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In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurement (GUM) [1] recognizes the necessity to analyze certain
types of experiments by applying random effects ANOVA models. These belong to the more general family of linear mixed models
that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more
general, linear mixed models cover a wider range of situations occurring in practice and can be beneficial when employed in data
analysis of long-term repeated experiments. Namely, we point out their potential as an aid in establishing an uncertainty budget
and as means for gaining more insight into the measurement process. We also comment on computational issues and to make the
explanations less abstract, we illustrate all the concepts with the help of a measurement campaign conducted in order to challenge
the uncertainty budget in calibration of accelerometers.
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1. INTRODUCTION

THE PAPER deals with methods suitable for an analysis
of long-term repeated experiments, which are commonly

conducted to assess reproducibility of a measurement. For in-
stance, in case of accelerometer calibration, an accelerometer
may be repeatedly mounted into the measurement setup and
each time its frequency response function (FRF) may be mea-
sured over a range of different frequencies. Such an experi-
ment reveals variability that may not be observed in a routine
calibration, when an accelerometer is mounted into the setup
only once. However, this variability is of interest when cre-
ating an uncertainty budget. Moreover, such an experiment
may yield further insights into the measurement, either by re-
vealing issues deserving further investigation or by confirm-
ing that things work as expected. The data collected in such a
long-term experiment come usually in groups. For example,
in case of the repeatedly mounted accelerometer, we have a
set of measurements for every mounting and it seems natu-
ral to expect that measurements obtained within one mount-
ing are more interrelated than measurements obtained for two
different mountings. This already suggests using linear mixed
models for the data analysis. We will elaborate on this, giving
an explanation what linear mixed models are and what every-
thing they can capture, in section 2. For now, we just note
that linear mixed models are closely related to random effects
ANOVA (ANalysis Of VAriance) or mixed effects ANOVA
models, terms that the reader may be more familiar with, since
the former appears in the GUM, Annex H.5 [1], or in the
ISO/TS 21749:2005 [2]. Since ANOVA models are special
cases of linear mixed models, we prefer to use the latter, more
general term to refer to models that include several random
(and possibly also some fixed) effects. Examples of practi-
cal use of ANOVA models with random effects can be found
e.g. in [3, 4, 5]. These papers actually illustrate the span of
ANOVA applications: uncertainty evaluation in the line with

the GUM in [3], measurement process inspection in [4] and a
mixture of questions about both fixed and random effects in
[5].

While the GUM explains in detail only the most simple
case of an ANOVA model (see [6] for its Bayesian treatment),
we would like to show that further aspects observed in mea-
surements in practice can be incorporated into the model and
that besides components of uncertainty, such an analysis can
answer further questions of interest. This is discussed in sec-
tion 3. In section 4 we comment on computational issues.
The closed-form formulas, as reported in Annex H.5 in [1],
or in the ISO norm [2] are available only in relatively sim-
ple cases. In more complex situations one has to resort to
other approaches, e.g. a (restricted) maximum likelihood esti-
mation. However, this can be done using statistical software.

Since our presentation of the topic is closely linked to the
already mentioned long-term experiment connected with the
calibration of accelerometers, in section 5 we present some
concrete results and discuss their interpretation. Section 6 of-
fers concluding remarks. Before proceeding, let us now de-
scribe the nature of the accelerometer experiment underlying
our presentation of linear mixed models.

1.1. A practical case

The data shown in this paper come from a measurement cam-
paign conducted in connection with the EMRP project IND09
’Traceable dynamic measurement of mechanical quantities’,
where the focus is on torque, force and pressure. However,
acceleration is a fundamental quantity for dynamic measure-
ments and the campaign should serve as a model campaign for
the other three quantities, exploiting the fact that a traceable
primary calibration of accelerometers has already been real-
ized in PTB [7, 8]. In the campaign, a single-ended (SE) ac-
celerometer Br̈uel & Kjaer (B&K) type 8305-001 and a back-
to-back (BB) accelerometer Brüel & Kjaer (B&K) type 8305
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Fig. 1: Amplitudes (in a.u.) of the FRF obtained for selected frequencieswith a repeatedly mounted accelerometer (SE = single-ended,
BB = back-to-back) and input acceleration determined with the interferometer in position 90◦(*) and 0◦(·). The arrows indicate different
variability observed due to random error (BB, 16000 Hz). Note that in order to show the finer patterns in fluctuations clearly, the y-axis
scale varies between the plots.
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were repeatedly (19 and 20 times, respectively) mounted into
the measurement setup and values of the FRF were measured
for a range of frequencies (10 Hz – 20 kHz) using a sinusoidal
excitation of the system. The input acceleration was measured
with a laser interferometer pointing its rays at two points on
the top of the BB accelerometer and at two points next to the
bottom of the SE accelerometer. In each case these two points
lay on a line having two possible angles with a certain refer-
ence surface: 0◦ and 90◦, which we will refer to as position
0◦ and position 90◦. For each mounting, the FRF was mea-
sured 10 times in each position, amplitude and phase of the
input and output signals being determined through a sine fit.
The measurements were done within roughly 5 weeks with
both accelerometers being mounted usually once on a given
day. The order of the accelerometers on the given day was
randomized, in order to avoid accidental bias, since compari-
son of relative standard uncertainties obtained for the twoac-
celerometers was also of interest. Here, we will use only some
parts of the measured data to show what features observed in
reality may be captured by a linear mixed model and we will
refer to the setup of the experiment when explaining the na-
ture of the models. The repeated measurements for us will
be always the repeatedly measured amplitudes of the FRF at
a given frequency. Figure1 shows these for several chosen
frequencies as obtained in the experiment. Each plot depicts
a dataset that will be analysed separately.

2. LINEAR M IXED MODELS

2.1. Basic ANOVA model

Looking at Fig. 1, it is clear that the simplest model of
values varying randomly and independently around the mea-
sured quantity (ympr = µ + εmpr) is not really applicable to
the data obtained in our long-term experiment. The fluctua-
tions the observed amplitudes exhibit have a finer structure,
which may be described by adding random and/or fixed ef-
fects to the simple model. Which effects might be considered
stems from the nature of the experiment and the way of mod-
eling it. In our case, we vary mounting of the accelerometer
and position of the laser beams of the interferometer, so we
can think of effects of position, mounting and their interac-
tion, mounting-position. Theeffect of mountingwill be mod-
elled as random. This means that we assume that measure-
ments obtained within one mounting are influenced by a com-
mon value, which changes randomly and independently from
mounting to mounting. However, these effect sizes or levels
are centered at zero and have a finite variance. The mount-
ing effect includes all the uncontrollable external influences
that may vary between the different mountings as well as any
influences caused by small imprecisions in the mounting pro-
cedure. In contrast to mounting, theeffect of positionwill be
modelled as fixed. That means that the same value is supposed
to influence the measurements whenever they are taken at po-
sition 0◦, and similarly, one and the same value is manifested
when position 90◦ is measured. The common assumption is
that these values, the levels of the effect (i.e. the values of

the possible systematic biases for position 0◦ and for position
90◦) sum to zero. This is necessary for the model to be iden-
tifiable and it ensures that as a whole, the measured values
still vary around the measured quantity. The position effect
is considered as fixed since the two positions are well defined
and can be repeatedly realized. The small discrepancies that
may arise from every (manual) adjustment of the interferom-
eter are then covered by the randommounting-position effect.
That covers also other influences that may arise from the in-
teraction of a given mounting and a given adjustment of the
position, i.e. effects observed due to changing both mounting
and position. The discrepancy of an actual measured value
(ympr) from the measured quantity (µ) is modelled as a sum
of the different effects and the model

ympr = µ +bp+Am+Bmp+ εmpr, (1)

m= 1, . . . ,20;p= 0◦,90◦; r = 1, . . . ,10,

b0◦ +b90◦ = 0,

is summarized (with distributional assumptions) in Table1.
The model in Table1 is a mixed effects ANOVA model.

The unknown parameters to be estimated areµ , b0◦ , b90◦ , σ2
M,

σ2
MP andσ2. Note that for the fixed effect the values of the

effect levels are of interest (b0◦ , b90◦), while in case of ran-
dom effects the respective variances are in focus (σ2

M, σ2
MP,

σ2). One can estimate also the realized values of the random
effects if desired (e.g. the values ofA1,. . . , A20). However,
since these quantities are random, this is referred to as predic-
tion in the literature (even though no future aspect is present).

Table1 shows also the distributional properties for the mea-
surements implied by the model. The normal distribution
comes from the fact that a sum of normally distributed, mu-
tually independent random variables is again normally dis-
tributed. Further, if we arrange all theympr in a vector, this
would have a multivariate normal distribution with a certain
mean vector (entriesµ + b0◦ for observations in position 0◦

and µ + b90◦ for observations in position 90◦) and a covari-
ance matrixΣ. Unlike in the simple model with indepen-
dent, identically distributed random errors,Σ in the model
in Table1 is not diagonal. The observations are in a certain
way correlated. This is not surprising, since, e.g. all ampli-
tudes measured within one mounting are influenced by the
same value of the mounting effect, which results in a posi-
tive correlation. Actually, the model in Table1 does not allow
negative correlations at all. Namely, the correlation between
amplitudes obtained within one mounting but at different po-

sitions is σ2
M

σ2
M+σ2

MP+σ2 , while amplitudes obtained within the

same combination of mounting and position have correlation
σ2

M+σ2
MP

σ2
M+σ2

MP+σ2 . Amplitudes obtained within different mountings

are modelled as independent.

2.2. Extension - linear trend

The model in Table1 belongs to the ANOVA family. One
speaks about an ANOVA model when the observations are
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Model: ympr = µ +bp+Am+Bmp+ εmpr, m= 1, . . . ,20;p= 0◦,90◦; r = 1, . . . ,10

Term Random Levels Distribution Implications

common mean no µ –

position no
b0◦ , b90◦ , –

ympr ∼ N(µ +bp,σ2
M +σ2

MP+σ2)
(b0◦ +b90◦ = 0) (for correlations see text in Sec.2.1)

mounting yes A1,. . . ,A20 Am ∼ N(0,σ2
M), iid

mounting-position yes
B1,0◦ , B1,90◦ ,. . . ,

Bmp∼ N(0,σ2
MP), iid

ymp· ∼ N(µ +bp,σ2
M +σ2

MP+σ2/10)
B20,0◦ , B20,90◦

random error yes
ε1,0◦,1,. . . ,ε1,90◦,10,. . . , εmpr ∼ N(0,σ2), iid

ym·· ∼ N(µ ,σ2
M +σ2

MP/2+σ2/20)
ε20,90◦,1,. . . ,ε20,90◦,10

Table 1: ympr is therth measured amplitude within themth mounting at positionp, µ is the value of the amplitude of the FRF (i.e. the
measured quantity),bp is the fixed effect of the position,Am denotes the random effect of mounting,Bmp the random effect of mounting-
position, εmpr the random error and iid stands for independent, identically distributed. Allthe random effects and random errors are
assumed to be mutually independent. Shown are also the distributional implications of the model for the measured amplitudeympr, the
average amplitude over one mounting-position combinationymp· and the average amplitude taken over measurements obtained within one
mountingym··. The latter average would be reported as the amplitude for the given frequency in a routine calibration.

simple sums of the different effects. Whenever the depen-
dence is more complicated (but still linear in the effects),one
calls the model a linear mixed model. For example, if we in-
clude a trend for observations obtained within each mounting-
position, the model becomes

ympr = µ +bp+cr+Am+Bmp+Cmpr + εmpr, (2)

m= 1, . . . ,20;p= 0◦,90◦; r = 0, . . . ,9,

b0◦ +b90◦ = 0,

where the parameterc represents a common trend in the re-
peated measurements of amplitude for the given frequency
and the random effectCmp provides its modification for
each mounting-position combination. We assumeCmp ∼
N(0,σ2

MPtrend). The indexr denoting the order of the mea-
surement starts now from 0, which reflects the fact that we
assume to start from the value of the measured quantity and
observe a slight increase for the repetitions. That such an ex-
tended model may be useful when describing real measure-
ments is supported by the amplitudes we observed at fre-
quency 315 Hz, see Fig.1. There, for most mounting-position
combinations the repeatedly measured amplitudes exhibit a
slight linear increase. Note that for the average over a mount-
ing it now holds:

ym·· ∼ N

(
µ +cr,σ2

M +
σ2

MP

2
+

σ2
MPtrend

2
r2+

σ2

20

)
, (3)

wherer = ∑9
i=0 r/10 and there is a systematic bias (cr) when

the simple averageym·· is used as an estimate of the measured
quantity.

2.3. Extension - heteroscedasticity

Other modification of the basic model supported by our data
is related to the random error variability. The model in Ta-
ble 1 assumes that the fluctuations due to the random error
have the same varianceσ2. This may be a good approxima-
tion for measurements at 800 Hz, see Fig.1. However, look-
ing at the amplitudes obtained at 16000 Hz, the variability

of measurements within the mounting-position combinations
is rather different. Compare e.g. the fluctuations in mount-
ing 12 at 90◦, mounting 14 at 90◦ or mounting 19 at 0◦ with
the fluctuations of the repeated measurements obtained within
mounting 2 or 4 at either position. This can be incorporated
into our model by allowing the variance of the random error
to vary between the mounting-position combinations, i.e.

ε1,0◦,r ∼ N(0,σ2
1,0◦), r = 1, . . . ,10;

ε1,90◦,r ∼ N(0,σ2
1,90◦), r = 1, . . . ,10;

. . .

ε20,90◦,r ∼ N(0,σ2
20,90◦), r = 1, . . . ,10.

The number of parameters in the model is then increased by
39 in our case, 1 commonσ2 is replaced by 40 (the number of
mounting-position combinations) different variances:σ2

1,0◦ ,
σ2

1,90◦ , σ2
2,0◦ ,σ2

1,90◦ ,. . . , σ2
20,0◦ , σ2

20,90◦ . In this case, for the
average over a mounting we have:

ym·· ∼ N

(
µ ,σ2

M +
σ2

MP

2
+

1
4

(
σ2

m0◦

10
+

σ2
m90◦

10

))
. (4)

2.4. Extension - correlations

So far all the random effects and their levels were considered
independent and the correlations between the measurements
were induced only by the influence of the same effect level on
several measured values. However, the model may be general-
ized by allowing correlations also between the random effects.
For example, we may consider a model with only mounting-
position effects, which would be however correlated within
one mounting. This would allow, e.g. for the possibility of
negative correlation between measurements at different posi-
tions within the same mounting.

3. BENEFITS

As already mentioned, the GUM [1] shows in Annex H.5 an
instance where a random effects ANOVA model should be
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employed for the analysis of measured data. Namely, the ex-
ample deals with a Zener voltage standard calibrated against
a stable voltage reference over a two-week period. The mea-
surements are done repeatedly (5 times) on 10 different days.
The statistical model underlying the analysis in [1] is

ydk = µ +Ad + εdk, d = 1, . . . ,J(= 10),k= 1, . . . ,K(= 5),
(5)

whereydk is the kth measurement of the voltage on dayd,
Ad ∼ N(0,σ2

D) stands for a random effect of day andεdk ∼
N(0,σ2) are the random errors. From the measurements, one
wants to obtain the common mean,µ , which is in this case
the measured voltage, and the associated type A uncertainty.
These values are, as stated in the GUM, not the final results
of the calibration. Of course, the estimated value ofµ has to
be compared with the stable voltage reference and the uncer-
tainty has to be amended to include type B contributions. The
voltage is estimated as the average over all measurementsy··,
and since from (5) we havey·· ∼ N(µ ,σ2

D/J+σ2/(JK)), it
is straightforward to obtain the associated type A uncertainty,
once the model is fitted to the data, i.e. the parameters are esti-

mated:uy·· =
√

σ̂2
D/J+ σ̂2/(JK) (the hats denote estimates).

In the GUM notation,̂σ2 is s2
W, σ̂2

D is s2
B and the formula for

the uncertainty may be compared with formulas (H.32) and
(H.29) in [1]. If the calibration of accelerometers was al-
ways conducted with the accelerometer mounted repeatedly
into the setup, we could proceed similarly as in the GUM, es-
timate the model parameters by fitting one of the models from
the previous section to the measured amplitudes and report
the estimated̂µ (the amplitude of the FRF at the given fre-
quency) and its type A uncertainty (depending on the method
of estimation). However, in our caseµ is not in the center
of interest, since the experiment was not done with the aim
to calibrate the given accelerometer. The aim was to assess
the reproducibility of the calibration procedure. Thus we are
primarily interested in the variance parametersσ2

M, σ2
MP, σ2,

also called variance components, since they decompose the
overall variability into several separate sources. Considering
this decomposition may be of interest in itself, since it pro-
vides further knowledge about the measurement process. For
example, in the case reported in the GUM, Annex H.5 [1], it is
recommended that apparent day-to-day variability (i.e. larger
positive value ofσ2

D) should be a reason for investigation of
its cause.

Coming back to our experiment with accelerometers, the
variability due to mounting and mounting-position is not ob-
served when the accelerometer is mounted only once1, how-
ever, one would like to cover it in the overall uncertainty.
If the variability due to these sources is considered inherent
to the measurement setup, one can use the same values of
σ̂2

M, σ̂2
MP, coming from the long-term repeated experiment,

1Strictly speaking, the componentσ2
MP could be estimated from measure-

ments done within one mounting, but it would be like estimating avariance
from two observations (within one mounting we have only two mounting-
position combinations).

for results from future calibrations. Thus these variance com-
ponents might be included as entries in an uncertainty bud-
get. For a future calibration experiment, they would be type
B components. Similarly, it is often the case that an uncer-
tainty budget includes also a fixed term for the repeatability
(σ2 in model in Table1), since this is considered a property
of the measurement setup, see e.g. [9], section 5.6. Examin-
ing results from a long-term repeated experiment using mixed
linear models enables us to check whether the repeatability
variance remains constant over time. This means examining
whether a model with commonσ2 fits the measurements well
enough as compared to a model with, for example, different
repeatability variances for each mounting-position combina-
tion. This assessment may be done by examining a plot of
residuals obtained after the respective model is fitted, or by
carrying out a likelihood ratio test comparing both fits (see
e.g. [10], p. 83). As a by-product, the revealed changes in the
repeatability variance may trigger further investigations of the
measurement setup.

Last but not least, fitting a mixed linear model to a long-
term repeated experiment provides quantitative answers to
questions about the fixed effects as well. For example, in our
case we can determine the presence and size of the system-
atic bias between amplitudes measured at the two positions,
or quantify the effect of neglecting a trend present in the mea-
surements when calculating just a simple average of the am-
plitudes and reporting it as the final calibration result.

4. HOW TO SQUEEZE THE NUMBERS OUT

In the previous two sections we have seen that data gener-
ated in a long-term repeated experiment exhibit a structured
behaviour that can be modelled by linear mixed models. We
have also pointed out what benefits such an analysis may bring
regarding both the overall understanding of the measurement
process and the establishment of an uncertainty budget. In
this section we would like to discuss practical aspects of car-
rying out such an analysis, mentioning ways how the models
can be fitted to particular data (i.e. how the estimates of the
parameters may be obtained).

4.1. ANOVA table

Consider first the basic model in Table1. In what follows,
we will describe some apparently reasonable estimators for
the unknown parameters:µ , b0◦ , b90◦ , σ2

M, σ2
MP, σ2, which

will establish a connection to the formulas stated in [1, 2] and
which in fact turn out to have also optimal statistical proper-
ties in this case (they have minimum variance among all unbi-
ased estimators in their class (linear, quadratic respectively)),
for details see [11], pp. 129, 161.

• µ̂, b̂0◦ , b̂90◦ : It seems indeed natural to estimate the
common meanµ (the measured quantity) as the aver-
age over all measurements:y···, and the position effect
b0◦ (b90◦) as the difference between the average of all
measurements at position 0◦ (90◦) and the overall mean:
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y·0◦· − y··· (y·90◦· − y···). These are the (weighted) least
squares estimators in the model, see [11], p. 160.

• σ̂2
M: Since measurements obtained for different mount-

ings are modelled as independent and each mounting
meanym·· has the same distribution, see Table1, their
sampling varianceS2

M = 1
20−1 ∑20

m=1(ym·· − y···)
2 esti-

mates the variance from Table1, i.e. σ2
M + σ2

MP/2+
σ2/20. Thus, if we had estimateŝσ2

MP, σ̂2 for σ2
MP and

σ2, we could estimate the variance of the mounting ef-
fect,σ2

M, asσ̂2
M = S2

M − σ̂2
MP/2− σ̂2/20.

• σ̂2: Since within each mounting-position combination
we have 10 repeated measurements, their sampling vari-
ability estimates the random error variance. We can thus
obtain 40 estimates of the same quantity, namely, for
eachmp combinationS2

mp =
1

10−1 ∑10
r=1(ympr − ymp·)

2,
where ymp· =

1
10 ∑10

r=1ympr is the average of measure-
ments within one mounting-position combination. The
random error (or the repeatability) variance may be then
estimated as the average of the individual estimates,
namelyσ̂2 = S2 = 1

20∗2 ∑20
m=1 ∑p∈{0◦,90◦}S2

mp.

• σ̂2
MP: Before motivating the estimate forσ2

MP, observe
that the estimate forσ2 is based on fluctuations of the
individual observations with respect to the mounting-
position mean, and the estimate forσ2

M on fluctua-
tions of the mounting means with respect to the over-
all mean. The estimate ofσ2

MP should be then based
on fluctuations of the mounting-position means. How-
ever, looking at such fluctuations with respect to the
overal mean would not leave the mounting part of
the variation, and thusσ2

M, out. Thus we need to
consider these fluctuations with respect to the overal
mean adjusted for the position effect and the mount-
ing effect: µad j

mp = y··· + (y·p· − y···) + (ym·· − y···). So
we calculateS2

MP = 1
(20−1)(2−1) ∑20

m=1 ∑p∈{0◦,90◦}(ymp·−

µad j
mp )

2, which can be rewritten in the more familiar form
S2

MP = 1
(20−1)(2−1) ∑20

m=1 ∑p∈{0◦,90◦}(ymp· − y·p· − ym·· +

y···)
2. S2

MP is an unbiased estimate forσ2
MP+σ2/10, thus

σ̂2
MP = S2

MP− σ̂2/10.

Before proceeding, note that the estimatesσ̂2
M andσ̂2

MP may
be negative. The common practice is to take this as an in-
dication that the estimated variance is zero, i.e. the affected
random effect is not present in the model. For a full discussion
see [11], p. 130.

4.2. Need for a general approach

The closed form formulas as stated above are the so called
ANOVA estimators and the sums of squaresS2, rS2

MP, rpS2
M

are the mean sums of squares from the so called ANOVA
table. These tables for a variety of ANOVA models can be
found in [12], the most common models are usually covered
in standard statistical textbooks as well and these tables un-
derlie the development in Annex H.5 of the GUM [1] and the

ISO norm [2]. Apart from the fact that one has to look up the
form of the table for each type of the ANOVA models, these
procedures are based on two other important assumptions and
that is the balancedness of the model and common repeatabil-
ity variance.

A model is balanced if we have the same number of repeti-
tions on each level, i.e. in our case we have always two posi-
tions measured within each mounting and we have always 10
repeated measurements within each mounting-position com-
bination. The importance of balancedness becomes clear
when we consider that the estimates for the parameters de-
scribed above are based on averages at different levels. If
these averages are obtained from the same number of obser-
vations, combining them together is straightforward.

Even though one can usually plan a reproducibility exper-
iment in this balanced way, there might be outliers observed
and one may want to omit them from the analysis, ending up
with a slightly unbalanced situation. For example, look at Fig.
1 and the amplitudes measured at 6300 Hz. There seems to
be some outliers in mounting 14, or one may consider all the
measurements at position 90◦ in this mounting as strange. If
such measurements were always discarded in the calibration,
it would be reasonable to omit them from the reproducibil-
ity analysis as well. That would, however, lead to an unbal-
anced design - for mounting 14 we would have only measure-
ments at one position. Use of formulas for a balanced case
in a slightly unbalanced situation may not lead to completely
unreasonable results, however, one should give it a serious
consideration and the analysis becomes less straightforward.
Especially, realization of statistical tests in such situations is
more complicated (see e.g. [12]).

Apart from the balancedness, the closed form formulas
above are derived for models with a common repeatability
variance in all groups. If this is not the case, e.g. we want
to fit our data with the model from Table1 but with differ-
ent random error variances for each mounting-position com-
bination, the availability of closed form formulas for estima-
tion is very limited. Similarly, if the model to be fitted is
not a simple ANOVA model, but we want to consider trends
(like e.g. in model (2)) or some correlations between the ef-
fects, the closed form formulas are not available at all. Thus
one has to consider more general approaches to fitting lin-
ear mixed models that are applicable in any situation. Such
a universal method is the Maximum Likelihood (ML) or the
REstricted(or REsidual) Maximum Likelihood (REML).

4.3. (Restricted) Maximum Likelihood

As already mentioned, any of the models in section2 im-
plies a likelihood for our measured amplitudes, namely a
multivariate normal distribution with a certain mean vector
and a certain covariance matrix. By the ML method one
then maximizes the likelihood in the parameters (e.g.µ , b0◦ ,
b90◦ , σ2

M, σ2
MP, σ2) that appear in the mean vector and the

covariance matrix. The maximization is constrained, since
b0◦ + b90◦ = 0 andσ2

M ≥ 0, σ2
MP ≥ 0, σ2 > 0. An alterna-
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BB, 315 Hz BB, 16000 Hz SE, 17000 Hz

µ : est. 12.829 16.023 17.670
b: est.(95% CI) -0.0024 (-0.0047,0.000032) 0.1131 (0.0383,0.1880) 0.0510 (-0.0226,0.1245)
c: est.(95% CI) 6.2e-5 (5.4e-5,6.9e-5) - -
σM: est.(95% CI) 0.00076 (4e-6,0.1467) 0(-) 0.7459 (0.5362,1.038)
σMP: est.(95% CI) 0.0036 (0.0026,0.0050) 0.1167(0.0931,0.1462) 0.1077 (0.0776,0.1496)
σMPtrend: est.(95% CI) 1.5e-5 (1e-5,2.4e-5) - -
σmp: range 6e-5–5.1e-4 0.0066–0.1198 0.0055–0.0855

Table 2: REML estimates for the different parameters in mixed linear models fitted to our data. CI stands for confidence interval as calculated
by the software, ’est.’ stands for estimate, ’-’ means the respective parameter was not considered in the model (e.g. for 16000 Hz no trend
was considered). All the fitted models were heteroscedastic,b estimates the systematic difference between position 0◦ and 90◦. 0 in the
column for 16000 Hz is not a direct estimate from R, but the inspection of the likelihood showed that the maximum is attained at the border
of the parametric space (for more details, see section5.2.1). In such a case, however, there is no automatic statement for the confidence
interval.

tive is the REML method, which first fits the fixed effect part
with a least squares fit and then the residuals are used for es-
timating the variance parameters. At the end, the fixed effects
are reestimated by weighted least squares with weights de-
rived from the estimated covariance matrix. The maximum
likelihood part in the REML procedure is in the estimation of
the variance components, since these are determined to max-
imize the likelihood of the residuals. The maximization is
constrained in this case as well, the variance components are
non-negative. It is advisable to use a statistical softwareboth
for the ML and the REML method. A useful reference in this
context is [13] explaining the model fitting with SAS, SPSS,
Stata, R/S-plus, and HLM. While the optimization routines
in general are not trivial, for certain groups of linear mixed
models - without correlations between the random effects and
with a common repeatability variance - one can obtain the
ML/REML estimates also using an iterative algorithm based
on the so-called Henderson’s equations. See [11], p. 278-286,
or [14] for the theory and proceduremixed.mon Matlab File
Exchange [15] for a MATLAB implementation. We note that
an adjustment of the iterative algorithm to a case when the
random error variances differ in the different groups of data is
possible and we plan to report on it elsewhere.

Both the ML and the REML methods are accompanied by
an asymptotic theory regarding the distribution of the estima-
tors, which then enables carrying out statistical tests about
or constructing confidence intervals for the parameters. One
may worry about the validity of these tests for finite number
of measurements (the theory operates with infinite datasets)
and there exist lots of adjustments trying to improve the test
performance in practice, see e.g. [14]. Moreover, in each con-
crete example, one may use a simulation to look closer at the
quality of the tests. This is described in a simple way in [16],
Chapter 8. Another source of worry may be the assumption
of normality, however, this seems to be acceptable in many
practical situations, see e.g. the examples in [10]. The REML
estimation is usually preferred, because in case of a balanced
ANOVA model the results coincide with the results obtained
from the closed form formulas from the ANOVA table (as
long as these formulas yield positive estimates - i.e. estimates

from the parametric space), see [11], p. 253. As already men-
tioned, in balanced models, these closed form formulas are
not only intuitively appealing, but they are in a sense optimal,
see section4.1. Thus in these special models, REML yields
better estimates of the variance components than ML. This
feature is commonly described as accounting for the error due
to estimation of fixed effects, and it is assumed to carry over
to more general models.

Remark 1.As to the estimation of fixed effects, there are
usually some constraints of the typeb0◦ + b90◦ = 0. In our
case, a possible way how to take these into account is to re-
placeb0◦ by b/2 andb90◦ by −b/2, for someb. This b then
represents the systematic difference between position 0◦ and
90◦, which we may be directly interested in. (Interpretation of
µ remains unchanged.) And we have to estimate onlyµ andb
and the variance components in the fitting procedure, instead
of formally: µ , b0◦ , b90◦ and the variance components.

5. RESULTS AND THEIR INTERPRETATION

Table2 shows results of fitting mixed linear models to ampli-
tudes of the FRF at 315 Hz, 16000 Hz and 17000 Hz. The es-
timates were obtained by REML method using functionlme()
in the librarynlmein R.

5.1. Diagnostics

Since application of any fitting procedure to any data yields
some numerical results, before interpreting the estimatedval-
ues or applying statistical tests, one should check whetherthe
fitted model seems plausible for the data. By this we mean
to check whether the assumptions we made do not appear to
be in sharp conflict with the data. There exist lots of differ-
ent graphical diagnostic tools, exploring different aspects of
the mixed linear model, and we will show here only a few
examples. For a more extensive treatment see [13, 16, 10].

The first to check are the residuals. A software usually of-
fers a possibility to calculate normalized residuals, which cor-
respond to normalized random errors. These should follow
the standardized normal distribution and be independent. The
residuals can be plotted against the fitted values or againstthe
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Fig. 2: Normalized residuals from fitting a mixed model with the same variance for all random errors (left) and a mixed model assuming
different variances within mounting-position groups (right) to amplitudes at 16000 Hz for the back-to-back accelerometer. The middle plot
shows a random sample from a standardized normal distribution for a better comparison.

index of measurement, the plots can be further subdivided ac-
cording to the groups that appear in the model. What should
not be visible in these plots are systematic trends or unequal
variability in the values. The first would suggest that there
are some systematic influences left out of our model (and thus
we might think of extending the fixed effects part), the lat-
ter would suggest that our assumption about the variances for
random errors has to be adjusted. For example, Fig.2 shows
normalized residuals from fitting a homoscedastic model (the
same variance for all random errors) to the data from the back-
to-back accelerometer at 16000 Hz. It is immediately clear,
that under our assumptions (i.e. in our model), the normal-
ized residuals do not have the same variability, contrary to
what is expected. A model allowing for different variances
in individual groups captures the data better. Besides visual
comparison of residuals, the two models can be compared us-
ing a likelihood ratio test as well. In this test the maximum
of the (restricted) likelihood in both models is compared and
lack of difference would suggest that adopting the more com-
plicated model is not necessary. In R the test can be done
using functionanova()(library nlme). For 16000 Hz, the like-
lihoods are 757.33 and 974.06 for the homoscedastic and the
heteroscedastic model, respectively, and the accompanying p-
value is less than 0.0001, supporting the conclusion that the
heteroscedastic model is better suited.

The normality assumption may be checked by looking at a
quantile-quantile plot. It plays a role when interpreting out-
comes of statistical tests, since in case of serious violation of
normality, the reported p-values may be misleading. Maxi-
mizing normal likelihood in order to estimate the parameters
may then become questionable, too.

Second, we should look at the predicted random effects.
We assume that random effects are normally distributed and
(depending on the model) independent. The normality as-
sumption may be checked by the quantile-quantile plots, plot-
ting the effects against each other might help to discover cor-
relations that are actually not present in the model. Take,
for example the 315 Hz measurements. Figure3 shows a
quantile-quantile plot for the predicted mounting-position ef-

fects,Bmp, which does not indicate a violation of normality.
The other plots are trying to discover a violation of the inde-
pendence assumption. Plotting predictedCmp values against
the predictedBmp might have revealed some correlation be-
tween the mounting-position effects and the random trend ef-
fects, which are, however, assumed to be independent. The
scatter plot of pairs(Bm0◦ ,Bm90◦) might have revealed a de-
pendence within the mounting-position effects, which would
again violate our assumptions.

For both 315 Hz and 16000 Hz, the described diagnos-
tic tools do not indicate a serious problem with the assumed
model. Checking the fit for the amplitudes at 17000 Hz
and single-ended accelerometer, mounting 1 and 11 would
be suggested as possibly outlying. In addition, there seems
to be some correlation between theBmp effects within one
mounting. This may suggest considering an alternative model
without the mounting effect and with correlatedBm0◦ ,Bm90◦

for a commonm. Then we would get̂σMP = 0.7537 and
corr(Bm0◦ ,Bm90◦) = 0.98.

5.2. Interpretation and use

Let us now have a look at the results in Table2.

5.2.1. Effect of mounting

Looking at the estimated variability for the mounting effect
for 315 Hz (BB accelerometer), we see that the value is low
compared to the mounting-position variability and in addition,
it is accompanied with a confidence interval stretching over
several orders of magnitude. This, according to [10], p.27,
usually indicates problems with the model definition, in our
case it suggests that the mounting effect may be redundant.
This is further supported by comparison of the maximum of
likelihoods for model with (2690.314) and without the mount-
ing effect (2690.296), which are practically identical. (For-
mally testing that a certain random effect is not present in the
model requires some caution, since the p-values reported by
anova()in R tend to be larger than the true p-values, see [10],
p. 87.)
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Fig. 3: Left: Quantile-quantile plot of the predicted mounting-position effects (Bmp). Not to violate the assumption of normality, the plot
should be close to linear. Middle: Scatter plot of mounting-position effects at position 90◦ against these effects at position 0◦ not showing
any obvious correlation. Right: Scatter plot of mounting-position effectsBmp against the predicted sizes of random trendsCmp, again
without any obvious correlation.

The situation is similar for 16000 Hz (BB accelerometer).
When trying to fit a model with mounting effect, thelme()
function had problems achieving convergence when searching
for the maximum of the restricted likelihood. An inspectionof
the restricted likelihood showed that the maximum is likelyto
be attained at the border of the parametric space, i.e. forσM =
0, which again suggests that the mounting effect is negligible.

The only case showing a dominant common effect for mea-
surements obtained within one mounting was the case of am-
plitudes measured at 17000 Hz with the SE accelerometer.
The common effect within each mounting is actually observ-
able also from Figure1, where all measurements within one
mounting are strongly shifted in the same direction. This fre-
quency is, however, known to be the transverse resonance fre-
quency of the accelerometer, which is reflected also in the
huge variability of the repeated measurements. As such, it is
not reported in a calibration certificate and we mention it only
to demonstrate a span of possible results from fitting a mixed
linear model to repeated measurements.

5.2.2. Effect of mounting-position

For both 315 Hz and 16000 Hz the mounting-position effect
(σMP) dominates the variability. This may not be surprising,
considering that the position of the interferometer is eachtime
manually adjusted. However, the analysis does not exclude
that this effect has also contributions coming from a combi-
nation of mounting and position. Unlike the mounting effects,
these are then independent between the positions.

5.2.3. Uncertainty budget

As mentioned in section3, by fitting a mixed linear model
to measurements obtained in a reproducibility experiment we
can assess contributions to the uncertainty budget. In our case,
the uncertainty budget would be created for a result of a cali-
bration, in which an accelerometer is mounted into the setup
and its frequency response function is measured at several fre-
quencies. Taking amplitude at a certain frequency as an ex-
ample, one would repeatedly (let’s say 10 times) determine

the amplitude with interferometer at position 0◦ and at posi-
tion 90◦. Then the average amplitude,ym··, will be reported as
the final result. Consider as an example the measurements at
315 Hz. The formula for the uncertainty observed directly in
the long-term experiment, combining (3) and (4), is

uym··
=

√

σ2
M +

σ2
MP

2
+

σ2
MPtrend

2
r2+

1
4

(
σ2

m0◦

10
+

σ2
m90◦

10

)
.

(6)
As already discussed in section3, considering the variability
due to mounting and mounting-position (including the ran-
dom trend) inherent to the experiment, we may use the esti-
mated values in the formula (6) also for future measurements.
The random error variability (or repeatability),σ2

m0◦ , σ2
m90◦ ,

may be obtained in each calibration for each position as the
sampling variance of the repeated measurements. The other
option is to observe that even though the variability of the
random error varies, it does not cause much difference in the
final expression for the uncertainty (6) and thus in practice
we may consider some fixed value for it. For the measure-
ments at 315 Hz, (6) equals 0.00266 when calculated with
σm0◦ = σm90◦ = 6.5e− 5, as well as when calculated with
σm0◦ = σm90◦ = 5.1e− 4, which are the minimal and max-
imal random error variabilities observed in the experiment.
In future calibrations we just have to check that the repeated
measurements do not exhibit variability that is substantially
different from what we observed in the reproducibility exper-
iment.

For a comparison, uncertainty of 0.00266 corresponds to
a relative uncertainty of 0.021 % (0.00266/12.829, see Table
2), which constitutes 21 % of the overall relative uncertainty
that would be calculated according to the current uncertainty
budget. This was considered satisfactory.

5.2.4. Fixed effects
Last but not least, let us look at the estimates of the fixed
effects. The parameterb estimates the systematic difference
between the amplitudes measured with interferometer at po-
sitions 0◦ and 90◦. This is accelerometer specific and not of
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direct interest, since the averaging over two positions is done
with the intention to cancel out the biases. More interesting
is the estimate of the trend (c). It appears in measurements
at certain frequencies and as mentioned in section2.2, ignor-
ing it by the final averaging causes a systematic biascr in the
estimate of the measured quantity. Our analysis enables us to
quantify the size of this bias relative to the mean: for 315 Hzit
is 2.79e-4/12.829, which is, at the level of 0.002 %, negligible
and well covered by the uncertainty.

6. DISCUSSION AND CONCLUSIONS

Mixed linear models are well established in statistics. Even
though there might still be a space for improvement, the state-
of-the-art and its implementation in software packages enable
a convenient application of these models to real data. In this
paper we tried to point out benefits of application of mixed
linear models for the analysis of long-term repeated exper-
iments from a metrological perspective. We showed what
all features, commonly observed in data (heteroscedasticity,
trends), can be easily incorporated into a mixed linear model,
discussed fitting procedures and interpretation of the results.
Long-term repeated experiments are not the only situations
when mixed linear models appear in metrology. A recent ap-
plication appeared e.g. in calibration of flow meters [17] and a
large amount of literature dealing with common mean estima-
tion and key comparisons deals with a special case of a mixed
linear model, too.
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