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Abstract

The design of a finite impulse response (FIR) filter often involves a spectral ‘mask’ which the magnitude spectrum must

satisfy. The mask specifies upper and lower bounds at each frequency, and hence yields an infinite number of constraints. In

current practice, spectral masks are often approximated by discretization, but in this paper we will derive a result which allows

us to precisely enforce piecewise constant and piecewise trigonometric polynomial masks in a finite and convex manner via

linear matrix inequalities. While this result is theoretically satisfying in that it allows us to avoid the heuristic approximations

involved in discretization techniques, it is also of practical interest because it generates competitive design algorithms (based on

interior point methods) for a diverse class of FIR filtering and narrowband beamforming problems. The examples we provide

include the design of standard linear and nonlinear phase FIR filters, robust ‘chip’ waveforms for wireless communications, and

narrowband beamformers for linear antenna arrays. Our main result also provides a contribution to system theory, as it is an

extension of the well-known Positive-Real and Bounded-Real Lemmas.
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I. Introduction

In the design of finite impulse response (FIR) filters, one often encounters a spectral mask constraint on

the magnitude of the frequency response of the filter (e.g., [1–4]). That is, for given L(ejω) and U(ejω),

constrain the (possibly complex) filter coefficients gk so that

L(ejω) ≤ |G(ejω)| ≤ U(ejω) for all 0 ≤ ω < 2π, (1)

or determine that the constraint cannot be satisfied. Here, j =
√
−1 and G(ejω) =

∑
k gke−jωk is the

frequency response of the filter. A spectral mask constraint can be rather awkward to accommodate into

general optimization-based filter design techniques for two reasons. First, it is semi-infinite in the sense that

there are two inequality constraints for every ω ∈ [0, 2π). Second, the set of feasible filter coefficients is in

general non-convex due to the lower bound on |G(ejω)|. In order to efficiently solve filter design problems

employing such constraints, we must find a way in which (1) can be represented in a finite and convex

manner.

There are two established approaches [1] to deal with the problem of non-convexity of (1). The first

is to enforce additional constraints on the parameters gk so that G(ejω) has ‘linear phase’. In that case

|G(ejω)| becomes a linear function of approximately half the gk’s (the rest are determined via the linear

phase constraint), and hence (1) can be reduced to two semi-infinite linear (and hence convex) constraints.

However, phase linearity may be an excessively restrictive constraint in some applications [5]. The second

approach to deal with non-convexity is to reformulate (1) in terms of the autocorrelation of the filter [5–10].

In particular, if rm =
∑

k gkḡk−m represents the autocorrelation of the filter, then R(ejω) = |G(ejω)|2, and

hence (1) is equivalent to

L(ejω)2 ≤ R(ejω) ≤ U(ejω)2 for all 0 ≤ ω < 2π, (2)

which amounts to two semi-infinite linear constraints on rm. (Observe that r−m = r̄m and hence R(ejω) is

real.) Hence, by reformulating the mask constraint in terms of rm, m ≥ 0, we obtain convex constraints.

Note that the constraint that R(ejω) ≥ L(ejω)2 ≥ 0 is sufficient to ensure that a filter gk can be extracted

(though not uniquely) from a designed autocorrelation rm via spectral factorization [9, 11].

The problem of representing (1) or (2) in a finite manner is more challenging. (For simplicity we will phrase

our discussion in terms of (2).) One standard, but ad-hoc, approach is to approximate the constraints by

discretizing them uniformly in frequency and enforcing the 2N linear constraints

L(ejωi)2 + ε ≤ R(ejωi) ≤ U(ejωi)2 − ε for ωi = 2πi/N , i = 0, 1, . . . , N − 1, (3)

where N and ε are chosen heuristically. For a fixed N , one must choose ε to be small enough so that the

over-constraining of the problem at frequencies ωi does not result in significant performance loss, yet one
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must choose ε to be large enough for satisfaction of (3) to guarantee satisfaction of (2) for all 0 ≤ ω < 2π.

Unfortunately, as N is increased so that ε can be reduced, the resulting formulation can become prone to

numerical difficulties. In practice, N and ε are usually chosen according to engineering ‘rules of thumb’ that

depend on the design problem at hand. (Other discretization techniques are also available [12, 13].) For

certain design problems, algorithms of the exchange type [1,3,4] offer an alternative to direct discretization

techniques. These methods employ a non-uniform discretization of (2) at each stage of the algorithm, where

the sample points are determined by the stationary points of the current estimate of the optimal R(ejω), and

any points of discontinuity in the mask. (In practice, the stationary points are often approximated using

fine uniform discretization [4].) At each stage of the algorithm an optimization problem is solved subject

to appropriate equality constraints derived from (2) at those sample points. Although exchange methods

often work well for the design of low-pass filters, substantial effort is required to guarantee the algorithm’s

convergence [4]. Furthermore, the algorithms may require substantial ‘re-tailoring’ in order to incorporate

additional constraints on the filter coefficients (e.g., [14]). Recently, a precise finite representation of (2)

that does not require discretization was developed using dual parameterization methods [15]. However, that

representation may result in non-convex design problems.

In this paper, we derive a precise finite representation of a large class of spectral mask constraints that

results in convex design problems. This representation provides a theoretically satisfying characterization

of the mask constraint that avoids the heuristic approximation of discretization techniques, yet generates

practically competitive design algorithms. Our development begins with the derivation of a (finite) linear

matrix inequality (LMI) characterization of the set of trigonometric polynomials of a given order whose real

part is positive over a given segment of the unit circle (Theorem 3). While that result is a contribution

to system theory in itself (as outlined below), we also show that it allows us to precisely enforce piecewise

constant and piecewise trigonometric polynomial spectral masks in a convex and finite manner. As a result,

these masks can be incorporated, without approximation, into the diverse class of FIR filter and narrowband

beamformer design problems which can be efficiently solved using well-established interior point methods

(e.g., [8–10]). We will provide examples which show how our main result leads to effective algorithms

for peak-constrained weighted least-squares design of linear-phase and nonlinear-phase FIR filters, for the

design of robust ‘chip’ waveforms for digital wireless communication systems based on code division multiple

access, and for the design of narrowband beamformers for linear antenna arrays with uncertain signal and

interference directions.

Our main theoretical result (Theorem 3) provides an LMI characterization of the set of trigonometric

polynomials whose real part is positive over a segment of the unit circle. When specialized to the case

where the segment is the whole circle, this result generates a new LMI formulation of the Positive Real

Lemma [16, 17] (and the closely related Kalman-Yakubovich-Popov [KYP] Lemma) for FIR systems. This
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new formulation states that for rm, −M + 1 ≤ m ≤ M − 1, with r−m = r̄m, R(ejω) ≥ 0 for all ω ∈ [0, 2π]

if and only if there exists an M × M positive semidefinite Hermitian matrix X such that tr(X) = r0

and
∑M−1−m

"=0 [X]"+m," = rm, for 1 ≤ m ≤ M − 1. (For later notational convenience, we will index the

elements of vectors and matrices starting from zero.) However, Theorem 3 generates LMI formulations of

more general constraints of the form R(ejω) ≥ Re A(ejω) for all ω ∈ [α,β], or for all ω ∈ [0, 2π)\(α,β), where

A(ejω) =
∑MA−1

k=0 ake−jωk is a trigonometric polynomial and Re · denotes the real part. Since these LMI

formulations apply to segments of the unit circle and naturally incorporate non-constant lower bounds, they

can be considered as generalizations of the Positive Real Lemma. Theorem 3 also generates LMI formulations

of constraints of the form R(ejω) ≤ Re B(ejω) for all ω ∈ [α,β], or for all ω ∈ [0, 2π) \ (α,β), which can be

considered as generalizations of the Bounded Real Lemma [18].

Our notational conventions are as follows: Vectors and matrices will be represented by bold lowercase and

uppercase letters, respectively. The elements of these structures will be indexed starting from zero and will

be denoted by medium weight lower case letters with appropriate subscripts; e.g., gk = [g]k and xij = [X]ij .

Operators will be represented by bold uppercase letters in a sans-serif font. In order to illuminate the

connections between the results for polynomials on the real line and trigonometric polynomials on the unit

circle, we define

u(t; n) :=
[

1 t t2 · · · tn
]T

, v(θ; n) :=
[

1 ejθ ej2θ · · · ejnθ
]T

, (4)

where the superscript “T” denotes the transpose (without conjugation). Thus, the components of u(t; n)

form a basis of the (real) function space of polynomials of degree n on the real line, whereas the components

of v(θ; n) form a basis of the (complex) function space of trigonometric polynomials of degree n on [0, 2π).

Consequently, an nth order polynomial p(t) =
∑n

k=0 pktk can be written as p(t) = u(t; n)Tp, where [p]k = pk.

Similarly, if the sequence gk denotes the impulse response of a causal FIR filter, and if [g]k = gk, then the

frequency response G(ejθ) =
∑n

k=0 gke−jkθ = v(θ; n)Hg, where the superscript “H” denotes the Hermitian

transpose. The (complex valued) inner product between two complex matrices X and Z is defined as

〈X, Z〉 = tr XHZ. (5)

We shall denote by Hn×n
+ the set of n× n positive semidefinite (complex) Hermitian matrices, and by Sn×n

+

the subset of Hn×n
+ consisting of the real symmetric positive semidefinite matrices. For a complex number

x ∈ C, we denote the polar coordinates as (|x|, arg x) ∈ R+ × [0, 2π), i.e. x = |x|ej arg x, with argx ∈ [0, 2π).

II. Transformation of Polynomial Basis

In this section, we establish a one-to-one correspondence between polynomials of degree 2n on the real line,

and trigonometric polynomials of degree n on (0, 2π), where the coefficients of the trigonometric polynomials
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may be complex numbers. The main result of this section is stated in Theorem 1, but we first state some

intermediate results.

By a result from classical complex analysis [19], the complex exponential function ejθ can be represented

as a (complex) rational function of t over the real line:

ejθ =
t + j
t − j

=
(t + j)2

1 + t2
.

This mapping from t ∈ (−∞,∞) to θ ∈ (0, 2π) is one-to-one. In fact, it is a conformal mapping and is

closely related to the ‘bilinear transform’ which is used to map the left half plane to the unit disc in the

standard transformation of analog filter designs into the discrete-time domain [20]. This mapping provides

the basis for relating the polynomials over the real line with trigonometric polynomials over the unit circle.

The following lemma further relates an arbitrary power of ejθ to a rational function of t.

Lemma 1: Let θ ∈ (0, 2π) and t ∈ R be related by

ejθ =
(t + j)2

1 + t2
.

Then for any positive integer i ≥ 1, we have

ejiθ =
1

(1 + t2)i

(
i∑

k=0

(−1)k

(
2i

2k

)
t2(i−k) + j

i−1∑

k=0

(−1)k

(
2i

2k + 1

)
t2(i−k)−1

)
.

Proof. This is a simple application of Newton’s binomial formula. Q.E.D.

Let us define a lower triangular matrix G(n) of size (n + 1) × (n + 1) whose (i, j)-th entry is given by

gij(n) :=






0, for 0 ≤ i ≤ j − 1,

(
n−j
n−i

)
, for j ≤ i ≤ n.

(6)

Notice that the diagonal entries of G(n) are equal to 1, hence, it is invertible. We shall denote the columns

of G(n) by gj(n), j = 0, 1, ..., n. In addition, for each 0 ≤ k ≤ n, we define a (n+1)× (n+1) matrix H(k; n)

whose (i, j)-th entry is given by

hij(k; n) :=






(
n−j

n−i−k

)
, for k ≤ j ≤ n, j − k ≤ i ≤ n − k,

0, otherwise.
(7)

We shall denote the j-th column of this matrix by hj(k; n). Obviously, we have H(0; n) = G(n). We remark

that

u(x; n)Thj(k; n) =
n−k∑

i=j−k

(
n − j

n − i − k

)
xi = xj−k

n−j∑

"=0

(
n − j

n − j − '

)
x" = xj−k(1 + x)n−j . (8)
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Based on (8), we can now restate Lemma 1 as follows.

Lemma 2: Let θ ∈ (0, 2π) and t ∈ R be related by

ejθ =
(t + j)2

1 + t2
.

Then

1 = ej0θ =
u(t2; n)Tf0

(1 + t2)n
,

and

ej"θ =
u(t2; n)Tf" + jt(u(t2; n − 1)Tf̃"−1)

(1 + t2)n
, ' = 1, 2, . . . , n,

where

f" :=
"∑

k=0

(−1)k

(
2'
2k

)
h"(k; n), ' = 0, 1, . . . , n, (9)

and

f̃" :=
"∑

k=0

(−1)k

(
2(' + 1)
2k + 1

)
h"(k; n − 1), ' = 0, 1, . . . , n − 1. (10)

Proof. The proof follows directly from Lemma 1 and the definitions of f" and f̃". Q.E.D.

Now, consider the elementary identities
(

n − 1
m

)
=

n − m

n

(
n

m

)
,

(
n − 1
m − 1

)
=

m

n

(
n

m

)
,

(
n − 1
n − 1

)
=

(
n

n

)
= 1,

which are valid for any m = 0, 1, . . . , n−1. An immediate consequence of the above identities and (7) is that

hj(k; n) + hj(k − 1; n) = hj−1(k − 1; n). (11)

Alternatively, the above identity can be established from (8). Since hj(0; n) = gj(n), a simple induction

argument shows that

hj(k; n) ∈ span {g0(n), g1(n), . . . , gj(n)}. (12)

The following lemma further strengthens the above relation.

Lemma 3: There holds that

(−1)khj(k; n) − gj(n) ∈ span {g0(n), g1(n), . . . , gj−1(n)}. (13)

Proof. For a given j, let w(k) = (−1)khj(k; n) − gj(n). We will prove the lemma by induction on k.
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For k = 0, we have w(0) = hj(0;n) − gj(n) = gj(n) − gj(n) = 0, so (13) holds trivially. Consider now a

k ∈ {1, 2, . . . , j}, and make the hypothesis that w(k − 1) ∈ span {g0(n), g1(n), . . . , gj−1(n)}. We have

w(k) = (−1)khj(k; n) − gj(n) = (−1)k
(
hj(k; n) + hj(k − 1; n)

)
+ (−1)k−1hj(k − 1; n) − gj(n)

= (−1)khj−1(k − 1; n) + (−1)k−1hj(k − 1; n) − gj(n)

= (−1)khj−1(k − 1; n) + w(k − 1).

By (12), we know that

hj−1(k − 1; n) ∈ span {g0(n), g1(n), . . . , gj−1(n)}.

Hence if w(k − 1) ∈ span {g0(n), g1(n), . . . , gj−1(n)} then w(k) ∈ span {g0(n), g1(n), . . . , gj−1(n)}. Since

w(0) satisfies (13), a simple induction argument completes the proof. Q.E.D.

Now we can substitute (13) into the expressions (9)–(10) to obtain the following relations:

fj −
(

j∑

k=0

(
2j

2k

))
gj(n) ∈ span {g0(n), g1(n), . . . , gj−1(n)},

and

f̃j −
(

j∑

k=0

(
2(j + 1)
2k + 1

))
gj(n − 1) ∈ span {g0(n − 1), g1(n − 1), . . . , gj−1(n − 1)}.

As a result, we have that

span {f0, f1, . . . , fj} = span {g0(n), g1(n), . . . , gj(n)}, for j = 0, 1, . . . , n,

and

span {f̃0, f̃1, . . . , f̃j} = span {g0(n − 1), g1(n − 1), . . . , gj(n − 1)}, for j = 0, 1, . . . , n − 1.

This implies that the matrices

F =
[

f0, f1, . . . , fn

]
and F̃ =

[
f̃0, f̃1, . . . , f̃n−1

]

must be invertible. In light of Lemma 2, this establishes an one-to-one correspondence between polynomials

of degree 2n on the real line, and trigonometric polynomials of degree n on (0, 2π). We summarize the result

in the following theorem.

Theorem 1: The mapping η(t) := arg((t + j)2/(1 + t2)) is a bijection between R and (0, 2π). In particular,

the inverse function η−1(θ) for θ ∈ (0, 2π) is given by

η−1(θ) =
sin θ

1 − cos θ
.
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Furthermore, for any vector p ∈ R2n+1 there exists a vector c ∈ R2n+1 such that

∑2n
i=0 piti

(1 + t2)n
= Re

(
c0 +

n∑

k=1

(c2k − jc2k−1)ejkη(t)

)
, for all t ∈ R.

Conversely, for any vector c ∈ R2n+1 there exists a vector p ∈ R2n+1 such that

∑2n
i=0 pi(η−1(θ))i

(1 + (η−1(θ))2)n
= Re

(
c0 +

n∑

k=1

(c2k − jc2k−1)ejkθ

)
, for all θ ∈ (0, 2π).

Proof. The bijectivity of η(t) follows from simple calculus. The remaining part of the theorem is due to

the invertibility of F and F̃ . Q.E.D.

III. Characterization of Nonnegative Polynomials on a Segment

In this section we characterize the set of trigonometric polynomials which are non-negative over a segment

of the unit circle. The main result will be stated in Theorem 2, but first we state some preliminary results.

We begin with a review of a well known characterization [21, 22] of non-negative polynomials over a line

segment in R. We refer to Powers and Reznick [23] for a recent survey on characterizations for polynomials

that are non-negative on an interval.

Proposition 1 (Markov-Lukacs) Let p ∈ R2n+1 and a, b ∈ R, a < b. Then

u(t; 2n)Tp ≥ 0 for all t ∈ [a, b]

if and only if there exist q ∈ Rn+1 and r ∈ Rn such that

u(t; 2n)Tp =
(
u(t; n)Tq

)2 + (t − a)(b − t)
(
u(t; n − 1)Tr

)2
.

Moreover, it holds that

u(t; 2n)Tp ≥ 0 for all t ∈ [a,∞)

if and only if there exist q ∈ Rn+1 and r ∈ Rn such that

u(t; 2n)Tp =
(
u(t; n)Tq

)2 + (t − a)
(
u(t; n − 1)Tr

)2
.

The following corollary of Proposition 1 provides a characterization for polynomials which are non-negative

over the complement of a finite symmetric interval in R.

Corollary 1: Let p ∈ R2n+1 and let a > 0 be a given positive number. Then

u(t; 2n)Tp ≥ 0 for all t *∈ (−a, a)
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if and only if there exist q ∈ Rn+1 and r ∈ Rn such that

u(t; 2n)Tp =
(
u(t; n)Tq

)2 + (t2 − a2)
(
u(t; n − 1)Tr

)2
.

Proof. Let p̃i := p2n−i for i = 0, 1, . . . , 2n. Then for t *= 0 we have

u(t; 2n)Tp = t2n
(
u(1/t; 2n)Tp̃

)
.

Since t2 ≥ a2 > 0 for all t *∈ (−a, a), it follows that

u(t; 2n)Tp ≥ 0 for all t *∈ (−a, a)

if and only if

u(s; 2n)Tp̃ ≥ 0 for all s ∈ [−1/a, 1/a].

By Proposition 1, the above relation holds if and only if there exist q̃ ∈ Rn+1 and r̃ ∈ Rn such that

u(s; 2n)Tp̃ =
(
u(s; n)Tq̃

)2 +
1 − a2s2

a2

(
u(s; n − 1)Tr̃

)2
.

Letting

qi := q̃n−i and ri := r̃n−1−i/a, for i = 0, 1, . . . , n,

proves the result. Q.E.D.

The next corollary further extends Corollary 1 to the case where the interval is non-symmetric.

Corollary 2: Let p ∈ R2n+1 and a, b ∈ R, a < b. Then

u(t; 2n)Tp ≥ 0 for all t *∈ (a, b) (14)

if and only if there exist q ∈ Rn+1 and r ∈ Rn such that

u(t; 2n)Tp =
(
u(t; n)Tq

)2 + (t − a)(t − b)
(
u(t; n − 1)Tr

)2
. (15)

Proof. It is obvious that (15) implies (14). Suppose now that (14) holds. Let us define

s := 2t − (a + b), ã := b − a.

It is clear (e.g., from Newton’s binomial formula) that there exists p̃ ∈ Rn+1 such that

u(t; 2n)Tp = u(2t − (a + b); 2n)Tp̃ = u(s; 2n)Tp̃.
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Since (s2 − ã2) = 4(t− a)(t− b), Corollary 1 implies that (15) holds for some q ∈ Rn+1 and r ∈ Rn. Q.E.D.

The next lemma determines a simple trigonometric polynomial which is non-negative over a given segment

of the unit circle but is non-positive over its complement. In particular, given α, β ∈ [0, 2π), we define a

vector d(α,β) ∈ R × C as follows:

d(α,β) :=








 cosα + cosβ − cos(β − α) − 1

(1 − ejα)(ejβ − 1)



 if α > 0



 − sinβ

j(1 − ejβ)



 if α = 0.

(16)

We remark that

d(0,β) = lim
α↓0

1
sinα

d(α,β), (17)

and

d(α, 2π − α) = 2(1 − cosα)



 cosα

−1



 . (18)

Lemma 4: Let 0 ≤ α < β < 2π and let d(α,β) be defined as in (16). Then the trigonometric polynomial

Re v(θ; 1)Hd(α,β) satisfies the following properties:





Re v(θ; 1)Hd(α,β) > 0 for all θ ∈ (α,β),

Re v(θ; 1)Hd(α,β) < 0 for all θ ∈ [0, 2π) \ [α,β].

Finally, we also need the following well known representation result for trigonometric polynomials which

are non-negative over the entire unit circle.

Proposition 2 (Riesz-Féjer) Let p ∈ R × Cn. Then

Re v(θ; n)Hp ≥ 0 for all θ ∈ [0, 2π)

if and only if there exists q ∈ R × Cn such that

Re v(θ; n)Hp =
∣∣v(θ; n)Hq

∣∣2.

We are now ready to establish the main result of this section.

Theorem 2: Let p ∈ R × Cn, 0 ≤ α < β < 2π, and let d(α,β) be given by (16). Then

Re v(θ; n)Hp ≥ 0 for all θ ∈ [α,β] (19)
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if and only if there exist q ∈ R × Cn and r ∈ R × Cn−1 such that

Re v(θ; n)Hp =
∣∣v(θ; n)Hq

∣∣2 +
(
Re v(θ; 1)Hd(α,β)

) ∣∣v(θ; n − 1)Hr
∣∣2. (20)

Moreover,

Re v(θ; n)Hp ≥ 0 for all θ ∈ [0, 2π) \ (α,β) (21)

if and only if there exist q ∈ R × Cn and r ∈ R × Cn−1 such that

Re v(θ; n)Hp =
∣∣v(θ; n)Hq

∣∣2 −
(
Re v(θ; 1)Hd(α,β)

) ∣∣v(θ; n − 1)Hr
∣∣2. (22)

Proof. In light of Lemma 4, it is obvious that (20) implies (19), and similarly (22) implies (21). We now

establish the converse relations. Fix some p ∈ R×Cn such that (19) holds. We introduce a vector p̃ ∈ R2n+1

as follows: 




p̃2i = Re pi, for i = 0, 1, . . . , n,

p̃2i−1 = Im pi, for i = 1, 2, . . . , n.

Using Theorem 1 and its notations, we have

Re v(θ; n)Hp =
u(η−1(θ); 2n)Tp̃

(1 + (η−1(θ))2)2
for all θ ∈ (0, 2π). (23)

Recall from Theorem 1 that η(t) := arg((t+j)2/(1+t2)) is a bijection between R and (0, 2π). For convenience,

we let η(∞) := 0 to obtain a bijection between R∪{∞} and [0, 2π). Let a := η−1(α) and b := η−1(β). Since

η is a bijection between R ∪ {∞} and [0, 2π) and η is a decreasing function, it follows that

η([b,∞)) = [0,β], [b,∞) = η−1([0,β]).

and for α > 0 that

η([b, a]) = [α,β], [b, a] = η−1([α,β]).

Since (19) holds, it follows from (23) that u(t; 2n)Tp̃ ≥ 0 for all t ∈ [a, b]. As a result, we may apply

Proposition 1 to conclude that for given α and β there exist q̃ ∈ Rn+1 and r̃ ∈ Rn such that

u(t; 2n)Tp̃ =
(
u(t; n)Tq̃

)2 + (t − b)(a − t)
(
u(t; n − 1)Tr̃

)2
,

if α > 0, or

u(t; 2n)Tp̃ =
(
u(t; n)Tq̃

)2 + (t − b)
(
u(t; n − 1)Tr̃

)2
,

if α = 0. Due to Theorem 1 and Proposition 2, there must exist a q ∈ R×Cn and a r̂ ∈ R×Cn−1 such that
(
u(t; n)Tq̃

)2

(1 + t2)n
=

∣∣v(η(t); n)Hq
∣∣2,
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and (
u(t; n − 1)Tr̃

)2

(1 + t2)n−1
=

∣∣v(η(t); n − 1)Hr̂
∣∣2.

Furthermore, we know from Theorem 1 that for given α and β there must exist some c ∈ R × C such that

(t − b)(a − t)
1 + t2

= Re v(η(t); 1)Hc, (24)

if α > 0, or
t − b

1 + t2
= Re v(η(t); 1)Hc, (25)

if α = 0. We have now shown that (19) implies the existence of vectors q, r̂ and c such that

Re v(θ; n)Hp =
∣∣v(θ; n)Hq

∣∣2 +
(
Re v(θ; 1)Hc

) ∣∣v(θ; n − 1)Hr̂
∣∣2.

With an analogous argument, using Corollary 2, Theorem 1 and Proposition 2, we can show that if (21)

holds, then

Re v(θ; n)Hp =
∣∣v(θ; n)Hq

∣∣2−
(
Re v(θ; 1)Hc

) ∣∣v(θ; n − 1)Hr̂
∣∣2.

It remains to show that c is a positive multiple of d(α,β).

Notice that

Re v(η(t); 1)Hc = Re cHv(η(t); 1) = Re (c0 + c1e
jη(t))

= Re (c0 + c1(j + t)2/(1 + t2))

=
1

(1 + t2)
(
c0 − Re c1 + 2t Im c1 + (c0 + Re c1)t2

)
.

Comparing this with (24), we obtain for α > 0 that

(t − b)(a − t)
1 + t2

=
1

(1 + t2)
(
c0 − Re c1 + 2t Im c1 + (c0 + Re c1)t2

)
.

This implies that

c0 = −1 + ab

2
, c1 =

ab − 1 + (a + b)j
2

.

For α = 0, we have to obtain c from the equation

t − b

1 + t2
=

1
(1 + t2)

(
c0 − Re c1 + 2t Im c1 + (c0 + Re c1)t2

)
,

yielding c0 = −b/2 and c1 = (b + j)/2. It is easily verified that

d(α,β) =






2(1 − cosα)(1 − cosβ)c for α > 0

2(1 − cosβ)c for α = 0.

We complete the proof by setting r = 2(1 − cosα)(1 − cosβ)r̂ for α > 0, and r = 2(1 − cosβ)r̂ for α = 0.

Q.E.D.
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Theorem 2 provides a complete analytical characterization of the set, say Ω, of trigonometric polynomials

which are non-negative over a segment of the unit circle. In particular, it shows that any trigonometric

polynomial in Ω can be written as a (non-negatively) weighted sum of two squared trigonometric polynomials

(see (20)–(22)). This result will be used in next section to develop a linear matrix inequality representation

of the polynomials in Ω.

IV. Linear Matrix Inequality Formulation

In this section, we shall use a result of Nesterov [24] and Theorem 2 of Section III to develop a linear

matrix inequality (LMI) representation for Ω, the set of trigonometric polynomials which are non-negative

over a segment of the unit circle.

In reference [24], Nesterov showed how to obtain a linear matrix inequality representation for the cone of

functions representable as a (weighted) sum of squares of functions in a given linear functional space Vn.

In our case, the linear functional space Vn under consideration is the space of all trigonometric polynomials

of degree at most n. Clearly, the components of v(θ; n) form a basis of Vn. Below we paraphrase the

representation result of Nesterov for our functional space Vn.

Proposition 3: Let ∆ ⊆ [0, 2π) be a given subset. Let there be m given trigonometric polynomials which

are non-negative over ∆:

Re v(θ; nk)Hwk ≥ 0 for all θ ∈ ∆,

where for each k = 1, 2, . . . , m, nk ∈ {0, 1, ..., n} and wk ∈ R × Cnk . Let Lk(·) : Cn+1 -→ C(n+1)×(n+1) be a

linear operator such that

Lk

(
v(θ; n)

)
+ Lk

(
v(θ; n)

)H = 2
(
Re v(θ; nk)Hwk

)
v(θ; n − nk)v(θ; n − nk)H, ∀θ ∈ [0, 2π).

Let ' ≥ 1 and N ≥ n + 1. Consider the cone

K =
{
p ∈ R × Cn | Re v(θ; n)Hp =

"∑

k=0

(
Re v(θ; nk)Hwk

) N∑

m=0

∣∣v(θ; n − nk)Hqm,k|2

for some qm,k ∈ R × Cn−nk
}
.

(26)

Then we have the following alternative LMI description of K:

K =

{
p ∈ R × Cn | p + ξje0 =

m∑

k=1

L∗
k(Xk), for some Xk ∈ H(n+1−nk)×(n+1−nk)

+ , ξ ∈ R
}

,

where e0 is the first column of the (n + 1) × (n + 1) identity matrix and L∗
k : C(n+1)×(n+1) -→ Cn+1 is the

adjoint linear operator of Lk.
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Consider now the set of (the real part of) trigonometric polynomials of order n, i.e. functions Re v(θ; n)Hp

in θ ∈ [0, 2π), with coefficients p ∈ R × Cn. Given 0 ≤ α < β < 2π, we define the sets

K(α,β) := {p ∈ R × Cn | Re v(θ; n)Hp ≥ 0 for all θ ∈ [α,β]}, (27)

and

K̄(α,β) := {p ∈ R × Cn | Re v(θ; n)Hp ≥ 0 for all θ ∈ [0, 2π) \ (α,β)}. (28)

Thus, K(α,β) and K̄(α,β) describe the sets of (the real parts of) trigonometric polynomials which are

non-negative over a segment of the unit circle. We also let

K(0, 2π) := {p ∈ R × Cn | Re v(θ; n)Hp ≥ 0 for all θ ∈ [0, 2π)}, (29)

describe the trigonometric polynomials that are nonnegative on the entire unit circle. We may interpret

K(α,β) and K̄(α,β) as convex cones in R2n+1. Since (the real part of) a trigonometric polynomial is non-

negative on a closed segment if and only if it is non-negative on the corresponding open segment, these cones

are invariant to the opening or closure of either end of the given segment. This fact simplifies the application

of the LMI descriptions of these cones which we now develop. By Theorem 2, these cones can be equivalently

described as

K(α,β)=
{
p ∈ R × Cn

∣∣ Re v(θ; n)Hp = |v(θ; n)Hq|2 + (Re v(θ; 1)Hd(α,β)) |v(θ; n − 1)Hr|2

for some q ∈ R × Cn and r ∈ R × Cn−1
} (30)

and

K̄(α,β)=
{
p ∈ R × Cn

∣∣ Re v(θ; n)Hp = |v(θ; n)Hq|2 − (Re v(θ; 1)Hd(α,β)) |v(θ; n − 1)Hr|2

for some q ∈ R × Cn and r ∈ R × Cn−1
} (31)

where d(α,β) is given by (16). Notice that both K(α,β) and K̄(α,β) are in the form of (26), since each

element of K(α,β) or K̄(α,β) can be written as a (non-negatively) weighted sum of squares. Therefore,

Proposition 3 implies K(α,β) and K̄(α,β) both possess an LMI description. To derive an explicit form of

these LMI representations, we need to make precise the linear operators Lk. This is what we do next.

We define the unit lower triangular (n + 1) × (n + 1) Toeplitz matrices T0,n, T1,n, . . . , Tn,n as

[Tk,n]ij =





1, if i = k + j,

0, otherwise,
with i, j ∈ {0, 1, . . . , n}. (32)

Thus, T0,n = I and 〈Tk,n, X〉 =
∑n−k

"=0 X"+k,", for all X ∈ C(n+1)×(n+1). That is, 〈Tk,n, X〉 is the sum of

the elements on the kth lower off-diagonal of X. Let us define a linear operator L : Cn+1 -→ C(n+1)×(n+1) as

L(y) = y0T0,n + 2
n∑

i=1

yiTi,n. (33)



15

It can be checked that L(y) is lower triangular and

L
(
v(θ; n)

)
+ L

(
v(θ; n)

)H = 2v(θ; n)v(θ; n)H, for all θ ∈ [0, 2π). (34)

To determine the adjoint operator L∗, we note that

〈L(y), X〉 = ȳ0〈T0,n, X〉 + 2
n∑

i=1

yi〈Ti,n, X〉 = yHL∗(X), ∀ X ∈ C(n+1)×(n+1),

where the adjoint q = L∗(X) ∈ Cn+1 is given by

q0 = 〈T0,n, X〉, qi = 2〈Ti,n, X〉, for i = 1, 2, . . . , n. (35)

In addition, we need to define a family of operators Λ(y;α,β) : Cn+1 -→ C(n+1)×(n+1) which are linear in

y ∈ Cn+1 and parameterized by α,β ∈ [0, 2π]. Let d(α,β) = [d0(α,β), d1(α,β)]T be given by (16). Then

Λ(y;α,β) := d0(α,β)
(

y0T0,n−1 + 2
n−1∑

k=1

ykTk,n−1

)

+d1(α,β)
( n∑

k=1

ykTk−1,n−1

)
+ d1(α,β)

(n−2∑

k=0

ykTk+1,n−1

)
.

It can be checked that

Λ
(
v(θ, n)

)
+ Λ

(
v(θ, n)

)H = 2
(
Re v(θ; 1)Hd(α,β)

)
v(θ; n − 1)v(θ; n − 1)H, ∀ θ ∈ [0, 2π).

To determine the adjoint operator of Λ, we fix any y ∈ Cn+1 and any X ∈ Cn×n and consider

〈Λ(y;α,β), X〉 = d0(α,β)
(

y0〈T0,n−1, X〉 + 2
n−1∑

k=1

yk〈Tk,n−1, X〉
)

+d1(α,β)
( n∑

k=1

yk〈Tk−1,n−1, X〉
)

+ d1(α,β)
(n−2∑

k=0

yk〈Tk+1,n−1, X〉
)

= yHΛ∗(X;α,β).

Thus, the adjoint q = Λ∗(X;α,β) is given by





q0 = d0(α,β)〈T0,n−1, X〉 + d1(α,β)〈T1,n−1, X〉,

qk = 2d0(α,β)〈Tk,n−1, X〉 + d1(α,β)〈Tk−1,n−1, X〉 + d1(α,β)〈Tk+1,n−1, X〉,

for k = 1, 2, ..., n− 2,

qn−1 = 2d0(α,β)〈Tn−1,n−1, X〉 + d1(α,β)〈Tn−2,n−1, X〉,

qn = d1(α,β)〈Tn−1,n−1, X〉.

(36)
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Combining this with (30), (31) and (35) and invoking Proposition 3, we obtain the following key result.

Theorem 3: Let 0 ≤ α < β < 2π. Suppose K(α,β) and K̄(α,β) are given by (27) and (28). Let L∗ and Λ∗

be the adjoint operators defined by (35) and (36). Then, the cones K(α,β) and K̄(α,β) admit the following

LMI description:

K(α,β) =
{
p

∣∣ p + ξje0 = L∗(X) + Λ∗(Z;α,β)

for some X ∈ H(n+1)×(n+1)
+ , Z ∈ Hn×n

+ , ξ ∈ R
}
,

(37)

and
K̄(α,β) =

{
p

∣∣ p + ξje0 = L∗(X) − Λ∗(Z;α,β)

for some X ∈ H(n+1)×(n+1)
+ , Z ∈ Hn×n

+ , ξ ∈ R
}
.

(38)

Moreover,

K(0, 2π) =
{
L∗(X)

∣∣X ∈ H(n+1)×(n+1)
+

}
. (39)

Theorem 3 provides an equivalent LMI description for a trigonometric polynomial which is non-negative

over a given segment [α,β] (or its complement) of the unit circle. (Observe that K(α, 2π) = K̄(0,α).)

As mentioned in Section I, this LMI formulation is of practical interest because it generates a precise finite

representation of the spectral mask constraints often encountered in the design of digital filters. Furthermore,

the LMI formulation of the mask results in filter design problems that can be efficiently solved via well-

established interior point methods [25]. We will give some detailed examples in Section V.

Equation (39) is a new formulation of the Positive Real Lemma [16,17] (and the closely related Kalman-

Yakubovich-Popov [KYP] Lemma) for FIR systems (see also [24] and Section 3.2 in [26]). The new for-

mulation is the dual of the standard formulation, and states that for rm, −M + 1 ≤ m ≤ M − 1, with

r−m = r̄m, R(ejθ) ≥ 0 for all θ ∈ [0, 2π) if and only if there exists an X ∈ HM×M
+ such that tr(X) = r0 and

∑M−1−m
"=0 [X]"+m," = rm, for 1 ≤ m ≤ M − 1. Thus, Theorem 3 can be seen as an extension of Positive Real

Lemma for FIR systems.

Now let us consider the special case of real trigonometric polynomials of the form
∑n

k=0 pk cos(kθ) with

coefficients p ∈ Rn+1, and segments of the form [α, 2π − α]. Since cos(kθ) and the segment are symmetric

with respect to θ = π, we need only consider the sub-segment [α,π] and the LMI descriptions in Theorem 3

can be simplified to

Kreal(α) =

{
p ∈ Rn+1

∣∣∣∣∣

n∑

k=0

pk cos(kθ) ≥ 0, for all θ ∈ [α,π]

}

=
{

p
∣∣∣ p = L∗(X) + Λ∗(Z;α, 2π − α), for some X ∈ S(n+1)×(n+1)

+ , Z ∈ Sn×n
+

}
, (40)
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(for non-negativity on [α,π]) and

K̄real(α) =

{
p ∈ Rn+1

∣∣∣∣∣

n∑

k=0

pk cos(kθ) ≥ 0, for all θ ∈ [0,α]

}

=
{

p
∣∣∣ p = L∗(X) − Λ∗(Z;α, 2π − α), for some X ∈ S(n+1)×(n+1)

+ , Z ∈ Sn×n
+

}
, (41)

(for non-negativity on [0,α]), where Λ∗(Z;α, 2π − α) is given by (36) with d0(α, 2π − α) and d1(α, 2π − α)

simplified to be [see (18)]

d0(α, 2π − α) = 2 cosα(1 − cosα) and d1(α, 2π − α) = −2(1 − cosα). (42)

Notice that X and Z in (40) [and (41)] are real symmetric, rather than complex Hermitian. To see why we can

restrict to real symmetric matrices, consider a Hermitian positive semidefinite matrix X = (Re X)+j(Im X)

given in the representation (37). Since X 0 0, for real q ∈ Rn we have that

0 ≤ qTXq = qT(Re X)q + jqT(Im X)q = qT(Re X)q.

Hence, Re X ∈ Sn×n
+ . Moreover, Re 〈Ti,n, X〉 = 〈Ti,n, Re X〉. Thus, if the imaginary parts of the coefficients

pi are restricted to zero, then since d0 and d1 in (42) are real, we can replace X and Z [obtained from (37)]

by Re X and Re Z, with both Re X and Re Z still being positive semidefinite.

V. Applications

We now show how the results of Section IV can be applied to the design of FIR filters and to data-

independent narrowband beamformers.

A. FIR Filter Design

In optimization-based designs of (real-valued) FIR filters, one often encounters a (relative) spectral mask

constraint of the form

ζL̆(ejθ) ≤
∣∣G(ejθ)

∣∣ ≤ ζŬ(ejθ) for all θ ∈ [0,π], (43)

where ζ > 0, and a normalization constraint either on the filter coefficients or on ζ. [We have used the

‘breve’ notation to distinguish (43) from (1).] As discussed in the introduction, the mask constraint can be

made convex by constraining G(ejθ) to have ‘linear phase’, or by reformulating the constraint in terms of the

autocorrelation sequence rm =
∑

k gkgk−m as ζ2L̆(ejθ)2 ≤ R(ejθ) ≤ ζ2Ŭ(ejθ)2. In both these cases, we can

exploit the results of Section IV to precisely transform the piecewise constant and piecewise trigonometric

polynomial portions of the mask into pairs of LMIs. The first step is to write G(ejθ) or R(ejθ) in the form
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Re v(θ; ·)Hp. To do so, we define M ∈ R(2M−1)×M and Ĩ ∈ RM×M such that

M :=





0 J

1 0

0 I




and Ĩ :=



1 0

0 2I



 , (44)

where I is the (M − 1) × (M − 1) identity matrix and J is the (M − 1) × (M − 1) matrix with ones on

the anti-diagonal and zeros elsewhere. For a filter of length M , if we define r̃ ∈ RM such that [r̃]m = rm,

0 ≤ m ≤ M − 1, then

R(ejθ) = ej(M−1)θv
(
θ; 2(M − 1)

)H
Mr̃ = Re v(θ; M − 1)HĨ r̃.

Similarly, for a filter of odd length 2M−1 which is symmetric and centered at the origin, if we define g̃ ∈ RM

such that [g̃]k = gk, 0 ≤ k ≤ M−1 then, G(ejθ) = Re v(θ; M −1)HĨg̃. The frequency response of other linear

phase filters can be written in related ways, but for brevity we will consider only the odd-length symmetric

case.

To further simplify our exposition, we will first consider the design of a simple low-pass filter with a

piecewise constant mask. A natural extension to a piecewise trigonometric polynomial mask is provided later

in this section, and extensions to band-pass and multi-band filters are implicit in the design in Section V–B.

The simple piecewise constant low-pass spectral mask can be written in the form of (43), where

L̆(ejθ) =






L̆p 0 ≤ θ ≤ 2πfp

L̆t 2πfp < θ ≤ 2πfs

L̆s 2πfs < θ ≤ π

and Ŭ(ejθ) =






Ŭp 0 ≤ θ < 2πfs

Ŭs 2πfs ≤ θ ≤ π,
(45)

with fp and fs denoting the normalized frequencies of the pass-band and stop-band edges, respectively,

0 ≤ fp < fs ≤ 1/2, and 0 < Ŭs ≤ Ŭp, 0 ≤ L̆p < Ŭp and L̆s ≤ L̆p. In the case of linear phase filters we

set L̆t = −Ŭp and L̆s = −Ŭs, whereas for autocorrelation designs we set L̆t = L̆s = 0. By observing the

common form of G(ejθ) and R(ejθ) above, and that L̆t ≤ L̆s ≤ L̆p and Ŭs ≤ Ŭp, the spectral mask constraint

can be re-written in a generic form as





Ĩx̃ − ζqL̆q
pe0 ∈ K̄real(2πfp)

Ĩx̃ − ζqL̆q
t e0 ∈ Kreal(0)

Ĩx̃ − ζqL̆q
se0 ∈ Kreal(2πfs)

and





ζqŬ q

pe0 − Ĩx̃ ∈ Kreal(0)

ζqŬ q
s e0 − Ĩx̃ ∈ Kreal(2πfs),

(46)

where q = 1 and x̃ = g̃ when we design an odd-length symmetric filter, and q = 2 and x̃ = r̃ for autocorrela-

tion designs. For autocorrelation designs, L̆t = L̆s = 0 and hence the constraint Ĩx̃ − ζqL̆q
se0 ∈ Kreal(2πfs)

is redundant.
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The constraints in (46) define the set of feasible filters. The question that remains is which of these filters

is the ‘best’. A large class of filter design objectives can be cast as the minimization of a convex quadratic

function of the parameters. This class includes the weighted least-squares approximation of some desired

magnitude response [3, 4, 9]. Filter design problems in this class take the following form: Given a positive

semidefinite matrix Q, a vector l and an integer q ∈ {1, 2}, find x̃ achieving

min
x̃

x̃TQx̃ − 2lTx̃ (47)

subject to (46) and a linear normalization constraint on either x̃ or ζ, or show that none exist. This generic

design problem can be solved by solving the following convex optimization problem:

Problem 1: Given q from (46), and given Q = LLT, l, fp, fs, L̆p, L̆t L̆s, Ŭp, Ŭs, and M , find x̃ ∈ RM

achieving min Γ − 2lTx̃ over x̃, ζ > 0, X(pu), X(pl), X(t), X(su) ∈ SM×M
+ , Z(pl), Z(su) ∈ S(M−1)×(M−1)

+ ,

and, if q = 1, X(s") ∈ SM×M
+ and Z(s") ∈ SM−1×M−1

+ , subject to ‖LTx̃‖2
2 ≤ Γ,

Ĩx̃ − ζqL̆q
pe0 = L∗(X(pl)) − Λ∗(Z(pl); 2πfp, 2π(1 − fp)

)
, (48)

Ĩx̃ − ζqL̆q
te0 = L∗(X(t)), (49)

ζqŬ q
p e0 − Ĩx̃ = L∗(X(pu)), (50)

ζqŬ q
s e0 − Ĩx̃ = L∗(X(su)) + Λ∗(Z(su); 2πfs, 2π(1 − fs)

)
, (51)

and, if q = 1,

Ĩx̃ − ζqL̆q
se0 = L∗(X(s")) + Λ∗(Z(sl); 2πfs, 2π(1 − fs)

)
, (52)

and one of the normalizations ζ = 1 or cTx̃ = 1, for a given vector c, or show that none exist.

In Problem 1, Eqs (48), (49) and (52) enforce the lower bound constraint of the spectral mask, and

Eqs (50) and (51) enforce the upper bound constraint. Problem 1 consists of a linear objective, linear

equality constraints [(48)–(51), and (52) where applicable], a linear inequality constraint on ζ, positive semi-

definiteness constraints on the various X and Z matrices, and the constraint ‖LTx̃‖2
2 ≤ Γ. The set of

vectors [Γ, (LTx̃)T]T ∈ RM+1 which satisfy this last constraint can be transformed to the intersection of a

‘rotated’ second-order cone in RM+2 and a hyperplane (e.g., [26]). Hence, Problem 1 is a convex symmetric

cone programme [27, 28], which can be efficiently solved using well established interior point methods [29].

Furthermore, infeasibility can be reliably detected. If x̃ represents the autocorrelation sequence of the filter,

then an optimal filter can be obtained from the solution of Problem 1 by spectral factorization [9, 11].

We now demonstrate the flexibility of this design method by solving a number of filter design problems

using small variations on Problem 1.
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Fig. 1. Power spectra of length 49 filters from Example 1, along with the corresponding mask. In (c), ζ∗ is the optimal value

of ζ from Problem 1.

Example 1: Consider the design of a length 49 FIR filter which has the minimal ‘stop-band energy’,

Es = (1/π)
∫ π
2πfc

|G(ejθ)|2 dθ, subject to the spectral mask in (45), with fp = 590/4915.2, fs = 740/4915.2,

L̆2
p = 10−0.15, Ŭ2

p = 100.15, Ŭ2
s = 10−4; i.e., fp ≈ 0.12, fs ≈ 0.15, ±1.5 dB pass-band ripple, and 40 dB

stop-band suppression. (The choice of this particular mask is explained in Example 3.) For an odd-length

symmetric filter, Es = g̃TQg̃, where Q = ĨQ̌Ĩ, [Q̌]ij = 2
(
sinc(i + j) + sinc(i − j)

)
− 4fc

(
sinc(2fc(i + j)) +

sinc(2fc(i − j))
)
, for 0 ≤ i, j ≤ M − 1, and sinc(x) = sin(πx)/(πx) for x *= 0 and 1 for x = 0. For a general

filter, Es = l̃Tr̃, where l̃0 = 1/2 − fc and l̃m = −2fc sinc(2fcm), for 1 ≤ m ≤ M − 1. Therefore, optimal

filters can be designed using Problem 1 with the normalization constraint ζ = 1. For fc = (fp + fs)/2, the

power spectrum of the optimal linear phase filter is shown in Figure 1(a) and that of an optimal nonlinear

phase filter is shown in Figure 1(b). Each design problem was solved using a Matlab-based general-purpose

symmetric cone programme solver called SeDuMi [26]. The linear-phase case was solved in 3.5 seconds on

a 400 MHz Pentium II workstation, while the nonlinear phase case required 24 seconds. The sharper cut

off and improved high-frequency decay of the nonlinear phase filter are clear from these figures. Although

these filters minimize the stop-band energy, they do not minimize the proportion of the total energy of the

filter in the stop band. A nonlinear phase filter which does so can be found by removing the constraint

ζ = 1 from Problem 1 (and hence allowing the mask to ‘float’), and replacing it with r0 = 1. The resulting

optimal autocorrelation was obtained in 25 seconds and the power spectrum of an optimal filter is shown in

Figure 1(c). Observe that the flatter passband response in this case is achieved without greatly affecting the

stop-band decay. !

In some applications one may wish to enforce a spectral mask constraint which is not piecewise constant.
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For example, one may wish to have a ‘roll-off’ zone which provides a more gradual transition between the

pass-band and stop-band in Figure 1. (See Figure 2 for an example.) We will now demonstrate how the large

and diverse class of piecewise trigonometric polynomial masks can be precisely enforced using Theorem 3.

For simplicity we will restrict our attention to the case of enforcing a roll-off constraint on a low-pass filter,

but the techniques can be easily generalized. Let fr denote the frequency at the ‘left edge’ of the roll-off

portion of the mask, and let fs denote the frequency at the left edge of the subsequent constant portion. Let

the portion of Ŭ(ejθ)q in the roll-off region be described by the real part of a trigonometric polynomial; i.e.,

let Ŭ(ejθ)q = Re Bq(ejθ) for θ ∈ [2πfr, 2πfs], where Bq(ejθ) =
∑MBq−1

k=0 bq,ke−jθk. Then this portion of the

mask can be described in the notation of Section IV and Problem 1 by

ζqbq − Ĩx̃ ∈ K(2πfr, 2πfs), (53)

where either bq or x̃ is to be padded with zeros so that they are both of dimension M̃ = max{MBq , M}. For

linear phase filters, the roll-off must also be incorporated into the lower mask, L̆(ejθ), because G(ejθ) is not

constrained to be non-negative; i.e., L̆(ejθ) = −Re B1(ejθ) for θ ∈ [2πfr, 2πfs]. Hence, for the linear phase

case we require (53) and

Ĩx̃ + ζb1 ∈ K(2πfr, 2πfs). (54)

For this roll-off example, the complete spectral mask is described by (46), (53) and (54), with (54) being

redundant in the case of autocorrelation design. Therefore, the design of nonlinear phase filters which

minimize the objective in (47) subject to the new mask can be achieved by adding two variables, X(ro) ∈

HM̃×M̃
+ and Z(ro) ∈ H(M̃−1)×(M̃−1)

+ , to Problem 1, along with the additional constraint

ζqbq − Ĩx̃ − ξ(ro)je0 = L∗(X(ro)) + Λ∗(Z(ro); 2πfr, 2πfs

)
, (55)

where ξ(ro) ∈ R is unconstrained. (Note that in Problem 1, x̃ is already constrained to be real.) For linear

phase filters, we require two more variables, X(rol) ∈ HM̃×M̃
+ and Z(rol) ∈ H(M̃−1)×(M̃−1)

+ , and the additional

constraint

Ĩx̃ + ζb1 − ξ(rol)je0 = L∗(X(rol)) + Λ∗(Z(rol); 2πfr, 2πfs

)
, (56)

where ξ(rol) ∈ R is unconstrained. In the following example, we re-visit the designs in Example 1 with a new

mask which contains a roll-off section.

Example 2: Consider the mask from Example 1 and introduce a ‘tighter’ stop-band constraint consisting

of a first-order trigonometric polynomial roll-off on the magnitude spectrum between fr = 740/4915.2 and

fs = 0.25 and a constant bound on the magnitude for 0.25 ≤ f ≤ 0.5. More specifically, in the roll-off region

ω ∈ [2πfr, 2πfs], we enforce |G(ejω)| ≤ ζB1(ejω), where the first-order trigonometric polynomial B1(ejω)

has real coefficients b1,0 and b1,1 chosen such that B1(ej2πfr ) = 10−2 and B1(ej2πfs) = 10−2.5, and in the

constant portion of the stop-band, ω ∈ [2πfs,π], we enforce |G(ejω)| ≤ ζ10−2.5. That is, the roll-off ‘starts’
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Fig. 2. Power spectra of length 49 filters from Example 2, along with the corresponding mask. In (c), ζ∗ is the optimal value

of ζ.

at fr ≈ 0.15 with a suppression level of 40 dB and rolls off to a suppression level of 50 dB at fs = 0.25, from

which point the required suppression level remains 50 dB (see Figure 2). Note that since R(ejω) = |G(ejω)|2,

|G(ejω)| ≤ ζB1(ejω) for ω ∈ [2πfr, 2πfs] can be imposed directly on the power spectrum by enforcing

R(ejω) ≤ ζ2B2(ejω) for ω ∈ [2πfr, 2πfs], where B2(ejω) is a second-order trigonometric polynomial with

coefficients b2,0 = b2
1,0 + b2

1,1/2, b2,1 = 2b1,0b1,1, and b2,2 = b2
1,1/2. The power spectra of the length 49

linear and nonlinear phase filters which minimize the stop-band energy with fc = (fp + fr)/2, subject to the

spectral mask are shown in Figures 2(a) and (b), and that of the nonlinear phase filter which minimizes the

proportion of the total energy of the filter in the stop-band is shown in Figure 2(c). (The optimal designs

were obtained in 14, 95 and 99 seconds, respectively, using the set-up described in Example 1.) Note that

these filters have similar pass-band characteristics to the corresponding filters in Example 1, but that the

stop-band characteristics are substantially altered by the new mask. !

In the transmission of digital data by pulse amplitude modulation (PAM), we often encounter design

specifications in terms of a spectral mask of the form in Figure 1. In fact, the mask in Figure 1 is that

specified for the ‘chip’ waveform in the IS95 digital cellular communication standard [30]. A simplified block

diagram of a PAM scheme is shown in Figure 3. The transmitted power is normalized to unity; i.e., r0 = 1.

In order to control the intersymbol interference (ISI) in a distortionless channel we can enforce the constraint

2
∑

i>0

r2
Ki ≤ ε, (57)

for some (small) ε ≥ 0, [31]. This term is the mean square error (MSE) in d̂n in Figure 3 in the absence of

noise and channel distortion. When ε = 0 this constraint is equivalent to self-orthogonality (that is, to gk

being a ‘root-Nyquist’ filter), but when ε > 0 it allows us to trade ISI for other system properties. One of
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ŝk g k K
d̂n

Fig. 3. Equivalent discrete-time model of baseband PAM.

10−6 10−5 10−4 10−3 10−2 10−1 100
2.7

2.75

2.8

2.85

2.9

2.95

3

ε

Se
ns

it
iv

it
y

Fig. 4. The trade-off between the sensitivity and ε for the IS95 standard for Example 3. The ‘×’ and ‘◦’ denote the positions

achieved by the IS95 filter and the robust filter in Figure 5(b), respectively.

these properties might be the sensitivity of the MSE in d̂n to unknown channel distortion. If the unknown

channel is modelled as ck = δk + c(e)
k , where δk is the Kronecker delta (which is the impulse response of a

distortionless channel), then an appropriate measure of the sensitivity of the PAM scheme is the worst-case

MSE over a bounded set of c(e)
k ’s, [31]. For a given bound ε on the ISI, this sensitivity can be minimized by

solving Problem 1 with x̃ = r̃, r0 = 1, Q = Ĩ, l = 0, and the additional constraint in (57), [31].

Example 3: The filter specified for the synthesis of the chip waveform in IS95 has length 48 and K = 4

and satisfies the spectral mask specified in the standard (and illustrated in Figure 1), but it generates a

large MSE in a distortionless channel. To efficiently determine whether this MSE can be reduced whilst

simultaneously reducing the sensitivity to unknown channel distortion, the modified version of Problem 1

was solved for various values of ε. (Each solution was obtained in about 23 seconds.) The trade-off is shown

in Figure 4, from which it is clear that the IS95 filter can be greatly improved upon. The spectra of the IS95

filter and a representative optimal filter are plotted in Figure 5. The robust filter provides a substantially

lower ‘chip error rate’ than the IS95 filter in a slowly-varying frequency-selective Rician fading channel, as

shown in Figure 6. (See [31] for the details.) !

Example 4: In addition to tradeoffs between ISI and sensitivity, tradeoffs between ISI and bandwidth are

also of interest in the design of PAM schemes. For a given level of ISI, a filter achieving the minimum
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(a) IS95 filter, length 48.
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(b) Robust filter, length 48.

Fig. 5. Power spectra (in decibels) of the filters in Example 3, with the IS95 mask. Here, ζ∗ is the optimal value of ζ from the

modified version of Problem 1.

bandwidth can be efficiently found using a bisection-based search on the stop-band edge of the mask for

the feasibility boundary of a convex cone feasibility problem [31]. That feasibility problem is based on the

modified version of Problem 1 used in Example 3. (This is a variation of the method used to find minimum

bandwidth self-orthogonal filters in [10].) The resulting tradeoff for the IS95 spectral mask is plotted in

Figure 7, from which it is clear that the IS95 filter is some distance from the optimal filters. !

B. Beamformer Design

In standard narrowband beamforming applications, the outputs of each antenna element at a given instant

are linearly combined to form the array output at that instant [32]. If xk(n) denotes the complex envelope

of the output of the kth antenna element at the nth instant, and if y(n) denotes the complex envelope of

the array output at that instant, then

y(n) = x(n)Tw = wH
c x(n),

where wk is the ‘weight’ applied to the output of the kth antenna element, and [wc]k = w̄k. It is well

known [32] that if the array geometry is linear, with equi-spaced elements with separation d, and if the array

operates on signals with wavelength λ, then the (complex) ‘gain’ of the array for a signal arriving at an

angle φ to broadside (perpendicular to the array) is

W̃ (φ) = ejχW (ej2π(d/λ) sinφ),
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where W (ejθ) is the Fourier Transform of wk, and ejχ determines the ‘phase centre’ of the array. For

simplicity, we will focus on the standard case where d = λ/2.

In many applications, we would like to control the ‘beam pattern’ of the array, |W̃ (φ)|2, but that results

in non-convex constraints on wk. Using the autocorrelation of the weights, rm =
∑

k wkw̄k−m, we have that

R̃(φ) =
∑

m rme−jmπ sinφ = |W̃ (φ)|2, and therefore bound constraints on |W̃ (φ)|2 result in linear constraints

on rm. For an M -element array,

R̃(φ) = Re v(π sinφ; M − 1)HĨ r̃,

where [r̃]m = rm, 0 ≤ m ≤ M − 1 and Ĩ was defined in Section V–A. Therefore, piecewise constant and
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piecewise trigonometric polynomial constraints on |W̃ (φ)|2 can be compactly enforced in an analogous way

to that for the spectral masks in Section V–A, as we now demonstrate in a simple example derived from [32,

Figure 2.5].

Example 5: Suppose that a desired signal impinges on a 16-element linear equi-spaced array with element

separation d = λ/2 from an angle of φd = −18◦ ± 6◦, and that interfering signals arrive from angles in the

range φi = 21.5◦±6◦. An interesting data independent [32] beamforming problem is to minimize the response

to (spatially) white noise (i.e., wHw = r0), subject to the gain in the direction of the desired signal being

within ±∆d dB, and to the gain in the direction of the interferers being less than ∆i dB. Furthermore, to

guard against unexpected interferers from other directions, we would like to keep the sidelobes below ∆s dB,

and to constrain the main lobe (as determined by ∆s) to be within −18◦ ± 13◦. In short, our objective is

to minimize the white noise gain, subject to a mask of the shape in Figure 9, below. This problem can be

cast in a similar way to Problem 1 with x̃ = r̃, ζ = 1, Q = 0, and l = −e0/2, except that the vector r̃

and the various X and Z matrices may be complex. Therefore, the trade-offs between the white noise gain

and the level of interference suppression, for different values of the maximum sidelobe level and for a ‘look

direction ripple’ with ∆d = 0.1 dB can be efficiently found. They are presented in Figure 8. Examples of

the resulting beam patterns are shown in Figure 9. (Each optimal r̃ was computed in about seven seconds.)

These examples clearly demonstrate the role which the sidelobe level constraint plays in determining the

shape of the beam pattern. !
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(b) ∆s = −20 dB.

−80 −60 −40 −20 0 20 40 60 80
−60

−50

−40

−30

−20

−10

0

φ, degrees

|W̃
(φ

)|2
,
dB
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Fig. 9. Beam patterns with minimal white noise gain, subject to 40 dB interference suppression and different maximum sidelobe

levels, ∆s, for Example 5, along with the corresponding masks.

VI. Concluding Remarks

In this paper, we have provided a compact representation of piecewise constant and piecewise trigonometric

polynomial spectral mask constraints via linear matrix inequalities. This representation is precise and avoids

the heuristic approximation of the mask incurred when discretization techniques are used. The representation

is also convex, and it generates practically competitive design algorithms (based on well-established interior

point methods) for a diverse class of FIR filtering and narrowband beamforming problems. Using such

algorithms, (in)feasibility of the spectral mask can be detected reliably, which is especially important when

the design problem is solved iteratively in a binary search scheme (such as in minimal length filter design). In

addition to these applications, generalizations of our results to rational filters (i.e., infinite impulse response

filters) and to multidimensional filters are of interest in control theory, as well as signal and image processing,

and are currently being pursued. In closing, we point out that we have efficiently solved the design problems

which result from our compact representation (e.g., Problem 1) using a sophisticated, but general purpose,

convex cone programme solver [26]. Although this is convenient from a practitioner’s perspective, we believe

that more efficient implementations of our design approach can be obtained by developing an application

specific solver which exploits the extensive algebraic structure which our design problems possess. Recent

work on application specific solvers for problems from the same class [33, 34] suggests that the resulting

reductions in computational and memory requirements can be substantial.
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