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1  |  INTRODUCTION

Cost-effectiveness analyses (CEAs) conducted alongside randomized controlled trials are an important source of information 
for decision-makers in the process of technology appraisal (Ramsey et al., 2015). The analysis is based on healthcare outcome 
data and health service use, typically collected at multiple time points and then combined into overall measures of effectiveness 

Correspondence
Baptiste Leurent, University College 
London, Gower Street, London WC1E 6BT, 
UK.
Email: baptiste.leurent@ucl.ac.uk

Funding information
Medical Research Council and UK Foreign, 
Commonwealth and Development Office 
(FCDO), Grant/Award Number: MR/
R010161/1; National Institute for Health 
Research Health Technology Assessment 
(NIHR HTA), Grant/Award Number: 
04/11/02

Abstract
Trial-based cost-effectiveness analyses (CEAs) are an important source of evidence 
in the assessment of health interventions. In these studies, cost and effectiveness 
outcomes are commonly measured at multiple time points, but some observations 
may be missing. Restricting the analysis to the participants with complete data can 
lead to biased and inefficient estimates. Methods, such as multiple imputation, 
have been recommended as they make better use of the data available and are valid 
under less restrictive Missing At Random (MAR) assumption. Linear mixed effects 
models (LMMs) offer a simple alternative to handle missing data under MAR with-
out requiring imputations, and have not been very well explored in the CEA context. 
In this manuscript, we aim to familiarize readers with LMMs and demonstrate their 
implementation in CEA. We illustrate the approach on a randomized trial of anti-
depressants, and provide the implementation code in R and Stata. We hope that the 
more familiar statistical framework associated with LMMs, compared to other miss-
ing data approaches, will encourage their implementation and move practitioners 
away from inadequate methods.
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cost-effectiveness analysis, missing data, mixed-effects, randomized trial, repeated measures 
model

S H O R T  R E S E A R C H  A R T I C L E

Linear mixed models to handle missing at random data in  
trial-based economic evaluations

Andrea Gabrio1   |  Catrin Plumpton2   |  Sube Banerjee3   |  Baptiste Leurent4,5 
1Department of Methodology and Statistics, Faculty of Health Medicine and Life Science, Maastricht University, Maastricht, The Netherlands
2Centre for Health Economics and Medicines Evaluation, Bangor University, Bangor, UK
3Faculty of Health, University of Plymouth, Plymouth, UK
4Department of Medical Statistics, London School of Hygiene and Tropical Medicine, London, UK
5MRC International Statistics and Epidemiology Group, Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine, 
London, UK

DOI: 10.1002/hec.4510

Received: 22 July 2021        Revised: 14 March 2022        Accepted: 17 March 2022

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.

© 2022 The Authors. Health Economics published by John Wiley & Sons Ltd.

wileyonlinelibrary.com/journal/hecHealth Economics. 2022;1–12. 1

https://orcid.org/0000-0002-7650-4534
https://orcid.org/0000-0003-2710-9199
https://orcid.org/0000-0002-8083-7649
https://orcid.org/0000-0001-6420-6567
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1002%2Fhec.4510&domain=pdf&date_stamp=2022-04-02


and cost (Drummond et al., 2005). The derivation of these measures is problematic in the presence of missing outcome data, 
which are a common issue in trials, with on average only 60%–75% of randomized participants having complete CEA data 
(Leurent et al., 2020; Noble et al., 2012). A popular approach to handle missingness is to discard the participants with incom-
plete observations (complete case analysis (CCA)), allowing for derivation of the overall measures based on the completers 
alone. We note that slightly different definitions of CCA are possible, depending on the form of the model of interest, the type 
of missingness and the inclusion of observed covariates. Without loss of generality, throughout the paper, we refer to CCA 
as to when only individuals with fully-observed effect and cost data (i.e., the completers) are included in the analysis, thus 
requiring the removal of all cases with partially-observed outcome data. This approach, although appealing by its simplicity, 
has well-recognized limitations including loss of efficiency and an increased risk of bias (Carpenter & Kenward, 2012; Faria 
et al., 2014; Rubin, 1987). In recent years there has been an increment in the uptake of more appropriate statistical methods, 
such as multiple imputation (MI) (Leurent et al., 2018b) or Bayesian methods (Gabrio et al., 2019), which improve efficiency, 
rely on less restrictive missingness assumptions, and facilitate the task of conducting sensitivity analysis to alternative missing-
ness assumptions (Gabrio et al., 2020; Leurent et al., 2020). Among these, Missing At Random [MAR ; Rubin (1987)] often 
provides a desirable starting point as it implies that valid inferences can be drawn based on the observed data. Both CCA and 
MI are generally valid under some form of MAR assumptions. When estimating a difference between arms adjusted for base-
line covariates a CCA will be valid if being a complete-case is only dependent on these covariates. Multiple imputation will 
be valid under less restrictive assumptions, as missingness could also depend on the observed outcome at the other time-points 
and other variables not in the analysis model. Although MI has become more frequent and accessible in CEAs, its' implemen-
tation in routine analyses remains limited compared to CCA (Gabrio et al., 2017; Leurent et al., 2018a), perhaps because of a 
lack of familiarity, computational time, or the analytical difficulties of the approaches. Indeed, it requires particular care when 
combined with other statistical procedures, such as taking into account clustering (R. Gomes et al., 2012), or using bootstrap 
re-sampling (Brand et al., 2019).

We propose the use of linear mixed effects models (LMMs) as an alternative approach under MAR. Linear mixed effects 
models are commonly used for the modeling of dependent data (e.g., repeated-measures) and belong to the general class of like-
lihood-based methods. Linear mixed effects models have been occasionally used in CEA under the denomination of multilevel 
or hierarchical models (Manca et al., 2005; Rice & Jones, 1997) to account for the dependence between observations with a 
hierarchical structure (e.g., cluster-randomized trials). Repeated-measures also follow a hierarchical structure since data within 
each individual are correlated, and LMM are increasingly used to analyze longitudinal outcome in trials. However, LMMs 
appear surprisingly uncommon for the analysis of repeated measures in trial-based CEA, perhaps because of a lack of awareness 
or familiarity with fitting LMMs. To our knowledge, only (Faria et al., 2014) briefly examined the use of LMMs in trial-based 
CEA as an alternative to MI, and concluded that they offer a valid approach under MAR.

In this letter, we aim to familiarize readers with the implementation of LMMs in trial-based CEA using standard software 
and summarize the statistical and economic results from a case study. Finally, we discuss the proposed approach and provide 
some suggestions for future work.

2  |  METHODS

2.1  |  Linear mixed effects models for repeated measurements

Linear mixed effects model extends the usual linear model framework by the addition of “random effect” terms, which can take 
into account the dependence between observations. A simple model for a repeated measure can be written as

𝑌𝑌𝑖𝑖𝑖𝑖 = 𝛽𝛽1 + 𝛽𝛽2𝑋𝑋𝑖𝑖1 +⋯ + 𝛽𝛽𝑃𝑃+1𝑋𝑋𝑖𝑖𝑖𝑖 + 𝜔𝜔𝑖𝑖 + 𝜖𝜖𝑖𝑖𝑖𝑖 ,� (1)

where Yij denotes the outcome repeatedly collected for each individual i = 1,…,N at multiple times j = 1,…,J. The model 
parameters commonly referred to as fixed effects include an intercept β1 and the coefficients (β2,…,βP+1) associated with the 
predictors Xi1,…,XiP, while ωi and ϵij are two random terms: ϵij is the usual error term and ωi is a random intercept which 
captures variation in outcomes between individuals. The random terms are typically assumed to be normally distributed such 
that 𝐴𝐴 𝐴𝐴𝑖𝑖 ∼ 𝑁𝑁

(

0, 𝜎𝜎
2
𝜔𝜔

)

 and 𝐴𝐴 𝐴𝐴𝑖𝑖𝑖𝑖 ∼ 𝑁𝑁
(

0, 𝜎𝜎
2
𝜖𝜖

)

 . Equation (1) treats the data as having a 2-level structure, where 𝐴𝐴 𝐴𝐴
2
𝜔𝜔 and 𝐴𝐴 𝐴𝐴

2
𝜖𝜖  capture the 

variance of the responses within (level 1) and between (level 2) individuals, respectively. The models can be extended to deal 
with more complex structures, for example, by allowing the effect of the covariates to vary across individuals (random slope) or 
a different covariance structure of the errors. Linear mixed effects models can be fitted even if some outcome data are missing 
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and provide correct inferences under MAR (Schafer & Graham, 2002). We refer interested readers to the available LMM liter-
ature for an in-depth description of the methods (Molenberghs et al., 2004).

One particular type of LMMs commonly used in the analysis of repeated measures in clinical trials is referred to as a Mixed 
Model for Repeated Measurement (MMRM; Wolfinger, 1993). The model includes a categorical effect for time, an interaction 
between time and treatment arm, and allows errors to have different variance and correlation over time (i.e., unstructured covar-
iance structure). Consider the case where we want to model health related quality of life data (i.e., utilities) collected at three 
times (baseline and two follow-ups). The model can then be expressed as:

��1 = �1TIME1 + �� + ��1

��2 = �2TIME2 + �3TIME2TRT� + �� + ��2,

��3 = �4TIME3 + �5TIME3TRT� + �� + ��3

� (2)

where Uij is the utility measured for patient i at time j, TIMEj and TRTi are the indicators for the time and treatment arm, and 
TIMEjTRTi are the interaction terms between time and treatment arm at each follow-up (j ≥ 2). Within this model, β1, repre-
sents the mean utility at baseline, β2 and β4 represent the mean utility for the control arm (TRTi = 0) at the first and second 
follow-up, while β3 and β5 capture the mean difference between the arms at the two follow-ups. The errors at each time follow 
a multivariate normal distribution ϵi ∼ N(0, Σ) with an unstructured covariance matrix Σ, that is, errors are allowed to have 
different variance and correlation between them. Note that no treatment parameter was included at baseline, this makes sense 
as no treatment effect is expected at baseline, but is also important to obtain β3 and β5 parameters adjusted for baseline utility 
(see Section 2.2). The model can be easily extended to handle additional time-points, or to model any other repeatedly measured 
continuous outcome such as cost.

Incremental (between-group) or marginal (within-group) estimates for aggregated outcomes over the trial period, such as 
quality-adjusted life years (QALYs) or total costs can be retrieved as linear combinations of the parameter estimates from Equa-
tion (2). For example, the mean difference in total cost is obtained by summing up the estimated differences at each follow-up 
point, while differences on a QALYs scale can be obtained as weighted linear combinations of the coefficient estimates of the 
utility model (see Appendix C).

2.2  |  Adjusting for baseline variables

It is standard practice to adjust the analysis for imbalances in some baseline characteristics, to control for potential imbalance 
and as well as to increase precision (Manca et al., 2005) while also strengthening the plausibility of the MAR assumption (Little 
et al., 2012). We note that, differences in baseline outcome values between arms are already adjusted for within the model 
specification in Equation (2). Other baseline variables can be adjusted for by adding them as predictors to the model, although 
LMMs require covariates to be completely observed. However, in randomized controlled trials, missing baseline data can be 
usually addressed by implementing single imputation techniques (e.g., mean-imputation) to obtain complete data prior to fitting 
the model, without loss of validity or efficiency (White & Thompson, 2005).

2.3  |  Assessing cost-effectiveness

Once estimates for the average effectiveness and total cost differences are obtained, uncertainty can be assessed through resam-
pling methods (e.g., bootstrapping). Results are then often summarized using a Cost-Effectiveness Plane (CEP; Black [1990]) 
and a Cost-Effectiveness Acceptability Curve (CEAC; Van Hout et al. [1994]).

3  |  TRIAL OVERVIEW

3.1  |  Overview

The Health Technology Assessment Study of the Use of Antidepressants for Depression in Dementia (SADD, ISRCTN88882979) 
was a placebo-controlled randomized trial of participants from old-age psychiatry services in England (Banerjee et al., 2011). A 
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total of n = 326 participants were enrolled and randomized to receive placebo, or either one of two antidepressants (sertraline and 
mirtazapine) together with treatment as usual, and followed for 9 months. Outcomes were collected at baseline, 3 and 9 months, 
including EQ-5D-3L which was converted into utility (Dolan, 1997), and resource use for 0–3 months and 3–9 months which 
were converted into costs (Romeo et al., 2013). Details about the objective and conclusions from the trial as well as the study 
CEA are reported elsewhere (Banerjee et al., 2013). We restrict our attention to the 9 months cost-utility analysis of placebo 
(n1 = 111) versus mirtazapine (n2 = 108) from the health and social care cost perspective.

Table 1 shows the missing data patterns of the utility and cost data (Uj,Cj) at baseline (j = 1), 3 months (j = 2) and 9 months 
(J = 3) follow-up.

About half of the trial participants had complete cost-effectiveness data, with utility values which tended to be more 
frequently missing than costs.

3.2  |  Cost-effectiveness analysis of SADD

We applied the LMM model described above to the SADD data to estimate the difference in QALYs and cost, adjusting for 
baseline values (utility or cost). A set of 10,000 bootstrap replications were performed to derive cost-effectiveness results. All 
models were fitted in R, using the packages and functions described in Appendix A.1. The R and Stata code for implementing 
the methods are given in Appendix A.2 and Appendix A.3, respectively, and on an online repository (Gabrio, 2022).

4  |  RESULTS

Table 2 reports the empirical means and standard deviations associated with the utility and cost variables in each treatment 
group over the study period.

People in the mirtazapine group had higher mean utilities at all time-points, lower mean costs at the first follow-up and 
higher mean costs at the last follow-up.

Table 3 reports the LMM-estimated marginal means of the utilities and costs at each follow-up by group, as well as QALYs 
and total costs. Incremental results, incremental cost-effectiveness ratio and probability of cost-effectiveness (at an acceptance 
threshold of £25,000) between the two groups are also reported.

The results suggest that the mirtazapine group is associated with higher utilities compared with the placebo group at all 
follow-ups, which leads to higher mean QALYs estimates. Although mean costs at 13 weeks are on average higher in the placebo 
group, the mirtazapine group is associated with relatively higher mean costs at 9 months as well as higher mean total costs. 
Overall, the mean difference in QALYs was 0.021(95%CI:−0.016;0.059), and difference in cost £550 (95%CI:−1156;2257). 
We additionally compare the results in terms of mean QALYs and total costs obtained under LMM with those from two 
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Missing data patterns Placebo (N1 = 111) Mirtazapine (N2 = 108) Total (N = 219)

U1 U2 U3 C1 C2 C3 N1(%) N2(%) N(%)

- - - - - - 54 (48%) 47 (43%) 101 (46%)

- X X - X X 12 (11%) 17 (16%) 29 (13%)

- X X - - - 15 (13%) 14 (13%) 29 (13%)

- - X - - - 11 (10%) 13 (12%) 24 (11%)

- - X - - X 9 (8%) 8 (7%) 17 (8%)

- X - - - - 4 (4%) 4 (4%) 8 (4%)

- X X - - X 2 (2%) 2 (2%) 4 (2%)

- - - - X X 2 (2%) 3 (3%) 5 (2%)

- - - - - X 2 (2%) 0 (0%) 2 (1%)

Note: For each pattern and treatment group the corresponding number and proportions of participants are 
reported. Uj and Cj indicate utility or cost variable at time j, while - and X indicate an observed or missing 
variable, respectively.
Abbreviation: SADD, Study of the Use of Antidepressants for Depression in Dementia.

T A B L E  1   Missingness patterns for the 
utility and cost variables in the SADD study



alternative analyses: CCA and MI, the latter producing estimates in line with those of LMM with standard errors reduced by 
approximately13% for QALYs and 25% for total cost estimates compared to CCA (see Appendix B.2).

Figure 1 shows the associated CEP and CEAC. Mirtazapine appears to be slightly more effective and costly, but with impor-
tant uncertainty, resulting in a probability of being cost-effective of around 50% at a threshold of £25,000 per QALY gained.

5  |  DISCUSSION

In this article we proposed the use of LMMs as an alternative approach to conduct trial-based CEAs Although repeatedly criti-
cized in the literature, analysts commonly handle missingness in QALYs and total costs via CCA (Gabrio et al., 2017; Leurent 
et al., 2018a), which causes some loss of information and potentially biases the inferences. The use of imputation methods, 
especially MI, have been recommended in the literature since they can obtain valid inferences using all observed responses 
(Faria et  al.,  2014). However, there may be practical obstacles to the spread of these methods among practitioners. First, 
analysts may be unfamiliar with the implementation of MI, and feel more confident using simpler approaches. Second, MI can 
be time-consuming, particularly when combined with bootstrapping, for which there are alternative implementation strategies 
possible (Brand et al., 2019).

We believe LMMs represent an alternative approach which can overcome some of these limitations. First, practitioners may 
be more comfortable with the standard regression framework. Second, LMMs can be tailored to address other data features 
(e.g., cluster-randomized trials or non-normal distribution) while also easily combined with bootstrapping. Third, LMMs do not 
rely on imputation, and results are therefore deterministic and easily reproducible, whereas the Monte Carlo error associated 
with MI may cause results to vary from one imputation to another, unless the number of imputations is sufficiently large.

There are also limitations associated with the use of the proposed methods. First, LMM estimates are valid under MAR 
conditional on the observed outcome and the baseline variables in the analysis model. Multiple-imputation offers a more 
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  Placebo (N1 = 111) Mirtazapine (N2 = 108)

Utilities

  Baseline 0.670 (0.268) N = 111 0.688 (0.292) N = 108

  3 months 0.733 (0.286) N = 78 0.763 (0.267) N = 71

  9 months 0.734 (0.274) N = 62 0.827 (0.195) N = 64

Costs

  Baseline 1514 (3153) N = 111 1191 (2256) N = 108

  3 months 1437 (3338) N = 97 1130 (1868) N = 88

  9 months 2146 (4401) N = 84 2550 (4288) N = 78

Abbreviation: SADD, Study of the Use of Antidepressants for Depression in Dementia.

T A B L E  2   Observed means (and 
standard deviations) of the utility and 
cost variables at baseline, 3 and 9 months 
follow-up for the placebo and mirtazapine 
group in the SADD trial

 

Placebo   Mirtazapine   Incremental  

Estimate 95% CI Estimate 95% CI Estimate 95% CI

U2 0.731 (0.675; 0.786) 0.752 (0.694; 0.810) 0.021 (−0.053; 0.096)

U3 0.727 (0.671; 0.783) 0.781 (0.721; 0.841) 0.054 (−0.024; 0.132)

QALYs 0.540 (0.510; 0.571) 0.561 (0.530; 0.593) 0.021 (−0.016; 0.059)

C2 1369 (840; 1899) 1252 (695; 1809) −117 (−866; 631)

C3 2092 (1226; 2959) 2760 (1856; 3664) 668 (−544; 1880)

Total costs 3462 (2236; 4688) 4012 (2735; 5289) 550 (−1156; 2257)

ICER 57,774

Cost-effectiveness probability 34%

Note: Point estimates and 95% confidence intervals for the marginal means and mean difference of the utilities and costs at 3 (j = 2) and 9 (j = 3) months follow-up as 
well as for the quality-adjusted life years (QALYs) and total costs over the duration of the study. Incremental results are also reported in terms of the incremental cost-
effectiveness ratio (ICER) and cost-effectiveness probability at k = £25,000 per QALY gained. Costs are expressed in British pounds.
Abbreviation: SADD, Study of the Use of Antidepressants for Depression in Dementia.

T A B L E  3   Linear mixed model results for the SADD trial



flexible framework allowing for inclusion of auxiliary variables not adjusted for in the analysis. Second, while MAR is often 
a reasonable starting point, sensitivity analysis under non-at-random assumptions should be considered (Gabrio et al., 2020; 
Leurent et al., 2020). While these can be conducted within a LMM framework (Daniels & Hogan, 2008), a MI or Bayesian 
framework are particularly well suited for this type of analyses (M. Gomes et al., 2019; Mason et al., 2018). Third, the LMM 
approach works well for repeatedly-measure outcomes, but addressing missingness within each component of the outcomes 
(e.g., for disaggregated cost components) increases the complexity of the model. Depending on the amount of observed data 
and time points, the suggested model may not achieve convergence, and simpler covariance structures could be considered.

Further work can be done to extend the proposed methods to tackle some of the typical features of CEA data. An inter-
esting extension would be to fit a bivariate LMM model to model simultaneously the costs and utilities. Furthermore, while 
LMMs are robust to non-normally distributed data in large sample, generalized linear model specifications could be applied to 
improve the fit to the data using non-normal distributions (Nixon & Thompson, 2005). A possible solution is to explore the use 
of multivariate generalized LMMs to account for the correlation and characteristics of the data while also providing a coherent 
modeling framework based on the same number of individuals for both outcomes.

To conclude, we have shown how LMMs can be used for the analysis of trial-based CEAs Although the methodology 
illustrated is already known, particularly in the area of statistical analyses, to our knowledge LMMs have rarely been applied to 
health economic data collected alongside randomized trials. We believe the proposed methods is preferable to a complete-case 
analysis when CEA data are incomplete, and that it can offer an interesting alternative to imputation methods.
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F I G U R E  1   Cost-Effectiveness Plane (CEP) and Cost-Effectiveness Acceptability Curve from the Study of the Use of Antidepressants for 
Depression in Dementia based on a linear mixed effects model fitted on 10,000 bootstrap replications. In the CEP, an acceptance threshold of 
k = £25,000 per quality-adjusted life year (QALY) gained is used and the position of the incremental cost-effectiveness ratio (ICER) on the plot is 
denoted with a darker colored dot. (a) Cost-effectiveness plane. (b) Cost-effectiveness acceptability curve
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APPENDIX A:  IMPLEMENTATION

A.1  |  Software detail
All models can be fitted in R or Stata using different types of pre-defined functions and commands. In R, we use the function 
lme from the package nlme, which is specifically designed for fitting LMMs and produces standard statistical outputs, such as 
fixed and random effect estimates and their standard errors. Estimates for all model parameters are derived based on observed 
utility and cost responses under MAR using maximum likelihood methods. The function emmeans from the package emmeans 
can then be used to calculate point estimates and uncertainty measures for linear combinations of the model parameters, includ-
ing the treatment effects as well as the marginal mean QALYs and total costs by treatment group. In Stata, we use the mixed 
command to fit the models and then use the post-processing commands lincom and margins to derive linear combinations of 
parameter estimates with associated uncertainty measures.

A.2  |  R code
R code for fitting the utility and cost LMMs and derive the estimates for the CEA target quantities based on the data from the 
SADD study.
 
# load the R packages
library(nlme)
library(emmeans)
 
# pre-process data
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# load the dataset (in long format)
data_long_SADD <- readRDS("data_long_SADD.rds")
# variables: time (time indicator), trt (treatment indicator), u (utility values)
# 3 time points (baseline, 13 and 39 weeks follow-up)
# define treatment effect indicator at each follow-up
data_long_SADD$time_2<-ifelse(data_long_SADD$time =  = 2,1,0)
data_long_SADD$time_3<-ifelse(data_long_SADD$time =  = 3,1,0)
data_long_SADD$trt_time_2<-data_long_SADD$trt*data_long_SADD$time_2
data_long_SADD$trt_time_3<-data_long_SADD$trt*data_long_SADD$time_3
# define time as a factor
data_long_SADD$time <- factor(data_long_SADD$time)
 
# LMM for utilities
 
# fit the model using the lme function and use unstructured covariance
LMM_u <-lme(u ~ −1 + time + trt_time_2 + trt_time_3, random = ~ 1 | id,

          data = data_long_SADD, method = "ML",
          correlation = corSymm(form = ~ as.numeric(time)|id),
          weights = varIdent(form = ~1|as.numeric(time)),
          na.action = na.omit)

# look at parameter estimates and get confidence intervals (CI)
# fixed effects of interactions are the treatment effects at follow-ups summary(LMM_u)
intervals(LMM_u, level = 0.95, which = "fixed")
# derive marginal means for the utilities in each group at each time point using the 
emmeans function
mu_u <- emmeans(LMM_u, ~ −1 + time + trt_time_2 + trt_time_3)
# get confidence intervals
confint(mu_u)
# derive the marginal means for the QALYs in each group using the contrast function
# assign time weights to the marginals utility means to obtain correct mean QALYs
# (0.125 for baseline, 0.375 for 13 weeks follow-up, 0.25 for 39 weeks follow-up)
mu_e <- contrast(mu_u, list(mu0 = c(13/104,13/104 + 26/104,26/104,0,0,0,0,0,0,0,0,0),

              mu1 = c(13/104,0,0,0,13/104 + 26/104,0,0,0,26/104,0,0,0)))
# derive mean differences between groups for the QALYs in a similar way
delta_e <- contrast(mu_e, list(diff = c(0,-13/104 - 26/104,-26/104,0,13/104 + 26/104,0,0,0, 
26/104,0,0,0)))
# get confidence intervals
confint(mu_e)
confint(delta_e)
 
#LMM for costs
 
# fit the model using the lme function and use unstructured covariance
LMM_c <- lme(c ~ −1 + time + trt_time_2 + trt_time_3, random = ∼ 1 | id,

          data = data_long_SADD, method = "ML",
          correlation = corSymm(form = ~ as.numeric(time)|id),
          weights = varIdent(form = ~1|as.numeric(time)),
          na.action = na.omit)

# look at parameter estimates and get CI
# fixed effects of interactions are the treatment effects at follow-ups summary(LMM_c)
intervals(LMM_c, level = 0.95, which = "fixed")
# derive marginal means for the costs in each group at each time point using the 
emmeans function
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mu_c <- emmeans(LMM_c, ~ −1 + time + trt_time_2 + trt_time_3)
# get confidence intervals
confint(mu_c)
# derive the marginal means for the total costs in each group using the contrast 
function
mu_tc <- contrast(mu_c, list(mu0 = c(0,1,1,0,0,0,0,0,0,0,0,0),

              mu1 = c(0,0,0,0,1,0,0,0,1,0,0,0)))
# derive mean differences between groups for the total costs in a similar way
delta_tc <- contrast(mu_tc, list(diff = c(0,-1,-1,0,1,0,0,0,1,0,0,0)))
# get confidence intervals
confint(mu_tc)
confint(delta_tc)

A.3  |  Stata code
Stata code for fitting the utility and cost LMMs and derive the estimates for the CEA target quantities based on the data from 
the SADD study.
 
** Open data
      use "data_long_SADD.dta", clear
      gen trtp = trt*(time>1) //Treatment arm indicator, for follow-up visits only
** LMM for utilities
      mixed u i.time i.time#i.trtp || id:, res(unstructured, t(time))
            // || id: = random effect for each participant
            //  res(unstructured,  t(time))  =  unstructured  covariance,  for  each  time-
point
            // i.time#i.trtp = interactions between time and treatment
 
      *Incremental utility at each time point:
            lincom 2.time#1.trtp //Treatment effect (trtp = 1) at 3 months (time = 2)
            lincom 3.time#1.trtp //Treatment effect at 9 months
      *Incremental QALYs
            lincom 0.375*2.time#1.trtp + 0.25*3.time#1.trtp
 
      *Utility per arm at each time-point
            margins i.time#i.trtp
      *QALYs per arm
            margins i.time#i.trtp, post
            lincom 0.125*1.time#0.trtp + 0.375*2.time#0.trtp + 0.25*3.time#0.trtp
            lincom 0.125*1.time#0.trtp + 0.375*2.time#1.trtp + 0.25*3.time#1.trtp
 
** LMM for costs
            mixed c i.time i.time#trtp || id:, res(unstructured, t(time))
 
            *Incremental cost at each time point:
                  lincom 2.time#1.trtp //Treatment effect at time 2
                  lincom 3.time#1.trtp //Treatment effect at time 3
            *Incremental total cost
                  lincom 2.time#1.trt + 3.time#1.trt
 
            *Cost per arm at each time-point
                  margins i.time#trtp
            *Total cost per arm
                  margins i.time#trtp, post
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                  lincom 2.time#0.trt + 3.time#0.trt
                  lincom 2.time#1.trt + 3.time#1.trt

APPENDIX B:  RESULTS

B.1  |  Model estimates from the application to the SADD study
Table A1 shows the parameters (and their 95% confidence intervals) from the linear mixed model fitted to the SADD trial data. 
These parameters can be used to derive the marginal and incrementals utilities and costs reported in Table 2. For example, the 
treatment arm marginal utility at time 3 (9 months) can be estimated by 0.727 + 0.054 = 0.781.

 Fixed effects

Utilities model Costs model

Estimate 95% CI Estimate 95% CI

TIME1 0.674 (0.637; 0.711) 1355 (991; 1720)

TIME2 0.731 (0.675; 0.786) 1369 (840; 1899)

TIME3 0.727 (0.671; 0.783) 2092 (1226; 2959)

TIME2TRT 0.021 (−0.053; 0.095) −117 (−866; 631)

TIME3TRT 0.054 (−0.024; 0.132) 668 (−544; 1880)

Note: Point estimates and 95% confidence intervals (CI).
Abbreviation: SADD, Study of the Use of Antidepressants for Depression in Dementia.

T A B L E  A 1   Parameters from the linear mixed models (LMM) fitted to the SADD utility and cost data

B.2  |  Parameters estimates under LMM, CCA and MI, fitted to the SADD data
Table A2 compares the SADD cost-effectivenes estimates (and their standard error) under CCA, MI, and LMM, with the CCA 
and MI models fitted as described below.

 

Placebo Mirtazapine Incremental

Estimate SE Estimate SE Estimate SE

CCA

  QALYs 0.557 (0.016) 0.579 (0.017) 0.022 (0.023)

  Total costs 3375 (774) 3695 (831) 320 (1148)

MI

  QALYs 0.541 (0.013) 0.561 (0.014) 0.021 (0.020)

  Total costs 3472 (593) 4023 (623) 552 (862)

LMM

  QALYs 0.540 (0.016) 0.561 (0.016) 0.021 (0.019)

  Total costs 3462 (623) 4012 (649) 550 (868)

Abbreviation: QALYs, quality-adjusted life years; SADD, Study of the Use of Antidepressants for Depression in Dementia.

T A B L E  A 2   Estimates and standard errors (SE) for the mean QALYs and total cost in the SADD trial under complete case analysis (CCA), 
multiple imputation (MI), and linear mixed model (LMM)

Complete case analysis. The analysis used only individuals with fully-observe utility and cost data at each time point in 
the SADD study, that is, the 101 completers as shown in the first row of Table 1. The analysis was conducted using separate 
standard linear regression models fitted at the level of QALYs and total costs, including treatment and baseline outcome values 
as predictors to derive adjusted estimates for the incremental mean QALYs and total costs between the groups of the study.

Multiple imputation. The analysis used all available observed utility and cost data at each time point in the SADD study 
and consisted in two steps. In the first step, imputation for missing utility and cost values was carried out using a MI by chained 
equation approach (Van Buuren, 2018). We imputed both outcomes under the assumption of normality to ensure a comparable 
match with the assumptions of LMM under MAR. The imputation models included observed outcome data at any time point 
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as predictors, and imputation was performed by treatment group with a total number of 500 imputed datasets. In the second 
step, within each imputed dataset, outcome variables were aggregated into QALYs and total cost measures and standard linear 
regression models, as defined in CCA, were fitted to the imputed data and parameter estimates were derived. Finally, estimates 
were combined across the imputed datasets via Rubin's rules to correctly quantity missingness uncertainty.

APPENDIX C:  QALYS DERIVATION
Figure A1 illustrates how to derive the QALYs defined by the area under the curve (AUC) of the utilities, for example, for an 
individual with utilities of 0.3, 0.6 and 0.4 at baseline, 3 and 9 months respectively. Assuming a linear increase between utilities, 
the AUC is traditionally defined by the sum of multiple trapezoids aereas (in blue here). This can be rewriten as a sum of rectan-
gular aereas (in pink here), defined by t0.1*u0+(t0.1+t1.2)*u1+(t1.2)*u2, where u1 is the utility at time j, and ti.j is half of the time 
(in years) between time-points i and j. For example, for this individual, AUC = 0.125*0.3 + 0.375*0.6 + 0.25*0.4 = 0.3625.

F I G U R E  A 1   Derivation of QALYs as 
a weighted average of utilities

The same weights can be used to derive the mean AUC for a group of individuals (based on the group mean utility at each 
time-point), or the mean difference in AUC between two groups (based on the mean difference in utility at each time point). 
Discounting can be applied by reducing the relevant weights, for example, after 1 year. Note that when estimating the difference 
in QALYs adjusted for baseline utility in trials, there is no need to include the baseline term which is null.
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