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Linear mixed-effects models (LMMs) are increasingly being used for data analysis in

cognitive neuroscience and experimental psychology, where within-participant designs

are common. The current article provides an introductory review of the use of LMMs

for within-participant data analysis and describes a free, simple, graphical user interface

(LMMgui). LMMgui uses the package lme4 (Bates et al., 2014a,b) in the statistical

environment R (R Core Team).
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Linear mixed-effects models (LMMs) provide a versatile
approach to data analysis and have been shown to be very useful
in a several branches of neuroscience (Gueorguieva and Krystal,
2004; Kristensen and Hansen, 2004; Quené and van den Bergh,
2004; Baayen et al., 2008; Lazic, 2010; Judd et al., 2012; Aarts
et al., 2014). The current article briefly reviews the use of LMMs
for within-participant studies typical in in experimental psychol-
ogy, before describing a free, graphical user interface (LMMgui;
http://doi.org/10.25592/lmmgui) to carry out LMM analyses.

WHY WOULD ONE USE LMMs TO ANALYSE

WITHIN-PARTICIPANT DATA?

Let us consider a hypothetical experiment where a researcher is
interested in how quickly human listeners can detect a telephone
ringing in the presence of concurrent speech. The response vari-
able collected is the average reaction time (RT), and at first, only
one explanatory variable is available: language. Measurements
of RT are available for concurrent speech in French, German,
and English, and thus language can be described as a categori-
cal factor with three levels. RTs may have been measured from
three different groups of monolingual listeners. Importantly, each
measurement would be from a different listener. Such data is
grouped by listener and by language, and since each listener can
only belong to one language group, the grouping factors of lis-
tener and language are said to be nested. In this case, language
can also be described as a “between-participants” factor, and
the data may be analyzed with a standard analysis of variance
(ANOVA). This method assumes that the response variable comes

from a normally distributed population and shows homogeneity
of variance.

Now it may be that the measurements were obtained in a
very different manner. If the measurements came from a sin-
gle group of multilingual listeners who all performed the task in
each language, then language would be described as a “within-
participants” factor. These measurements cannot be considered as
independent because three measurements (“repeated measures”)
were collected per listener. This phenomenon, which is known as
pseudoreplication, is common in neuroscience experiments and
leads to the use of repeated-measures (rm) ANOVAs. rmANOVAs
require two additional assumptions (for example, see Maxwell
and Delaney, 2004; Nimon, 2012). The first assumption is com-
pound symmetry, which means that in addition to homogeneity
of variance, the covariances are similar. Covariance appears along
the off-diagonal elements of the variance-covariance matrix,
while variance appears along the diagonal. In the current example,
compound symmetry means that not only should the three diago-
nal elements (one for each level of the factor language) be similar,
but so should the off-diagonal elements. If the stringent assump-
tion of compound symmetry is violated, then sphericity must
hold. Sphericity means that the variances of the difference scores
(between the three levels of language) are similar. Violations of
the sphericity assumption can lead to an increase in Type I errors
(rejection of the null hypothesis, when it is actually true), and
can be problematic for traditional post-hoc tests such as Tukey
LSD problematic (Howell, 2009). Although sphericity is often
violated in experimental psychology data sets, there are solutions
for the Type I error rate (for review, see Keselman et al., 2001).
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One potentially conservative solution is to use the Greenhouse-
Geiser or Huyn-Feldt methods to correct for degrees of freedom.
An alternative solution is a multivariate ANOVA, which would
require more listeners than factor levels (Oberfeld and Franke,
2012). The second assumption of rmANOVAs is complete data;
for each listener, measurements must be available for all three
languages. Non-completing listeners must either be excluded, or
have their missing data imputed (Overall and Tonidandel, 2006).

In stark contrast to rmANOVAs, LMMs do not depend on
limited assumptions about the variance-covariance matrix and
can accommodate missing data. Furthermore, LMMs provide the
ability to include various configurations of grouping hierarchies:
multiple, nested groups such as street, town, country, and con-
tinent; partially-crossed groups, such as student and teacher in
a large school where not all students interact with all teachers;
and fully crossed groups. This flexibility explains social scientists
increasing use of LMMs, also known as “multilevel” or hierar-
chically linear models. However, it is important to realize that
the use of LMMs is by no means restricted to complex group-
ing designs, and can also be used for experimental psychology
studies with a single grouping factor of participant or subject.
Importantly for the experimental psychologist, LMMs also allow
one to explicitly model the effect of stimulus tokens. For example,
in our hypothetical experiment the concurrent speech may have
been provided by different multilingual speakers. If each speaker
was presented to each listener under all experimental conditions,
speaker can be considered a fully crossed, within-participant ran-
dom factor. A further advantage is that, in some situations, LMM
results provide better interpretability in terms of physiological
phenomena and a superior fit to the data (Kristensen and Hansen,
2004).

WHAT IS AN LMM?

Like many statistical models, an LMM describes the relationship
between a response variable and other explanatory variables that
have been obtained along with the response. In an LMM, at least
one of the explanatory variables must be a categorical group-
ing variable that represents an experimental “unit.” In the above
example, that would be an individual listener.

When using LMMs, it is important to classify explanatory vari-
ables either as “fixed factors” or “random factors.” Fixed factors
are those where all levels of interest are actually included in the
experiment. For example, in studies which are interested in the
difference between males and females, the factor of gender with
two levels would be a fixed-factor. In contrast, random factors,
also commonly referred to as “grouping variables”, include only
a sample of all possible levels. Although researchers are often
interested in studying a large population, such as adult humans,
psychology experiments typically only include a very small sub-
set of that population, so that participant is a random factor.
Classification of a factor is not always a trivial task. For exam-
ple, consider the factor language in our hypothetical experiment.
Do the researchers have theoretical or practical reasons to be
only interested in the differences between French, German, and
English specifically, or would they like to generalize their findings
to all languages? In the former case, language would be a fixed fac-
tor and in the latter, a random factor. In fact, to generalize to other

stimuli within a language, one should also treat the individual
stimulus tokens, in our example the speaker, as a random-factor
(Baayen et al., 2008; Judd et al., 2012). Hierarchical grouping
factors, such as “town” or “teacher” discussed above, are often
treated as random factors.

LMMs comprise two types of terms: “fixed-effects” and
“random-effects,” hence the label “mixed-effects.” The fixed-
effects terms comprise exclusively fixed factors, and the fixed-
effect part of a LMM can vary in complexity depending on
which terms are included. The “full” LMM includes the highest-
order interaction between the fixed factors, as well as lower-order
interaction terms and main effects, whereas other LMMs would
include only some of these terms. Note that for data analysis, it
is also important to distinguish between categorical fixed factors
such as language or gender, which are sampled from a popula-
tion of discrete levels, and continuous fixed covariates (numeric
variables). An example of the latter is the sound level of the tele-
phone in our hypothetical experiment: RTs were measured with
the telephone ringing at different sound levels (60, 70, and 80
decibels sound pressure level, dB SPL), while the sound level of
the concurrent speech was fixed.

The random-effects terms of LMMs are all the terms that
include random factors; interactions between fixed and random
factors are considered in the random-effects terms. For example,
in the hypothetical telephone-ringing experiment, the random
factor listener and its interaction with the fixed covariate sound
level can be modeled using a number of different random-effects
terms, which differ in their complexity (number of parameters).
The simplest random-effects term, known as “random intercept
only,” ignores the interaction: it only considers how RT at zero
sound level (0 dB SPL) varies between listeners. This is analogous
to the assumption of compound symmetry. However, RT may
vary as function of sound level, for example RT could decrease
with increasing sound level. The slope of this function may vary
between participants, and to account for this interaction between
participant and sound level, we would also need to include a “ran-
dom slope” term. In the full LMM, the random-effects part would
also include parameters that allow for the intercept and slope to
be correlated: for example, if as shown in Figure 1, listeners with
a higher RT at 60 dB (higher intercept at 0 dB, which is off the dis-
played scale) show a greater rate of RT reduction with increasing
sound level (steeper slope).

HOW COULD ONE USE LMMs TO ANALYSE DATA?

One approach to using LMMs is to systematically compare the full
LMM to other models which are the same except for one term
missing. The comparison is done using a likelihood-ratio test
(LRT), and the test statistic χ

2, degrees of freedom and p-value
are reported for the missing term. A p-value of less than 0.05
(see below) is often considered to indicate that the missing term
contributed significantly to the model fit. Care should be taken
in interpreting the results because the hypothesis test involves a
comparison on the boundary of possible conditions for which the
χ

2 test can be conservative (for further discussion, see Pinheiro
and Bates, 2000; Bates, 2010). Some authors have argued that cal-
culating the correct degrees of freedom is problematic and that
LRTs for small group sizes (<50) lead to increased Type I error
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FIGURE 1 | Reaction times (RT) in ms as a function of telephone

sound level in dB SPL during a hypothetical telephone-ringing

detection experiment. Each panel represents a different listener

(L1–L9) and each line represents a different language of the

concurrent speech (see legend in panel of L1). RT decreases with

increasing sound level, and the gradient of this function (“slope”) is

correlated with the RT at 0 dB (true “intercept” is not shown), which

varies between listeners.

(Pinheiro and Bates, 2000). However, this has not been found to
be the case in typical within-participant experimental psychology
data sets where the number of measurements per participant is
high relative to the number of model parameters (Baayen et al.,
2008; Barr et al., 2013).

Although LMMs are useful for both confirmatory hypothe-
sis tests and exploratory analyses, it is important to distinguish
between these two when reporting results. The former are tests
based on hypotheses, which were posited before data collection,
and motivated the study design (Tukey, 1980). After data col-
lection, the planned tests are performed and the test statistics
and degrees of freedom are reported along with a p-value, which
is thought to indicate the probability that the value of the test
statistic or greater would have been obtained under the null
hypothesis. In contrast, exploratory analyses are based on statis-
tical tests which are motivated by the pattern of results observed
after data collection. In neuroscience, there is pressure to pub-
lish studies with p-values below 0.05, which is often considered
to be “significant,” although this pressure has often been criti-
cized (Rosenthal and Gaito, 1963; Rosnow and Rosenthal, 1989;

Nuzzo, 2014). This leads to several different exploratory analy-
ses being performed, and when a significant result is found, this
exploratory analysis is reported as if it were a confirmatory test.
The result is distortions in the literature and difficulties in repro-
ducibility of published results (Ioannidis, 2005; Simmons et al.,
2011; Wagenmakers et al., 2012; Ioannidis et al., 2014).

SOFTWARE

LMMs are available in commercial programs such as SPSS
(“mixed”), SAS (“proc mixed”), S-PLUS, MLwiN, or ASReml.
LMMgui, is a free, graphic user interface that uses lme4 (Bates
et al., 2014a,b), a package in the free, open-source program R
(R Core Team, 2014). LMMgui is aimed at experimental psychol-
ogists who would like to use lme4 but are not yet familiar with R
and command-line programing. It provides a simple interface to
classifying variables (i.e., as random or fixed factors; Figure 2 top
window) and then to specify two LMMs (middle window). An
LRT is used to compare the models. Details of the LMMs, diag-
nostic plots and the result of the LRT (χ2, degrees of freedom and
p-value) are available for inspection (Figure 2, bottom window).
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FIGURE 2 | Example windows of LMMgui. Once a data file has been

selected, the user is requested to classify the variables using the top window.

In this hypothetical example (see Equation 1), the variables are classified as

follows: “RT” is the response variable, “Listener” is the participant variable

(random factor) and “Level” (sound level) is a continuous fixed covariate. Any

variables which are not classified by radio-button or check box are treated as

discrete fixed factors: in this example, “Language.” Once variables have been

classified, the next step is model specification (middle window). Users select

which terms to include in two models by checking items in the drop down

menu. The results of the models fits and comparison are available from the

results (bottom) window. The user can inspect a summary of each model,

diagnostic plots (fitted vs. residual plot and histogram of normality of

residuals), and the result of the model comparison (shown). File format

details, prerequisites, and output files are described in the Appendix.

The plots allow one to inspect for the assumptions of linearity
and homoscedasticity (fitted vs. residual), as well as normality
of the residuals. Interpretation of these plots, as well as model
summaries is beyond the scope of this mini-review, but has been

described previously (Pinheiro and Bates, 2000; Bates, 2010; Bates
et al., 2014b)

For the hypothetical data shown in Figures 1, 2, the explana-
tory variables are: language (within-participants, categorical fixed
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factor), sound level (within-participants, continuous fixed covari-
ate), and listener (participant, random factor). The random factor
of speaker has been omitted for clarity. LMMgui creates mod-
els using the lmer function of lme4, and an LMM could be
expressed as:

RT ∼ Language + Level + (Language + Level|Listener) (1)

Where “RT” is the response variable and the model terms are
to the right of the tilde character (“∼”). The first terms are
fixed-effects: “Language” and “Level.” An interaction term would
include a colon “:.” The random-effects terms are those which
include a bar symbol (“|”). To the right of the bar is the random
factor “Listener.” The expression to the left of the bar indi-
cates that this random term includes correlated intercepts and
slopes for the fixed factors. “(Language + Level|Listener)” implic-
itly includes the random intercept and is equivalent to “(1 +

Language + Level|Listener).” In contrast, a random-intercept
only term would be “(1|Listener),” and the term for uncorre-
lated random intercept and slope would be “(Language + Level
||Listener).” Further examples and alternative syntax for model
terms are given by Bates et al. (2014b: Table 2).

In order to evaluate the main effect of level, the above model
can be compared to a model without the term of interest, that is:

RT ∼ Language + (Language + Level|Listener) (2)

Note that during evaluation of fixed-effects, it is recommended
that the random-effects part of the models always includes slopes
for all fixed factors because this has been shown to be important
for confirmatory hypothesis testing in experimental psychology
(Barr, 2013). However, such “full” random-effects terms may
be inappropriate if random factors are not fully crossed, and
may lead to failure of the model to converge (for discussion and
possible solutions, see Barr et al., 2013).

As with most statistical analyses, an important computational
step is estimating the parameters of the LMM. Although the
details of this are beyond the scope of this mini-review, the reader
should be aware of standard maximum likelihood (ML) and
restricted ML (REML) criteria. Although the default REML may
provide a better estimate of random-effects standard deviation, it
does so by averaging over some of the uncertainty in the fixed-
effects parameters. For this reason, the ML criterion is used when
comparing LMMs with different fixed-effects structures.

A significant LRT would indicate that the missing fixed-effects
term (interaction or main effect) is important. For example,
the hypothetical data (Figures 1, 2) show a significant main-
effect of sound level. Note that the presence of a significant
higher-order interaction may make interpretation of lower-order
interactions/main-effects difficult.

Although at present LMMgui is only available for continu-
ous response variables from a normally distributed population,
mixed-effects models can also be used for categorical response
variables (Dixon, 2008; Jaeger, 2008). lme4 includes the function
glmer which can be used for count data (Poisson distribution),
binary/proportion data (binomial), and for data whose variance
increases with the square of the mean (gamma). Introductory

books are available for further reading on the use of R in gen-
eral (Crawley, 2013), and mixed-effects models in psychology
(Baayen, 2008). For the reader already acquainted with the com-
mand line interface of R, there are a number of helpful packages
for systematic evaluation of LMMs, such as afex, car, ez, lmerTest,
pbkrtest.

CONCLUSION

In order to promote simplicity of use, LMMgui is not as com-
prehensive as using the command-line options. It is likely that
there may be some criticism for a program that provides such
a simple interface; Barr et al. (2013) cite a prominent scien-
tist who remarked that encouraging experimental psychologists
to use LMMs “was like giving shotguns to toddlers.” However,
many experimental psychologists already understand how to use
rmANOVAs, and are capable of learning the guidelines for LMM
use. It is hoped that this article and LMMgui may help them start
to take their first steps in that direction.
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APPENDIX

DATA PREPARATION

Data needs to prepared in long format, with the first row being the
variable names and each subsequent row representing a separate
measurement. An example data file (“example.csv”) is available
with lmmgui. Variable names should begin with a letter, and com-
prise standard alphanumeric characters (a–z and 0–9)—no spaces
or special characters. Implicitly coded nested factors need to be
explicitly recoded. For example, consider that in the hypotheti-
cal experiment, there was an additional random factor of “Town”
because the participants were sampled from different towns. If
the listeners from town A are labeled L1, L2. . . etc., but a differ-
ent set of listeners from town B are also labeled L1, L2. . . etc.,
then the factor listener is implicitly nested in town, and would
need to be explicitly recoded, for example as AL1, AL2. . . .BL1,
BL2, etc. Next, the data should be saved in text file using the
comma (,) or semi-colon (;) as delimiter. In many spreadsheet
programs this is achieved by saving in the “.csv” format. The

file name should also begin with a letter and comprise standard
alphanumeric characters.

SOFTWARE PREREQUISITES

Users need to have already installed R, which is available at
(www.r-project.org). Next, LMMgui can be downloaded from
http://doi.org/10.25592/lmmgui. At present, LMMgui is only
available on the Windows platform. If needed, LMMgui will
automatically download the R package lme4. To visualize the
diagnostic plots, a pdf reader is required.

OUTPUT FILES

Once analysis is complete, a number of text files will be written
to the directory of the prepared data. These files allow the user
to inspect all the stages of the analysis, including intended anal-
ysis steps in R (“.R” files), the actual steps carried out (“.Rout”
file), diagnostic plots (“.pdf”) and details about any warnings, if
present (“.Warning.txt”).
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