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In Annex H.5, the Guide to the Evaluation of Uncertainty in Measurenent (GUM) [1] recognizes the necessity to analyze certain
types of experiments by applying random effects ANOVA models. Tése belong to the more general family of linear mixed models
that we focus on in the current paper. Extending the short introduction provided by the GUM, our aim is to show that the more
general, linear mixed models cover a wider range of situations occuimg in practice and can be beneficial when employed in data
analysis of long-term repeated experiments. Namely, we point ouheir potential as an aid in establishing an uncertainty budget
and as means for gaining more insight into the measurement proces$Ve also comment on computational issues and to make the
explanations less abstract, we illustrate all the concepts with thedip of a measurement campaign conducted in order to challenge
the uncertainty budget in calibration of accelerometers.

Keywords: Linear mixed models, uncertainty, GUM, ANOVA, random effects.

1. INTRODUCTION the GUM in [3], measurement process inspectiondhdnd a
mixture of questions about both fixed and random effects in
THE PAPER deals with methods suitable for an analys{®].
of long-term repeated experiments, which are commonlyWhile the GUM explains in detail only the most simple
conducted to assess reproducibility of a measurementnFordase of an ANOVA model (seé]for its Bayesian treatment),
stance, in case of accelerometer calibration, an accetgesmwe would like to show that further aspects observed in mea-
may be repeatedly mounted into the measurement setup sun@ments in practice can be incorporated into the model and
each time its frequency response function (FRF) may be m#wat besides components of uncertainty, such an analysis ca
sured over a range of different frequencies. Such an expanswer further questions of interest. This is discusseddn s
ment reveals variability that may not be observed in a reutition 3. In section 4 we comment on computational issues.
calibration, when an accelerometer is mounted into thepselthe closed-form formulas, as reported in Annex H.51j [
only once. However, this variability is of interest when-creor in the 1SO norm 2] are available only in relatively sim-
ating an uncertainty budget. Moreover, such an experimefe cases. In more complex situations one has to resort to
may yield further insights into the measurement, eitherddy 10ther approaches, e.g. a (restricted) maximum likelihcstid e
vealing issues deserving further investigation or by camfir mation. However, this can be done using statistical so#war
ing that things work as expected. The data collected in such &ince our presentation of the topic is closely linked to the
long-term experiment come usually in groups. For examp#seady mentioned long-term experiment connected with the
in case of the repeatedly mounted accelerometer, we hawslébration of accelerometers, in section 5 we present some
set of measurements for every mounting and it seems najpircrete results and discuss their interpretation. Seétiof-
ral to expect that measurements obtained within one mouets concluding remarks. Before proceeding, let us now de-
ing are more interrelated than measurements obtained for Bgribe the nature of the accelerometer experiment underlyi
different mountings. This already suggests using lineaethi our presentation of linear mixed models.
models for the data analysis. We will elaborate on this gjvi
an explanation what linear mixed models are and what every- )
thing they can capture, in section 2. For now, we just notel: A practical case
that linear mixed models are closely related to random &ffe€he data shown in this paper come from a measurement cam-
ANOVA (ANalysis Of VAriance) or mixed effects ANOVA paign conducted in connection with the EMRP project IND0O9
models, terms that the reader may be more familiar withgsiri@raceable dynamic measurement of mechanical quantities’
the former appears in the GUM, Annex H.B|,[ or in the where the focus is on torque, force and pressure. However,
ISO/TS 21749:20057]. Since ANOVA models are specialacceleration is a fundamental quantity for dynamic measure
cases of linear mixed models, we prefer to use the lattere morents and the campaign should serve as a model campaign for
general term to refer to models that include several randtime other three quantities, exploiting the fact that a aate
(and possibly also some fixed) effects. Examples of pragirimary calibration of accelerometers has already beehn rea
cal use of ANOVA models with random effects can be fourided in PTB [7, 8]. In the campaign, a single-ended (SE) ac-
e.g. in B, 4, 5]. These papers actually illustrate the span oélerometer Biel & Kjaer (B&K) type 8305-001 and a back-
ANOVA applications: uncertainty evaluation in the line kit to-back (BB) accelerometer Bel & Kjaer (B&K) type 8305

52


http://dx.doi.org/10.2478/msr-2014-0009
mailto:barbora.arendacka@ptb.de

MEASUREMENT SCIENCE REVIEW, Volume 14, No. 2, 2014

BB, 315 Hz

[(ne] spnyjdwy

16 17 18 19 20

15

I
”.
-
] i ]
13 14

e
12

T
Mo
|

11

Mounting
BB, 800 Hz

I
bk
|
10

T 1
-~
-
L
8 9

12.845[-

['n-e] spnudwy

12 13 14 15 16 17 18 19 20

11
Mounting
BB, 16000 Hz

9 10

8

S S
- .«.-M--w--...
8]

['ne] spnyjdwy

20

19

18

17

16

15

14

13

12

11

10

9

8

Mounting
SE, 6300 Hz

[(ne] spnuid

g 1321

v

19

18

17

16

15

14

13

12

11

9

8

Mounting
SE, 17000 Hz

10 11 12 13 14 15 16 17 18 19

Mounting

9

Fig. 1: Amplitudes (in a.u.) of the FRF obtained for selected frequentitsa repeatedly mounted accelerometer (SE = single-ended,

back-to-back) and input acceleration determined with the interfetenin position 9&*) and °(-). The arrows indicate different

variability observed due to random error (BB, 16000 Hz). Note that deoto show the finer patterns in fluctuations clearly, the y-axis

scale varies between the plots.
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were repeatedly (19 and 20 times, respectively) mounted ittie possible systematic biases for positiérafid for position

the measurement setup and values of the FRF were measf€iisum to zero. This is necessary for the model to be iden-
for a range of frequencies (10 Hz — 20 kHz) using a sinusoidiilable and it ensures that as a whole, the measured values
excitation of the system. The input acceleration was meassustill vary around the measured quantity. The position effec
with a laser interferometer pointing its rays at two points as considered as fixed since the two positions are well defined
the top of the BB accelerometer and at two points next to thed can be repeatedly realized. The small discrepancies tha
bottom of the SE accelerometer. In each case these two ponéy arise from every (manual) adjustment of the interferom-
lay on a line having two possible angles with a certain refater are then covered by the randormunting-position effect
ence surface: Oand 90, which we will refer to as position That covers also other influences that may arise from the in-
0° and position 90. For each mounting, the FRF was mederaction of a given mounting and a given adjustment of the
sured 10 times in each position, amplitude and phase of fosition, i.e. effects observed due to changing both maognti
input and output signals being determined through a sine dihd position. The discrepancy of an actual measured value
The measurements were done within roughly 5 weeks wiih o) from the measured quantityt} is modelled as a sum
both accelerometers being mounted usually once on a gieéthe different effects and the model

day. The order of the accelerometers on the given day was

randomized, in order to avoid accidental bias, since compar Ympr = K+ bp + Am+ Bmp+ Empr, 1)
son of relative standard uncertainties obtained for thedwo m=1,...,20;p=0°,90°;r =1,...,10,
celerometers was also of interest. Here, we will use onlyesom by + bog = O

parts of the measured data to show what features observed in

reality may be captured by a linear mixed model and we Wil symmarized (with distributional assumptions) in Tahble
refer to the setup of the experiment when explaining the na-The model in Tablel is a mixed effects ANOVA model.
ture of the models. The repeated measurements for us Wik ynknown parameters to be estimatediatay , beo-, o2,

be always the repeatedly measured amplitudes of the FRiza% ang g2, Note that for the fixed effect the values of the
a given frequency. Figur& shows these for several chosegﬁect levels are of interesbg, beer), While in case of ran-

frequencies as obtained in the experiment. Each plot depigdm effects the respective variances are in foai, (02,

a dataset that will be analysed separately. 02). One can estimate also the realized values of the random
effects if desired (e.g. the values &f,. .., Ayg). However,
2. LINEAR MIXED MODELS since these quantities are random, this is referred to akcpre
21 Basic ANOVA model tion in the literature (even though no future aspect is prgse

. . - . Tablel shows also the distributional properties for the mea-
Looking at Fig. 1, it is clear that the simplest model of,

. . surements implied by the model. The normal distribution
values varying randomly and independently around the MEBmes from the fact that a sum of normally distributed, mu-
sured quantity Ympr = U + Empr) is Not really applicable to '

tually independent random variables is again normally dis-
the data obtained in our long-term experiment. The fluct y P g y

. . o i Y8buted. Further, if we arrange all thgpr in a vector, this
tions the observed amplitudes exhibit have a finer SUUCtULE, 14 have a multivariate normal distribution with a centai
which may be described by adding random and/or fixed

: . ) ) ean vector (entrieg + bg- for observations in position°0
fects to the simple model. Which effects might be consider ( A+ bo P

X &fd U+ bgor for observations in position 9P and a covari-
stems from the nature of the experiment and the way of m%(iifce matrixZ. Unlike in the simple model with indepen-

ellr(;g It _Ir_1 ourfcar\]sei we vsry mou?nﬂg _Of th? acceleromet(%nt, identically distributed random errors,in the model
an p(_)smon of the laser eams o t € Inter erom(_ate_:r, SO Werable1 is not diagonal. The observations are in a certain
can think of effects of position, mounting and their mteragv‘,le correlated. This is not surprising, since, e.g. all &mpl

tion, mounting-position. Theffect of mountingyill be mod- tudes measured within one mounting are influenced by the

elied as random. This means that we assume that measiigse \a1ye of the mounting effect, which results in a posi-

ments obtained within one mounting are influenced by a COfiVe correlation. Actually, the model in Tabledoes not allow
mon value, which changes randomly and independently fr

gative correlations at all. Namely, the correlation et

mounting to mounting. However, the_se eff_ect sizes or lev ﬁ1plitudes obtained within one mounting but at different po
are centered at zero and have a finite variance. The mount-

2

ing effect includes all the uncontrollable external infloes SIoNs 'SW’ while amplitudes obtained within the
that may vary between the different mountings as well as a‘ny?e c;ombination of mounting and position have correlation
Icn;‘:;frréceii ziﬂf;ds tbtxg sg:dlr:{::]pretggggsoip tg:it?;?vt;mtigg pm—a;r;,?ﬂ?faz' Amplitudes obtained within different mountings
modelléd as fixed. That meansgthat the sampe valueissu are&nodelled as independent.

. ppose
to influence the measurements whenever they are taken at po-
sition O, and similarly, one and the same value is manifestéd- Extension - linear trend
when position 90 is measured. The common assumption e model in Tablel belongs to the ANOVA family. One
that these values, the levels of the effect (i.e. the valdesspeaks about an ANOVA model when the observations are
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Model‘ympr: IJ+bp+A;n+Bmp+£mpr, m:l,720;p200,90];r - l,.,lo

Term Random Levels Distribution Implications
common mean no u -
-~ 2 2 2
position no bor, bocr, - Ympr ~ N( +bp, G + Ojjp + 0°)
(boe +bger = 0) (for correlations see text in Se2.1)
mounting yes Ad,. .., Az Am~N(0,03), iid

9 2 2 2

mounting-position  yes Broe, Buoo- -, Bmp~ N(0,03p), iid || JmP N(k +byp, 0 + 04 + 0°/10)

B2o,0°, B2o9o , , ,

random error yes €107, -1 619020, - Empr ~ N(07 0-2), iid Y- ~ N(H, Oy + UMP/2+ 0°/20)
£2090°,1,- - -, €20,90°,10

Table 1:ympr is therth measured amplitude within thieth mounting at positiorp, u is the value of the amplitude of the FRF (i.e. the
measured quantity), is the fixed effect of the positioyy denotes the random effect of mountirgy,p the random effect of mounting-
position, empr the random error and iid stands for independent, identically distributed.thalrandom effects and random errors are
assumed to be mutually independent. Shown are also the distributional itigpigcaf the model for the measured amplitugig,, the
average amplitude over one mounting-position combingtjgn and the average amplitude taken over measurements obtained within one
mountingy,,.. The latter average would be reported as the amplitude for the giveueiney in a routine calibration.

simple sums of the different effects. Whenever the depai-measurements within the mounting-position combination
dence is more complicated (but still linear in the effeatsle is rather different. Compare e.g. the fluctuations in mount-
calls the model a linear mixed model. For example, if we img 12 at 90, mounting 14 at 90or mounting 19 at Owith
clude a trend for observations obtained within each mogatirthe fluctuations of the repeated measurements obtaineshwith
position, the model becomes mounting 2 or 4 at either position. This can be incorporated

into our model by allowing the variance of the random error
(2) to vary between the mounting-position combinations, i.e.

e100r ~N(0,024.), 1 =1,...,10;

Ympr = M+ bp +Cr 4 Am + Bmp+ Cimpl + Empr,
m=1,...,20;p=0°,90°;r =0,...,9,
bo- +bgo> =0,

~J 2 fr— N
where the parameterrepresents a common trend in the re- 290" N(©,019p). 7 =1,...,10;

peated measurements of amplitude for the given frequency ...

and the random effecCmp provides its modification for )

each mounting-position combination. We assu@ig, ~ €090 r ~N(0,0509¢0), T = 1., 10.

N(O, Ofipireng)- The indexr denoting the order of the mea-The number of parameters in the model is then increased by
surement starts now from 0, which reflects the fact that \8¢ in our case, 1 commas? is replaced by 40 (the number of

assume to start from the value of the measured quantity @unting-position combinations) different variancess .,
observe a slight increase for the repetmon.s.. That suchkxan 82900, Uzz,omalz,gom- - 0220700, sz20’90)_ In this case, for the
tended model may be useful when describing real meas%{éérage over a mounting we have:
ments is supported by the amplitudes we observed at fre-

qguency 315 Hz, see Fid. There, for most mounting-position v N (M o2 1 % +} <G§00 fore )) @)
combinations the repeatedly measured amplitudes exhibit a '™ M 2 4\ 10 10 ’
slight linear increase. Note that for the average over a moun

ing it now holds: 2.4. Extension - correlations

2) So far all the random effects and their levels were constdere
)

2 2

% + WTZJr CZLO independent and the correlations between the measurements
were induced only by the influence of the same effect level on

wherer = 39 ;r/10 and there is a systematic bias)(when several measured values. However, the model may be general-

the simple averagg,,. is used as an estimate of the measuréted by allowing correlations also between the random tffec

Ym. ~N (u+cr,a,\2,|+

guantity. For example, we may consider a model with only mounting-
position effects, which would be however correlated within
2.3. Extension - heteroscedasticity one mounting. This would allow, e.g. for the possibility of

Other modification of the basic model supported by our d [ggative (_:orrelatlon betweer_1 measurements at differesit po
10ns within the same mounting.

is related to the random error variability. The model in Ta-
ble 1 assumes that the fluctuations due to the random error

have the same varianeg. This may be a good approxima- 3. BENEFITS

tion for measurements at 800 Hz, see FigHowever, look- As already mentioned, the GUM][shows in Annex H.5 an
ing at the amplitudes obtained at 16000 Hz, the variabilitystance where a random effects ANOVA model should be
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employed for the analysis of measured data. Namely, the f¢-results from future calibrations. Thus these variarama-c
ample deals with a Zener voltage standard calibrated a@gapmnents might be included as entries in an uncertainty bud-
a stable voltage reference over a two-week period. The mgat. For a future calibration experiment, they would be type
surements are done repeatedly (5 times) on 10 different dd/£omponents. Similarly, it is often the case that an uncer-
The statistical model underlying the analysis 1hif tainty budget includes also a fixed term for the repeatgbilit
(o2 in model in Tablel), since this is considered a property
Vak=H+Ag+ &k d=1,...,J(=10),k=1,...,K(=5), of the measurement setup, see €9}. ection 5.6. Examin-

(5) ing results from a long-term repeated experiment using thixe
whereygyy is the kth measurement of the voltage on day linear models enables us to check whether the repeatability
Ag ~ N(O, a,%) stands for a random effect of day aggk ~ variance remains constant over time. This means examining
N(0,0?) are the random errors. From the measurements, evteether a model with commaor? fits the measurements well
wants to obtain the common megm, which is in this case enough as compared to a model with, for example, different
the measured voltage, and the associated type A uncertargeatability variances for each mounting-position corabi
These values are, as stated in the GUM, not the final restit&. This assessment may be done by examining a plot of
of the calibration. Of course, the estimated valugdfas to residuals obtained after the respective model is fitted,yor b
be compared with the stable voltage reference and the uncarrying out a likelihood ratio test comparing both fits (see
tainty has to be amended to include type B contributions. Tég. [LO], p. 83). As a by-product, the revealed changes in the
voltage is estimated as the average over all measurementsepeatability variance may trigger further investigatafthe
and since from%) we havey. ~ N(u,03/J+ 02/(JK)), it measurement setup.
is straightforward to obtain the associated type A uncetyai  Last but not least, fitting a mixed linear model to a long-
once the model is fitted to the data, i.e. the parameters tire @srm repeated experiment provides quantitative answers to

mated:uy = 6§/J+ 62/(JK) (the hats denote estimates)queStiO”S about the fixed effects as well. For example, in our

P 5 . case we can determine the presence and size of the system-
In the GUM notation,g? is s, 03 is s and the formula for P Y

th taint b d with f las (H.32 aﬁt_Jc bias between amplitudes measured at the two positions,
Heztgnger im %fr?ﬁy ellgorr:.pare f wi lormu ?S (H.32) alﬁ quantify the effect of neglecting a trend present in thame
(H.29) in [1]. € callbration of accelerometers was aly, o ants when calculating just a simple average of the am-

ways conducted with the accelerometer mounted repeatjéh’udes and reporting it as the final calibration result.
into the setup, we could proceed similarly as in the GUM, €s-

timate the model parameters by fitting one of the models from

the previous section to the measured amplitudes and report 4. HOW TO SQUEEZE THE NUMBERS OUT

the estimatedi (the amplitude of the FRF at the given frein the previous two sections we have seen that data gener-
quency) and its type A uncertainty (depending on the methaiéd in a long-term repeated experiment exhibit a strudture
of estimation). However, in our cageis not in the center behaviour that can be modelled by linear mixed models. We
of interest, since the experiment was not done with the afrave also pointed out what benefits such an analysis may bring
to calibrate the given accelerometer. The aim was to assesfarding both the overall understanding of the measuremen
the reproducibility of the calibration procedure. Thus we aprocess and the establishment of an uncertainty budget. In
primarily interested in the variance parametefs ogpe, 02, this section we would like to discuss practical aspects of ca
also called variance components, since they decomposerifieg out such an analysis, mentioning ways how the models
overall variability into several separate sources. Caraigy can be fitted to particular data (i.e. how the estimates of the
this decomposition may be of interest in itself, since it-prparameters may be obtained).

vides further knowledge about the measurement process. For

example, in the case reported in the GUM, Annex HISiEis 4 1 ANOVA table

recommended that apparent day-to-day variability (i.eyda
positive value ofa,%) should be a reason for investigation

its cause. :
fhe unknown parametergt, bo-, boo:, Gjj, Oigp, 0%, Which

C_Zon_n_ng back to our _experlment Wlt.h accel_e_ronjeters, tw?ll establish a connection to the formulas statedlii?] and
variability due to mounting and mounting-position is not ob

. which in fact turn out to have also optimal statistical prepe
served when the accelerometer is mounted only hrivaw- . . - . .
. L . ties in this case (they have minimum variance among all unbi-
ever, one would like to cover it in the overall uncertaint

If the variability due to these sources is considered irrhterz‘]ésed es.t|mators in their class (linear, quadratic resyg),
oroc}etalls seell], pp. 129, 161.

to the measurement setup, one can use the same values
Gi» Ofip, coming from the long-term repeated experiment, o fl, boe, bog: It seems indeed natural to estimate the

common mearu (the measured quantity) as the aver-
1Strictly speaking, the componeaﬁIP could be estimated from measure- age over all measurementg; and the position effect
ments done within one mounting, but it would be like estimatingudance ot

from two observations (within one mounting we have only two nting- bo- (boer) as the differe_nce between the average of all
position combinations). measurements at positiofi (®0°) and the overall mean:

0?onsider first the basic model in Takle In what follows,
we will describe some apparently reasonable estimators for
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Voo. = V.. Yor. —V..). These are the (weighted) leastSO norm P]. Apart from the fact that one has to look up the
squares estimators in the model, s&f,[p. 160. form of the table for each type of the ANOVA models, these
rocedures are based on two other important assumptions and

PO . . r
* Ow: Since measureme_nts obtained for different mour?ﬁat is the balancedness of the model and common repeatabil-
ings are modelled as independent and each mountin

meany,,. has the same distribution, see Taftletheir ariance.
Im- . 0 1 <20 /o R . A model is balanced if we have the same number of repeti-
sampling varianceS; = 5+ Sme1(Ym. — ¥..)* esti-

i - ) > tions on each level, i.e. in our case we have always two posi-
mzates the variance from Tabl i.e. Iy + UMZP/2 T tions measured within each mounting and we have always 10
02/20' Thus, if we had eSt'm"?teIlzllP' 0 for ojgp @nd  reneated measurements within each mounting-position com-
g, we coulijzestm;ateAt?e vanance of the mounting &fjnation. The importance of balancedness becomes clear
fect, oy, asoy = Sy — Op/2—0°/20. when we consider that the estimates for the parameters de-
e G2 Since within each mounting-position combinatioficribed above are based on averages at different levels. If
we have 10 repeated measurements, their sampling vilf:Se averages are obtained from the same number of obser-
ability estimates the random error variance. We can th(@ions, combining them together is straightforward.
obtain 40 estimates of the same quantity, namely, forEven though one can usually plan a reproducibility exper-
eachmp combinationsﬁ1p = 101 529, (Ympr — Vmp)21 iment in this balanced way, there might be outll_ers obsprved
where i, = Tlozrlglympr is the average of measure?r,‘d one may want to omit t.hem_ from the analysis, endmg up
ments within one mounting-position combination. Thwith a slightly unbalanced situation. For example, lookigt F
random error (or the repeatability) variance may be thé&rnd the amplitudes measured at 6300 Hz. There seems to

estimated as the average of the individual estimat8§ SOme outliterstin m‘?t‘_m“og%ltﬁg or onetr_nay contsider a"”the
52 @ _ 1 <20 ) measurements at position is mounting as strange.
NAMElyT™ =S = 702 Zm-13 pe(0"90') Snp such measurements were always discarded in the calibration
e 0p: Before motivating the estimate fap, observe it would be reasonable to omit them from the reproducibil-
that the estimate foo? is based on fluctuations of thdty analysis as well. That would, however, lead to an unbal-
individual observations with respect to the mountingmnced design - for mounting 14 we would have only measure-
position mean, and the estimate fof; on fluctua- ments at one position. Use of formulas for a balanced case
tions of the mounting means with respect to the oven a slightly unbalanced situation may not lead to compjetel
all mean. The estimate afe should be then basedunreasonable results, however, one should give it a serious
on fluctuations of the mounting-position means. Hovgonsideration and the analysis becomes less straightfdrwa
ever, looking at such fluctuations with respect to tHespecially, realization of statistical tests in such ditus is
overal mean would not leave the mounting part ofiore complicated (see e.d.q).
the variation, and thugsg, out. Thus we need to Apart from the balancedness, the closed form formulas
consider these fluctuations with respect to the oveedlove are derived for models with a common repeatability
mean adjusted for the position effect and the moumariance in all groups. If this is not the case, e.g. we want
ing effect: u%dpj =Y. +Vp—-Y.)+ m —V.). So to fit our data with the model from Table but with differ-
_ 1 20 v ent random error variances for each mounting-position com-
we calculaieS, (20-1)(2-1) Zin-12pe (0,907} Ymp bination, the availability of closed form formulgc'];lspfor @st-

2 1 20 5 = o Mion is very limited. Similarly, if the model to be fitted is
Swp = @oe1)z=n Lm-12pe(0°.90°} Ymp = Yop = Ym- + ot a simple ANOVA model, but we want to consider trends
y..)2%. Sp is an unbiased estimate o, +02/10, thus  (like e.g. in model 2)) or some correlations between the ef-
Gap = Syp — 02/10. fects, the closed form formulas are not available at all. SThu

Before proceeding, note that the estimai@sand 62, may one has to consider more general approaches to fitting lin-

be negative. The common practice is to take this as an i mixed models that are applicable _in any situation. Such
dication that the estimated variance is zero, i.e. the aftec® Universal method is the Maximum Likelihood (ML) or the

random effect is not present in the model. For a full disarssikEStricted(or REsidual) Maximum Likelihood (REML).
see [L1], p. 130.

u%dpj)z, which can be rewritten in the more familiar for

4.3. (Restricted) Maximum Likelihood

4.2. Need for a general approach As already mentioned, any of the models in sectim-
The closed form formulas as stated above are the so capids a likelihood for our measured amplitudes, namely a
ANOVA estimators and the sums of squasrSp, rpS, multivariate normal distribution with a certain mean vecto
are the mean sums of squares from the so called ANOWAd a certain covariance matrix. By the ML method one
table. These tables for a variety of ANOVA models can kiken maximizes the likelihood in the parameters (g.dg-,
found in [L2], the most common models are usually coveré®y, 03, 07p, 0°) that appear in the mean vector and the
in standard statistical textbooks as well and these tabies covariance matrix. The maximization is constrained, since
derlie the development in Annex H.5 of the GUIY pnd the bg + bg = 0 ando > 0, 03 > 0, 02 > 0. An alterna-
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BB, 315 Hz BB, 16000 Hz SE, 17000 Hz
u: est. 12.829 16.023 17.670
b: est.(95% Cl)| -0.0024 (-0.0047,0.000032) 0.1131 (0.0383,0.1880) @@E81.0226,0.1245)
c est.(95% CI) 6.2e-5 (5.4e-5,6.9e-5) - -
Owm: est.(95% ClI) 0.00076 (4e-6,0.1467) 0(-) 0.7459 (0.5362,1.038)
Ovp. est.(95% Cl)| 0.0036 (0.0026,0.0050) 0.1167(0.0931,0.1462) 0.1007{®,0.1496)
Omptrend:.  €St.(95% CI) 1.5e-5 (1e-5,2.4e-5) - -
Omp: range 6e-5-5.1e-4 0.0066-0.1198 0.0055-0.0855

Table 2: REML estimates for the different parameters in mixed linear faditted to our data. Cl stands for confidence interval as calculated
by the software, 'est.’ stands for estimate, -’ means the respecairameter was not considered in the model (e.g. for 16000 Hz no trend
was considered). All the fitted models were heterosceddststimates the systematic difference between positioan@ 90. 0 in the
column for 16000 Hz is not a direct estimate from R, but the inspectioredfkilinood showed that the maximum is attained at the border
of the parametric space (for more details, see se&iar). In such a case, however, there is no automatic statement for thel@ocdi
interval.

tive is the REML method, which first fits the fixed effect paftom the parametric space), sdd], p. 253. As already men-
with a least squares fit and then the residuals are used fortiesed, in balanced models, these closed form formulas are
timating the variance parameters. At the end, the fixed &ffegot only intuitively appealing, but they are in a sense optjim
are reestimated by weighted least squares with weights siee sectiod.l Thus in these special models, REML yields
rived from the estimated covariance matrix. The maximubetter estimates of the variance components than ML. This
likelihood part in the REML procedure is in the estimation déature is commonly described as accounting for the errer du
the variance components, since these are determined to ni@estimation of fixed effects, and it is assumed to carry over
imize the likelihood of the residuals. The maximization i® more general models.

constrained in this case as well, the variance componeats aRemark 1.As to the estimation of fixed effects, there are
non-negative. It is advisable to use a statistical softwath usually some constraints of the typg + bgg- = 0. In our

for the ML and the REML method. A useful reference in thisase, a possible way how to take these into account is to re-
context is [L3] explaining the model fitting with SAS, SPSSplacebgy by b/2 andbgy by —b/2, for someb. Thisb then
Stata, R/S-plus, and HLM. While the optimization routinegpresents the systematic difference between positiand

in general are not trivial, for certain groups of linear nixe90°, which we may be directly interested in. (Interpretation of
models - without correlations between the random effeats gin remains unchanged.) And we have to estimate préyidb

with a common repeatability variance - one can obtain thad the variance components in the fitting procedure, idstea
ML/REML estimates also using an iterative algorithm based formally: u, bo-, beee and the variance components.

on the so-called Henderson'’s equations. 3ég p. 278-286,
or [14] for the theory and proceduraixed.mon Matlab File
Exchange 15] for a MATLAB implementation. We note that
an adjustment of the iterative algorithm to a case when fFable2 shows results of fitting mixed linear models to ampli-
random error variances differ in the different groups ofdat tudes of the FRF at 315 Hz, 16000 Hz and 17000 Hz. The es-
possible and we plan to report on it elsewhere. timates were obtained by REML method using funciioe()

in the librarynimein R.
Both the ML and the REML methods are accompanied by

an asymptotic theory regarding the distribution of thereati

tors, which then enables carrying out statistical testwiabd-1-
or constructing confidence intervals for the parameterse since application of any fitting procedure to any data yields
may worry about the validity of these tests for finite numbspme numerical results, before interpreting the estimaaéd

of measurements (the theory operates with infinite dafpsetgs or applying statistical tests, one should check wheéitieer
and there exist lots of adjustments trying to improve the tdiéted model seems plausible for the data. By this we mean
performance in practice, see e.ti4]. Moreover, in each con- to check whether the assumptions we made do not appear to
crete example, one may use a simulation to look closer at bieein sharp conflict with the data. There exist lots of differ-
quality of the tests. This is described in a simple waylif][ ent graphical diagnostic tools, exploring different aspex
Chapter 8. Another source of worry may be the assumptive mixed linear model, and we will show here only a few
of normality, however, this seems to be acceptable in magwamples. For a more extensive treatment $8gl[6, 10].
practical situations, see e.g. the exampled.0).[The REML The first to check are the residuals. A software usually of-
estimation is usually preferred, because in case of a badlaniers a possibility to calculate normalized residuals, \ultor-
ANOVA model the results coincide with the results obtainegspond to normalized random errors. These should follow
from the closed form formulas from the ANOVA table (athe standardized normal distribution and be independdrd. T
long as these formulas yield positive estimates - i.e. egdm residuals can be plotted against the fitted values or aghiest

5. RESULTS AND THEIR INTERPRETATION

Diagnostics
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Homoscedastic model Random sample from N(0,1) Heteroscedastic model
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Fig. 2: Normalized residuals from fitting a mixed model with the same vagidmicall random errors (left) and a mixed model assuming
different variances within mounting-position groups (right) to amplitudds$s800 Hz for the back-to-back accelerometer. The middle plot
shows a random sample from a standardized normal distribution fdtex bemparison.

index of measurement, the plots can be further subdivided &cts, Byp, which does not indicate a violation of normality.
cording to the groups that appear in the model. What shotlde other plots are trying to discover a violation of the inde
not be visible in these plots are systematic trends or ulego@ndence assumption. Plotting predicsg}, values against
variability in the values. The first would suggest that thetiee predictedBy,, might have revealed some correlation be-
are some systematic influences left out of our model (and thwgen the mounting-position effects and the random trend ef
we might think of extending the fixed effects part), the lafects, which are, however, assumed to be independent. The
ter would suggest that our assumption about the variancessatter plot of pair§Bmg-, Bmge) might have revealed a de-
random errors has to be adjusted. For example, Zghows pendence within the mounting-position effects, which wdoul
normalized residuals from fitting a homoscedastic model (thgain violate our assumptions.

same variance for all random errors) to the data from the-backFor both 315 Hz and 16000 Hz, the described diagnos-
to-back accelerometer at 16000 Hz. It is immediately cledg tools do not indicate a serious problem with the assumed
that under our assumptions (i.e. in our model), the normededel. Checking the fit for the amplitudes at 17000 Hz
ized residuals do not have the same variability, contrarydad single-ended accelerometer, mounting 1 and 11 would
what is expected. A model allowing for different variancese suggested as possibly outlying. In addition, there seems
in individual groups captures the data better. Besidesalisto be some correlation between tBg, effects within one
comparison of residuals, the two models can be comparedmsunting. This may suggest considering an alternative inode
ing a likelihood ratio test as well. In this test the maximumwithout the mounting effect and with correlat8go:, Bmoor

of the (restricted) likelihood in both models is compared afior a commonm. Then we would getyp = 0.7537 and
lack of difference would suggest that adopting the more cogorr(Bnge , Brge ) = 0.98.

plicated model is not necessary. In R the test can be done

using functioranova()(library nime). For 16000 Hz, the like- .

lihoods are 757.33 and 974.06 for the homoscedastic andqtfe  Nterpretation and use

heteroscedastic model, respectively, and the accompgpyinLet us now have a look at the results in TaBle

value is less than 0.0001, supporting the conclusion theat th

heteroscedastic model is better suited. 52.1. Effect of mounting

The normality assumption may be checked by 100king a} §ing at the estimated variability for the mounting effec
quantile-quantile plot. It plays a role when interpreting-o ¢, 315", (BB accelerometer), we see that the value is low
comes_of statistical tests, since in case of s.enous.vmialf compared to the mounting-position variability and in aitait
normality, the reported p-values may be misleading. Maxijg accompanied with a confidence interval stretching over
mizing normal I|kel|hood'|n order to estimate the parametel, aral orders of magnitude. This, according 16][ p.27,
may then become questionable, too. usually indicates problems with the model definition, in our

Second, we should look at the predicted random effeatase it suggests that the mounting effect may be redundant.
We assume that random effects are normally distributed arfds is further supported by comparison of the maximum of
(depending on the model) independent. The normality digelihoods for model with (2690.314) and without the mount
sumption may be checked by the quantile-quantile plotg; pling effect (2690.296), which are practically identical.ofF
ting the effects against each other might help to discover cmally testing that a certain random effect is not presentién t
relations that are actually not present in the model. Takeodel requires some caution, since the p-values reported by
for example the 315 Hz measurements. FigBrshows a anova()in R tend to be larger than the true p-values, 46§ [
guantile-quantile plot for the predicted mounting-pasitef- p. 87.)
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Fig. 3: Left: Quantile-quantile plot of the predicted mounting-position ¢ff8mp). Not to violate the assumption of normality, the plot
should be close to linear. Middle: Scatter plot of mounting-position efféqissition 90 against these effects at positioh ot showing
any obvious correlation. Right: Scatter plot of mounting-position effégig against the predicted sizes of random tre@ds, again
without any obvious correlation.

The situation is similar for 16000 Hz (BB accelerometerihe amplitude with interferometer at positioh &d at posi-
When trying to fit a model with mounting effect, thme() tion 90°. Then the average amplitudg,.., will be reported as
function had problems achieving convergence when seaychime final result. Consider as an example the measurements at
for the maximum of the restricted likelihood. An inspectiafn 315 Hz. The formula for the uncertainty observed directly in
the restricted likelihood showed that the maximum is likely the long-term experiment, combining)(@nd @), is
be attained at the border of the parametric space, i.enjce

0, which again suggests that the mounting effect is nedéigib — o2+ Tip i UnleptrendeJr} (Ur%oo Gr%90°>
The only case showing a dominant common effect for mea-"™ M2 2 4\ 10 10
surements obtained within one mounting was the case of am- (6)

plitudes measured at 17000 Hz with the SE acceleromefs.already discussed in secti@nconsidering the variability
The common effect within each mounting is actually obsergue to mounting and mounting-position (including the ran-
able also from Figurd, where all measurements within on€lom trend) inherent to the experiment, we may use the esti-
mounting are strongly shifted in the same direction. This frmated values in the formul&)also for future measurements.
quency is, however, known to be the transverse resonance Titee random error variability (or repeatabilityz., G0
quency of the accelerometer, which is reflected also in thi@y be obtained in each calibration for each position as the
huge variability of the repeated measurements. As such, is@ampling variance of the repeated measurements. The other
not reported in a calibration certificate and we mention iyonoption is to observe that even though the variability of the
to demonstrate a span of possible results from fitting a mixhdom error varies, it does not cause much difference in the
linear model to repeated measurements. final expression for the uncertaint$)(and thus in practice
we may consider some fixed value for it. For the measure-
ments at 315 Hz,6) equals 0.00266 when calculated with

. . Om>> = Omor = 6.5e— 5, as well as when calculated with
For both 315 Hz and 16000 Hz the mounting-position effegﬁoo — Ooo = 5.1e— 4, which are the minimal and max-

(omp) dominates the variability. This may not be surprisingma| random error variabilities observed in the experiment
considering that the position of the interferometer is &R |, fyture calibrations we just have to check that the remkate
manually adjusted. However, the analysis does not exclyggasurements do not exhibit variability that is substégtia

that this effect has also contributions coming from a combjiferent from what we observed in the reproducibility expe
nation of mounting and position. Unlike the mounting eféectjent.

5.2.2. Effect of mounting-position

these are then independent between the positions. For a comparison, uncertainty of 0.00266 corresponds to
a relative uncertainty of 0.021 % (0.00266/12.829, see€Tabl
5.2.3. Uncertainty budget 2), which constitutes 21 % of the overall relative uncertaint

As mentioned in sectio8, by fitting a mixed linear model that would be calculated according to the current unceistain

to measurements obtained in a reproducibility experiment fHdget. This was considered satisfactory.

can assess contributions to the uncertainty budget. Inasg,c

the uncertainty budget would be created for a result of a c&i2-4. Fixed effects

bration, in which an accelerometer is mounted into the sefiugst but not least, let us look at the estimates of the fixed
and its frequency response function is measured at severaldffects. The parametérestimates the systematic difference
quencies. Taking amplitude at a certain frequency as an kgtween the amplitudes measured with interferometer at po-
ample, one would repeatedly (let's say 10 times) determisifons O and 90. This is accelerometer specific and not of
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direct interest, since the averaging over two positionised nication and information technology equipmenEEE
with the intention to cancel out the biases. More intergstin  Transactions on Electromagnetic Compatibilit4 (2),
is the estimate of the trend)( It appears in measurements  385-393.

at certain frequencies and as mentioned in se@i@nignor-  [6] Toman, B. (2006). Linear statistical models in the pres-

ing it by the final averaging causes a systematic tias the ence of systematic effects requiring a Type B evaluation
estimate of the measured quantity. Our analysis enables ust  of uncertainty.Metrologia, 43 (1), 27-33.

quantify the size of this bias relative to the mean: for 315tHz [7] von Martens, H.-J., Link, A., Schlaak, H.-J.adibner
is 2.79e-4/12.829, which is, at the level of 0.002 %, neglai A., Wabinski, W., Gbel, U. (2004). Recent advances in

and well covered by the uncertainty. vibration and shock measurements and calibrations us-
ing laser interferometry. I$ixth International Confer-
6. DISCUSSION AND CONCLUSIONS ence on Vibration Measurements by Laser Techniques:

Mixed linear models are well established in statistics. rEve  ~dvances and ApplicationSPIE, YOI' 5?’03’ 1_.19' .
though there might still be a space for improvement, thestat[8] 1SO. (1999). Methods for the calibration of vibration
of-the-art and its implementation in software packageblena ~ @nd shock transducers — Part 11: Primary vibration
a convenient application of these models to real data. b thi ~ calibration by laser interferometrySO 16063-11:1999.
paper we tried to point out benefits of application of mixed9] Jackett, R.J., Barham, R.G. (2013). Phase sensitivity u
linear models for the analysis of long-term repeated exper- certainty in microphone pressure reciprocity calibration
iments from a metrological perspective. We showed what Metrologia 50 (2), 170-179.

all features, commonly observed in data (heterosceddstidii0] Pinheiro, J.C., Bates, D.M. (200QYlixed-effects Mod-
trends), can be easily incorporated into a mixed linear hode  els in S and S-PLUSSpringer.

discussed fitting procedures and interpretation of thellﬂesufll] Searle, S.R., Casella, G., McCulloch, C.E. (1992)i-
Long-term repeated experiments are not the only situations’ gnce Componentsiohn Wiley & Sons.

when mixed linear models appear in metrology. A recent a['1'2] Burdick, R.K., Grayhill, F.A. (1992) Confidence Inter-
plication appeared e.qg. in calibration of flow metelrg [and a vals on ’Variar;ce Comp’)onemMarcel Dekker

large amount of literature dealing with common mean estima- . :
tion and key comparisons deals with a special case of a mrligeﬁ] West, B.T., Welch, K.B., Galecki, A.T. (2007).inear
y P P Mixed Models: A Practical Guide Using Statistical Soft-

linear model, too. ware. Chapman and Hall/CRC.
[14] Witkovsky, V. (2012). Estimation, testing, and predic
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