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Abstract

This article concerns the question, Which subsets of R
m can be represented with

linear matrix inequalities (LMIs)? This gives some perspective on the scope and

limitations of one of the most powerful techniques commonly used in control

theory. Also, before having much hope of representing engineering problems as

LMIs by automatic methods, one needs a good idea of which problems can and

cannot be represented by LMIs. Little is currently known about such problems.

In this article we give a necessary condition that we call “rigid convexity,” which

must hold for a set C ⊆ R
m in order for C to have an LMI representation. Rigid

convexity is proved to be necessary and sufficient when m = 2. This settles a

question formally stated by Pablo Parrilo and Berndt Sturmfels in [15]. As shown

by Lewis, Parillo, and Ramana [11], our main result also establishes (in the case

of three variables) a 1958 conjecture by Peter Lax on hyperbolic polynomials.

c© 2006 Wiley Periodicals, Inc.

1 The Problem of Representing Sets with LMIs

Let C be a closed convex set in R
m bounded by algebraic hypersurfaces

Spj
:= {x ∈ R

m : pj (x) = 0},

with all polynomials pj (x) > 0 for x in the interior of C. Which C can be repre-

sented in terms of some linear pencil L = {L0, L1, · · · , Lm} in the form

C
L := {x = (x1, . . . , xm) : L0 + L1x1 + · · · + Lm xm is positive semidefinite}?

We shall require by our use of the term linear pencil that L0, L1, . . . , Lm be sym-

metric, real-entried matrices. Also, we frequently abbreviate positive definite to

PD and positive semidefinite to PSD. A monic pencil is one with L0 = I . We

call such a representation of a set C a linear matrix inequality (LMI) representation

of C.

The question is formally stated by Pablo Parrilo and Berndt Sturmfels in [15]

for m = 2, and we resolve the m = 2 situation in this paper. Near the end of

the paper we speculate about generalizations and other possible representations

(Section 6).
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In this paper a polynomial always stands for a polynomial with real coeffi-

cients. Since the paper might be of interest to several audiences—operator theory,

real semialgebraic geometry, systems engineering, and possibly partial differen-

tial equations—it is written less tersely than is common. Our result here was an-

nounced in a survey talk at the conference Mathematical Theory of Networks and

Systems in 2002; see [10].

1.1 Motivation

A technique that has had remarkable success in many types of optimization

problems is to convert them to linear matrix inequalities. These can be solved

using semidefinite programming algorithms provided the number of variables xj is

not extremely large (a few thousand). The technique was introduced first in [12]

and has spread to various areas. In particular, control is an area within the authors’

experience and there LMIs have had a great impact; cf. [9, 16]. For a collection of

applications in many other areas, see the theses [14, 15].

In the many applications in which LMIs are found there is no systematic way to

produce LMIs for general classes of problems. Each area has a few special tricks

that convert “lucky problems” to LMIs. Before there is any hope of producing

LMIs systematically, one must have a good idea about which types of constraint

sets convert to LMIs and which do not. That is what this paper addresses.

After the preliminary version of this paper was circulated as a preprint, Adrian

Lewis, Pablo Parillo, and M. V. Ramana informed us that our main result, The-

orem 2.2, was critical to their solution of a 1958 conjecture by Peter Lax on hy-

perbolic polynomials arising from the study of linear hyperbolic partial differential

equations; see [11]. We make some brief historical remarks in Section 8.

2 Solution

In this section we give an algebraic statement of the solution to the Parrilo-

Sturmfels problem; see Theorem 2.2. In Section 3 we give an equivalent geometric

statement of the solution; see Theorem 3.1. In Section 5 we give an equivalent

topological statement (see Corollary 5.1 and Theorem 5.2), which while intuitively

appealing requires projective spaces to state in full generality. The solution de-

pends on results of Victor Vinnikov [17] (see also Dubrovin [8]) and variations on

it.

2.1 A Key Class of Polynomials

We shall soon see that it is a special class of polynomials we call real zero

polynomials that bound sets amenable to LMI representation. So now we define a

real zero polynomial (RZ polynomial) to be a polynomial in m variables satisfying

for each x ∈ R
m ,

(RZ) p(µx) = 0 implies µ is real.

A few properties of RZ polynomials are as follows:
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(1) The product p1 · · · pk of RZ polynomials p1, . . . , pk is an RZ polynomial.

(2) If an RZ polynomial p factors as p = p1 · · · pk , then all factors p1, . . . , pk

are RZ polynomials.

(3) The determinant

(2.1) p̌(x) := det[L0 + L1x1 + · · · + Lm xm]

of a pencil L with a PD matrix L0 is an RZ polynomial. Call this a positive

determinantal representation for p̌.

(4) The product of p̌j defined as determinants of pencils L j on R
Nj , to wit

(2.2) p̌j (x) := det[L
j

0 + L
j

1x1 + · · · + L j
m xm],

is also the determinant of a pencil L , namely, of the direct sum Li :=

L1
i ⊕ · · · ⊕ Lk

i on a single R
N with N = N1 + · · · + Nk . We have

det L = (det L1)(det L2) . . . (det Lk)

= p̌1 · · · p̌k .

(5) See Section 3 and Section 5 for a characterization of RZ polynomials

in terms of geometric and topological properties of their zero sets. The

topological characterization and related topological properties of RZ poly-

nomials (see Section 5.3) are essentially based on connectivity results of

Nuij [13].

PROOF: The proofs of properties (1) and (2) about products and factors follows

from the fact that the product w = w1 · · · wk of a set of numbers is 0 if and only if

one of the factors is 0.

To show property (3) we note that for monic pencils

p̌
( x

λ

)
=

1

λN
det[λI + L1x1 + · · · + Lm xm],

and all of the eigenvalues of the symmetric matrix L1x1 + · · · + Lm xm are real, so

we have that p̌ is RZ. Replacing the monic condition by the requirement that L0 be

PD is obvious. A partial extension to the case when L0 is merely PSD is provided

by Lemma 2.3 below.

For property (4), the proof is in the statement. �

We start the presentation of our main result with a key definition.

2.2 Algebraic Interiors and Their Degree

A closed set C in R
m is an algebraic interior if there is a polynomial p in m

variables such that C equals the closure of a connected component of

{x ∈ R
m : p(x) > 0}.

In other words, there is a polynomial p in m variables that vanishes on the boundary

of C and such that {x ∈ C : p(x) > 0} is connected with closure equal to C.

(Notice that in general p may vanish also at some points in the interior of C; for
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example, look at p(x1, x2) = x2
2 − x2

1(x1 − 1).) We denote the closure of the

connected component of x0 in {x ∈ R
m : p(x) > 0} by Cp(x0). We often assume

for normalization that 0 is in the interior of C and set Cp = Cp(0).

LEMMA 2.1 A polynomial p of the lowest degree for which C = Cp(x0) is unique

(up to multiplication by a positive constant), and any other polynomial q such that

C = Cq(x0) is given by q = ph where h is an arbitrary polynomial that is strictly

positive on a dense connected subset of C.

PROOF: We shall be using some properties of algebraic and semialgebraic sets

in R
m , so many readers may want to skip over it and go to our main results, which

are much more widely understandable; our reference is [4]. We notice first that

C is a semialgebraic set (since it is the closure of a connected component of a

semialgebraic set; see proposition 2.2.2 and theorem 2.4.5 in [4]). Therefore the

interior int C of C is also semialgebraic, and so is the boundary ∂C = C \ int C.

Notice also that C equals the closure of its interior.

We claim next that for each x ∈ ∂C, the local dimension dim ∂Cx equals m − 1.

On the one hand, we have

dim ∂Cx ≤ dim ∂C < dim int C = m;

here we have used propositions 2.8.13 and 2.8.4 in [4] and the fact that ∂C =

clos int C \ int C, since C equals the closure of its interior. On the other hand, let B

be an open ball in R
m around x ; then

B ∩ ∂C = B \ [(B ∩ (Rm \ C)) ∪ (B ∩ int C)].

Since C equals the closure of its interior, every point of ∂C is an accumulation point

of both R
m \ C and int C; therefore B ∩ (Rm \ C) and B ∩ int C are disjoint, open,

nonempty semialgebraic subsets of B. Using [4, lemma 4.5.2], we conclude that

dim B ∩ ∂C ≥ m − 1; hence dim ∂Cx ≥ m − 1.

Let now V be the Zariski closure of ∂C, and let V = V1 ∪ · · · ∪ Vk be the

decomposition of V into irreducible components. We claim that dim Vi = m − 1

for each i . Assume by contradiction that V1, . . . , Vl have dimension m − 1 while

Vl+1, . . . , Vk have smaller dimension. Then there exists x ∈ ∂C such that x 	∈

V1, . . . , Vl , and consequently there exists an open ball B in R
m around x such that

B ∩ ∂C = (B ∩ ∂C ∩ Vl+1) ∪ · · · ∪ (B ∩ ∂C ∩ Vk).

By assumption each set in the union on the right-hand side has dimension smaller

than m −1; hence it follows (by [4, proposition 2.8.5, I]) that dim B ∩∂C < m −1,

a contradiction with dim ∂Cx = m − 1.

Suppose now that p is a polynomial of the lowest degree with C = Cp(x0).

Lowest degree implies that p can have no multiple irreducible factors, i.e., p =

p1 · · · ps , where p1, . . . , ps are distinct, irreducible polynomials; we may assume

without loss of generality that every pi is nonnegative on C. Since p vanishes on

∂C, it also vanishes on V = V1 ∪ · · · ∪ Vk . We claim that for every Vi there exists a
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pj so that pj vanishes on Vi ; otherwise, Z(pj )∩Vi is a proper algebraic subset of Vi

for every j = 1, . . . , s; therefore (since Vi is irreducible) dimZ(pj )∩ Vi < dim Vi

for every j and thus also dimZ(p)∩ Vi < dim Vi , a contradiction since p vanishes

on Vi . If pj vanishes on Vi , it follows (since pj is irreducible and dim Vi = m −

1) that Z(pj ) = Vi . The fact that p is a polynomial of the lowest degree with

C = Cp(x0) implies now (after possibly renumbering the irreducible factors of

p) that p = p1 · · · pk where Z(pi ) = Vi for every i . Since dim Vi = m − 1

it follows from the real Nullstellensatz for principal ideals [4, theorem 4.5.1] that

the irreducible polynomials pi are uniquely determined (up to multiplication by a

positive constant); hence so is their product p. This proves the uniqueness of p.

The rest of the lemma now follows easily. If C = Cq(x0), then the polynomial q

vanishes on ∂C, hence also on V = V1 ∪ · · · ∪ Vk . Since q vanishes on Z(pi ) = Vi

and dim Vi = m − 1, the real Nullstellensatz for principal ideals implies that q is

divisible by pi . This holds for every i ; hence q is divisible by p = p1 · · · pk , i.e.,

q = ph. It is obvious that h must be strictly positive on a dense connected subset

of C. �

We refer to p as a minimal defining polynomial for C and say that C is an

algebraic interior of degree d, where d = deg p.

We note in passing (compare to the proof of Lemma 2.1 above) that a con-

nected semialgebraic set that equals the closure of its interior is not necessarily an

algebraic interior; for example, look at the set of all points in R
2 to the left of the

unbounded branch of the curve x2
2 − x1(x1 + 1)(x1 + 2) = 0.

2.3 Main Theorem on LMI Representations: Algebraic Version

THEOREM 2.2 If a set C in R
m, with 0 in the interior of C, has an LMI representa-

tion, then it is a convex algebraic interior, and the minimal defining polynomial p

for C satisfies the RZ condition (with p(0) > 0).

Conversely, when m = 2, if p is an RZ polynomial of degree d and p(0) > 0,

then Cp has a monic LMI representation with d × d matrices.

The idea behind our organization of the proof is to do the informative elemen-

tary arguments first, then a geometric interpretation in Section 3 (readers less inter-

ested in proofs might go there next), and then some examples. Finally, in a separate

section we do the converse side, which refers heavily to [17] and shows that an RZ

polynomial p in two variables has a positive determinantal representation.

Proof That RZ Is Necessary

We are given a pencil L that represents C, C = CL ; since 0 ∈ C we have L0

is PSD. Lemma 2.3 below reduces general pencils with L0 a PSD matrix to monic

pencils, so we assume that L is a monic pencil. Define a polynomial p̌ by

(2.3) p̌(x) := det[I + L1x1 + · · · + Lm xm]
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and note that property (3) of RZ polynomials says that p̌ satisfies RZ. Now we

show that C p̌ equals CL (equals C). If x(t), t ∈ [0, 1], is any continuous path

in R
m with x(0) = 0 and p̌(x(t)) > 0 for all t , then L(x(t)) is a continuous

path in real symmetric matrices with L(x(0)) = I and det L(x(t)) > 0 for all

t ; hence L(x(1)) is necessarily PD. It follows that the connected component of 0

in {x ∈ R
m : p̌(x) > 0} is contained in CL and therefore C p̌ is contained in CL .

Conversely, x ∈ CL implies I + µ[L1x1 + · · · + Lm xn] is PD for 0 ≤ µ < 1, so

p̌(µx) > 0 for 0 ≤ µ < 1 and therefore necessarily x ∈ C p̌.

We conclude that C = C p̌ is a convex algebraic interior. If p is the minimal

defining polynomial for C, then p is a factor of p̌. By property (2) for RZ polyno-

mials the polynomial p is itself RZ.

Notice that the same argument as above shows that for a monic pencil L the

interior of C = CL is exactly {x : I + x1L1 + · · · xm Lm is PD}, and therefore

the polynomial p̌—and thus also the minimal defining polynomial p—is strictly

positive on the interior of C.

Reduction to Monic Pencils

We reduce the pencil representation problem to one involving monic pencils as

promised.

LEMMA 2.3 If C contains 0 in its interior and if there is a pencil L such that

C = C
L,

then there is a monic pencil L̂ such that

C = C
L̂ .

PROOF: Given C and L , since 0 ∈ C we have 0 ∈ CL , or equivalently, L0 is

PSD. We need, however, to take L0 invertible. Since 0 is in the interior of C ⊂ R
m ,

it is also in the interior of C L , so we have

L0 ≥ ±ε1L1, . . . , L0 ≥ ±εm Lm

for small enough ε1 through εm . Set Y = range L0 ⊂ R
N , and set

L̃ j := L j

∣∣
Y
, j = 0, 1, . . . , m.

Clearly L̃0 : Y → Y is invertible and indeed PD. We next show that range L0

contains range L1. If x ⊥ range L0, i.e., L0x = 0, then 0 = xTL0x ≥ ± ε1xTL1x

and hence xTL1x = 0. Since L0 + ε1L1 ≥ 0 and xT(L0 + ε1L1)x = 0, it follows

that (L0 + ε1L1)x = 0, and since L0x = 0, we finally conclude that L1x = 0, i.e.,

x ⊥ range L1.

Likewise, range L0 contains the ranges of L2, . . . , Lm . Consequently, L̃ j :

Y → Y are all symmetric and CL = C L̃ .

To build L̂ , factor L̃0 = BT B with B invertible and set

L̂ j := B−T L̃ j B−1, j = 0, . . . , m.
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The resulting pencil L̂ is monic and C L̂ = C L̃ = CL . �

2.4 Shifted Real Zero Condition

The assumption that 0i is in C is just a normalization, which is justified since

we can shift R
m by x0 and obtain a shifted polynomial

p̃(x) := p(x + x0)

with Cp(x0) − x0 = C p̃(0). Then the RZ condition on p̃ shifts back to the RZx0

condition on p at x0. Namely, for each x ∈ R
m

(RZx0
) p(µx + x0) = 0 implies µ is real.

An obvious consequence of our main theorem is the following:

COROLLARY 2.4 If a set C in R
m, with x0 in the interior of C, has an LMI represen-

tation, then it is a convex algebraic interior and the minimal defining polynomial

p for C satisfies the RZx0 condition.

Conversely, when m = 2, if p is polynomial of degree d satisfying RZx0 and

p(x0) > 0, then Cp(x0) has an LMI representation with d × d matrices.

Remark 2.5. For m = 2, “going through” LMI representations, i.e., invoking the

second assertion of Corollary 2.4 followed by the first assertion, we conclude that

If the polynomial p satisfies RZx̃0 for some point x̃0 and p(x̃0)>0,

then p satisfies RZx0 for every interior point x0 of Cp(x̃0).

This statement holds in any dimension m and can be proved, without any reference

to LMI representations, using the alternative topological characterization of RZ

polynomials; see Section 5.3.

PROOF OF COROLLARY 2.4: Assume that a set C in R
m , with x0 in the interior

of C, has a pencil representation L , C = CL . Shift L by x0 to obtain a pencil L̃ , that

is,

L̃0 + L̃1x1 + · · · + L̃m xm = L0 + L1(x1 + x0
1) + · · · + Lm(xm + x0

m).

Then CL − x0 = C L̃ , i.e., L̃ is a pencil representation of the set C̃ = C − x0, with

0 in the interior of C̃. By Lemma 2.3 we may assume that L̃ is a monic pencil.

The determinant ˇ̃p of L̃ satisfies the RZ0 property. Thus the minimal defining

polynomial p̃ of C̃, which is the shift of the minimal defining polynomial p of C

and is contained in the RZ0 polynomial ˇ̃p as a factor, satisfies RZ0. Shift 0 back to

x0 to get that p satisfies RZx0 .

The proof of the second assertion, for m = 2, proceeds analogously. �

Notice that rather than saying that the shifted pencil L̃ is monic, we can say a

little more generally that L̃0 is PD. This is equivalent to saying that L0 + x0
1 L1 +

· · · + x0
m Lm is PD, and then, by the remark at the end of Section 2.3, the interior of

C = CL is exactly {x : L0 + x1L1 + · · · xm Lm is PD}.
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3 Geometrical Viewpoint and Examples of Sets

with No LMI Representation

In this section we give a geometric characterization of sets C with an LMI rep-

resentation, which is equivalent to Theorem 2.2.

3.1 Rigid Convexity

An algebraic interior C of degree d in R
m with minimal defining polynomial p

will be called rigidly convex provided for every point x0 in the interior of C and

a generic line � through x0, � intersects the (affine) real algebraic hypersurface

p(x) = 0 in exactly d points.1 We soon show that rigid convexity of Cp is the

same as p having the (shifted) RZ property, and as a consequence we obtain the

following geometric version of our main theorem.

THEOREM 3.1 If C is a closed, convex set in R
m with an LMI representation, then

C is rigidly convex. When m = 2, the converse is true; namely, a rigidly convex

degree d set has an LMI representation with symmetric matrices L j ∈ R
d×d .

PROOF: The theorem follows from Theorem 2.2 (more precisely, its shifted

version Corollary 2.4) provided we can show that an algebraic interior C with

minimal defining polynomial p is rigidly convex if and only if p satisfies the shifted

RZ condition. We now set about to prove this equivalence.

Let � := {x ∈ R
m : x = µv + x0, µ ∈ R}, v ∈ R

m , be a parametrization of a

line through x0 in the interior of C. The points of intersection of the real algebraic

hypersurface p(x) = 0 with the line � are parametrized by exactly those µ ∈ R at

which

f (µ) := p(µv + x0) = 0,

and rigid convexity of Cp says that (for a generic �) there are exactly d such distinct

µ. However, the degree of p is d, so for a generic direction v ∈ R
m , the degree

of the polynomial f equals d (the exceptional directions are given by pd(v) = 0,

where pd is the sum of degree d terms in p). Thus these f , by the fundamental

theorem of algebra, have exactly d zeroes µ ∈ C, counting multiplicities. Fur-

thermore, for a generic direction v, all the zeroes are simple: multiple zeroes cor-

respond to common zeroes of f and f ′ =
∑m

i=1 vi
∂p

∂xi
, that is, to lines � which

pass through a point of intersection of algebraic hypersurfaces p(x) = 0 and∑m
i=1 vi

∂p

∂xi
(x) = 0. However, since p is irreducible and deg

∑m
i=1 vi

∂p

∂xi
< deg p,

this intersection is a proper algebraic subvariety of p(x) = 0 and hence of dimen-

sion at most m − 2. (This argument applies to both real and complex zeroes by

1 Generic means that the exceptional lines are contained in a proper algebraic subvariety (in

P
m−1(R)); when m = 2 this simply means all but a finite number of lines. One can re-

place here “generic line” by “every line” if one takes multiplicities into account when count-

ing the number of intersections, and also counts the intersections at infinity, i.e., replaces the

affine real algebraic hypersurface p(x1, . . . , xm) = 0 by the projective real algebraic hypersurface

Xd
0

p(X1/X0, . . . , Xm/X0) = 0.
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considering real algebraic hypersurfaces and their complexifications, respectively.)

Thus rigid convexity says precisely that all zeroes of f are at real µ for f arising

from a generic v.

To obtain that this is equivalent to the RZx0 property for p, we give an ele-

mentary continuity argument that implies that all f have only real zeroes. Pick an

exceptional direction v (which might make f have degree less than d): if fn is a

sequence of polynomials of degree d in one variable with real coefficients such that

every fn has only real zeroes, and if the polynomials fn converge coefficientwise to

a polynomial f (of degree less than or equal to d), then f has only real zeroes. �

Notice that it follows from Theorem 3.1 that for m = 2 a rigidly convex set is in

fact convex, and (as in the remark following Corollary 2.4), it is enough to require

the defining property of rigid convexity to hold for lines through a single point of

C. Again, this holds for any dimension m and can be proved directly using the

alternative topological characterization of RZ polynomials—see Section 5.3. We

also indicate there a strong stability property of rigidly convex algebraic interiors

and speculate about this stability being characteristic of rigid convexity.

3.2 Examples

Example 1

The polynomial

p(x1, x2) = x3
1 − 3x2

2 x1 − (x2
1 + x2

2)
2

has the zero set shown in Figure 3.1.

The complement to p = 0 in R
2 consists of four components, three bounded

convex components where p > 0 and an unbounded component where p < 0. Let

us analyze one of the bounded components, say the one in the right half-plane; C

is the closure of

{x : p(x) > 0, x1 > 0}.

Does C have an LMI representation? To check this, fix a point O inside C, e.g.,

O = (0.7, 0).

By Theorem 3.1 almost every line l thru (0, 0.7) (as in Figure 3.1) must intersect

p = 0 in four real points or the RZO condition is violated. We can see from the

picture in R
2 that there is a continuum of real lines � through (0, 0.7) intersecting

p = 0 in exactly two real points. Thus by Theorem 3.1 the set C does not have an

LMI representation. (Since p is irreducible, it is the minimal defining polynomial

for C.)

Example 2

Consider the polynomial

p(x1, x2) = 1 − x4
1 − x4

2

Clearly, Cp := {x : p(x) ≥ 0} has degree 4 but all lines in R
2 through it intersect

the set p = 0 in exactly two places. Thus Cp is not rigidly convex.
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FIGURE 3.1. p = x3
1 − 3x2

2 x1 − (x2
1 + x2

2)2 with a line through O =

(0.7, 0) hitting Zp in only two points.
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FIGURE 3.2. p(x1, x2) = 1 − x4
1 − x4

2 .

4 Proof of the Converse Side of Theorem 2.2

The proof is an adaptation of the results of [17].

Theorem 6.1 of [17] (see also [8]) says that any irreducible polynomial p on

R
2 such that the projective closure of p(x1, x2) = 0 is a smooth projective plane

curve satisfying (RZ) (with p(0) > 0) admits a representation (2.1) with L0, L1,

and L2 complex hermitian matrices on C
d , d = deg p, where L0 is PD. To obtain

the positive determinantal representation underlying Theorem 2.2, we need this to

hold generally (not just for smooth irreducible curves), and we must also obtain

L0, L1, and L2, which are real symmetric.

The possibility to take L0, L1, and L2 real symmetric follows from the argu-

ments given in the last four paragraphs of the introduction of [17, p. 456]. The

irreducibility assumption on p is irrelevant here, since we may consider one ir-

reducible factor of p at a time (and then form a direct sum of the corresponding
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determinantal representations (2.1)). The smoothness assumption can be removed

by considering maximal determinantal representations as in [2, 3].

This proof might lend itself to construction of the pencil L via a construction of

a basis for a linear system (or a Riemann-Roch space) on a plane algebraic curve.

Since the proof above is actually an outline that leaves much for the reader to fill

in, we present an alternative direct proof based on the results of [3, sec. 5]. As be-

fore, we may assume without loss of generality that p is an irreducible polynomial;

we consider the complex affine algebraic curve {(x1, x2) ∈ C
2 : p(x1, x2) = 0},

take its projective closure in the complex projective plane P
2(C), and let M be

the desingularizing Riemann surface. M is a compact real Riemann surface, i.e.,

a compact Riemann surface equipped with an antiholomorphic involution induced

by (x1, x2) �→ (x̄1, x̄2). The set MR of real points of M is by definition the set of

fixed points of the antiholomorphic involution, and x1 and x2 are real meromorphic

functions on M , i.e., meromorphic functions taking real values at real points. Fur-

thermore, it follows from the RZ condition that the real meromorphic function x2

x1

on M takes real values at real points only. It follows that M is a compact real Rie-

mann surface of dividing type; i.e., M\MR consists of two connected components.

We denote by M+ and M− the components where � x2

x1
> 0 and � x2

x1
< 0, respec-

tively. We orient MR so that MR = ∂ M+; then the real meromorphic differential

−d
x1

x2

=
x1 dx2 − x2 dx1

x2
2

is everywhere nonnegative on MR.

Since both the assumptions and the conclusions of the theorem are invariant

under a linear change of coordinates x1 and x2, we may assume without loss of

generality that p(0, µ) = 0 has d distinct real roots c1, . . . , cd ; they correspond to

d nonsingular points (0, c1), . . . , (0, cd) on the affine algebraic curve p(x1, x2) = 0,

and we denote by q1, . . . , qd the corresponding points on M . We may now write

down explicit formulae for the d × d matrices L0, L1, and L2:

L0 = Id,(4.1)

[L1]i j =




i = j :

dx2

dx1
(qi )

ci

i 	= j :

(
1

ci

−
1

cj

)
θ
[

a

b

]
(φ(qj ) − φ(qi ))

θ
[

a

b

]
(0)E(qj , qi )

1√
d x1

x2
(qi )

√
d x1

x2
(qj )

,
(4.2)

L2 = diag

(
−

1

c1

, . . . ,−
1

cd

)
.(4.3)

Here θ
[

a

b

]
(·) is the theta function with characteristics associated to the Jacobian

variety of M , φ is the Abel-Jacobi map from M into the Jacobian variety, and

E( · , · ) is the prime form on M ; for details see [17, sec. 2] or [3, sec. 4]. Fur-

thermore, we choose a symmetric homology basis on M as in [17, sec. 2] with a
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resulting period matrix �, and b + �a ∈ C
g is a half period in the Jacobian with

a1, . . . , ag+1−k = 1 and bg+2−k, . . . , bg = 0 (g is the genus of M and k is the

number of connected components of MR).

The fact that det(L0+x1L1+x2L2) = p(x1, x2) (up to a constant positive factor)

is exactly [3, theorem 5.1] (with a pair of meromorphic functions λ1 = 1/x1 and

λ2 = x2/x1 on M and −x1/x2 as a local parameter at the poles of λ1 and λ2 [zeroes

of x1]). The fact that L1 is a real symmetric matrix follows immediately from the

standard properties of theta functions and [17, prop. 2.3]. Notice that b + �a ∈ T0

hence θ
[

a

b

]
(0) 	= 0; see [17, theorem 3.1 and cor. 4.3].

5 Topological Characterization of RZ Polynomials

This section gives an equivalent topological characterization of zero sets of

RZ polynomials. First we show that RZ polynomials of degree d for which the

sets of real zeros are compact are exactly those whose zero sets consist of a nest

of d/2 “ovaloids” (having compact zero set implies d even). A result of similar

definitiveness holds when real zero sets are not compact, but it requires projective

space to neatly account for the effects of the zero set passing through infinity. Thus

we describe the general case only after describing p with compact real zero set

despite generating a little redundancy. Then we give some related properties of RZ

polynomials.

5.1 RZ Polynomials Whose Sets of Real Zeroes Are Compact

We first define carefully what is meant by an “ovaloid” in R
m , and later give an

analogous definition in projective space; see, for example, [18]. We call W ⊂ R
m

an ovaloid in R
m if W is isotopic in R

m to a sphere S ⊂ R
m ; i.e., there is a

homeomorphism F of R
m with F(S) = W , and furthermore F is homotopic to the

identity (i.e., there is a homeomorphism H of [0, 1]×R
m such that Ht = H |{t}×Rm

is a homeomorphism of R
m for every t , H0 = IdRm , and H1 = F). Notice that

R
m \ S consists of two connected components only one of which is contractible;

hence the same is true of R
m \ W ; we call the contractible component the interior

of the ovaloid W , and the noncontractible component the exterior.

The following is a consequence of Theorem 5.2 below:

COROLLARY 5.1 Let p be a polynomial whose set V of real zeros is compact (then

the degree d of p must be even, d = 2k) and which defines a smooth (affine) real

algebraic hypersurface; i.e., p has no critical points on V . Then p satisfies RZx0

with p(x0) 	= 0 if and only if V is a disjoint union of k ovaloids W1, . . . , Wk in

R
m, with Wi contained in the interior of Wi+1, i = 1, . . . , k − 1, and x0 lying in

the interior of W1. Furthermore, in this case every line L through x0 intersects V

in d distinct points.

The corollary misses being as strong as possible and in fact being sharp because

of the requirement that ovaloids be disjoint. Intuitively, if the real zero set of an
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W1
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x1

FIGURE 5.1. p(x1, x2) = (x2
1 + x2

2)(x2
1 + x2

2 + 12x1 − 1) + 36x2
1 ≥ 0.

RZ polynomial is a compact singular (nonsmooth) hypersurface, then it consists

of nested ovaloids that touch at the singular points as in Figure 5.1. Notice that it

follows from property (1) in Section 5.3 below that any RZ polynomial of degree

d = 2k with a compact real zero set is the limit of RZ polynomials of degree d

with compact real zero sets and which define smooth real algebraic hypersurfaces

(that is, the zero sets are disjoint unions of k nested ovaloids).

5.2 RZ Polynomials with a Noncompact Set of Real Zeroes

We shall need to consider the behavior of the polynomial at infinity, so we

introduce the homogenization P of p,

P(X0, X1, . . . , Xm) = Xd
0 p(X1/X0, . . . , Xm/X0),

where d = deg p. Notice that P is not divisible by X0, and that conversely given

any homogeneous polynomial P of degree d in m +1 variables that is not divisible

by X0, we may recover a polynomial p of degree d in m variables so that P is the

homogenization of p by

p(x1, . . . , xm) = P(1, x1, . . . , xm).

We identify as usual the m-dimensional real projective space P
m(R) with the union

of R
m and the hyperplane at infinity X0 = 0, so that the affine coordinates x and

the projective coordinates X are related by x1 = X1/X0, . . . , xm = Xm/X0; the

projective real algebraic hypersurface P(X) = 0 in P
m(R) is called the projective

closure of the affine real algebraic hypersurface p(x) = 0 in R
m . We shall say

that p defines a smooth projective real algebraic hypersurface if P has no critical

points on P(X) = 0. We shall often abuse the notation and denote a point in P
m(R)

and a (m + 1)–tuple of its projective coordinates by the same letter.

We call W ⊂ P
m(R) an ovaloid if W is isotopic in P

m(R) to a sphere S ⊂

R
m ⊂ P

m(R); i.e., there is a homeomorphism F of P
m(R) with F(S) = W , and

furthermore F is homotopic to the identity (i.e., there is a homeomorphism H of

[0, 1] × P
m(R) such that Ht = H |{t}×Pm(R) is a homeomorphism of P

m(R) for

every t , H0 = IdPm (R), and H1 = F). Notice that P
m(R) \ S consists of two

connected components, only one of which is contractible; hence the same is true
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of P
m(R) \ W ; we call the contractible component the interior of the ovaloid W ,

and the noncontractible component the exterior.

We call W ⊂ P
m(R) a pseudohyperplane if W is isotopic in P

m(R) to a (pro-

jective) hyperplane H ⊂ P
m(R).

THEOREM 5.2 Let p be a polynomial of degree d in m variables that defines a

smooth projective real algebraic hypersurface V in P
m(R). Then p satisfies RZx0

with p(x0) 	= 0 if and only if

(i) if d = 2k is even, V is a disjoint union of k ovaloids W1, . . . , Wk, with Wi

contained in the interior of Wi+1, i = 1, . . . , k − 1, and x0 lying in the

interior of W1;

(ii) if d = 2k + 1 is odd, V is a disjoint union of k ovaloids W1, . . . , Wk, with

Wi contained in the interior of Wi+1, i = 1, . . . , k − 1, and x0 lying in the

interior of W1, and a pseudohyperplane Wk+1 contained in the exterior of

Wk.

Furthermore, in this case every (projective) line L through x0 intersects V in d

distinct points.

The proof appears in Section 7.

5.3 Topological Properties of RZ Polynomials

We list now some properties of RZ polynomials, mostly of a topological nature,

which are closely related to Theorem 5.2.

(1) If two polynomials p0 and p1 of degree d in m variables satisfy RZ and

p0(0), p1(0) > 0, then there is a continuous path through RZ polynomials of de-

gree d in m variables from p0 to p1 with each polynomial p in the path satisfying

p(0) > 0. Furthermore, we may assume that except for possibly the endpoints p0

and p1, the polynomial p defines a smooth projective real algebraic hypersurface.

(2) If the polynomial p satisfies RZx̃0 for some point x̃0 and p(x̃0) > 0, then

p satisfies RZx0 for every interior point x0 of Cp(x̃0).

(3) If p is a RZ polynomial with p(0) > 0, then the algebraic interior Cp is

convex (so a rigidly convex algebraic interior is in fact convex).

(4) Suppose that there is a continuous path through polynomials of degree d

in m variables from a polynomial p0 to a polynomial p1 such that each polyno-

mial p in the path (including p0 and p1) defines a smooth projective real algebraic

hypersurface and p(0) > 0. Then if p0 is a RZ polynomial, so is p1.

(5) Suppose that there is a continuous path through polynomials of degree d

in m variables from a polynomial p0 to a polynomial p1 such that each polynomial

p in the path (including p0 and p1) defines a smooth projective real algebraic hy-

persurface. Assume that p0 satisfies RZx0 for some point x0 and p(x0) > 0; then

p1 satisfies RZx1 for some point x1 and p(x1) > 0.

The proof appears in Section 7.
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6 Generalizations

We now discuss several conjectures that extend the results proved in this paper.

6.1 m > 2

It is a natural question to which extent the converse side of our main results,

Theorem 2.2 and Theorem 3.1, extend to dimension m > 2. A simple count of

parameters shows that given a polynomial p(x1, . . . , xm) in m > 2 variables, in

general there do not exist d × d matrices L0, . . . , Lm such that p(x) = det(L0 +

x1L1+· · ·+xm Lm) (here the polynomial has complex coefficients and the matrices

are likewise complex). Thus we cannot expect a rigidly convex degree d set in R
m ,

m > 2, to admit an LMI representation with d × d symmetric matrices. However,

the count of parameters does not preclude the existence of a pencil representation

with matrices of a size larger than the degree. In fact, we conjecture the following:

A convex set C in R
m has an LMI representation if and only if it is

rigidly convex.

This follows if

every RZ polynomial has a positive determinantal representation,

which we conjecture to be true.

6.2 LMI Lifts

Another practically important question (in the spirit of Nesterov and Nimmerov-

ski [12]) is the following:

Find a test which insures that a convex set C in R
m lifts to some

LMI representable set C̃ in a possibly bigger space R
m+k . That

is, find necessary and sufficient properties on a given set C in R
m

which insure that there exists an LMI representable set C̃ in R
m+k

whose projection onto R
m equals the set C.

No a priori restriction on such a C is apparent, either from theoretical consid-

erations or from numerical experiments (done informally by Pablo Parrilo). Of

course, C has to be a semialgebraic set with a connected interior, which is equal to

the closure of its interior. It is not clear whether C should be an algebraic interior

as we defined it.

6.3 Convexity under Deformation Is Ephemeral

Properties (4) and (5) in Section 5.3 imply that the convexity of a rigidly con-

vex algebraic interior C is stable under deformation of the minimal defining poly-

nomial p as long as the projective real algebraic hypersurface defined by p (the

projective closure in P
m(R) of the Zariski closure of ∂C in R

m) remains smooth.

We conjecture that this property characterizes rigidly convex algebraic interiors;

more precisely, we make the following conjecture:
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Let C0 = Cp0
be a convex algebraic interior of degree d in R

m

that is not rigidly convex and such that the polynomial p0 defines

a smooth projective real algebraic hypersurface. Then there exists

a continuous path through polynomials of degree d in m variables

from a polynomial p0 to a polynomial p1 such that each polyno-

mial p in the path defines a smooth projective real algebraic hyper-

surface and p(0) > 0, and the algebraic interior Cp1
is not convex.

For more information about various connected components of the set of poly-

nomials of degree d in m variables that define a smooth projective real algebraic

hypersurface, see [18].

7 Appendix: Proofs of Topological Properties

We first establish property (1) of Section 5.3 and use it to prove Theorem 5.2.

Then we establish properties (2) through (5).

PROOF OF PROPERTY (1): This crucial arcwise connectivity property follows

from the results of Nuij [13] on hyperbolic polynomials. Recall that a homoge-

neous polynomial P in m + 1 variables is said to be hyperbolic with respect to

X0 = (X0
0, X0

1, . . . , X0
m) ∈ R

m+1 if P(X0) 	= 0 and for each X ∈ R
m+1 all the

zeroes λ of P(X + λX0) are real. It is called strictly hyperbolic if all the zeroes

are furthermore simple for each X ∈ R
m+1 (not a multiple of X0), and it is called

normalized if P(X0) = 1.

It is immediate that a polynomial p in m variables satisfies RZx0 and p(x0) 	= 0

for x0 = (x0
1 , . . . , x0

m) if and only if its homogenization P is hyperbolic with re-

spect to X0 = (1, x0
1 , . . . , x0

m). Notice that if P is strictly hyperbolic, then neces-

sarily p defines a smooth projective real algebraic hypersurface V .2 For (as in the

proof of Theorem 3.1) the zeroes of P(X + λX0) correspond to intersections of

the line through X and X0 with V ; if X were a singular point of V , the intersection

multiplicity at X of any line through X with V would be greater than 1 and the

corresponding zero of P(X + λX0) could not be simple.

Property (1) now follows from the following results of [13] (where the polyno-

mials are of degree d and are hyperbolic with respect to a fixed X0):

(i) the set of strictly hyperbolic homogeneous polynomials is open,

(ii) every hyperbolic homogeneous polynomial is the endpoint of an open con-

tinuous path of strictly hyperbolic homogeneous polynomials, and

(iii) the set of normalized strictly hyperbolic homogeneous polynomials is arc-

wise connected.

Notice that since X0 = (1, x0
1 , . . . , x0

m), homogeneous polynomials that are divisi-

ble by X0 form an affine subspace of codimension at least 2 in the affine space of

homogeneous polynomials P with P(X0) = 1; so the set of normalized strictly

2 It will follow from Theorem 5.2 that the converse is also true—if p defines a smooth projective

real algebraic hypersurface V , then P is strictly hyperbolic.
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hyperbolic homogeneous polynomials that are not divisible by X0 is still arcwise

connected. �

PROOF OF THEOREM 5.2, FIRST DIRECTION: Assume that p0 is a RZ polyno-

mial of degree d in m variables with p0(0) > 0 that defines a smooth projective

real algebraic hypersurface V0 in P
m(R). Let

p1(x1, . . . , xm) = (r2
1 − x2

1 − · · · − x2
m) · · · (r2

k − x2
1 − · · · − x2

m)

if d = 2k is even and

p1(x1, . . . , xm) = (r2
1 − x2

1 − · · · − x2
m) · · · (r2

k − x2
1 − · · · − x2

m)(rk+1 − x1)

if d = 2k + 1 is odd for some 0 < r1 < · · · < rk < rk+1. By property (1),

there exists a continuous path {pt}0≤t≤1 from p0 to p1 through RZ polynomials of

degree d in m variables such that pt(0) > 0 and pt defines a smooth projective real

algebraic hypersurface Vt in P
m(R) for each t . It follows from the Thom isotopy

theorem (see [4, theorem 14.1.1] or [1, theorem 20.2]) that there exists a homeo-

morphism H of [0, 1] × P
m(R) such that Ht = H |{t}×Pm(R) is a homeomorphism

of P
m(R) for every t , H0 = IdPm (R), and Ht(V0) = Vt . Therefore V0 is isotopic to

V1, and V1 by construction is a disjoint union of k nested ovaloids if d = 2k and a

disjoint union of k nested ovaloids and a pseudohyperplane if d = 2k + 1. Thus so

is V0, as is required.

It remains only to show that 0 is contained in the interior of the innermost

ovaloid. Let xt = H−1
t (0); since pt(0) > 0 for all t , 0 	∈ Vt and hence xt 	∈ V0.

Thus xt is a continuous path in P
m(R) \ V0. Since 0 obviously belongs to the

interior of the innermost sphere in V1, it follows that x1 belongs to the interior of

the innermost ovaloid in V0. Therefore so does x0 = 0. �

PROOF OF THEOREM 5.2, SECOND DIRECTION: Now let p be a polynomial

of degree d in m variables that defines a smooth projective real algebraic hyper-

surface V in P
m(R) that is a disjoint union of k nested ovaloids W1, . . . , Wk if

d = 2k and a disjoint union of k nested ovaloids W1, . . . , Wk and a pseudohyper-

plane Wk+1 if d = 2k + 1. Assume that X0 is in the interior of W1, and let L be a

(projective) line in P
m(R) through X0.

It is obvious that there exists a pseudohyperplane W contained in the exterior

of the outermost ovaloid Wk (just take the image of a hyperplane contained in the

exterior of a sphere S in P
m(R)). Since the Z/2 fundamental class of W coincides

with that of a hyperplane, it follows that the Z/2 intersection number of L and W

equals 1; hence L ∩ W 	= ∅. Let X ∈ L ∩ W ; in case d = 2k + 1 is odd, we take

W = Wk+1 and denote Xk+1 = X .

The points X0 and X decompose the projective line L into two closed intervals

L+ and L−. Each of L± is a continuous path between X0, which lies in the interior

of W1, and X , which lies in the exterior of Wk ; therefore L± intersects each of

W1, . . . , Wk in at least one point X1
±, . . . , Xk

±. Adding to these Xk+1 in case d =

2k + 1 is odd, we obtain d distinct points of intersection of L with V ; since the
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defining polynomial p of V has degree d, L ∩ V can contain at most d points, so

we conclude that L ∩ V contains exactly d distinct points X1
±, . . . , Xk

± and (in case

d = 2k + 1 is odd) Xk+1. This completes the proof. Notice that it follows that on

L± we have the following picture: the interval [X0, X1
±) lies in the interior of W1,

the interval (X1
±, X2

±) lies in the interior of W2 intersected with the exterior of W1,

. . . , the interval (Xk−1
± , Xk

±) lies in the interior of Wk intersected with the exterior

of Wk−1, and the interval (Xk
±, X ] lies in the exterior of Wk . �

PROOF OF PROPERTY (2): By property (1), we may assume, using approxima-

tion, that the polynomial p defines a smooth projective real algebraic hypersurface.

The conclusion now follows immediately from Theorem 5.2. �

PROOF OF PROPERTY (3): We may assume, again, that the polynomial p de-

fines a smooth projective real algebraic hypersurface V in P
m(R). By Theorem 5.2,

V is a disjoint union of k nested ovaloids W1, . . . , Wk if d = 2k and a disjoint union

of k nested ovaloids W1, . . . , Wk and a pseudohyperplane Wk+1 if d = 2k + 1;

X0 = (1, 0, . . . , 0) (we are using here projective coordinates) lies in the interior I

of W1.

It is obvious that Cp is the closure of the connected component of X0 in I \ I ∩

H∞ where H∞ = {X0 = 0} is the hyperplane at infinity. We shall show that either

I ∩ H∞ = ∅, in which case I ⊂ R
m is convex, or I \ I ∩ H∞ consists of two

connected convex components in R
m .

Before proceeding, let us notice that there exists a hyperplane H in P
m(R) such

that H ∩ I = ∅. We may take H to be the (projectivized) tangent hyperplane to

V at a point Y 0 ∈ W1. If H contained a point Y in I, then by Theorem 5.2 the

line through Y and Y 0 would intersect V in d distinct points; but since this line is

contained in H , it has intersection multiplicity at least 2 with V at Y 0, so it cannot

intersect V in more than d − 1 distinct points.

Let now Y 1, Y 2 ∈ I \ I ∩ H∞. Let L be the projective line through Y 1 and Y 2,

and let X∞ = L ∩ H∞. The two points Y 1 and Y 2 decompose the projective line L

into two closed intervals; the line segment between Y 1 and Y 2 in R
m is the interval

that does not contain the point X∞. Notice that by the last sentence in the proof

of Theorem 5.2, exactly one of the two intervals is contained in I; let us denote it

by LI .

Assume that I ∩ H∞ = ∅. Then X∞ 	∈ I and therefore X∞ 	∈ LI . It follows

that LI is the line segment between Y 1 and Y 2 in R
m , and I ⊂ R

m is convex.

If I ∩ H∞ 	= ∅, let a0 X0 + a1 X1 + · · · + am Xm = 0 be a hyperplane in P
m(R)

that does not intersect I. Let I+ and I− be the nonempty open subsets of I\I∩H∞

where X0/(a0 X0+a1 X1+· · ·+am Xm) > 0 and X0/(a0 X0+a1 X1+· · ·+am Xm) <

0, respectively. We shall show that I+ and I− are convex subsets of R
m , thereby

completing the proof. It is enough to show that if the line segment between Y 1 and

Y 2 in R
m is not contained in I and say Y 1 ∈ I+, then necessarily Y 2 ∈ I−.
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Assume then that the line segment between Y 1 and Y 2 in R
m is not contained in

I. This means that this line segment is not LI , so X∞ ∈ LI . It is now immediate

that the function X0/(a0 X0+a1 X1+· · ·+am Xm) on LI changes its sign at X∞. �

PROOF OF PROPERTY (4): This follows immediately from the facts that a limit

of RZ polynomials is a RZ polynomial (see the last sentence in the proof of The-

orem 3.1), that a RZ polynomial p, p(0) > 0, defines a smooth projective real

algebraic hypersurface if and only if its homogenization P is strictly hyperbolic

(with respect to X0 = (1, 0, . . . , 0)), and that the set of strictly hyperbolic homo-

geneous polynomials is open [13]. �

(We could also prove property (4) by using Theorem 5.2 and an isotopy argu-

ment, like the proof of property (5) below.)

PROOF OF PROPERTY (5): By the Thom isotopy theorem, smooth projective

real algebraic hypersurfaces V0 and V1 in P
m(R) defined by the polynomials p0

and p1, respectively, are isotopic; the result now follows from Theorem 5.2. �

8 Remarks on the History of the Proof of the Lax Conjecture

In 1958 Peter Lax conjectured that a homogeneous polynomial P with real

coefficients of degree d in three variables x0, x1, and x2 is (normalized) hyperbolic

(see Section 7) with respect to (c0, c1, c2) ∈ R
3 if and only if it can be written as a

determinant

P(x0, x1, x2) = det(x0 A0 + x1 A1 + x2 A2)

where A0, A1, and A2 are d×d real symmetric matrices with c0 A0+c1 A1+c2 A2 =

I . This was recently established by Lewis, Parrilo, and Ramana [11] based on the

positive determinantal representation underlying Theorem 2.2.

The study of representations of a polynomial as a determinant of a matrix of lin-

ear forms has a long history; see, e.g., Dixon [7], Wall [19], and Cook and Thomas

[6]. Dubrovin in [8, theorems 6.3 and 6.4] proved under an additional smooth-

ness assumption the existence of a determinantal representation of the above form

with complex hermitian (rather than real symmetric) matrices. He treated an (ir-

reducible) homogeneous polynomial p for which the corresponding (irreducible)

complex projective plane algebraic curve is smooth, i.e., has no singular points.

This result also follows from the later work of Vinnikov [17, theorem 6.1], which

gave a complete description of these determinantal representations in terms of a

certain real torus in the Jacobian variety of the curve. [17] also contains some

results on determinantal representations with real symmetric Aj .

Theorem 2.2 removes the smoothness assumptions and passes from complex

hermitian matrices to real symmetric ones. This is essential for proving the Lax

conjecture as well as for the description of convex sets with an LMI representation.

As already noted, our conjecture in Section 6.1 is a natural modification of the Lax

conjecture to homogeneous hyperbolic polynomials in more than three variables

(see also [11]).
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