqww,

z = Czx + Dzpp + Dzuu + Dzww
∫ t

0

p(τ)T p(τ) dτ ≤
∫ t

0

q(τ)T q(τ) dτ.

(8.13)
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8.2 Integral Quadratic Constraints 123

Such a system is closely related to the NLDI with the same data matrices; indeed,
every trajectory of the associated NLDI is a trajectory of (8.13). This system is
not, however, a differential inclusion. In control theory terms, the system (8.13) is
described as a linear system with (dynamic) nonexpansive feedback. An important
example is when p and q are related by a linear system, i.e.,

ẋf = Afxf + Bfq, p = Cfxf + Dfq, xf (0) = 0,

where ‖Df + Cf (sI − Af )−1Bf‖∞ ≤ 1.
We can also consider a generalization of the DNLDI, in which we have compo-

nentwise integral quadratic constraints. Moreover, we can consider integral quadratic
constraints with different sector bounds; as an example we will encounter constraints
of the form

∫ t

0
p(τ)T q(τ) dτ ≥ 0 in §8.3.

We will now show that many of the results on NLDIs (and DNLDIs) from Chap-
ters 5–7 generalize to systems with integral quadratic constraints. We will demon-
strate this generalization for stability analysis and L2 gain bounds, leaving others to
the reader.

As in Chapters 5–7, our analysis will be based on quadratic functions of the state
V (ξ) = ξT P ξ, and roughly speaking, the very same LMIs will arise. However, the
interpretation of V is different here. For example, in stability analysis, the V of
Chapters 5–7 decreases monotonically to zero. Here, the very same V decreases to
zero, but not necessarily monotonically. Thus, V is not a Lyapunov function in the
conventional sense.

8.2.1 Stability

Consider system (8.13) without w and z. Suppose P > 0 and λ ≥ 0 are such that

d

dt
xT Px < λ

(

pT p − qT q
)

, (8.14)

or

d

dt

(

xT Px + λ

∫ t

0

(

q(τ)T q(τ) − p(τ)T p(τ)
)

dτ

)

< 0.

Note that the second term is always nonnegative. Using standard arguments from
Lyapunov theory, it can be shown that limt→∞ x(t) = 0, or the system is stable.

Now, let us examine the condition (8.14). It is exactly the same as the condition
obtained by applying the S-procedure to the condition

d

dt
xT Px < 0, whenever pT p ≤ qT q,

which in turn, leads to the LMI condition for quadratic stability of NLDI (5.3)

P > 0, λ ≥ 0,





AT P + PA + λCT
q Cq PBp + λCT

q Dqp

(PBp + λCT
q Dqp)

T −λ(I − DT
qpDqp)



 < 0.

8.2.2 L2 gain

We assume that x(0) = 0 and, for simplicity, that Dzw = 0 and Dqp = 0.
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124 Chapter 8 Lur’e and Multiplier Methods

Suppose P > 0 and λ ≥ 0 are such that

d

dt
xT Px < λ

(

pT p − qT q
)

+ γ2wT w − zT z. (8.15)

Integrating both sides from 0 to T ,

x(T )T Px(T ) + λ

∫ T

0

(

q(τ)T q(τ) − p(τ)T p(τ)
)

dτ <

∫ T

0

(

γ2wT w − zT z
)

dt.

This implies that the L2 gain from w to z for system (8.13) does not exceed γ.
Condition (8.15) leads to the same LMI (6.55) which guarantees that the L2 gain
of the NLDI (4.9) from w to z does not exceed γ.

Remark: Almost all the results described in Chapters 5, 6 and 7 extend imme-
diately to systems with integral quadratic constraints. The only exceptions are
the results on coordinate transformations (§5.1.1, also §7.2.2), and on reachable
sets with unit-peak inputs (§6.1.3 and §7.3.3).

8.3 Multipliers for Systems with Unknown Parameters

We consider the system

ẋ = Ax + Bpp + Bww, q = Cqx + Dqpp,

pi = δiqi, i = 1, . . . , np, z = Czx + Dzww,
(8.16)

where p(t) ∈ Rnp , and δi, i = 1, . . . , np are any nonnegative numbers. We can consider
the more general case when αi ≤ δi ≤ βi using a loop transformation (see the Notes
and References).

For reasons that will become clear shortly, we begin by defining np LTI systems
with input qi and output qm,i, where qm,i(t) ∈ R:

ẋm,i = Am,ixm,i + Bm,iqi, xm,i(0) = 0,

qm,i = Cm,ixm,i + Dm,iqi,
(8.17)

where we assume that Am,i is stable and (Am,i, Bm,i) is controllable. We further
assume that

∫ t

0

qi(τ)qm,i(τ) dτ ≥ 0 for all t ≥ 0.

This last condition is equivalent to passivity of the LTI systems (8.17), which in turn
is equivalent to the existence of Pi ≥ 0, i = 1, . . . , np, satisfying

[

AT
m,iPi + PiAm,i PiBm,i − CT

m,i

BT
m,iPi − Cm,i −

(

Dm,i + DT
m,i

)

]

≤ 0, i = 1, . . . , np. (8.18)

(See §6.3.3.)

Thus, q and qm
∆
= [qm,1, . . . , qm,np

]T are the input and output respectively of the
diagonal system with realization

Am = diag(Am,i), Bm = diag(Bm,i), Cm = diag(Cm,i), Dm = diag(Dm,i),
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8.3 Multipliers for Systems with Unknown Parameters 125

Defining

Ã =

[

A 0

BmCq Am

]

, B̃p =

[

Bp

BmDqp

]

, B̃w =

[

Bw

0

]

,

C̃q = [DmCq Cm], D̃qp = DmDqp, C̃z = [Cz 0].

consider the following system with integral quadratic constraints:

dx̃

dt
= Ãx̃ + B̃pp + B̃ww,

qm = C̃qx̃ + D̃qpp,

z = C̃zx̃ + D̃qpp + Dzww,
∫ t

0

pi(τ)qm,i(τ) dτ ≥ 0, i = 1, . . . , np.

(8.19)

It is easy to show that if x is a trajectory of (8.16), then [xT xT
m]T is a trajectory

of (8.19) for some appropriate xm. Therefore, conclusions about (8.16) have implica-
tions for (8.19). For instance, if system (8.19) is stable, so is system (8.16).

8.3.1 Stability

Consider system (8.19) without w and z. Suppose P > 0 is such that

d

dt
x̃T Px̃ + 2

np
∑

i=1

piqm,i < 0, (8.20)

or

d

dt

(

x̃T Px̃ + 2

np
∑

i=1

∫ t

0

pi(τ)qm,i(τ) dτ

)

< 0.

Then, it can be shown using standard arguments that limt→∞ x̃(t) = 0, i.e., the
system (8.19) is stable.

Condition (8.20) is just the LMI in P > 0, Cm and Dm:
[

ÃT P + PÃ PB̃p + C̃T
q

B̃T
p P + C̃q D̃qp + D̃T

qp

]

< 0. (8.21)

Remark: LMI (8.21) can also be interpreted as a positive dissipation con-
dition for the LTI system with transfer matrix G(s) = −W (s)H(s), where
W (s) = Cm(sI−Am)−1Bm +Dm and H(s) = Cq(sI−A)−1Bp +Dqp. Therefore,
we conclude that system (8.16) is stable if there exists a passive W such that
−W (s)H(s) has positive dissipation. Hence W is often called a “multiplier”. See
the Notes and References for details.

8.3.2 Reachable sets with unit-energy inputs

The set of reachable states with unit-energy inputs for the system

ẋ = Ax + Bpp + Bww, q = Cqx + Dqpp,

p = δq, δ ≥ 0,
(8.22)
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is

Rue
∆
=















x(T )

∣

∣

∣

∣

∣

∣

∣

∣

x, w satisfy (8.22), x(0) = 0

∫ T

0

wT w dt ≤ 1, T ≥ 0















.

We can obtain a sufficient condition for a point x0 to lie outside the reachable set Rue,
using quadratic functions for the augmented system. Suppose P > 0 is such that

d

dt
x̃T Px̃ + 2

np
∑

i=1

piqm,i < wT w, (8.23)

or

x̃T Px̃ + 2

np
∑

i=1

∫ t

0

pi(τ)qm,i(τ) dτ <

∫ t

0

w(τ)T w(τ) dτ.

then the set E =
{

x̃
∣

∣ x̃T Px̃ ≤ 1
}

contains the reachable set for the system (8.19).
Condition (8.23) is equivalent to the LMI in P > 0, Cm and Dm:







ÃT P + PÃ PB̃w PB̃p + C̃T
q

B̃T
wP −I 0

B̃T
p P + C̃q 0 D̃qp + D̃T

qp






< 0. (8.24)

Now, the point x0 lies outside the set of reachable states for the system (8.22) if
there exists P satisfying (8.23) and there exists no z such that

[

x0

z

]T

P

[

x0

z

]

≤ 1.

Partitioning P conformally with the sizes of x0 and z as

P =

[

P11 P12

PT
12 P22

]

,

we note that

minz

[

x0

z

]T [

P11 P12

PT
12 P22

][

x0

z

]

= xT
0 (P11 − P12P

−1
22 PT

12)x0.

Therefore, x0 does not belong to the reachable set for the system (8.22) if there exist
P > 0, Pi ≥ 0, λ ≥ 0, Cm, and DM satisfying (8.18), (8.24) and

[

xT
0 P11x0 − 1 xT

0 P12

PT
12x0 P22

]

> 0.

This is an LMIP.

Notes and References

Lur’e systems

The Notes and References of Chapters 5 and 7 are relevant to this chapter as well. Lur’e
and Postnikov were the first to propose Lyapunov functions consisting of a quadratic form
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plus the integral of the nonlinearity [LP44]. The book [Lur57] followed this article, in which
the author showed how to solve the problem of finding such Lyapunov functions analyti-
cally for systems of order 2 or 3. Another early book that uses such Lyapunov functions is
Letov [Let61]. Work on this topic was continued by Popov [Pop62], Yakubovich [Yak64].
Tsypkin [Tsy64d, Tsy64c, Tsy64a, Tsy64b], Szego [Sze63] and Meyer [Mey66]. Jury
and Lee [JL65] consider the case of Lur’e systems with multiple nonlinearities and derive a
corresponding stability criterion. See also [IR64].

The ellipsoid method is used to construct Lyapunov functions for the Lur’e stability problem
in the papers by Pyatnitskii and Skorodinskii [PS82, PS83]. See also [Sko91a, Sko91b] for
general numerical methods to prove stability of nonlinear systems via the Popov or circle
criterion. A precursor is the paper by Karmarkar and Siljak [KS75], who used a locally con-
vergent algorithm to determine margins for a Lur’e-Postnikov system with one nonlinearity.

Indeed, in the early books by Lur’e, Postnikov, and Letov the problem of constructing Lya-
punov functions reduces to the satisfaction of some inequalities. In some special cases they
even point out geometrical properties of the regions defined by the inequalities, i.e., that they
form a parallelogram. But as far as we know, convexity of the regions is not noted in the
early work. In any case, it was not known in the 1940’s and 1950’s that solution of convex
inequalities is practically and theoretically tractable.

Construction of Lyapunov functions for systems with integral quadratic constraints

We saw in §8.2.1 that the quadratic positive function V (ξ) = ξT P ξ is not necessarily a
Lyapunov function in the conventional sense for the system (8.13) with integral quadratic
constraints; although V (x(t)) → 0 as t → ∞, it does not do so monotonically. We now show
how we can explicitly construct a Lyapunov function given P , in cases when p and q are
related by

ẋf = f(xf , q, t), p = g(xf , q, t), (8.25)

where xf (t) ∈ Rnf .

Since
∫ t

0
pT pdτ ≤

∫ t

0
qT q dτ , it can be shown (see for example [Wil72]) that Vf : Rnf → R+

given by

Vf (ξf )
∆
= sup

{

−
∫ T

0

(

qT q − pT p
)

dt

∣

∣

∣

∣

xf (0) = ξf , xf satisfies (8.25), T ≥ 0

}

is a Lyapunov function that proves stability of system (8.25). Moreover, the Lyapunov
function V : Rn × Rnf → R+ given by

V (ξ, ξf )
∆

= ξ
T P ξ + Vf (ξf )

proves stability of the interconnection

ẋ = Ax + Bpp, q = Cqx + Dqpp,

ẋf = f(xf , q, t), p = g(xf , q, t).

Note that this construction also shows that ξT P ξ proves the stability of the NLDI (5.2).

Integral quadratic constraints have recently received much attention, especially in the former
Soviet Union. See for example [Yak88, Meg92a, Meg92b, Yak92, Sav91, SP94b, SP94h,
SP94d].

Systems with constant, unknown parameters

Problems involving system (8.16) are widely studied in the field of robust control, sometimes
under the name “real-µ problems”; see Siljak [Sil89] for a survey. The results of §8.3 were
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128 Chapter 8 Lur’e and Multiplier Methods

derived by Fan, Tits and Doyle in [FTD91] using an alternate approach, involving the ap-
plication of an off-axis circle criterion (see also §3.3). We also mention [TV91], where Tesi
and Vicino study a hybrid system, consisting of a Lur’e system with unknown parameters.

There are elegant analytic solutions for some very special problems involving parameter-
dependent linear systems, e.g., Kharitonov’s theorem [Kha78] and its extensions [BHL89].
A nice survey of these results can be found in Barmish [Bar93].

Complexity of stabilization problems

The stability (and performance) analysis problems considered in §8.3 have high complexity.
For example, checking if (8.16) is stable is NP-hard (see Coxson and Demarco [CD91], Braatz
and Young [BYDM93], Poljak and Rohn [PR94], and Nemirovskii [Nem94]). We conjecture
that checking whether a general DNLDI is stable is also NP-hard.

Likewise, many stabilization problems for uncertain systems are NP-hard. For instance, the
problem of checking whether system (8.16) is stabilizable by a constant state-feedback can
be shown to be NP-hard using the method of [Nem94].

A related result, due to Blondel and Gevers [BG94], states that checking whether there
exists a common stabilizing LTI controller for three LTI systems is undecidable. In contrast,
checking whether there exists a static, output-feedback control law for a single LTI system
is rationally decidable [ABJ75].

Multiplier methods

See [Wil69a, NT73, DV75, Sil69, Wil70, Wil76] for discussion of and bibliography on
multiplier theory and its connections to Lyapunov stability theory. In general multiplier
theory we consider the system

ẋ = Ax + Bpp + Bww, q = Cqx + Dqpp, p(t) = ∆(q, t).

The method involves checking that Hm = W
(

Cq(sI − A)−1Bp + Dqp

)

satisfies

Hm(jω) + Hm(jω)∗ ≥ 0 for every ω ∈ R,

for some choice of W from a set that is determined by the properties of ∆. When ∆ is
a nonlinear time-invariant memoryless operator satisfying a sector condition (i.e., when we
have a Lur’e system), the multipliers W are of the form (1 + qs) for some q ≥ 0. This is
the famous Popov criterion [Pop62, Pop64]; we must also cite Yakubovich, who showed,
using the S-procedure [Yak77], that feasibility of LMI (8.6) is equivalent to the existence of
q nonnegative such that (1 + qs)(cq(sI − A)−1bp) + 1/k has positive dissipation.

In the case when ∆(q, t) = δq(t) for some unknown real number δ, the multiplier W can be
any passive transfer matrix. This observation was made by Brockett and Willems in [BW65];
given a transfer function Hqp they show that the transfer function Hqp/(1+kHqp) is stable for
all values of k in (0,∞) if and only if there exists a passive multiplier W such that WHqp is
also passive. This case has also been considered in [CS92b, SC93, SL93a, SLC94] where the
authors devise appropriate multipliers for constant real uncertainties. The paper [BHPD94]
by Balakrishnan et al., shows how various stability tests for uncertain systems can be red-
erived in the context of multiplier theory, and how these tests can be reduced to LMIPs. See
also [LSC94].

Safonov and Wyetzner use a convex parametrization of multipliers found by Zames and
Falb [ZF68, ZF67] to prove stability of systems subject to “monotonic” or “odd-monotonic”
nonlinearities (see [SW87] for details; see also [GG94]). Hall and How, along with Bern-
stein and Haddad, generalize the use of quadratic Lyapunov functions along with multipliers
for various classes of nonlinearities, and apply them to Aerospace problems; see for ex-
ample [HB91a, How93, HH93b, HHHB92, HH93a, HHH93a, HCB93, HB93b, HB93a,
HHH93b]. See also [CHD93].
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Multiple nonlinearities for Lur’e systems

Our analysis method for Lur’e systems with multiple nonlinearities in §8.1 can be conser-
vative, since the S-procedure can be conservative in this case. Rapoport [Rap86, Rap87,
Rap88] devises a way of determining if there exists Lyapunov functions of the form (8.3)
nonconservatively by generating appropriate LMIs. We note, however, that the number of
these LMIs grows exponentially with the number of nonlinearities. Kamenetskii [Kam89]
and Rapoport [Rap89] derive corresponding frequency-domain stability criteria. Kamenet-
skii calls his results “convolution method for solving matrix inequalities”.

Loop transformations

Consider the Lur’e system with general sector conditions, i.e.,

ẋ = Ax + Bp, q = Cx + Dp,

pi(t) = φi(qi(t)), αiσ
2 ≤ σφi(σ) ≤ βiσ

2.
(8.26)

Here we have dropped the variables w and z and the subscripts on B, C and D to simplify
the presentation. We assume this system is well-posed, i.e., det(I −D∆) &= 0 for all diagonal
∆ with αi ≤ ∆ii ≤ βi.

Define

p̄i
∆
=

1

βi − αi
(φi(qi) − αiqi) = φ̄i(qi).

It is readily shown that 0 ≤ σφ̄i(σ) ≤ σ2 for all σ. Let Λ and Γ denote the diagonal matrices

Λ = diag(α1, . . . , αnq ), Γ = diag(β1 − α1, . . . , βnq − αnq ),

so that p̄ = Γ
−1(p − Λq). We now substitute p = Γp̄ + Λq into (8.26) and, using our well-

posedness assumption, solve for ẋ and q in terms of x and p̄. This results in

ẋ =
(

A + BΛ(I − DΛ)−1C
)

x + B(I − ΛD)−1
Γp̄,

q = (I − DΛ)−1Cx + (I − DΛ)−1DΓp̄.

We can therefore express (8.26) as

ẋ = Āx + B̄p̄, q = C̄x + D̄p̄,

p̄i(t) = φ̄i(qi(t)), 0 ≤ σφ̄i(σ) ≤ σ2.
(8.27)

where

Ā = A + BΛ(I − DΛ)−1C, B̄ = B(I − ΛD)−1
Γ,

C̄ = (I − DΛ)−1C, D̄ = (I − DΛ)−1DΓ.

Note that (8.27) is in the standard Lur’e system form. So to analyze the more general Lur’e
system (8.26), we simply apply the methods of §8.1 to the loop-transformed system (8.27).
In practice, i.e., in a numerical implementation, it is probably better to derive the LMIs
associated with the more general Lur’e system than to loop transform to the standard Lur’e
system.

The construction above is a loop transformation that maps nonlinearities in sector [αi, βi]
into the standard sector, i.e., [0, 1]. Similar transformations can be used to map any set of
sectors into any other, including so-called infinite sectors, in which, say, βi = +∞.

The term loop transformation comes from a simple block-diagram interpretation of the equa-
tions given above. For detailed descriptions of loop transformations, see the book by Desoer
and Vidyasagar [DV75, p50].
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Chapter 9

Systems with Multiplicative Noise

9.1 Analysis of Systems with Multiplicative Noise

9.1.1 Mean-square stability

We first consider the discrete-time stochastic system

x(k + 1) =

(

A0 +

L
∑

i=1

Aipi(k)

)

x(k), (9.1)

where p(0), p(1), . . ., are independent, identically distributed random variables with

E p(k) = 0, E p(k)p(k)T = Σ = diag(σ1, . . . ,σL). (9.2)

We assume that x(0) is independent of the process p.
Define M(k), the state correlation matrix, as

M(k)
∆
= Ex(k)x(k)T .

Of course, M satisfies the linear recursion

M(k + 1) = AM(k)AT +

L
∑

i=1

σ2
i AiM(k)AT

i , M(0) = Ex(0)x(0)T . (9.3)

If this linear recursion is stable, i.e., regardless of x(0), limk→∞ M(k) = 0, we say
the system is mean-square stable. Mean-square stability implies, for example, that
x(k) → 0 almost surely.

It can be shown (see the Notes and References) that mean-square stability is
equivalent to the existence of a matrix P > 0 satisfying the LMI

AT PA − P +
L

∑

i=1

σ2
i AT

i PAi < 0. (9.4)

An alternative, equivalent condition is that the dual inequality

AQAT − Q +

L
∑

i=1

σ2
i AiQAT

i < 0 (9.5)

holds for some Q > 0.
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132 Chapter 9 Systems with Multiplicative Noise

Remark: For P > 0 satisfying (9.4), we can interpret the function V (ξ) = ξT P ξ

as a stochastic Lyapunov function: EV (x) decreases along trajectories of (9.1).
Alternatively, the function V (M) = TrMP is a (linear) Lyapunov function for
the deterministic system (9.3) (see the Notes and References).

Remark: Mean-square stability can be verified directly by solving the Lyapunov
equation in P

AT PA − P +

L
∑

i=1

σ
2
i AT

i PAi + I = 0

and checking whether P > 0. Thus the LMIPs (9.4) and (9.5) offer no computa-
tional (or theoretical) advantages for checking mean-square stability.

We can consider variations on the mean-square stability problem, for example,
determining the mean-square stability margin. Here, we are given A0, . . . , AL, and
asked to find the largest γ such that with Σ < γ2I, the system (9.1) is mean-square
stable. From the LMIP characterizations of mean-square stability, we can derive
GEVP characterizations that yield the exact mean-square stability margin. Again,
the GEVP offers no computational or theoretical advantages, since the mean-square
stability margin can be obtained by computing the eigenvalue of a (large) matrix.

9.1.2 State mean and covariance bounds with unit-energy inputs

We now add an exogenous input w to our stochastic system:

x(k + 1) = Ax(k) + Bww(k) +

L
∑

i=1

(Aix(k) + Bw,iw(k)) pi(k), x(0) = 0. (9.6)

We assume that the exogenous input w is deterministic, with energy not exceeding
one, i.e.,

∞
∑

k=0

w(k)T w(k) ≤ 1.

Let x̄(k) denote the mean of x(k), which satisfies x̄(k +1) = Ax̄(k)+Bww(k), and let

X(k) denote the covariance of x(k), i.e., X(k) = E (x(k) − x̄(k)) (x(k) − x̄(k))
T
. We

will develop joint bounds on x̄(k) and X(k).
Suppose V (ξ) = ξT P ξ where P > 0 satisfies

EV (x(k + 1)) ≤ EV (x(k)) + w(k)T w(k) (9.7)

for all trajectories. Then,

EV (x(k)) ≤
k

∑

j=0

w(j)T w(j), k ≥ 0,

which implies that, for all k ≥ 0,

Ex(k)T Px(k) = x̄(k)T P x̄(k) + E (x(k) − x̄(k))
T

P (x(k) − x̄(k))

= x̄(k)T P x̄(k) + TrX(k)P

≤ 1.
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Let us now examine condition (9.7). We note that

EV (x(k + 1)) =

[

x̄(k)

w(k)

]T

M

[

x̄(k)

w(k)

]

+Tr

(

AT PA +

L
∑

i=1

σ2
i AT

i PAi

)

X(k),

where

M =

[

AT

BT
w

]

P
[

A Bw

]

+

L
∑

i=1

σ2
i

[

AT
i

BT
w,i

]

P
[

Ai Bw,i

]

.

Next, the LMI conditions
[

AT

BT
w

]

P
[

A Bw

]

+

L
∑

i=1

σ2
i

[

AT
i

BT
w,i

]

P
[

Ai Bw,i

]

≤
[

P 0

0 I

]

(9.8)

and

AT PA +

L
∑

i=1

σ2
i AT

i PAi < P (9.9)

imply

EV (x(k + 1)) ≤ x̄T (k)P x̄(k) + w(k)T w(k)

+Tr

(

AT PA +
L

∑

i=1

σ2
i AT

i PAi

)

X(k)

≤ x̄T (k)P x̄(k) + w(k)T w(k)

+E (x(k) − x̄(k))
T

P (x(k) − x̄(k))

= EV (x(k)) + w(k)T w(k), k ≥ 0.

Of course, LMI (9.8) implies LMI (9.9); thus, we conclude that LMI (9.8) im-
plies (9.7). Therefore, we conclude that x̄(k) and X(k) must belong to the set

{

( ¯x(k),X(k))
∣

∣ x̄(k)T P x̄(k) + TrX(k)P ≤ 1
}

for any P > 0 satisfying the LMI (9.8). For example, we have the bound TrM(k)P ≤ 1
on the state covariance matrix.

We can derive further bounds on M(k). For example, since we have TrM(k)P ≤
λmin(P )TrM(k) and therefore TrM(k) ≤ 1/λmin(P ), we can derive bounds on TrM
by maximizing λmin(P ) subject to (9.8) and P > 0. This is an EVP. As another
example, we can derive an upper bound on λmax(M) by maximizing TrP subject
to (9.8) and P > 0, which is another EVP.

9.1.3 Bound on L2 gain

We now consider the system

x(k + 1) = Ax(k) + Bww(k) +

L
∑

i=1

(Aix(k) + Bw,iw(k)) pi(k), x(0) = 0,

z(k) = Czx(k) + Dzww(k) +

L
∑

i=1

(Cz,ix(k) + Dzw,iw(k)) pi(k).

(9.10)
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134 Chapter 9 Systems with Multiplicative Noise

with the same assumptions on p. We assume that w is deterministic.
We define the L2 gain η of this system as

η2 ∆
= sup

{

E

∞
∑

k=0

z(k)T z(k)

∣

∣

∣

∣

∣

∞
∑

k=0

w(k)T w(k) ≤ 1

}

. (9.11)

Suppose that V (ξ) = ξT P ξ, with P > 0, satisfies

EV (x(k + 1)) − EV (x(k)) ≤ γ2w(k)T w(k) − E z(k)T z(k). (9.12)

Then γ ≥ η. The condition (9.12) can be shown to be equivalent to the LMI
[

A Bw

Cz Dzw

]T [

P 0

0 I

][

A Bw

Cz Dzw

]

−
[

P 0

0 γ2I

]

+

L
∑

i=1

σ2
i

[

Ai Bw,i

Cz,i Dzw,i

]T [

P 0

0 I

] [

Ai Bw,i

Cz,i Dzw,i

]

≤ 0.

(9.13)

Minimizing γ subject to LMI (9.13), which is an EVP, yields an upper bound on η.

Remark: It is straightforward to apply the scaling method developed in §6.3.4
to obtain componentwise results.

9.2 State-Feedback Synthesis

We now add a control input u to our system:

x(k + 1) = Ax(k) + Buu(k) + Bww(k)+
L

∑

i=1

(Aix(k) + Bu,iu(k) + Bw,iw(k)) pi(k),

z(k) = Czx(k) + Dzuu(k) + Dzww(k)+
L

∑

i=1

(Cz,ix(k) + Dzu,iu(k) + Dzw,iw(k)) pi(k).

(9.14)

We seek a state-feedback u(k) = Kx(k) such that the closed-loop system

x(k + 1) = (A + BuK)x(k) + Bww(k)+
L

∑

i=1

((Ai + Bu,iK)x(k) + Bw,iw(k)) pi(k),

z(k) = (Cz + DzuK)x(k) + Dzww(k)+
L

∑

i=1

((Cz,i + Dzu,iK)x(k) + Dzw,iw(k)) pi(k),

(9.15)

satisfies various properties.

9.2.1 Stabilizability

We seek K and Q > 0 such that

(A + BuK)Q(A + BuK)T − Q

+

L
∑

i=1

σ2
i (Ai + Bu,iK)Q(Ai + Bu,iK)T < 0.
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With the change of variable Y = KQ, we obtain the equivalent condition

(AQ + BuY )Q−1(AQ + BuY )T − Q

+

L
∑

i=1

σ2
i (AiQ + Bu,iY )Q−1(AiQ + Bu,iY )T < 0,

(9.16)

which is easily written as an LMI in Q and Y .
Thus, system (9.14) is mean-square stabilizable (with constant state-feedback) if

and only if the LMI Q > 0, (9.16) is feasible. In this case, a stabilizing state-feedback
gain is K = Y Q−1.

As an extension, we can maximize the closed-loop mean-square stability margin.
System (9.15) is mean-square stable for Σ ≤ γ2I if and only if

(AQ + BuY )Q−1(AQ + BuY )T − Q

+γ2

L
∑

i=1

(AiQ + Bu,iY )Q−1(AiQ + Bu,iY )T < 0
(9.17)

holds for some Y and Q > 0. Therefore, finding K that maximizes γ reduces to the
following GEVP:

maximize γ

subject to Q > 0, (9.17)

9.2.2 Minimizing the bound on L2 gain

We now seek a state-feedback gain K which minimizes the bound on L2 gain (as
defined by (9.11)) for system (9.15). η ≤ γ for some K if there exist P > 0 and K
such that

L
∑

i=1

σ2
i

[

Ai + Bu,iK Bw,i

Cz,i + Dzu,iK Dzw,i

]T

P̃

[

Ai + Bu,iK Bw,i

Cz,i + Dzu,iK Dzw,i

]

+

[

A + BuK Bw

Cz + DzuK Dzw

]T

P̃

[

A + BuK Bw

Cz + DzuK Dzw

]

≤
[

P 0

0 γ2I

]

where

P̃ =

[

P 0

0 I

]

.

We make the change of variables Q = P−1, Y = KQ. Applying a congruence
with Q̃ = diag(Q, I), we get

L
∑

i=1

σ2
i

[

AiQ + Bu,iY Bw,i

Cz,iQ + Dzu,iY Dzw,i

]T

Q̃−1

[

AiQ + Bu,iY Bw,i

Cz,iQ + Dzu,iY Dzw,i

]

+

[

AQ + BuY Bw

CzQ + DzuY Dzw

]T

Q̃−1

[

AQ + BuY Bw

CzQ + DzuY Dzw

]

≤
[

Q 0

0 γ2I

]

.

This inequality is readily transformed to an LMI.
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Notes and References

Systems with multiplicative noise

Systems with multiplicative noise are a special case of stochastic systems. For an introduction
to this topic see Arnold [Arn74] or Åström [Åst70].

A rigorous treatment of continuous-time stochastic systems requires much technical machin-
ery (see [EG94]). In fact there are many ways to formulate the continuous-time version of a
system such as (9.10); see Itô [Ito51] and Stratonovitch [Str66].

Stability of system with multiplicative noise

For a survey of different concepts of stability for stochastic systems see [Koz69] and the
references therein. The definition of mean-square stability can be found in [Sam59]. Mean-
square stability is a strong form of stability. In particular, it implies stability of the mean
Ex(k) and that all trajectories converge to zero with probability one [Kus67, Wil73]. For the
systems considered here, it is also equivalent to L2-stability, which is the property that (see

for example, [EP92]) E
∑T

t=0
‖x(t)‖2 has a (finite) limit as T → ∞ for all initial conditions.

The equation for the state correlation matrix (9.3) can be found in [McL71, Wil73]. An alge-
braic criterion for mean-square stability of a system with multiplicative white noise is given
in [NS72]. It is reminiscent of the classical (deterministic) Hurwitz criterion. Frequency-
domain criteria are given in [WB71]. The related Lyapunov equation was given by Klein-
mann [Kle69] for the case L = 1 (i.e., a single uncertainty). The criterion then reduces
to an H2 norm condition on a certain transfer matrix. (This is in parallel with the results
of [EP92], see below.)

Kats and Krasovskii introduced in [KK60] the idea of a stochastic Lyapunov function and
proved a related Lyapunov theorem. A thorough stability analysis of (nonlinear) stochastic
systems was made by Kushner in [Kus67] using this idea of a stochastic Lyapunov func-
tion. Kushner used this idea to derive bounds for return time, expected output energy, etc.
However, this approach does not provide a way to construct the Lyapunov functions.

Proof of stability criterion

We now prove that condition (9.4) is a necessary and sufficient condition for mean-square
stability. We first prove that condition (9.4) is sufficient. Let P > 0 satisfy (9.4). Introduce
the (linear Lyapunov) function V (M) = TrMP , which is positive on the cone of nonnegative
matrices. For nonzero M(k) satisfying (9.3),

V (M(k + 1)) = Tr

(

AM(k)AT +

L
∑

i=1

σ
2
i AiM(k)AT

i

)

P

= TrM(k)

(

AT PA +

L
∑

i=1

σ
2
i AT

i PAi

)

< TrM(k)P = V (M(k)).

A further standard argument from Lyapunov theory proves that M(k) converges to zero as
k → ∞.

To prove that condition (9.4) is also necessary, we assume that the system is mean-square
stable. This means that for every positive initial condition M(0) ≥ 0, the solution to the
linear recursion (9.3) goes to zero as k → 0. Linearity of system (9.3) implies that, for an
arbitrary choice of M(0), the corresponding solution M(k) converges to 0, i.e., (9.3) is stable.
We now write (9.3) as m(k +1) = Am(k), where m(k) is a vector containing the n2 elements
of M(k), and A is a real matrix. (This matrix can be expressed via Kronecker products
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involving A0, . . . , AL.) Stability of A is equivalent to that of AT , and the corresponding
matrix difference equation,

N(k + 1) = AT N(k)A +

L
∑

i=1

σ
2
i AT

i N(k)Ai, (9.18)

is also stable.

Now let N(0) > 0, and let N(k) be the corresponding solution of (9.18). Since N(k) satisfies
a stable first-order linear difference equation with constant coefficients, the function

P (k) =

k
∑

j=0

N(j)

has a (finite) limit for k → ∞, which we denote by P . The fact that N(0) > 0 implies P > 0.

Now (9.18) implies

P (k + 1) = N(0) + AT P (k)A +

L
∑

i=1

σ
2
i AT

i P (k)Ai

Taking the limit k → ∞ shows that P satisfies (9.4).

Mean-square stability margin

System (9.10) can be viewed as a linear system subject to random parameter variations. For
systems with deterministic parameters only known to lie in ranges, the computation of an
exact stability margin is an NP-hard problem [CD92]. The fact that a stochastic analog
of the deterministic stability margin is easier to compute should not be surprising; we are
dealing with a very special form of stability, which only considers the average behavior of the
system.

An exact stability margin can also be computed for continuous-time systems with multiplica-
tive noise provided the Itô framework is considered; see [EG94]. In contrast, the computation
of an exact stability margin seems difficult for Stratonovitch systems.

In [EP92], El Bouhtouri and Pritchard provide a complete robustness analysis in a slightly
different framework than ours, namely for so-called “block-diagonal” perturbations. Roughly
speaking, they consider a continuous-time Itô system of the form

dx(t) = Ax(t)dt +

L
∑

i=1

Bi∆i(Cx(t))dpi(t),

where the operators ∆i are Lipschitz continuous, with ∆i(0) = 0; the processes pi, i =
1, . . . , L, are standard Brownian motions (which, roughly speaking, are integrals of white
noise).

We note that our framework can be recovered by assuming that the operators ∆i are restricted
to a diagonal structure of the form ∆i(z) = σiz.

Measuring the “size” of the perturbation term by
(
∑L

i=1
‖∆i‖2

)1/2
, where ‖ · ‖ denotes the

Lipschitz norm, leads the authors of [EP92] to the robustness margin

minimize γ

subject to P > 0, AT P + PA + CT C < 0, BT
i PBi ≤ γ, i = 1, . . . , L
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For L = 1, and B1 and C are vectors, that is, when a single scalar uncertain parameter
perturbs an LTI system, both this result and ours coincide with the H2 norm of (A, B1, C).
This is consistent with the earlier results of Kleinmann [Kle69] and Willems [WB71] (see
also [BB91, p114] for a related result). For L > 1 however, applying their results to our
framework would be conservative, since we only consider “diagonal” perturbations with “re-
peated elements”, ∆i = σiI. Note that the LMI approach can also solve the state-feedback
synthesis problem in the framework of [EP92]. El Bouhtouri and Pritchard provide a solution
of this problem in [EP94].

Stability conditions for arbitrary noise intensities are given in geometric terms in [WW83].
In our framework, this happens if and only if the optimal value of the corresponding GEVP
is zero.

Bounds on state covariance with noise input

We consider system (9.6) in which w is a unit white noise process, i.e., w(k) are independent,
identically distributed with Ew(k) = 0, Ew(k)w(k)T = W , and w is independent of p.
In this case, of course, the state mean x̄ is zero. We derive an upper bound on the state
correlation (or covariance) of the system.

The state correlation M(k) satisfies the difference equation

M(k + 1) = AM(k)AT + BwWBT
w +

L
∑

i=1

σ
2
i

(

AiM(k)AT
i + Bw,iWBT

w,i

)

,

with M(0) = 0.

Since the system is mean-square stable, the state correlation M(k) has a (finite) limit M∞

which satisfies

M∞ = AM∞AT + BwWBT
w +

L
∑

i=1

σ
2
i

(

AiM∞AT
i + Bw,iWBT

w,i

)

.

In fact, the matrix M∞ can be computed directly as the solution of a linear matrix equation.
However, the above LMI formulation extends immediately to more complicated situations (for
instance, when the white noise input w has a covariance matrix with unknown off-diagonal
elements), while the “direct” method does not. See the Notes and References for Chapter 6
for details on how these more complicated situations can be handled.

Extension to other stochastic systems

The Lur’e stability problem considered in §8.1 can be extended to the stochastic framework;
see Wonham [Won66]. This extension can be cast in terms of LMIs.

It is also possible to extend the results in this chapter to “uncertain stochastic systems”, of
the form

x(k + 1) =

(

A(k) +

L
∑

i=1

σiAipi(k)

)

x(k),

where the time-varying matrix A(k) is only known to belong to a given polytope.

State-feedback synthesis

Conditions for stabilizability for arbitrary noise intensities are given in geometric terms
in [WW83]. Apart from this work, the bulk of earlier research on this topic concentrated
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on Linear-Quadratic Regulator theory for continuous-time Itô systems, which addresses the
problem of finding an input u that minimize a performance index of the form

J(K) = E

∫ ∞

0

(

x(t)T Qx(t) + u(t)T Ru(t)
)

dt

where Q ≥ 0 and R > 0 are given. The solution of this problem, as found in [McL71]
or [Ben92], can be expressed as a (linear, constant) state-feedback u(t) = Kx(t) where the
gain K is given in terms of the solution of a non-standard Riccati equation. (See [Kle69,
Won68, FR75, BH88b] for additional details.) The existing methods (see e.g. [Phi89,
RSH90]) use homotopy algorithms to solve these equations, with no guarantee of global con-
vergence. We can solve these non-standard Riccati equations reliably (i.e., with guaranteed
convergence), by recognizing that the solution is an extremal point of a certain LMI feasibility
set.
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Chapter 10

Miscellaneous Problems

10.1 Optimization over an Affine Family of Linear Systems

We consider a family of linear systems,

ẋ = Ax + Bww, z = Cz(θ)x + Dzw(θ)w, (10.1)

where Cz and Dzw depend affinely on a parameter θ ∈ Rp. We assume that A is
stable and (A, Bw) is controllable. The transfer function,

Hθ(s)
∆
= Cz(θ)(sI − A)−1Bw + Dzw(θ),

depends affinely on θ.
Several problems arising in system and control theory have the form

minimize ϕ0(Hθ)

subject to ϕi(Hθ) < αi, i = 1, . . . , p
(10.2)

where ϕi are various convex functionals. These problems can often be recast as LMI
problems. To do this, we will represent ϕi(Hθ) < αi as an LMI in θ, αi, and possibly
some auxiliary variables ζi (for each i):

Fi(θ,αi, ζi) > 0.

The general optimization problem (10.2) can then be expressed as the EVP

minimize α0

subject to Fi(θ,αi, ζi) > 0, i = 0, 1, . . . , p

10.1.1 H2 norm

The H2 norm of the system (10.1), i.e.,

‖Hθ‖2
2 =

1

2π
Tr

∫ ∞

0

Hθ(jω)∗Hθ(jω) dω,

is finite if and only if Dzw(θ) = 0. In this case, it equals TrCzWcC
T
z , where Wc > 0 is

the controllability Gramian of the system (10.1) which satisfies (6.6). Therefore, the
H2 norm of the system (10.1) is less than or equal to γ if and only if the following
conditions on θ and γ2 are satisfied:

Dzw(θ) = 0, TrCz(θ)WcCz(θ)
T ≤ γ2.

The quadratic constraint on θ is readily cast as an LMI.
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10.1.2 H∞ norm

From the bounded-real lemma, we have ‖Hθ‖∞ < γ if and only if there exists P ≥ 0
such that

[

AT P + PA PBw

BT
wP −γ2I

]

+

[

Cz(θ)
T

Dzw(θ)T

]

[

Cz(θ) Dzw(θ)
]

≤ 0.

Remark: Here we have converted the so-called “semi-infinite” convex constraint
‖Hθ(iω)‖ < γ for all ω ∈ R into a finite-dimensional convex (linear matrix)
inequality.

10.1.3 Entropy

The γ-entropy of the system (10.1) is defined as

Iγ(Hθ)
∆
=







−γ2

2π

∫ ∞

−∞

log det(I − γ2Hθ(iω)Hθ(iω)∗) dω, if ‖Hθ‖∞ < γ,

∞, otherwise.

When it is finite, Iγ(Hθ) is given by TrBT
wPBw, where P is a symmetric matrix

with the smallest possible maximum singular value among all solutions of the Riccati
equation

AT P + PA + Cz(θ)
T Cz(θ) +

1

γ2
PBwBT

wP = 0.

For the system (10.1), the γ-entropy constraint Iγ ≤ λ is therefore equivalent to an
LMI in θ, P = P T , γ2, and λ:

Dzw(θ) = 0,







AT P + PA PBw Cz(θ)
T

BT
wP −γ2I 0

Cz(θ) 0 −I






≤ 0, TrBT

wPBw ≤ λ.

10.1.4 Dissipativity

Suppose that w and z are the same size. The dissipativity of Hθ (see (6.59)) exceeds
γ if and only if the LMI in the variables P = P T and θ holds:

[

AT P + PA PBw − Cz(θ)
T

BT
wP − Cz(θ) 2γI − Dzw(θ) − Dzw(θ)T

]

≤ 0.

We remind the reader that passivity corresponds to zero dissipativity.

10.1.5 Hankel norm

The Hankel norm of Hθ is less than γ if and only if the following LMI in Q, θ and γ2

holds:

Dzw(θ) = 0, AT Q + QA + Cz(θ)
T Cz(θ) ≤ 0,

γ2I − W
1/2
c QW

1/2
c ≥ 0, Q ≥ 0.

(Wc is the controllability Gramian defined by (6.6).)
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10.2 Analysis of Systems with LTI Perturbations

In this section, we address the problem of determining the stability of the system

ẋ = Ax + Bpp, q = Cqx + Dqpp, pi = δi ∗ qi, i = 1, . . . , np, (10.3)

where p = [p1 · · · pnp
]T , q = [q1 · · · qnp

]T , and δi, i = 1, . . . , np, are impulse
responses of single-output single-output LTI systems whose H∞ norm is strictly less
than one, and ∗ denotes convolution. This problem has many variations: Some of the
δi may be impulse response matrices, or they may satisfy equality constraints such as
δ1 = δ2. Our analysis can be readily extended to these cases.

Let Hqp(s) = Cq(sI−A)−1Bp+Dqp. Suppose that there exists a diagonal transfer
matrix W (s) = diag(W1(s), . . . ,Wnp

(s)), where W1(s), . . . ,Wnp
(s) are single-input

single-output transfer functions with no poles or zeros on the imaginary axis such
that

sup
ω∈R

∥

∥W (iω)Hqp(iω)W (iω)−1
∥

∥ < 1 (10.4)

Then from a small-gain argument, the system (10.3) is stable. Such a W is referred
to as a frequency-dependent scaling .

Condition (10.4) is equivalent to the existence of γ > 0 such that

Hqp(iω)∗W (iω)∗W (iω)Hqp(iω) − W (iω)∗W (iω) + γI ≤ 0,

for all ω ∈ R. From spectral factorization theory, it can be shown that such a W
exists if and only if there exists a stable, diagonal transfer matrix V and positive µ
such that

Hqp(iω)∗(V (iω) + V (iω)∗)Hqp(iω) − (V (iω) + V (iω)∗) + γI ≤ 0,

V (iω) + V (iω)∗ ≥ µI,
(10.5)

for all ω ∈ R.
In order to reduce (10.5) to an LMI condition, we restrict V to belong to an affine,

finite-dimensional set Θ of diagonal transfer matrices, i.e., of the form

Vθ(s) = DV(θ) + CV(θ)(sI − A)−1B,

where DV and CV are affine functions are θ.
Then, Hqp(−s)T Vθ(s)Hqp(s) − Vθ(s) has a state-space realization (Aaug , Baug,

Caug(θ), Daug(θ)) where Caug and Daug are affine in θ, and (Aaug, Baug) is controllable.
From §10.1.4, the condition that Vθ(iω)+Vθ(iω)∗ ≥ µI for all ω ∈ R is equivalent

to the existence of P1 ≥ 0, θ and γ > 0 such that the LMI
[

AT
VP1 + P1AV P1BV − CV(θ)T

(P1BV − CV(θ)T )T −(DV(θ) + DV(θ)T ) + µI

]

≤ 0

holds.
The condition Hqp(iω)∗(Vθ(iω) + Vθ(iω)∗)Hqp(iω) − (Vθ(iω) + Vθ(iω)∗) + γI ≤ 0

is equivalent to the existence of P2 = PT
2 and θ satisfying the LMI

[

AT
augP2 + P2Aaug P2Baug + Caug(θ)

T

(P2Baug + Caug(θ)
T )T Daug(θ) + Daug(θ)

T + γI

]

≤ 0. (10.6)

(See the Notes and References for details.) Thus proving stability of the system (10.3)
using a finite-dimensional set of frequency-dependent scalings is an LMIP.
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10.3 Positive Orthant Stabilizability

The LTI system ẋ = Ax is said to be positive orthant stable if x(0) ∈ Rn
+ implies that

x(t) ∈ Rn
+ for all t ≥ 0, and x(t) → 0 as t → ∞. It can be shown that the system

ẋ = Ax is positive orthant stable if and only if Aij ≥ 0 for i )= j, and there exists
a diagonal P > 0 such that PAT + AP < 0. Therefore checking positive orthant
stability is an LMIP.

We next consider the problem of finding K such that the system ẋ = (A + BK)x
is positive orthant stable. Equivalently, we seek a diagonal Q > 0 and K such that
Q(A + BK)T + (A + BK)Q < 0, with the off-diagonal entries of A + BK being
nonnegative. Since Q > 0 is diagonal, the last condition holds if and only if all
the off-diagonal entries of (A+BK)Q are nonnegative. Therefore, with the change of
variables Y = KQ, proving positive orthant stabilizability for the system ẋ = Ax+Bu
is equivalent to finding a solution to the LMIP with variables Q and Y :

Q > 0, (AQ + BY )ij ≥ 0, i )= j, QAT + Y T BT + AQ + BY < 0. (10.7)

Remark: The method can be extended to invariance of more general (polyhedral)
sets. Positive orthant stability and stabilizability of LDIs can be handled in a
similar way. See the Notes and References.

10.4 Linear Systems with Delays

Consider the system described by the delay-differential equation

d

dt
x(t) = Ax(t) +

L
∑

i=1

Aix(t − τi), (10.8)

where x(t) ∈ Rn, and τi > 0. If the functional

V (x, t) = x(t)T Px(t) +

L
∑

i=1

∫ τi

0

x(t − s)T Pix(t − s) ds, (10.9)

where P > 0, P1 > 0, . . . , PL > 0, satisfies dV (x, t)/dt < 0 for every x satisfying (10.8),
then the system (10.8) is stable, i.e., x(t) → 0 as t → ∞.

It can be verified that dV (x, t)/dt = y(t)T Wy(t), where

W =

























AT P + PA +

L
∑

i=1

Pi PA1 · · · PAL

AT
1 P −P1 · · · 0

...
...

. . .
...

AT
LP 0 · · · −PL

























, y(t) =













x(t)

x(t − τ1)
...

x(t − τL)













.

Therefore, we can prove stability of system (10.8) using Lyapunov functionals of the
form (10.9) by solving the LMIP W < 0, P > 0, P1 > 0, . . . , PL > 0.
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Remark: The techniques for proving stability of norm-bound LDIs, discussed
in Chapter 5, can also be used on the system (10.8); it can be verified that the
LMI (5.15) that we get for quadratic stability of a DNLDI, in the case when the
state x is a scalar, is the same as the LMI W < 0 above. We also note that we
can regard the delay elements of system (10.8) as convolution operators with unit
L2 gain, and use the techniques of §10.2 to check its stability.

Next, we add an input u to the system (10.8) and consider

d

dt
x(t) = Ax(t) + Bu(t) +

L
∑

i=1

Aix(t − τi). (10.10)

We seek a state-feedback u(t) = Kx(t) such that the system (10.10) is stable.
From the discussion above, there exists a state-feedback gain K such that a Lya-

punov functional of the form (10.9) proves the stability of the system (10.10), if

W =

























(A + BK)T P + P (A + BK) +

L
∑

i=1

Pi PA1 · · · PAL

AT
1 P −P1 · · · 0

...
...

. . .
...

AT
LP 0 · · · −PL

























< 0

for some P , P1, . . . , PL > 0.
Multiplying every block entry of W on the left and on the right by P−1 and setting

Q = P−1, Qi = P−1PiP
−1 and Y = KP−1, we obtain the condition

X =



























AQ + QAT + BY + Y T BT +

L
∑

i=1

Qi A1Q · · · ALQ

QAT
1 −Q1 · · · 0

...
...

. . .
...

QAT
L 0 · · · −QL



























< 0.

Thus, checking stabilizability of the system (10.8) using Lyapunov functionals of the
form (10.9) is an LMIP in the variables Q, Y , Q1, . . . , QL.

Remark: It is possible to use the elimination procedure of §2.6.2 to eliminate
the matrix variable Y and obtain an equivalent LMIP with fewer variables.

10.5 Interpolation Problems

10.5.1 Tangential Nevanlinna-Pick problem

Given λ1, . . . ,λm with λi ∈ C+
∆
= {s | Re s > 0} and distinct, u1, . . . , um, with

ui ∈ Cq and v1, . . . , vm, with vi ∈ Cp, i = 1, . . . ,m, the tangential Nevanlinna-Pick
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problem is to find, if possible, a function H : C −→ Cp×q which is analytic in C+,
and satisfies

H(λi)ui = vi, i = 1, . . . ,m, with ‖H‖∞ ≤ 1. (10.11)

Problem (10.11) arises in multi-input multi-output H∞ control theory.
From Nevanlinna-Pick theory, problem (10.11) has a solution and only if the Pick

matrix N defined by

Nij =
u∗

i uj − v∗
i vj

λ∗
i + λj)

is positive semidefinite. N can also be obtained as the solution of the Lyapunov
equation

A∗N + NA − (U∗U − V ∗V ) = 0.

where A = diag(λ1, . . . ,λm), U = [u1 · · · um], V = [v1 · · · vm]. For future reference,
we note that N = Gin − Gout, where

A∗Gin + GinA − U∗U = 0, A∗Gout + GoutA − V ∗V = 0.

Solving the tangential Nevanlinna-Pick problem simply requires checking whether N ≥
0.

10.5.2 Nevanlinna-Pick interpolation with scaling

We now consider a simple variation of problem (10.11): Given λ1, . . . ,λm with λi ∈
C+, u1, . . . , um, with ui ∈ Cp and v1, . . . , vm, with vi ∈ Cp, i = 1, . . . ,m, the problem
is to find

γopt = inf

{

‖DHD−1‖∞
∣

∣

∣

∣

∣

H is analytic in C+, D = D∗ > 0

D ∈ D, H(λi)ui = vi, i = 1, . . . ,m

}

, (10.12)

where D is the set of m×m block-diagonal matrices with some specified block struc-
ture. Problem (10.12) corresponds to finding the smallest scaled H∞ norm of all
interpolants. This problem arises in multi-input multi-output H∞ control synthesis
for systems with structured perturbations.

With a change of variables P = D∗D and the discussion in the previous section,
it follows that γopt is the smallest positive γ such that there exists P > 0, P ∈ D such
that the following equations and inequality hold:

A∗Gin + GinA − U∗PU = 0,

A∗Gout + GoutA − V ∗PV = 0,

γ2Gin − Gout ≥ 0.

This is a GEVP.

10.5.3 Frequency response identification

We consider the problem of identifying the transfer function H of a linear system
from noisy measurements of its frequency response at a set of frequencies. We seek H
satisfying two constraints:
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• Consistency with measurements. For some ni with |ni| ≤ ǫ, we have fi =
H(jωi)+ni. Here, fi is the measurement of the frequency response at frequency
ωi, ni is the (unknown) measurement error, and ǫ is the measurement precision.

• Prior assumption. α-shifted H∞ norm of H does not exceed M .

From Nevanlinna-Pick theory, there exist H and n with H(ωi) = fi + ni satisfying
these conditions if and only if there exist ni with |ni| ≤ ǫ, Gin > 0 and Gout > 0 such
that

M2Gin − Gout ≥ 0,

(A + αI)
∗
Gin + Gin (A + αI) − e∗e = 0,

(A + αI)
∗
Gout + Gout (A + αI) − (f + n)∗(f + n) = 0,

where A = diag(jω1, . . . , jωm), e = [1 · · · 1], f = [f1 · · · fm], and n =
[n1 · · · nm]. It can be shown that these conditions are equivalent to

M2Gin − Gout ≥ 0,

(A + αI)
∗
Gin + Gin (A + αI) − e∗e = 0,

(A + αI)
∗
Gout + Gout (A + αI) − (f + n)∗(f + n) ≥ 0,

with |ni| ≤ ǫ.
With this observation, we can answer a number of interesting questions in fre-

quency response identification by solving EVPs and GEVPs.

• For fixed α and ǫ, minimize M . Solving this GEVP answers the question “Given
α and a bound on the noise values, what is the smallest possible α-shifted
H∞ norm of the system consistent with the measurements of the frequency
response?”

• For fixed α and M , minimize ǫ. Solving this EVP answers the question “Given
α and a bound on α-shifted H∞ norm of the system, what is the “smallest”
possible noise such that the measurements are consistent with the given values
of α and M .

10.6 The Inverse Problem of Optimal Control

Given a system

ẋ = Ax + Bu, x(0) = x0, z =

[

Q1/2 0

0 R1/2

] [

x

u

]

,

with (A,B) is stabilizable, (Q,A) is detectable and R > 0, the LQR problem is to
determine u that minimizes

∫ ∞

0

zT z dt.

The solution of this problem can be expressed as a state-feedback u = Kx with
K = −R−1BT P , where P is the unique nonnegative solution of

AT P + PA − PBR−1BT P + Q = 0.

The inverse problem of optimal control is the following. Given a matrix K, determine
if there exist Q ≥ 0 and R > 0, such that (Q,A) is detectable and u = Kx is the
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optimal control for the corresponding LQR problem. Equivalently, we seek R > 0 and
Q ≥ 0 such that there exists P nonnegative and P1 positive-definite satisfying

(A + BK)T P + P (A + BK) + KT RK + Q = 0, BT P + RK = 0

and AT P1 + P1A < Q. This is an LMIP in P , P1, R and Q. (The condition involving
P1 is equivalent to (Q,A) being detectable.)

10.7 System Realization Problems

Consider the discrete-time minimal LTI system

x(k + 1) = Ax(k) + Bu(k), y(k) = Cx(k), (10.13)

where x : Z+ → Rn, u : Z+ → Rnu y : Z+ → Rny . The system realization problem is
to find a change of state coordinates x = T x̄, such that the new realization

x̄(k + 1) = T−1ATx̄(k) + T−1Bu(k) y(k) = CTx̄(k), (10.14)

satisfies two competing constraints: First, the input-to-state transfer matrix, T −1(zI−
A)−1B should be “small”, in order to avoid state overflow in numerical implementa-
tion; and second, the state-to-output transfer matrix, C(zI−A)−1T should be “small”,
in order to minimize effects of state quantization at the output.

Suppose we assume that the RMS value of the input is bounded by α and require
the RMS value of the state to be less than one. This yields the bound

∥

∥T−1(zI − A)−1B
∥

∥

∞
≤ 1/α, (10.15)

where the H∞ norm of the transfer matrix H(z) is defined as

‖H‖∞ = sup {‖H(z)‖ | |z| > 1} .

Next, suppose that the state quantization noise is modeled as a white noise sequence
w(k) with Ew(k)T w(k) = η, injected directly into the state, and its effect on the
output is measured by its RMS value, which is just η times the H2 norm of the
state-to-output transfer matrix:

pnoise = η
∥

∥C(zI − A)−1T
∥

∥

2
. (10.16)

Our problem is then to compute T to minimize the noise power (10.16) subject to the
overflow avoidance constraint (10.15).

The constraint (10.15) is equivalent to the existence of P > 0 such that
[

AT PA − P + T−T T−1 AT PB

BT PA BT PB − I/α2

]

≤ 0.

The output noise power can be expressed as

p2
noise = η2 TrTT WoT,

where Wo is the observability Gramian of the original system (A,B,C), given by

Wo =

∞
∑

k=0

(AT )kCT CAk.

Copyright c© 1994 by the Society for Industrial and Applied Mathematics.



10.7 System Realization Problems 149

Wo is the solution of the Lyapunov equation

AT WoA − Wo + CT C = 0.

With X = T−T T−1, the realization problem is: Minimize η2 TrWoX
−1 subject

to X > 0 and the LMI (in P > 0 and X)
[

AT PA − P + X AT PB

BT PA BT PB − I/α2

]

≤ 0. (10.17)

This is a convex problem in X and P , and can be transformed into the EVP

minimize η2 TrY Wc

subject to (10.17), P > 0,

[

Y I

I X

]

≥ 0

Similar methods can be used to handle several variations and extensions.

Input u has RMS value bounded componentwise

Suppose the RMS value of each component ui is less than α (instead of the RMS value
of u being less than α) and that the RMS value of the state is still required to be less
than one. Then, using the methods of §10.9, an equivalent condition is the LMI (with
variables X, P and R):

[

AT PA − P + X AT PB

BT PA BT PB − R/α2

]

≤ 0, P > 0, (10.18)

where R > 0 is diagonal, with unit trace, so that the EVP (over X, Y , P and R) is

minimize η2 TrY Wc

subject to (10.18), P > 0, X > 0

R > 0, R is diagonal, TrR = 1
[

Y I

I X

]

≥ 0

Minimizing state-to-output H∞ norm

Alternatively, we can measure the effect of the quantization noise on the output with
the H∞ norm, that is, we can choose T to minimize ‖C(zI −A)−1T‖∞ subject to the
constraint (10.15). The constraint ‖C(zI − A)−1T‖∞ ≤ γ is equivalent to the LMI
(over Y > 0 and X = T−T T−1 > 0):

[

AT Y A − Y + CT C AT Y

Y A Y − X/α2

]

≤ 0. (10.19)

Therefore choosing T to minimize ‖C(zI −A)−1T‖∞ subject to (10.15) is the GEVP

minimize γ

subject to P > 0, Y > 0, X > 0, (10.17), (10.19)

An optimal state coordinate transformation T is any matrix that satisfies Xopt =
(TTT )−1, where Xopt is an optimal value of X in the GEVP.
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10.8 Multi-Criterion LQG

Consider the LTI system given by

ẋ = Ax + Bu + w, y = Cx + v, z =

[

Q1/2 0

0 R1/2

][

x

u

]

,

where u is the control input; y is the measured output; z is the exogenous output;
w and v are independent white noise signals with constant, positive-definite spectral
density matrices W and V respectively; we further assume that Q ≥ 0 and R > 0,
that (A,B) is controllable, and that (C,A) and (Q,A) are observable.

The standard Linear-Quadratic Gaussian (LQG) problem is to minimize

Jlqg = lim
t→∞

E z(t)T z(t)

over u, subject to the condition that u(t) is measurable on y(τ) for τ ≤ t. The optimal
cost is given by

J∗
lqg = Tr (XlqgU + QYlqg) ,

where Xlqg and Ylqg are the unique positive-definite solutions of the Riccati equations

AT Xlqg + XlqgA − XlqgBR−1BT Xlqg + Q = 0,

AYlqg + YlqgA
T − YlqgC

T V −1CYlqg + W = 0,
(10.20)

and U = YlqgC
T V −1CYlqg.

In the multi-criterion LQG problem, we have several exogenous outputs of interest
given by

zi =

[

Q
1/2
i 0

0 R
1/2
i

][

x

u

]

, Qi ≥ 0, Ri > 0, i = 0, . . . , p.

We assume that (Q0, A) is observable. For each zi, we associate a cost function

J i
lqg = lim

t→∞
E zi(t)

T zi(t), i = 0, . . . , p. (10.21)

The multi-criterion LQG problem is to minimize J0
lqg over u subject to the measurabil-

ity condition and the constraints J i
lqg < γi, i = 1, . . . , p. This is a convex optimization

problem, whose solution is given by maximizing

Tr (XlqgU + QYlqg) −
p

∑

i=1

γiτi,

over nonnegative τ1, . . . , τp, where Xlqg and Ylqg are the solutions of (10.20) with

Q = Q0 +

p
∑

i=1

τiQi and R = R0 +

p
∑

i=1

τiRi.

Noting that Xlqg ≥ X for every X > 0 that satisfies

AT X + XA − XBR−1BT X + Q ≥ 0,

we conclude that the optimal cost is the maximum of

Tr

(

XU + (Q0 +

p
∑

i=1

τiQi)Ylqg

)

−
p

∑

i=1

γiτi,
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over X, τ1, . . . , τp, subject to X > 0, τ1 ≥ 0, . . . , τp ≥ 0 and

AT X + XA − XB

(

R0 +

p
∑

i=1

τiRi

)−1

BT X + Q0 +

p
∑

i=1

τiQi ≥ 0.

Computing this is an EVP.

10.9 Nonconvex Multi-Criterion Quadratic Problems

In this section, we consider the LTI system ẋ = Ax + Bu, x(0) = x0, where (A,B) is
controllable. For any u, we define a set of p + 1 cost indices J0, . . . , Jp by

Ji(u) =

∫ ∞

0

[xT uT ]

[

Qi Ci

CT
i Ri

][

x

u

]

dt, i = 0, . . . , p.

Here the symmetric matrices
[

Qi Ci

CT
i Ri

]

, i = 0, . . . , p,

are not necessarily positive-definite. The constrained optimal control problem is:

minimize J0,

subject to Ji ≤ γi, i = 1, . . . , p, x(t) → 0 as t → ∞
(10.22)

The solution to this problem proceeds as follows: We first define

Q = Q0 +

p
∑

i=1

τiQi, R = R0 +

p
∑

i=1

τiRi, C = C0 +

p
∑

i=1

τiCi,

where τ1 ≥ 0, . . . , τp ≥ 0. Next, with τ = [τ1 · · · τp], we define

S(τ, u)
∆
= J0 +

p
∑

i=1

τiJi −
p

∑

i=1

τiγi.

Then, the solution of problem (10.22), when it is not −∞, is given by:

sup
τ

inf
u

{S(τ, u) | x(t) → 0 as t → ∞}

(See the Notes and References.)
For any fixed τ , the infimum over u of S(τ, u), when it is not −∞, is computed

by solving the EVP in P = P T

maximize x(0)T Px(0) −
p

∑

i=1

τiγi

subject to

[

AT P + PA + Q PB + CT

BT P + C R

]

≥ 0

(10.23)

Therefore, the optimal control problem is solved by the EVP in P = P T and τ :

maximize x(0)T Px(0) −
p

∑

i=1

τiγi

subject to

[

AT P + PA + Q PB + CT

BT P + C R

]

≥ 0, τ1 ≥ 0, . . . , τp ≥ 0.
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Notes and References

Optimization over an affine family of linear systems

Optimization over an affine family of transfer matrices arises in linear controller design via
Youla’s parametrization of closed-loop transfer matrices; see Boyd and Barratt [BB91] and
the references therein. Other examples include finite-impulse-response (FIR) filter design (see
for example [OKUI88]) and antenna array weight design [KRB89].

In [Kav94] Kavranoğlu considers the problem of approximating in the H∞ norm a given
transfer matrix by a constant matrix, which is a problem of the form considered in §10.1. He
casts the problem as an EVP.

Stability of systems with LTI perturbations

For references about this problem, we refer the reader to the Notes and References in Chap-
ter 3. LMI (10.6) is derived from Theorems 3 and 4 in Willems [Wil71b].

Positive orthant stabilizability

The problem of positive orthant stability and holdability was extensively studied by Berman,
Neumann and Stern [BNS89, §7.4]. They solve the positive orthant holdability problem
when the control input is scalar; our results extend theirs to the multi-input case. The study
of positive orthant holdability draws heavily from the theory of positive matrices, references
for which are [BNS89] and the book by Berman and Plemmons [BP79, ch6].

Diagonal solutions to the Lyapunov equation play a central role in the positive orthant
stabilizability and holdability problems. A related paper is by Geromel [Ger85], who gives
a computational procedure to find diagonal solutions of the Lyapunov equation. Diagonal
quadratic Lyapunov functions also arise in the study of large-scale systems [MH78]; see
also §3.4. A survey of results and applications of diagonal Lyapunov stability is given in
Kaszkurewicz and Bhaya [KB93].

A generalization of the concept of positive orthant stability is that of invariance of polyhedral
sets. The problem of checking whether a given polyhedron is invariant as well as the associated
state-feedback synthesis problem have been considered by many authors, see e.g., [Bit88,
BBT90, HB91b] and references therein. The LMI method of §10.3 can be extended to the
polyhedral case, using the approach of [CH93]. Finally, we note that the results of §10.3 are
easily generalized to the LDIs considered in Chapter 4.

Stabilization of systems with time delays

The introduction of Lyapunov functionals of the form (10.9) is due to Krasovskii [Kra56].
Skorodinskii [Sko90] observed that the problem of proving stability of a system with delays
via Lyapunov–Krasovskii functionals is a convex problem. See also [PF92, WBL92, SL93b,
FBB92].

It is interesting to note that the “structured stability problem” or “µ-analysis problem”
can be cast in terms of linear systems with delays. Consider a stable LTI system with
transfer matrix H and L inputs and outputs, connected in feedback with a diagonal transfer
matrix ∆ with H∞ norm less than one. This system is stable for all such ∆ if and only if
sup

ω∈R µ(H(jω)) < 1, where µ denotes the structured singular value (see [Doy82]). It can

be shown (see [Boy86]) that if the feedback system is stable for all ∆ which are diagonal,
with ∆ii(s) = e−sTi , Ti > 0 (i.e., delays) then the system is stable for all ∆ with ‖∆‖∞ ≤ 1.
Thus, verifying sup

ω∈R µ(H(jω)) < 1 can be cast as checking stability of a linear system
with L arbitrary, positive delays. In particular we see that Krasovskii’s method from 1956
can be interpreted as a Lyapunov-based µ-analysis method.
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Interpolation problems

The classical Nevanlinna-Pick problem dates back at least to 1916 [Pic16, Nev19]. There
are two matrix versions of this problem: the matrix Nevanlinna-Pick problem [DGK79]
and the tangential Nevanlinna-Pick problem [Fed75]. A comprehensive description of the
Nevanlinna-Pick problem, its extensions and variations can be found in the book by Ball,
Gohberg and Rodman [BGR90].

A number of researchers have studied the application of Nevanlinna-Pick theory to problems
in system and control: Delsarte, Genin and Kamp discuss the role of the matrix Nevanlinna-
Pick problem in circuit and systems theory [DGK81]. Zames and Francis, in [ZF83], study
the implications of interpolation conditions in controller design; also see [OF85]. Chang
and Pearson [CP84] solve a class of H∞-optimal controller design problems using matrix
Nevanlinna-Pick theory. Safonov [Saf86] reduces the design of controllers for systems with
structured perturbations to the scaled matrix Nevanlinna-Pick problem. In [Kim87], Kimura
reduces a class of H∞-optimal controller design problems to the tangential Nevanlinna-Pick
problem; see also [Bal94].

System identification

The system identification problem considered in §10.5.3 can be found in [CNF92]. Other
system identification problems can be cast in terms of LMI problems; see e.g., [PKT+94].

The inverse problem of optimal control

This problem was first considered by Kalman [Kal64], who solved it when the control u is
scalar; see also [And66c]. It is discussed in great detail by Anderson and Moore [AM90,
§5.6], Fujii and Narazaki [FN84] and the references therein; they solve the problem when
the control weighting matrix R is known, by checking that the return difference inequality

(

I − BT (−iωI − AT )−1K
)

R
(

I − KT (iωI − A)−1B
)

≥ R

holds for all ω ∈ R. Our result handles the case of unknown R, i.e., the most general form
of the inverse optimal control problem.

System realization problems

For a discussion of the problem of system realizations see [MR76, Thi84], which give an-
alytical solutions via balanced realizations for special realization problems. The book by
Gevers and Li [GL93a] describes a number of digital filter realization problems. Liu, Skelton
and Grigoriadis discuss the problem of optimal finite word-length controller implementa-
tion [LSG92]. See also Rotea and Williamson [RW94b, RW94a].

We conjecture that the LMI approach to system realization can also incorporate the constraint
of stability, i.e., that the (nonlinear) system not exhibit limit cycles due to quantization or
overflow; see, e.g., [Wil74b].

We also note that an H∞ norm constraint on the input-to-state transfer matrix yields,
indirectly, a bound on the peak gain from input to state; Boyd and Doyle [BD87]. This can
be used to guarantee no overflow given a maximum peak input level.

Multi-criterion LQG

The multi-criterion LQG problem is discussed in [BB91]; see also the references cited there.
Rotea [Rot93] calls this problem “generalized H2 control”. He shows that one can restrict
attention to observer-based controllers such as

d

dt
x̂ = (A + BK)x̂ + Y CT V −1(y − Cx̂), u = Kx̂,
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where Y is given by (10.20). The covariance of the residual state x̂−x is Y and the covariance
P of the state x̂ is given by the solution of the Lyapunov equation:

(A + BK)P + P (A + BK)T + Y CT V −1CY = 0. (10.24)

The value of each cost index J i
lqg defined by (10.21) is then

J i
lqg = TrRiKPKT + TrQi (Y + P ) .

Now, taking Z = KP as a new variable, we replace (10.24) by the linear equality in W and
P

AP + PAT + BZ + ZT BT + Y CT V −1CY = 0

and each cost index becomes

J i
lqg = TrRiZP−1ZT + TrQi (Y + P ) .

The multi-criterion problem is then solved by the EVP in P , Z and X

minimize TrR0X + TrQ0(P + Y )

subject to

[

X Z

ZT P

]

≥ 0,

AP + PAT + BZ + ZT BT + Y CT V −1CY = 0,

TrRiX + TrQi(P + Y ) ≤ γi, i = 1, . . . , L

This formulation of the multi-criterion LQG problem is the dual of our formulation; the two
formulations can be used together in an efficient primal-dual method (see, e.g., [VB93b]). We
also mention an algorithm devised by Zhu, Rotea and Skelton [ZRS93] to solve a similar class
of problems. For a variation on the multi-criterion LQG problem discussed here, see [Toi84];
see also [TM89, Mak91].

Nonconvex multi-criterion quadratic problems

This section is based on Megretsky [Meg92a, Meg92b, Meg93] and Yakubovich [Yak92].
In our discussion we omitted important technical details, such as constraint regularity, which
is covered in these articles. Also, Yakubovich gives conditions under which the infimum
is actually a minimum (that is, there exists an optimal control law that achieves the best
performance). The EVP (10.23) is derived from Theorem 3 in Willems [Wil71b].

Many of the sufficient conditions for NLDIs in Chapters 5–7 can be shown to be necessary
and sufficient conditions when we consider integral constraints on p and q, by analyzing them
as nonconvex multi-criterion quadratic problems. This is illustrated in the following section.

Mixed H2–H∞ problem

We consider the analog of an NLDI with integral quadratic constraint:

ẋ = Ax + Bpp + Buu, q = Cqx, z =

[

Q1/2 0

0 R1/2

][

x

u

]

∫ ∞

0

pT p dt ≤
∫ ∞

0

qT q dt
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Define the cost function J =
∫ ∞

0
zT z dt. Our goal is to determine minK maxp J , over all

possible linear state-feedback strategies u = Kx. (Note that this is the same as the prob-
lem considered in §7.4.1 with integral constraints on p and q instead of pointwise in time
constraints.)

For fixed K, finding the maximum of J over admissible p’s is done using the results of §10.9.
This maximum is obtained by solving the EVP

minimize x(0)T Px(0)

subject to







(A + BuK)T P + P (A + BuK)+

Q + KT RK + τCT
q Cq

PBp

BT
p P −τI






≤ 0, τ ≥ 0

The minimization over K is now simply done by introducing the new variables W = P −1,
Y = KW , µ = 1/τ . Indeed, in this particular case, we know we can add the constraint
P > 0. The corresponding EVP is then

minimize x(0)T W−1x(0)

subject to







(

WAT + Y BT
u + AW + BuY +

WQW + Y T RY + WCT
q CqW/µ

)

µBp

µBT
p −µI






≤ 0, µ ≥ 0

which is the same as the EVP (7.23).
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Notation

R, Rk, Rm×n The real numbers, real k-vectors, real m × n matrices.

R+ The nonnegative real numbers.

C The complex numbers.

Re(a) The real part of a ∈ C, i.e., (a + a∗)/2.

S The closure of a set S ⊆ Rn.

Ik The k × k identity matrix. The subscript is omitted when k is not
relevant or can be determined from context.

MT Transpose of a matrix M : (MT )ij = Mji.

M∗ Complex-conjugate transpose of a matrix M : (M ∗)ij = M∗
ji, where

α∗ denotes the complex-conjugate of α ∈ C.

TrM Trace of M ∈ Rn×n, i.e.,
∑n

i=1 Mii.

M ≥ 0 M is symmetric and positive semidefinite, i.e., M = MT and
zT Mz ≥ 0 for all z ∈ Rn.

M > 0 M is symmetric and positive-definite, i.e., zT Mz > 0 for all nonzero
z ∈ Rn.

M > N M and N are symmetric and M − N > 0.

M1/2 For M > 0, M1/2 is the unique Z = ZT such that Z > 0, Z2 = M .

λmax(M) The maximum eigenvalue of the matrix M = MT .

λmax(P,Q) For P = P T , Q = QT > 0, λmax(P,Q) denotes the maximum eigen-
value of the symmetric pencil (P,Q), i.e., λmax(Q

−1/2PQ−1/2).

λmin(M) The minimum eigenvalue of M = MT .

‖M‖ The spectral norm of a matrix or vector M , i.e.,
√

λmax(MT M).

Reduces to the Euclidean norm, i.e., ‖x‖ =
√

xT x, for a vector x.

diag(· · ·) Block-diagonal matrix formed from the arguments, i.e.,

diag (M1, . . . ,Mm)
∆
=









M1

. . .

Mm









.
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158 Notation

CoS Convex hull of the set S ⊆ Rn, given by

CoS
∆
=

{

p
∑

i=1

λixi

∣

∣

∣

∣

∣

xi ∈ S, p ≥ 0

}

.

(Without loss of generality, we can take p = n + 1 here.)

Ex Expected value of (the random variable) x.
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Acronyms

Acronym Meaning Page

ARE Algebraic Riccati Equation 3

CP Convex Minimization Problem 11

DI Differential Inclusion 51

DNLDI Diagonal Norm-bound Linear Differential Inclusion 54

EVP Eigenvalue Minimization Problem 10

GEVP Generalized Eigenvalue Minimization Problem 10

LDI Linear Differential Inclusion 51

LMI Linear Matrix Inequality 7

LMIP Linear Matrix Inequality Problem 9

LQG Linear-Quadratic Gaussian 150

LQR Linear-Quadratic Regulator 114

LTI Linear Time-invariant 52

NLDI Norm-bound Linear Differential Inclusion 53

PLDI Polytopic Linear Differential Inclusion 53

PR Positive-Real 25

RMS Root-Mean-Square 91
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A
Absolute stability, 54, 56, 72
Acronyms

apology for too many, 5
list, 159

Affine
family of transfer matrices, 141
matrix inequality, 27

Algebraic Riccati equation, 3, 26, 110, 115
Algorithm

conjugate-gradients, 18
ellipsoid, 49
for Lyapunov inequalities, 18
interior-point, 30
Karmarkar’s, 4
method of centers, 16, 30
Nesterov and Nemirovskii’s, 4
Newton, 15
projective, 30

Almost sure convergence, 131
system with multiplicative noise, 136

α-shifted H∞ norm, 67
Analytic center, 15

ellipsoidal approximation, 45
ellipsoidal bound, 49

Analytic solution, 2, 62, 115
LMI, 24

Approximation
ellipsoidal, 49
of PLDI, 58

ARE, 3, 26, 110, 115
Augmented system, 124

B
Barrier function, 15
Bellman function, 112
Bounded-real lemma, 26
Brownian motion, 137

C
Central path, 16
Cheap ellipsoid approximation, 50
Circle criterion, 2
Closed-loop system

dynamic state-feedback, 116
static state-feedback, 99
Youla parametrization, 152

Co, 12, 51

Complement
orthogonal, 22
Schur, 7

Completion problem, 40, 48
Complexity

convex optimization, 18, 29
S-procedure, 24
stabilization problem, 128

Componentwise results
using scaling, 111, 134
via scaling, 94

Componentwise unit-energy input
LDI, 81, 96
state-feedback, 106

Concave quadratic programming, 42
Condition number, 37

coordinate transformation, 65, 103
Conjugate-gradients, 18
Constrained optimal control problem, 151
Constraint

equality, 9, 19
integral quadratic vs. pointwise, 96,

122
on control input, 103
qualification, 19

Contractive completion problem, 48
Control input, 52

norm constraint, 103
Controllability Gramian, 78
Controller

dynamic feedback, 111
gain-scheduled, 118
order, 111
reduced-order, 117
state-feedback, 99

Convex
Lyapunov function, 74

Convex function
LMI representation, 29
Lyapunov, 64

Convex hull, 12, 51, 158
Convex optimization

complexity, 18, 29
duality, 5
ellipsoid algorithm, 12
interior-point method, 14
problem structure, 18
software, 31

Convex problem, 11
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Convolution, 143
Coordinate transformation

condition number, 65
digital filter realization, 148
state-feedback, 103

CP, 11
Cutting plane, 12

D
Decay rate, 66
Delay, 144
DI, 51
Diagonal

Lyapunov function, 40, 47, 144
norm-bound LDI, 54

Diameter, 69
invariant ellipsoid of LDI, 80
NLDI, 59

Differential inclusion, 51
selector-linear, 56

Dissipativity
LDI, 93
state-feedback, 110

DNLDI, 54
well-posedness, 57

Duality, 5, 9, 29, 49
Dynamic state-feedback, 111

E
E , 11
Eigenvalue problem, 10
Elimination

in LMI, 22
of variable, 9
procedure, 48

Ellipsoid
algorithm, 12, 29, 49
approximating intersection, 44
approximating polytope, 42
approximating reachable set, 78, 104,

106, 121, 125, 132
approximating sum, 46
approximating union, 43
approximation, 49
diameter, 69, 80
extractable energy, 87, 109
holdable, 102
invariant, 68
Löwner–John, 44, 49
minimum volume, 11, 44
poor man’s, 50
via analytic center, 45, 49

Entropy, 142
Equality constraint, 19
Euclidean norm, 8
EVP, 10
Exogenous input, 52
E, 5
Expected output energy

LDI, 87

state-feedback, 109
Exponential time-weighting, 84, 97
Extractable energy

LDI, 87
state-feedback, 109

F
Fading memory, 74
Family of transfer matrices

examples, 152
parametrization, 143

Feedback
diagonal norm-bound, 54
nonexpansive, 123
structured, 54
time-varying, 53

Finsler’s lemma, 22
Frequency measurements, 146
Function

quasiconvex, 29
value, 112

G
Gain

L2 or RMS, 91
state-feedback, 99

Gain-scheduled controller, 118
γ-entropy, 142
Generalized eigenvalue problem, 10
GEVP, 10
Global linearization, 54

state-feedback, 99
Gramian

controllability, 78
observability, 85

H
Half-space

cutting plane, 12
Hamiltonian matrix, 26
Hankel norm

LDI, 89
transfer matrix, 142

H∞ norm, 27, 91, 142
Holdability, 102
Holdable ellipsoid

approximating reachable set, 106
LDI, 102
output energy, 108

H2 norm, 141
H2–H∞ problem, 154

I
Identification, 146
Iγ , 142
Implicit equality constraint, 19
Impulse response, 98
Inequality

return-difference, 153
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Infeasible LMI, 29
Initial condition

extractable energy, 85, 108
safe, 71

Input
control or exogenous, 52
unit-energy, 77, 104, 121, 125, 132
unit-peak, 82, 107

Input-to-output properties
LDI, 89
Lur’e system, 122
state-feedback, 109
system with multiplicative noise, 133

Input-to-state properties
filter realization, 148
LDI, 77
Lur’e system, 121
state-feedback, 104
system with multiplicative noise, 132
system with unknown parameters, 125

Integral quadratic constraint, 96, 122
Interior-point method, 4, 14, 30

primal-dual, 18
Interval matrix, 40
Invariance

of positive orthant, 152
Invariant ellipsoid

approximating reachable set, 78, 104,
106

extractable energy, 87
for LDI, 68
output energy, 108

Inverse problem of optimal control, 147
Itô stochastic system, 136

K
κ, 37
Kalman-Yakubovich-Popov lemma, 2
Karmarkar’s algorithm, 4

L
Löwner–John ellipsoid, 49
LDI

better name, 56
componentwise unit-energy input, 81
decay rate, 66
definition, 51
diagonal norm-bound, 54
dissipativity, 93, 110
expected output energy, 87
Hankel norm, 89
invariant ellipsoid, 68
L2 gain, 91, 109
norm-bound, 53
output energy, 85, 108
output peak, 88
polytope, 53
positive orthant stabilizability, 144
quadratically stabilizable, 100
quadratic stability, 61

reachable set, 77, 104
return time, 71
scaling, 94, 111
stability, 61
stability margin, 65
stable, not quadratically stable, 64,

73
state-feedback, 99
unit-energy input, 77
unit-peak input, 82

Lemma
bounded-real, 26
Finsler, 22
PR, 25, 93

Linear
inequality, 7
matrix inequality, 7
program, 10

Linear differential inclusion, 51
Linear-fractional

mapping, 53
programming, 11

Linearization
global, 54

Linear-Quadratic Regulator, 108
Line-search, 28
LMI

analytic center, 15
analytic solution, 24
convex function representation, 29
definition, 7
equality constraint, 9
father, 4
feasibility problem, 9
grandfather, 4
graphical condition, 2
history, 2
infeasible, 29
interior-point method, 4, 14
multiple, 7
nonstrict, 7, 18
optimization, 30
reduction, 19, 31
Riccati equation solution, 3
semidefinite terms, 22
slack variable, 8
software, 31
standard problems, 9
strict, 18

LMI-Lab, 31
LMIP, 9
LMI-tool, 31
Loop transformation, 119

sector condition, 129
Löwner–John ellipsoid, 44
LP, 10
LQG

multi-criterion, 150
system with multiplicative noise, 138

LQR, 108, 114
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LTI system
definition, 52
input-to-state properties, 78
overshoot, 97
realization, 148
stability, 62
transfer matrix, 91
with delay, 144
with nonparametric uncertainty, 143

L2 gain
LDI, 91
LTI system, 142
Lur’e system, 122
scaled, 94
state-feedback, 109
system with multiplicative noise, 133

Lur’e resolving equation, 3
Lur’e system

absolute stability, 56
definition, 119
history, 126

Lur’e term
in Lyapunov function, 119

Lyapunov
equation, 2, 25, 62, 78, 85
exponent, 66
functional, 144
inequality, 2, 8

Lyapunov function
convex, 64, 74
diagonal, 40, 47, 144
integral quadratic constraints, 123, 127
Lur’e, 119
parameter-dependent, 119
quadratic, 61
stochastic, 132, 136

Lyapunov inequality
reduction to a strict one, 20

M
Margin

quadratic stability, 65
quadratic stabilizability, 113
system with multiplicative noise, 132

matlab, 31
Matrix

completion problem, 40
elimination of variable, 22, 48
Hamiltonian, 26
inequality, 7
interval, 40
linear-fractional mapping, 53
M, 75
Moore–Penrose inverse, 28
norm, 8
P0, 57
pencil, 28
Pick, 146
problems, 37
quadratic inequality, 8

transfer, 25
Maximum singular value, 8
Mean-square stability

definition, 132
state-feedback, 135

Method of centers, 16, 30
Minimum size ellipsoid, 69
Minimum volume ellipsoid, 11
Mixed H2–H∞ problem, 154
M-matrix, 75
Moore–Penrose inverse, 28
µ-analysis, 152
Multi-criterion LQG problem, 96, 150, 153
Multiple LMI, 7
Multiplicative noise, 131
Multiplier

nonparametric uncertainty, 143
system with unknown parameters, 124
theory, 128

N
Nesterov and Nemirovskii’s algorithm, 4
Nevanlinna-Pick interpolation, 145
Nevanlinna-Pick theory, 146
Newton’s method, 15
NLDI

approximating PLDI, 58
definition, 53
input-to-state properties, 79
quadratic stability, 62
state-to-output properties, 84
well-posedness, 53, 63

Noise
in interpolation problems, 146
multiplicative, 131

Nonconvex quadratic problem
mixed LQR–L2 problem, 154
multi-criterion LQG, 151

Nonexpansive, 26
feedback, 123
LDI, 91

Nonlinear system
fading memory, 74
state-feedback, 99

Nonparametric uncertainty
in LTI system, 143

Nonstrict LMI, 7, 18
Norm

α-shifted H∞, 67
Euclidean, 8
Hankel, 89
H∞, 27, 91
H2, 141
matrix, 8
maximum singular value, 8
of LTI system, 148
quadratic approximation of piecewise

linear, 41
scaled singular value, 38

Norm-bound LDI, 53
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Notation
differential equations, 5
table, 157

NP-complete, 42
NP-hard, 128

well-posedness of DNLDI, 54, 57

O
Observability Gramian, 85
Ω, 51
Optimal control, 112, 151
Optimization

ellipsoid algorithm, 12
interior-point method, 14
linear-fractional, 11
linear program, 10
LMI, 30
quasiconvex, 11

optin, 31
Order of controller, 111
Orthant

invariant, 152
stability, 144

Orthogonal complement, 22
Outer approximation of reachable set

state-feedback, 106
Output, 52
Output energy

LDI, 85
Lur’e system, 121
state-feedback, 108

Output peak
LDI, 88

Output variance for white noise input, 113,
138

Overflow, 148
Overshoot

LTI system, 97

P
P0 matrix, 57
Parameter-dependent

controller, 118
Lyapunov function, 119

Parametric uncertainty, 124
scaling matrix problem, 39

Parametrization
family of transfer matrices, 143
Youla, 152

Passive, 25
Passivity, 3

dissipativity, 93
state-feedback, 110

Path of centers, 16
Pencil, 28
Penrose inverse, 28
Performance

LQG cost, 150
of LDI, 113
system with multiplicative noise, 133

Perturbation
LTI, 143
norm-bound, 53
stochastic, 137
structured, 39, 54

Pick matrix, 146
Piecewise linear norm, 41
PLDI, 53

approximation by NLDI, 58
input-to-state properties, 78
quadratic stability, 62
state-to-output properties, 84

Pointwise constraint, 96, 122
Polyhedron

invariant, 152
Polynomial-time, 12
Polytope, 12

approximated by invariant ellipsoid,
69

containing reachable set, 80
ellipsoid approximation, 42
extractable energy, 87, 109
LDI, 53
return time, 71
symmetric, 48

Polytopic LDI, 53
Polytopic norm, 41
Popov criterion, 2, 119
Positive-definite

completion, 40
matrix, 7
representable, 29

Positive orthant stabilizability, 144, 152
Positive-real

lemma, 25
transfer matrix, 25

Primal-dual interior-point method, 18
Procedure

elimination of variable, 22
S, 23

Projective algorithm, 30
PR lemma, 2, 25, 93

Q
Quadratic

Lyapunov function, 61
matrix inequality, 8, 114

Quadratic approximation
of polytopic norm, 41
of reachable set, 105

Quadratic programming
indefinite, 42

Quadratic stability
invariant ellipsoid, 68
LDI, 61
margin, 65
nonlinear system, 74
vs. stability, 64

Quadratic stabilizability, 100
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Qualification
constraint, 19

Quantization, 148
Quasiconvex

function, 29
problem, 11

R
Reachable set

LDI, 77
Lur’e system, 121
relaxed DI, 51
state-feedback, 104
system with multiplicative noise, 132
system with unknown parameters, 125

Ruce, 81
Rue, 77
Rup, 82
Realization of system, 148
Reduced-order controller, 117
Reduction

Lyapunov inequality, 20
strictly feasible LMI, 19

Regularity conditions, 4
Relaxed version of a DI, 51
Response

step or impulse, 97
Return-difference inequality, 153
Return time

LDI, 71
Riccati equation, 3, 26, 115
Riccati inequality, 110, 115
RMS gain

LDI, 91
state-feedback, 109

RMS norm, 148
Root-Mean-Square, 91
Routh–Hurwitz algorithm, 35

S
Safe initial condition, 71
Scaled L2 gain

LDI, 94
state-feedback, 111
system with multiplicative noise, 134

Scaled singular value, 38
Scaling

and S-procedure, 64
componentwise results, 94
for componentwise results, 111, 134
in matrix problem, 37
interpolation, 145

Schur complement
nonstrict, 28
strict, 7

scilab, 31
Sector condition, 56

loop transformation, 129
Selector-linear

differential inclusion, 56

Self-concordant barrier, 15
Simultaneous matrix completion, 40
Singular value plot, 27
Slack variable in LMIs, 8
Small-gain theorem, 3, 143
Software for LMI problems, 31
Sparsity pattern, 40
Sphere

smallest or largest, 44, 46
S-procedure

and scaling, 64
description, 23

Stability
absolute, 56, 72
degree, 67
LDI, 61
LTI system, 62
Lur’e system, 120
positive orthant, 144
system with multiplicative noise, 132
system with unknown parameters, 125

Stability margin
LDI, 65
mean-square, 132, 137

Stabilizability
LDI, 100
positive orthant, 144
system with multiplicative noise, 134

Stabilization problem
complexity, 128

Standard LMI problems, 9
∗, 143
State, 52
State-feedback

controller, 99
global linearization, 99
in linear system with delay, 145
LDI, 99
nonlinear system, 99
positive orthant stability, 144
scaling, 111
synthesis, 99
system with multiplicative noise, 134

State properties
LDI, 61
Lur’e system, 120
state-feedback, 100
system with multiplicative noise, 131

State-to-output properties
filter realization, 148
LDI, 84
Lur’e system, 121
state-feedback, 107

Static state-feedback, 99
Step

length, 28
response, 97

Stochastic stability margin, 132
Stochastic system

continuous-time, 136
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discrete-time, 131
Stopping criterion

method of centers, 17
Stratonovitch stochastic system, 136
Strict feasibility

reduction to, 19
Strict LMI, 18
Structured

feedback, 54, 152
singular value, 152

Structured uncertainty
interpolation, 146
matrix problem, 39

Sturm method, 26, 35
Symmetric polytope, 48
Synthesis

output-feedback, 117, 150
state-feedback, 99, 134

System
realization, 148
stochastic, 136
uncertain, 56
with multiplicative noise, 131

System theory duality, 5
System with unknown parameters

matrix problem, 39
multipliers for, 124

T
Tangential Nevanlinna-Pick interpolation,

145
Time-varying

feedback matrix, 53
system, 51

Tr, 5
Trace, 5
Transfer matrix, 25

LTI system, 64, 91
optimization, 141
positive-real, 25

Transformation
loop, 119

Tsypkin criterion, 2

U
Uncertainty

LTI, 143
parametric, 124
random, 131
time-varying, 51

Unit-energy input
LDI, 77
Lur’e system, 121
state-feedback, 104
system with multiplicative noise, 132
system with unknown parameters, 125

Unit-intensity white noise, 138
Unit-peak input, 97

LDI, 82
state-feedback, 107

Unknown parameters
system with, 124

V
Value function, 112
Variable

elimination, 9
matrix, 8
slack, 8

Vertex
of polytope, 41

vol, 13
Volume

ellipsoid algorithm, 13
invariant ellipsoid, 69
of ellipsoid, 41

W
Well-posedness

DNLDI, 54, 57
NLDI, 53, 63

White noise
Brownian motion, 137
uncertainty, 131

Y
Youla parametrization, 152
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