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Abstract

Mobile health is a rapidly developing field in which behavioral treatments are delivered to 

individuals via wearables or smartphones to facilitate health-related behavior change. Micro-

randomized trials (MRT) are an experimental design for developing mobile health interventions. In 

an MRT the treatments are randomized numerous times for each individual over course of the trial. 

Along with assessing treatment effects, behavioral scientists aim to understand between-person 

heterogeneity in the treatment effect. A natural approach is the familiar linear mixed model. 

However, directly applying linear mixed models is problematic because potential moderators of 

the treatment effect are frequently endogenous—that is, may depend on prior treatment. We 

discuss model interpretation and biases that arise in the absence of additional assumptions when 

endogenous covariates are included in a linear mixed model. In particular, when there are 

endogenous covariates, the coefficients no longer have the customary marginal interpretation. 

However, these coefficients still have a conditional-on-the-random-effect interpretation. We 

provide an additional assumption that, if true, allows scientists to use standard software to fit linear 

mixed model with endogenous covariates, and person-specific predictions of effects can be 

provided. As an illustration, we assess the effect of activity suggestion in the HeartSteps MRT and 

analyze the between-person treatment effect heterogeneity.
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1. Introduction

Mobile health (mHealth) refers to the use of mobile phones and other wireless devices to 

improve health outcomes, often by providing individuals with support for health-related 

behavior change. One major category of time-varying treatments delivered through mobile 

devices, which is the focus of this paper, are “push interventions”; in this setting, the mobile 

device determines when a treatment will be provided, rather than the individual seeking the 

intervention of her own accord (e.g., by opening the app). Push interventions are usually 
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provided via some kind of a notification, such as an audible ping, vibration, or the lock 

screen of a phone lightening up. For example, to encourage physical activity in sedentary 

individuals, the HeartSteps intervention sends users push notifications that contain 

contextually-tailored activity suggestions (Klasnja et al., 2018).

Micro-randomized trials (MRTs) provide an experimental design for developing mHealth 

interventions. These trials provide longitudinal data to assess whether there is an effect of a 

time-varying treatment, how this effect changes over time, and whether aspects of the 

current context impact the effect (Liao et al., 2016; Dempsey et al., 2015). In an MRT, each 

individual is randomized repeatedly to different versions of a treatment (or no treatment) 

with a known probability over the course of the trial (often hundreds or even thousands of 

times). Between randomizations, the trial collects covariate data on the individual’s current/

recent context via sensors and self-report, and after each randomization it assesses a 

proximal outcome. The large number of randomization points likely covers a wide range of 

contexts, and methods that exploit this for assessing effect moderation of a time-varying 

treatment have been developed (Boruvka et al., 2018).

Random effects models (Laird and Ware, 1982; Raudenbush and Bryk, 2002), sometimes 

also known as mixed effect models, hierarchical models, or multilevel models, have been 

used with great success in the analysis of longitudinal studies. Behavioral scientists, and 

researchers from many other scientific fields, have long used random effects model in 

research involving longitudinal data (Agresti et al., 2000; Berger and Tan, 2004; Cheung, 

2008; Luger, Suls and Vander Weg, 2014). A particularly appealing feature of random 

effects models is the ability to predict person-specific random effects, which enables 

quantitative characterization of between-person heterogeneity due to unobserved factors 

(Schwartz and Stone, 2007; Bolger and Laurenceau, 2013). Understanding such 

heterogeneity can bring forth new scientific hypotheses for further studies. In addition, the 

random effects provide a model for the within-person dependence in the time-varying 

outcome, which improves efficiency in parameter estimation. Because data from an MRT is 

longitudinal, it is natural to consider a random effects model when making inference about 

treatment effects using MRT data.

However, random effects models were designed for settings where the covariates are 

considered fixed, and inferential challenges arise when one tries to apply the standard 

random effects model if there are endogenous time-varying covariates. A time-varying 

covariate is endogenous if this covariate is not independent of previous treatment or 

outcomes; we give a more precise definition in Section 1.2. As written above, MRTs are 

conducted to make inference about the effect of a time-varying treatment, how this effect 

changes over time, and whether certain aspects of the current context impact the effect. 

Covariates, often endogenous, describe the individual’s context, and it is often of scientific 

interest to assess if the time-varying treatment is moderated by certain endogenous 

covariates. Furthermore, to reduce variance in assessing treatment effects, it is very useful to 

control for an endogenous covariate in the analysis (Boruvka et al., 2018). For example, 

consider HeartSteps, an MRT of an intervention that aims to increase physical activity 

among sedentary adults (Klasnja et al., 2018). In this study the treatments are contextually-

tailored activity suggestions. The steps taken by the individual during the 30 minutes prior to 
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randomization is likely highly correlated with the primary proximal outcome, the step count 

in the subsequent 30 minutes. Thus it is useful to control for this covariate in the analysis as 

well as to assess whether this covariate moderates the effect of the activity suggestion on the 

subsequent 30-minute step count. However, because the activity suggestions are randomized 

roughly every 2 hours, it is likely that the 30-minute step count prior to randomization is 

related to past step counts (i.e., past outcomes) as well as past treatment, which makes it an 

endogenous covariate. As we discuss below, including endogenous covariates in random 

effects models can result in biased estimates. Another interesting time-varying covariate in 

HeartSteps is the location of an individual (whether the individual is at home/work or at 

other places). An activity suggestion can be more effective when the individual is at home or 

work compared to when the individual is at other places, and the analyst may choose to 

model the treatment effect moderation of this time-varying covariate. This time-varying 

effect moderator, location, is likely endogenous as it can be related to past step counts.

A related but different concept to an endogenous covariate is a time-varying confounder. 

Recall that a time-varying confounder, sometimes also called a time-dependent confounder, 

is a covariate that is affected by previous treatment (hence is endogenous) and affects future 

treatment assignment (Daniel et al., 2013; Hernán and Robins, 2019). To our surprise, even 

without time-varying confounding (e.g., when the randomization probability is constant in 

an MRT), the inclusion of endogenous covariates in random effects models can cause bias in 

assessment of the treatment effects.

Pepe and Anderson (1994) pointed out that when using generalized estimating equations 

(GEE) with endogenous covariates, one should use working independence correlation 

structure to avoid biased estimates. Diggle et al. (2002), in their classic monograph on 

longitudinal data analysis, noted that:

“Although Pepe and Anderson (1994) focused on the use of GEE, the issue that 

they raise is important for all longitudinal data analysis methods including 

likelihood-based methods such as linear and generalized linear mixed models.”

In this paper, we focus on linear mixed models (LMM), a simple form of random effects 

models where the outcome is continuous and the link function is identity. We review how 

problems arise when endogenous covariates are included in LMM. Coefficients, and 

specifically treatment effects, in a standard LMM with fixed covariates have both marginal 

and conditional-on-the-random-effect interpretations. But the marginal interpretation is no 

longer valid with endogenous covariates.

Fortunately, despite losing the marginal interpretation, the conditional interpretation of the 

parameters is consistent with scientific interest in the prediction of person-specific effects in 

MRTs. Here we propose to interpret treatment effects as conditional on the random effect in 

LMM with possibly endogenous covariates. We provide an additional assumption under 

which valid estimates of the effect (conditional on the random effect) of the time-varying 

treatment, estimates of the variance components, and person-specific predictions of these 

treatment effects can be obtained through standard LMM software, even if some covariates 

are endogenous. Simulation studies are conducted to support the main result.
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Lastly, we discuss whether and when the aforementioned assumption makes sense in 

HeartSteps, and analyze the data using the proposed method.

The paper is organized as follows. We provide an overview of the HeartSteps MRT in 

Section 1.1. We introduce notation and definition in Section 1.2. In Section 2 we give a 

detailed account of the issue regarding endogenous covariates in a standard LMM, and 

review related literature in causal inference (Section 2.3) and econometrics (Section 2.4). 

Next we provide an assumption under which treatment effects can be estimated based on 

LMM with endogenous covariates in Section 3. In Section 4 we present results from a 

simulation study. We apply the proposed model to analyzing the HeartSteps data in Section 

5. Section 6 concludes with discussion.

1.1. Motivating Example: HeartSteps

Our motivating example is from HeartSteps, a 6-week MRT of an mHealth intervention to 

encourage regular walking among sedentary adults (Klasnja et al., 2018). The intervention 

package in HeartSteps includes multiple components; in this paper we focus on one push 

intervention component as the treatment, which is the activity suggestions. Each individual 

is in the study for 42 days, and is randomized 5 times a day, each time with probability 0.6 

to receive an activity suggestion. The 5 randomization times are pre-specified and 

individual-specific, corresponding to each individual’s morning commute, lunchtime, mid-

afternoon, evening commute, and after-dinner. The content of the suggestion was tailored to 

the current time of day, weekend vs weekday, weather, and the individuals current location. 

The activity suggestions were designed to help individuals get activity throughout the day. 

Due to the tailoring of the suggestions to the individuals current context, the research team 

expected to see the greatest impact of the activity suggestions on near time, proximal 

activity, so the proximal outcome is defined as the individual’s step count during the 30 

minutes following each randomization. In addition to the step counts, at each randomization 

the individual’s context is also recorded, including current location, weather and 30-minute 

step count prior to randomization. Note that the 30-minute step count prior to the time of 

randomization is likely impacted by prior treatment and thus is an endogenous covariate. In 

addition to the measured information, there are other unobserved variables that may impact 

the treatment effect, such as each individual’s commitment to becoming more active, 

conscientiousness, degree of social support and so on. Therefore, it is of interest to provide 

person-specific predictions of treatment effect. We will apply methods developed in this 

paper to the HeartSteps data in Section 5.

1.2. Notation and definition

We will consider two settings in the paper. In the first setting we consider a longitudinal 

study without treatment, and in the second one with a sequentially randomized treatment. 

The first setting will be used to explain bias incurred by the inclusion of endogenous 

covariates in random effects models, as this issue also occurs without treatment and is easier 

to explain there. The second setting involves time-varying treatment that is sequentially 

randomized; thus it’s relevant to data from MRTs. We will see that randomized treatment 

assignment in MRT does not necessarily alleviate the biases resulting from the inclusion of 

endogenous time-varying covariates in LMMs. We will consider assumptions that allow 

Qian et al. Page 4

Stat Sci. Author manuscript; available in PMC 2020 October 30.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



valid estimation under this second setting. The setting under consideration will be clear from 

the context.

For the first setting without treatment, we denote data for individual i by 

Xi1, Y i2, Xi2, Y i3, …, XiTi
, Y iTi + 1, where Ti denotes the total number of observations for 

individual i. Xit is a vector of covariates prior to the t-th time point and Yit+1 is the outcome 

subsequent to the t-th time point. Note that the time index for the outcome Y is augmented 

by 1 to make it consistent with the second setting. We use overbar to denote history; for 

example, Xit = Xi1, Xi2, …, Xit . The individual’s history information up to the t-th time is 

denoted by Hit = Xi1, Y i2, …, Xit − 1, Y it, Xit = Y it, Xit .

For the second setting with treatment, the data for individual i is 

Xi1, Ai1, Y i2, Xi2, Ai2, Y i3, …, XiTi
, AiTi

, Y iTi + 1, where Xit is the covariate vector prior to the t-

th time, Ait is the randomized treatment at the t-th time, and Yit+1 is the proximal outcome 

subsequent to the t-th time. To maintain expositional clarity, throughout we assume there are 

only two types of treatment and Ait ∈ {0,1}. The history is defined as 

Hit = Xi1, Ai1, Y i2, …, Xit − 1, Ait − 1, Y it, Xit = Y it, Xit, Ait − 1 . We define Xi0 = ∅, Ai0 = ∅, 

and Yi1 = ∅.

In both settings, we use bi to denote the random effect of individual i.

We use ⊥ to denote statistical independence; for example, A⊥B | C means that A is 

independent of B conditional on C. In the first setting, a covariate process Xit is called 

exogenous (with respect to the outcome process Yit) if Xit ⊥ Y it |Xit − 1; otherwise, Xit is 

endogenous. In the second setting, Xit is called exogenous if Xit ⊥ Y it, Ait − 1 |Xit − 1; 

otherwise, Xit is endogenous. In a longitudinal study, examples of exogenous covariates 

include baseline variables (age, gender, etc.), functions of time, and time-varying variables 

that are not impacted by prior treatment or prior outcome, such as weather.

2. Issue of linear mixed models with endogenous covariates

In this section, we start by considering the situation where no treatment is involved, as 

endogenous covariates give rise to issues even without considering causal inference. We give 

a brief review of standard LMM in Section 2.1, and explain the issue of endogenous 

covariates in Section 2.2. In Section 2.3, we briefly review causal inference literature on a 

related topic, time-varying confounding, which is a more restrictive definition than 

endogeneity. In Section 2.4, we discuss connections to the econometric literature. We 

comment on why the methods reviewed in Sections 2.3 and 2.4 do not directly solve the 

issue of LMM with endogenous covariates in MRTs.

2.1. Brief overview of standard LMM with exogenous covariates

A standard linear mixed model (LMM) (Laird and Ware, 1982) assumes a relationship 

between the covariate Xit and the outcome Yit+1 such as the following:
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Y it + 1 = Xit
T

β + Zit
T

bi + ϵit + 1 . (1)

Here, bi ~ N(0,G) denotes the vector of person-specific random effects, Zit ⊂ Xit and 

ϵit + 1 N 0, σϵ
2  is a random noise. It is typically assumed that ϵit+1’s are independent of each 

other and of bi, and we will adopt this assumption throughout this paper. This model 

specifies the conditional distribution of Yit+1 given Xit and bi; in particular, this is a 

Gaussian distribution with mean:

E Y it + 1 |Xit, bi = Xit
T

β + Zit
T

bi . (2)

Furthermore, use of the standard LMM assumes, though not always explicitly, that all 

covariates are fixed, or at least exogenous and independent of bi. Thus, the marginal mean of 

Yit is

E Y it + 1 |Xit = Xit
T

β, (3)

because E(bi | Xit) = 0. Thus, when the covariates are exogenous and independent of bi, β 
has both a conditional interpretation and a marginal interpretation1. This dual interpretation 

provides the opportunity to estimate β with alternative approaches such as with generalized 

estimating equations (GEE) (Zeger and Liang, 1986), depending on the desired robustness of 

the estimator of β to deviations from the LMM assumptions.

Assuming the covariates are indeed exogenous and independent of bi, the maximum 

likelihood score equation for β is:

1
n

∑
i = 1

n

XiV i
−1

Y i − Xi
T

β = 0, (4)

where Xi = Xi1, …, XiTi
, Zi = Zi1, …, ZiTi

 and Y i = Y i2, …, Y iTi + 1
T

, V i = Zi
T

GZi + Ri is 

a Ti×Ti covariance matrix, and Ri is a Ti×Ti diagonal matrix with all diagonal entries equal 

to σϵ
2.

2.2. Issue with endogenous covariates: marginal interpretation is no longer valid

Any LMM solves the same estimating equation as a GEE with a corresponding non-

independence working correlation structure (e.g., an LMM with a random intercept solves 

the same estimating equation as a GEE with compound symmetric working correlation 

structure). In fact, (4) is the estimating equation for GEE with marginal mean model (3) and 

working correlation matrix Vi. In the GEE literature, estimation bias due to the inclusion of 

endogenous covariates has been discussed repeatedly. We first review this briefly.

1In this paper, we use the term “conditional (model/interpretation)” to denote a model that is conditional on the random effect, and we 
use “marginal (model/interpretation)” to denote a model where the random effect is marginalized over. This is consistent with the 
terminology in Zeger and Liang (1992) and Heagerty and Zeger (2000).
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Pepe and Anderson (1994) first pointed out that when using GEE to estimate parameters in 

E(Yit+1 | Xit), a sufficient condition for estimation consistency is either

E Y it + 1 |Xit = E Y it + 1 |Xi1, …, XiT (5)

or the use of a working independence correlation structure. When (5) is violated and a 

correlation structure other than working independence is used, they provided simulation 

results to show that bias could occur. Diggle et al. (2002, Chapter 12) reiterated this point, 

and referred to (5) as “full covariate conditional mean (FCCM)” assumption. Schildcrout 

and Heagerty (2005) analyzed the bias-efficiency trade-off associated with working 

correlation choices of GEE for longitudinal binary data, when FCCM is violated due to 

exogenous covariates being time-varying, through simulation studies. This potential bias 

from the violation of FCCM have also been warned about by Pan, Louis and Connett (2000) 

in the context of linear regression via analytic calculations. Tchetgen et al. (2012) showed, in 

the context of marginal structural models (Robins, 1998), that when GEE is combined with 

inverse probability weighting for handling dropout, parameter estimation is generally biased 

in the presence of endogenous covariates unless either a condition similar to (5) holds or a 

working independence correlation structure is used.

When there are endogenous covariates, the FCCM assumption (5) is unlikely to hold 

because Yit+1 may impact future Xis for s ≥ t+1. In this case, Pepe and Anderson (1994) 

suggested the use of working independence GEE to guarantee consistent estimation of 

parameters in E(Yit+1 | Xit). Because of the close tie between the estimating equations of 

LMM and GEE, Pepe and Anderson’s point about GEE implies that estimators fitted using 

the standard LMM could be inconsistent when there are endogenous covariates. Indeed, if 

one intends to estimate parameters in the marginal mean E(Yit+1 | Xit), then using LMM as 

an estimation procedure can result in inconsistent estimators because of the biased 

estimating equations. However, in our opinion, this is not the fundamental issue of LMM 

under endogeneity, but rather a technical consequence.

More fundamentally, when there are endogenous covariates, LMM (1) as a model can imply 

a marginal mean relationship different from (3). Xit being endogenous means it may depend 

on previous outcomes, which in turn implies dependence on the random effect bi. Thus, E(bi 

| Xit) is usually nonzero and the conditional model (2) may no longer imply the marginal 

model (3). The marginal model implied by (2) becomes, instead,

E Y it + 1 |Xit = Xit
T

β + Zit
T

E bi |Xit . (6)

As a concrete example, consider the case where each individual is observed for 2 time points 

(Ti = 2), and the covariate at the second time point is the lag-1 outcome: Xi2 = Yi2. Suppose 

the variables are generated from the following LMM with a random intercept: bi N 0, σu
2 , 

Xi1 N 0, σX1
2  independently of bi, Y i2 |Xi1, bi N β0 + β1Xi1 + bi, σϵ

2 , Xi2 =Yi2, and 

Y i3 |Xi1, Y i2, Xi2, bi N β0 + β1Xi2 + bi, σϵ
2). This implies a parsimonious conditional 

relationship: E(Yit+1 | Xit,bi) = β0 + β1Xit + bi, but the induced marginal relationship is 

rather complex:
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E Yi2 |Xi1 = β0 + β1Xi1,
E Yi3 |Xi2 = (1 − ρζ − ρ)β0 + (1 − ρζ)β1 + ρ Xi2,

with ρ = σu
2/ σu

2 + σϵ
2  and ζ = β1σX1

2 / β1σX1
2 + σu

2 + σϵ
2 .

Therefore, when building LMM with endogenous covariates, one needs to be aware that the 

modeling assumption is on the conditional relationship E(Yit+1 Xit,bi), not the marginal 

relationship E(Yit+1|Xit). Although it is attractive to treat β in (1) with not only a conditional 

interpretation but also a marginal interpretation, which is true with exogenous covariates, the 

latter interpretation can be invalid with endogenous covariates. In addition to this model 

interpretation issue, endogenous covariates also give rise to additional concerns in model 

fitting, which will be discussed in Section 3.

As a side note, for generalized linear mixed models, it is well known that even when all 

covariates are exogenous, the conditional parameter and the marginal parameter are different 

due to the nonlinear link function, and there has been work in the literature on connecting 

the two interpretations (Zeger, Liang and Albert, 1988; Heagerty, 1999; Wang and Louis, 

2004). For LMMs, the discrepancy in the two interpretations only occurs when there are 

endogenous covariates.

2.3. Connection to time-varying confounding in causal inference literature

In the setting with treatment, a related issue, often called “time-varying confounding” or 

“time-dependent confounding”, has been well studied in the causal inference literature. A 

time-varying covariate is a time-varying confounder if it is affected by previous treatment 

(hence is endogenous) and it affects future treatment assignment (Daniel et al., 2013; Hernán 

and Robins, 2019). Time-varying confounders are usually intermediate variables (that lie in 

the causal pathway between the treatment and the outcome), and this gives rise to inferential 

challenges for conventional regression-based methods due to the following dilemma: 

confounders should be adjusted for in the analysis, but intermediate variables should not 

(Diggle et al., 2002).

Causal inference methods have been developed to estimate treatment effects in the presence 

of time-varying confounding. These methods include g-computation (Robins, 1986), 

structural nested models (Robins, 1994, 1997), inverse probability weighting in marginal 

structural models (Robins, 1998, 2000), history-restricted marginal structural models 

(Neugebauer et al., 2007), sequential conditional mean models (Vansteelandt, 2007; Keogh 

et al., 2017), and weighted and centered least-squares for MRTs (Boruvka et al., 2018). 

These methods cover a variety of estimands that characterize the effect of a time-varying 

treatment from various aspects, but all the treatment effects are marginal in the sense that no 

random effect is considered.

Estimators of conditional-on-the-random-effect versions of the above estimands will be 

potentially biased as discussed in Section 2.2. Furthermore, the issue with bias persists even 

when Ait is not confounded by observed or unobserved variables (e.g., when the 

randomization probability is constant). Take, for example, the sequential conditional mean 
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models in Vansteelandt (2007), which considers the marginal expected mean 

E Y it + 1 |Ait, Xit . When random effect is incorporated, the model becomes the conditional 

expected mean E Y it + 1 |Ait, Xit, bi . When Xit is endogenous, even if Xit does not confound 

Ait, the same argument in Section 2.2 applies, and the parameter in the conditional model 

E Y it + 1 |Ait, Xit, bi  generally does not have the marginal interpretation. This means the 

methods for estimating marginal treatment effect cannot be used to estimate parameters in 

the conditional model, let alone used to predict the random effects in the conditional model.

2.4. Connection to level-2 endogeneity in econometric literature

Violation of the assumption that the random effect being independent of the covariates, bi ⊥ 
Xit, is sometimes called “level-2 endogeneity” in the econometric literature (Wooldridge, 

2002; Grilli and Rampichini, 2011). It is well known that level-2 endogeneity can lead to 

biased parameter estimates (Ebbes, Böckenholt and Wedel, 2004); in particular, Kim and 

Frees (2007) gave a display similar to (6), and warned about the bias that could occur when 

one uses an estimator intended for the marginal parameter (such as the ordinary least-

squares) to estimate the conditional parameter—this is the counterpart of our discussion in 

Section 2.2, that using LMM to estimate the marginal parameter will incur bias with 

endogenous covariates.

Various estimators have been proposed in the econometric literature for the conditional 

parameter under level-2 endogeneity, many of which are based on explicitly modeling the 

conditional distribution of the random effects given the endogenous covariates (Mundlak, 

1978), centering the time-varying covariate and the time-varying outcome by their average 

over time (Hausman and Taylor, 1981; Arellano and Bover, 1995; Neuhaus and McCulloch, 

2006; Kim and Frees, 2006; Hanchane and Mostafa, 2012), constructing internal 

instrumental variables (Amemiya and MaCurdy, 1986; Arellano and Bond, 1991; Semykina 

and Wooldridge, 2010), or using semiparametric efficiency theory by not specifying the 

distribution of the random effects (Liu and Xiang, 2014; Garcia and Ma, 2016).

In those works, it is usually assumed that the error term ϵit is independent of the history of 

the time-varying covariate, XiTi
; thus these methods are not directly applicable to the MRT 

setting where future covariates can depend on previous outcomes (hence previous error 

terms). In addition, many of these methods focus on estimating the conditional parameter 

while treating the random effect as a nuisance parameter. We argue that in MRTs, prediction 

of the random effects are of equal importance to estimation of the conditional parameter; 

otherwise, one could have used the causal inference methods mentioned in Section 2.3 to 

estimate the marginal treatment effect. It is an open question whether the ideas behind the 

above methods can be adapted for LMM-based inference in MRTs.

3. A conditional independence assumption

In an MRT, the observed history up to time t is defined as Hit = (Xi1,Ai1,Yi2,

…,Xit−1,Ait−1,Yit,Xit). We consider the following LMM:
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Y it + 1 = f0 Hit
T

β0 + Aitf1 Hit
T

β1 + g0 Hit
T

b0i + Aitg1 Hit
T

b1i + ϵit + 1 (7)

for t = 1,…,T, where f0(Hit),f1(Hit),g0(Hit),g1(Hit) are known functions of Hit. For example, 

if we believe that the outcome depends linearly on time, current covariate and previous 

outcome, that the treatment also interacts with these three variables, and that the outcome 

has no residual association with other information in Hit, we may set each of 

f0(Hit),f1(Hit),g0(Hit),g1(Hit) to be (1,t,Xit,Yit). Recall that for simplicity we consider only 

binary treatment. In this section, we provide an additional assumption that, if true, ensures 

valid treatment inference and person-specific predictions via standard software even when 

there are endogenous covariates.

We make the standard LMM assumptions. The random effects b0i
T , b1i

T  are assumed to 

marginally follow a multivariate Gaussian distribution with mean 0 and variance-covariance 

matrix G. Ait is assumed to be randomized with randomization probability depending only 

on Hit, not bi0 or bi1; this is ensured by the MRT design. The random noise ϵit+1 is assumed 

to be independent of (Hit,Ait,b0i,b1i) and follows N 0, σϵ
2 . f0(Hit) and f1(Hit) can include 

possibly endogenous covariates Xit and lagged outcomes such as Yit.

Equation (7) along with the above assumptions completely specifies the conditional 

distribution of the outcome Yit+1 conditional on b0i,b1i,Hit,Ait. It implies the following 

treatment effect that is conditional on the random effects

E Y it + 1 |b0i, b1i, Hit, Ait = 1 − E Y it + 1 |b0i, b1i, Hit, Ait = 0 = f1 Hit
T

β1

+ g1 Hit
T

b1i .
(8)

Furthermore due to endogeneity, it is likely that

E Y it + 1 |Hit, Ait = 1 − E Y it + 1 |Hit, Ait = 0 ≠ f1 Hit
T

β1 . (9)

In other words, the treatment effect (8) implied by model (7) is interpreted as conditional-

on-the-random-effect; β = β0
T , β1

T T
 does not have a marginal interpretation. A similar point 

for when there is no treatment has been extensively discussed in Section 2.

The above model provides the distribution of Yit+1 conditional on (b0i,b1i,Hit,Ait) as opposed 

to conditional on (b0i,b1i,Xit,Ait). Thus β1 in (8) has a causal interpretation even when the 

randomization probability for Ait depends on Hit in an MRT. Likelihood-based inference and 

model fitting through standard LMM software can be conducted as described below. Note 

that since f0(Hit) and f1(Hit) can include lagged outcomes, the dependence between 

outcomes is explicitly modeled in (7). The purpose of introducing random effects here is 

mainly to model the between-person heterogeneity.

To estimate the conditional-on-the-random-effect β, we make an additional conditional 

independence assumption. The conditional independence assumption is
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Xit ⊥ b0i, b1i |Hit − 1, Ait − 1, Y it . (10)

This does allow Xit to be endogenous, but the endogenous covariate Xit can only depend on 

the random effects through the variables observed prior to Xit: Hit−1,Ait−1, and Yit. If the 

only endogenous covariates are functions of prior treatments and prior outcomes, then 

assumption (10) automatically holds. In general, assumption (10) needs to be verified from 

the domain science perspective. We discuss this assumption in the context of HeartSteps in 

Section 5.

Assumption (10) allows us to decompose the likelihood. This likelihood decomposition will 

provide a justification for the use of estimators from standard LMM software. Denote by Xi, 

Ai and Yi the vectors of observations for individual i, and X, A and Y the collection of 

observations for all individuals. Denote by bi = (b0i,b1i). Suppose G, the covariance matrix 

of the random effects, is parametrized by θ. The joint likelihood of the observed data, 

ℒ α, β, θ, σϵ |X, A, Y , can be written as

∏
i

p Xi, Ai, Y i |α, β, θ, σϵ = ∏
i
∫ p Xi, Ai, Y i |bi; α, β, θ, σϵ dF bi

= ∏
i

∫ ∏
t

p Xit |Hit − 1, Ait − 1, Y it, bi p Ait |Hit, bi

× p Y it + 1 |Hit, Ait, bi; α, β, θ, σϵ dF bi .

(11)

By the conditional independence assumption (10) and given that Ait is randomized 

conditional on Hit, the joint likelihood in (11) becomes

ℒ α, β, θ, σϵ |X, A, Y = ∏
i

∏
t

p Xit |Hit − 1, Ait − 1, Y it p Ait |Hit ℒ1

α, β, θ, σϵ |X, A, Y ,
(12)

where

ℒ1 α, β, θ, σϵ |X, A, Y = ∏
i

∫ ∏
t

p Y it + 1 |Hit, Ait, bi; α, β, θ, σϵ dF bi . (13)

Because the first factor on the right hand side of (12) does not involve (α,β,θ,σϵ), any 

inference for (α,β,θ,σϵ) that is based on the joint likelihood ℒ α, β, θ, σϵ |X, A, Y  can be 

equivalently based on the partial likelihood ℒ1 α, β, θ, σϵ |X, A, Y . Observe that 

ℒ1 α, β, θ, σϵ |X, A, Y  is actually the likelihood function for a standard LMM where Xit and 

Ait are treated as fixed covariates. Thus, the maximum likelihood estimators that are 

obtained through standard LMM software are valid maximum likelihood estimators for the 

joint likelihood ℒ α, β, θ, σϵ |X, A, Y  under the conditional independence assumption, and (4) 

with X redefined to include the treatment indicator is a likelihood score equation for β in the 

conditional-on-the-random-effect model. Note that even though the form of (4) appears to 
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indicate estimation of a regression coefficient in a marginal model, this is a false impression 

in the case of endogenous covariates. Furthermore, recall that restricted maximum likelihood 

(REML) estimation can be viewed as maximum a posteriori in a Bayesian hierarchical 

model (Laird and Ware, 1982). This latter interpretation continues to hold for the REML 

estimators obtained through standard LMM software when there are endogenous covariates. 

In addition, it can be shown that the empirical Bayes predictor of the random effects b

obtained through standard LMM software is valid empirical Bayes predictor for model (7) 

with endogenous covariates. We include proofs of these claims in the Appendix.

The conditional independence assumption (10) is similar to an assumption used by Sitlani et 

al. (2012). Sitlani et al. (2012) aimed to use an LMM to assess causal effects in the context 

of noncompliance in surgical trials. They assumed conditional independence between the 

treatment assignment and the random effect given the observed history. This assumption 

allowed them to decompose the likelihood as is done above and thus use standard LMM 

estimators.

It is worth noting, as pointed out by a reviewer, that if the analyst poses a model as (7) but 

without the Aitg1 Hit
T

b1i term (i.e., the random effect in the model does not interact with 

Ait), then (9) becomes an equality. In other words, in this case β1 recovers its marginal 

interpretation

E Yit + 1|Hit, Ait = 1 − E Yit + 1|Hit, Ait = 0 = f1 Hit
T

β1,

and furthermore it can be interpreted marginally over Hit \ f1(Hit):

E E Y it + 1 |Hit, Ait = 1 − E Y it + 1 |Hit, Ait = 0 |f1 Hit = f1 Hit
T

β1 . (14)

Note that β0 still has only the conditional-on-the-random-effect interpretation. In absence of 

b1i, the conditional independence assumption (10) becomes

Xit ⊥ b0i |Hit − 1, Ait − 1, Yit;

this assumption justifies the use of over-the-counter LMM software’s via the likelihood 

factorization (12).

4. Simulation

In the simulation, we considered three generative models (GMs), in all of which the 

covariate is endogenous. In the first two GMs, the endogenous covariate Xit equals the 

previous outcome Yit plus some random noise, so the conditional independence assumption 

(10) is valid. In GM 3, the endogenous covariate depends directly on bi, so the assumption 

(10) is violated. Details of the generative models are described in the following.

In GM 1, we considered a simple case with only a random intercept and a random slope for 

Ait, so that Zit
(0) = Zit

(2) = 1 in model (7). The outcome is generated as Yit+1 = α0 + α1Xit 
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+bi0 + Ait(β0 + β1Xit +bi2) + ϵit+1. The random effects bi0 N 0, σb0
2  and bi2 N 0, σb2

2  are 

independent of each other. We generated the covariate to be Xi1 ~ N(0,1), Xit = Yit + N(0,1) 

for t ≥ 2. The randomization probability pt is constant 1/2. The exogenous noise 

ϵit + 1 N 0, σϵ
2 .

In GM 2, we considered the case where Zit
(0) = Zit

(2) = 1, Xit , and the randomization 

probability is time-varying. The outcome is generated as Yit+1 = α0 + α1Xit + bi0 + bi1Xit + 

Ait(β0 + β1Xit + bi2 +bi3Xit) + ϵit+1. The random effects bij N 0, σbj
2 , 0 ≤ j ≤ 3, are 

independent of each other. We generated the covariate to be Xi1 ~ N(0,1), Xit = Yit + N(0,1) 

for t ≥ 2. The randomization probability depends on 

Xit: pt = 0.7 ⋅ 1 Xit > − 1.27 + 0.3 ⋅ 1 Xit ≤ − 1.27 . Here 1( ⋅ ) represents the indicator 

function, and the cutoff −1.27 was chosen so that pt equals 0.7 or 0.3 each for about half of 

the time. The exogenous noise ϵit + 1 N 0, σϵ
2 .

GM 3 is the same as GM 1, except that the covariate Xit depends directly on bi: Xi1 ~ 

N(bi0,1), Xit = Yit + N(bi0,1) for t ≥ 2.

We chose the parameter values as follows: α0 = −2, α1 = −0.3, β0= 1, β1 = 0.3, σb0
2 = 4, 

σb1
2 = 1/4, σb2

2 = 1, σb3
2 = 1/4, σϵ

2 = 1.

For each of the three GMs, we simulated for sample size n = 30,100,200 and the number of 

observations per individual Ti = T = 10,30. Each setting was replicated 1,000 times. The 

estimation was done using the R package lmer (Bates et al., 2015) for standard LMM, and 

95% confidence interval was computed based on the t distribution with degrees of freedom 

obtained by Satterthwaite approximation (Satterthwaite, 1941), which is implemented in the 

R package lmerTest (Kuznetsova, Brockhoff and Christensen, 2017). Bias, standard 

deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for the 

estimated β0 and β1 are presented in Table 1. As expected, the estimators are consistent for 

GM 1 and GM 2, and they are inconsistent for GM 3 because of the violation of the 

conditional independence assumption (10). For GM 1 and GM 2, the confidence interval 

coverage probability can be slightly lower than the nominal level for some of the parameters 

for small n or small T, but it gets back to the nominal level as the sample size or total 

number of time points gets larger. Additional simulation results for more choices of n and T, 

the performance of estimated α0, α1, and variance components σbj
2 , 0 ≤ j ≤ 3 and σϵ

2 are in 

the Appendix, and the conclusion is similar to the results for the β’s as shown here.

5. Illustrative data analysis of HeartSteps

5.1. Data and model assumptions

As described in Section 1.1, HeartSteps (Klasnja et al., 2018) is a 6-week micro-randomized 

trial of an mHealth intervention to encourage activity among sedentary adults. The following 

analysis focuses on the time-varying treatment consisting of contextually-tailored activity 

suggestions.
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Prior to the randomization at each time point, software on the smartphone determined 

whether an individual is available for treatment at the time. If the activity recognition on the 

phone determined that an individual was operating a vehicle, the individual was considered 

unavailable for safety reasons. If an individual had just finished an activity bout in the prior 

90 seconds, they were considered unavailable for treatment in order to minimize user burden 

and aggravation. Lastly, because the software on the server and smartphone required an 

internet connection to send a suggestion, if the smartphone did not have wireless 

connectivity the individual was deemed unavailable. At each of the five points each day for 

each individual, availability was assessed, the context was recorded, and if the individual 

was available then HeartSteps randomized to deliver an activity suggestion to the individual 

with probability 3/5. The sample for this analysis consisted of 7,540 time points from 37 

individuals. The individuals were available for 6,061 (80.4%) time points, unavailable due to 

no internet connection for 602 (8.0%) time points, unavailable due to being detected as in 

transit for 841 (11.1%) time points, and unavailable due to being detected to have just 

finished an activity bout in the prior 90 seconds for 36 (0.5%) time points.

Let Ait = 1 if an activity suggestion is delivered at time t for individual i and equal to 0 

otherwise. The proximal outcome Yit+1 is the (log-transformed) 30-minute step count 

following time point t. We used three covariates in the model:

• Xit,1: day in the study for the time point t, coded as 0,1,…,41.

• Xit,2: whether the individual was at home or work at time point t; Xit,2 = 1 if at 

home or work, 0 if at some other location.

• Xit,3: (log-transformed) 30-minute step count preceding time point t.

We specify model (7) in the HeartSteps context as follows: f0(Hit) = (Xit,1,Xit,2,Xit,3); f1(Hit) 

= (Xit,1, Xit,2); the model contains a random intercept, g0(Hit) = 1, and a random slope for 

Ait, g1(Hit) = 1. We denote the availability status of individual i at time t by Iit (Iit = 1 if 

available; 0 otherwise). In the model, we multiply Ait with Iit to operationalize the notion 

that the treatment may only be delivered when the individual is available. Because the 

relationship between Yit+1 and the f0(Hit) can depend on the availability status, we included 

an interaction between Iit and f0(Hit). Thus, the LMM is given by

Y it + 1 = α0 + α1Xit, 1 + α2Xit, 2 + α3Xit, 3
+ Iit α0 + α1Xit, 1 + α2Xit, 2 + α3Xit, 3 + b0i

+ AitIit β0 + β1Xit, 1 + β2Xit, 2 + b1i + ϵit + 1

(15)

where ϵit + 1 N 0, σϵ
2 , and the random effects (b0i,b1i) ~ N(0,G) with G being a 2 × 2 

variance-covariance matrix. b0i accounts for the between-individual variation in the 30-

minute step count under no treatment, and b1i accounts for the between-individual variation 

in the treatment effect on the 30-minute step count.

In model (15), Xit,2, Xit,3 and Iit are possibly endogenous. Location, Xit,2, is most likely 

exogenous but might be endogenous because the number of steps an individual took 

following a prior time point, combined with the location s/he was at then, might be 

predictive of whether s/he would be at home/work or other places at the subsequent time 
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point. Prior time t 30-minute step count, Xit,3, might be correlated with 30-minute step count 

after time t − 1, Yit, because an individual might walk less if s/he had already walked earlier 

in the day. For the availability status Iit, unavailability due to being in transit is likely 

exogenous but may be endogenous for a reason similar to that of location, Xit,2. 

Unavailability due to having just finished an activity bout may be endogenous for a reason 

similar to that of prior time t 30-minute step count, Xit,3. We argue that the conditional 

independence assumption (10) is plausible for all three variables. For location, Xit,2, because 

the enrollment criterion required each individual to either have a full-time daytime job or be 

a student, the time-varying location of such individuals with regular schedule is unlikely to 

depend on some unmeasured baseline factors (i.e., the random effects) that impact step 

count. For prior time t 30-minute step count, Xit,3, the impact of random effects should be 

largely explainable through earlier outcomes and covariates, as those are also step counts but 

just for other time windows. For Iit, most of the unavailability (1443/1479) instances are due 

to being in transit or loss of internet connection; the conditional independence is likely to 

approximately hold for Iit for a similar reason to that of Xit,2.

5.2. Results

We fitted model (15) using the R package lmer (Bates et al., 2015) for standard LMM, 

because standard LMM yields valid estimators under the conditional independence 

assumption (10).

The first three columns in Table 2 show the estimated fixed effects with 95% confidence 

interval and the estimated variance components. The estimated variance for b1i is extremely 

small and the estimated correlation between b0i and b1i is 1.000, suggesting that we might 

not have enough data to fit two separate random effects so the fitting collapsed onto a linear 

combination of the two. We conducted the likelihood ratio test for nonzero variance of b1i, 

and the p-value was 0.72. Note that likelihood ratio tests for nonzero variance components 

can be conservative because the null value (Var(b1i) = 0) is on the boundary of the parameter 

space (Self and Liang, 1987; Stram and Lee, 1994; Crainiceanu and Ruppert, 2004), and we 

are just using this test and the critical value as a guideline. The result suggests that the 

potential heterogeneity in the treatment effect may not be large enough to be detected from 

the data. Model fit of (15) with b1i removed is presented in the last two columns in Table 2.

The estimated treatment effects, which are conditional on the observed history and the 

unobserved random effects, are similar from both model fits in the point estimates as well as 

the confidence intervals. The data indicates that, for an individual, the treatment has a 

positive effect at the beginning of the study β0 > 0 , and the effect decreased over time 

β1 < 0 . This is likely due to the individual’s habituation to the activity suggestions, which 

is consistent with the exit interviews reported by Klasnja et al. (2018) in which individuals 

reported that “the suggestions became boring after 2–4 weeks”. On the other hand, the data 

indicates no moderating influence of location (whether an individual was at home/work or 

some other place) on the treatment effect for an individual.
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As a point of contrast, we also analyzed the data using the weighted and centered least-

squares (WCLS) estimator in Boruvka et al. (2018) for a related but different model. We 

used WCLS to estimate ψ = (ψ0,ψ1,ψ2) in the following model:

E E Y it + 1 |Hit, Ait = 1 − E Y it + 1 |Hit, Ait = 0 |Xit, 1, Xit, 2, Iit = 1 = ψ0
+ ψ1Xit, 1 + ψ2Xit, 2 . (16)

Boruvka et al. (2018) called (16) the causal excursion effect; ψ is marginal over both the 

random effects and Hit \{Xit,1,Xit,2}, which is different from β in (15). We used γ0 + γ1Xit,1 

+ γ2Xit,2 + γ3Xit,3 as the working model for E(Yit+1 | Hit,Ait = 0,Iit = 0) in WCLS; this 

working model does not need to be correctly specified to guarantee the consistent of the 

estimator for ψ. The estimated ψ and the 95% confidence interval are listed in Table 3. 

Although β and ψ are different estimands with different interpretation, their estimated value 

and confidence interval are qualitatively similar. These results are consistent with the 

comments made in the last paragraph regarding the direction of how different variables 

moderate the treatment effect.

6. Discussion

Linear mixed models (LMM) were originally developed for settings with fixed covariates, 

and it has been natural for researchers to think about the induced marginal model when 

building and interpreting the fixed effects in LMM. In this paper, we review related literature 

on the potential bias that would arise when including endogenous covariates into LMM. We 

argued that the fundamental issue in LMM with endogenous covariates is that the fixed 

effects, including the treatment effect, will only have a conditional-on-the-random-effect 

interpretation, and the marginal interpretation is no longer valid. In terms of estimation for 

LMM with endogenous covariates, we introduced a conditional independence assumption, 

and showed that under this assumption standard LMM software can still be used to obtain 

valid estimator of the fixed effects and the variance components, as well as valid prediction 

of the random effects. We used an LMM to model the effect of sequentially assigned 

treatment in HeartSteps MRT in which the covariates are likely endogenous, and we 

discussed the plausibility of the conditional independence assumption for these covariates.

The potential bias resulting from endogenous covariates in the without-treatment 

longitudinal setting has been known for decades since Pepe and Anderson (1994). However, 

it was quite surprising to us that in the MRT setting, this issue occurs even with randomized 

treatment with constant randomization probability (no confounding). The method in this 

paper utilizes the randomization to the extent that the treatment indicator Ait automatically 

satisfies a conditional independence assumption similar to (10). Furthermore, (7) is a 

mechanistic model for the outcome, which implies that how well the estimated β 
approximates the true treatment effect is contingent on how well the mechanistic model 

approximates the true data generating distribution. When the marginal treatment effect is of 

interest, there are many tools in causal inference that consistently estimate the effect with a 

possibly misspecified nuisance model (Robins, 1994, 2000; Hernán, Brumback and Robins, 

2001; Brumback et al., 2003; Goetgeluk and Vansteelandt, 2008; Boruvka et al., 2018). It is 
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an open question whether the randomization can be further leveraged in LMM to increase 

robustness to misspecified nuisance models.

The inclusion of endogenous covariates to an LMM implies that the fixed effects should 

only be interpreted as conditional on an individual. Thus, a future research question is to 

develop estimation methods for the parameters in the marginal mean model that are coherent 

with fixed effect parameters in an LMM where there are endogenous covariates. Related 

work in generalized linear mixed models but with exogenous covariates includes Heagerty 

(1999), Heagerty and Zeger (2000), and Larsen et al. (2000).

In a standard LMM with exogenous covariates, the empirical best linear unbiased predictor 

(eBLUP) equals the empirical Bayes estimator where a noninformative prior is imposed on 

the fixed effect and the variance components are estimated through REML (Lindley and 

Smith, 1972; Dempfle, 1977). In Section 3 we showed through partial likelihood argument 

that the empirical Bayes estimator of random effects from standard LMM is still a valid 

empirical Bayes estimator in the case of endogenous covariates. However, it is unknown 

whether it is still eBLUP absent further assumptions.

Along the same lines, in a standard LMM the restricted maximum likelihood (REML) 

estimator of the variance components can be viewed as the maximum a posteriori estimator 

in a Bayesian hierarchical model (Laird and Ware, 1982), and in Section 3 we showed that 

this latter interpretation is valid for the REML estimators obtained through standard LMM 

software when there are endogenous covariates. Another interpretation of the REML 

estimator in a standard LMM is the maximizer for the likelihood of linear combinations of 

the outcome that is orthogonal to the fixed effects. It is unknown whether this interpretation 

continues to hold for the endogenous covariate case.

In the literature, there has been work on handling endogenous covariates in longitudinal data 

via jointly modeling of the covariate process and the outcome process, which could be 

alternative approaches to the method proposed in this paper for situations where the 

conditional independence assumption is questionable. Note that each of these alternative 

approaches require certain assumptions on the covariate process, and these assumptions 

themselves need to be verified in the context of each application. For example, Miglioretti 

and Heagerty (2004) modeled the covariate process, and assumed that Xit ⊥ bi | Xi1,Xi2,

…,Xit−1. Roy et al. (2006) proposed to model the distribution of covariates given the history 

to infer the dependence of a Poisson process outcome on the endogenous covariates. Sitlani 

et al. (2012) proposed to use joint modeling for analyzing the effect of a surgical trial (where 

the time-varying treatment is a jump process) under noncompliance. Shardell and Ferrucci 

(2018) proposed to use a joint model approach, by assuming either that the distribution of 

Xit can be correctly modeled, or that the endogenous covariate is the lagged outcome.
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Appendix A:: Estimation and prediction through standard LMM software

In this Appendix, we provide a proof for the claims in Section 3 that maximum likelihood 

estimators, maximum a posterior estimators, and the empirical Bayes prediction of the 

random effects can be obtained through standard LMM software.

A.1. Estimation of fixed effects and variance components

This subsection focuses on estimation of the fixed effects α and β and the variance 

components θ and σϵ
2 in model (7).

That the maximum likelihood estimator for the fixed effects and the variance component can 

be obtained through standard LMM software is immediate from the likelihood factorization 

(12).

The restricted maximum likelihood (REML) estimator of the variance components θ and σϵ 
in a standard LMM can be obtained through Bayesian maximum a posteriori (MAP) 

estimation with a non-informative prior on the fixed effects α,β (Laird and Ware, 1982; 

Searle, Casella and McCulloch, 1992). For our case, the marginal likelihood for θ,σϵ, where 

α and β are integrated over with respect to non-informative priors p(α) and p(β), is

L θ, σϵ |Xi, Ai, Yi, 1 ≤ i ≤ n = ∫ p(α)p(β)∏
i

p Xi, Ai, Yi |α, β, θ, σϵ dαdβ,

which by (12) equals

∏
i

∏
t

p Xit |Hit − 1, Ait − 1, Y it p Ait |Hit × ∫ p(α)p(β

)∏
i

∫ ∏
t

p Y it + 1 |Hit, Ait, bi; α, β, θ, σϵ dF bi dαdβ ∝ ∫ p(α)p(β

)∏
i

∫ ∏
t

p Y it + 1 |Hit, Ait, bi; α, β, θ, σϵ dF bi dαdβ .

(17)

Expression (17) is the marginal likelihood for θ,σϵ in a standard LMM; hence, the MAP 

estimator of the variance components can be obtained through standard LMM fitting 

procedure with the REML option.

A.2. Prediction of random effects

Prediction of random effects in a standard LMM is through best linear unbiased predictors 

(BLUPs, Henderson (1975)), which can be alternatively derived as empirical Bayes 

estimates using REML estimator of the variance components and fixed effects (Lindley and 

Smith, 1972; Dempfle, 1977).

Denote by b = (b1,…,bn), X = (X1,…,Xn), A = (A1,…,An), and Y = (Y1,…,Yn). In our 

proposed model, the posterior distribution of b is
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p b |X, A, Y ; θ, σϵ =
p b, X, A, Y |θ, σϵ

p X, A, Y |θ, σϵ
. (18)

We omit the notational dependence on θ,σϵ hereafter. Let p(α) and p(β) denote the prior 

distribution of α and β. The numerator of the right hand side of (18) equals

∫ p(b, X, A, Y , α, β)dαdβ = ∫ p(α)p(β)∏
i

p bi ∏
t

p

Xit |Hit − 1, Ait − 1, Y it, bi, α, β × p Ait |Hit, bi, α, β p Y it + 1 |Hit, Ait, bi; α, β dαdβ

= ∏
i

∏
t

p Xit |Hit − 1, Ait − 1, Y it p Ait |Hit × ∫ p(α)p(β

)∏
i

p bi ∏
t

p Y it + 1 |Hit, Ait, bi; α, β

dαdβ,

(19)

where the last equality follows from the conditional independence assumption and the 

randomization of Ait. The denominator of the right hand side of (18) is ∫ 
∫p(b,X,A,Y,α,β)dαdβdb. Thus, the posterior distribution (18) equals

∫ p(α)p(β)∏i p bi ∏t p Y it + 1 |Hit, Ait, bi; α, β dαdβ

∫ p(α)p(β)∏i p bi ∏t p Y it + 1 |Hit, Ait, bi; α, β dαdβdb
, (20)

which is the posterior distribution of b in a standard LMM when X and A are treated as fixed 

or exogenous.

Therefore, the Bayesian MAP estimator of b can be obtained through standard LMM fitting 

procedure. Along the same line, the empirical Bayes estimator of b with plug-in variance 

component estimates can also be obtained through standard LMM.

Appendix B:: Additional simulation results

In the additional simulation results, we included simulations for sample size n = 

30,50,100,200 and the number of observations per individual Ti = T = 10,20,30. Each setting 

was replicated 1,000 times. Bias, standard deviation (sd) and coverage probability (cp) of 

95% nominal confidence interval for the estimated fixed effects (β’s and α’s) are presented 

in Table 4. Table 5 presents the bias and standard deviation for the estimated variance 

components σbj
2 , 0 ≤ j ≤ 3 and σϵ

2. For GM 1 and GM 3, the model doesn’t include bi1 and 

bi3, so the variance components only include σb0
2 , σb2

2 , and σϵ
2. Conclusion to Section 4 can be 

made: for GM 1 and GM 2, the variance components are consistently estimated, whereas for 

GM 3 the estimators are inconsistent. Again, this is due to violation of the conditional 

independence assumption (10) in GM 3.
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Table 1

Bias, standard deviation (sd) and coverage probability (cp) of 95% nominal confidence interval for estimated 

β0 and β1 in the simulation study. n denotes sample size; T denotes total number of observations for each 

individual; GM denotes generative model. The result is based on 1,000 replicates for each setting.

β0 β1

GM T n bias sd cp bias sd cp

30 −0.001 0.249 0.943 0.002 0.091 0.897

1 10 100 −0.003 0.135 0.941 −0.001 0.049 0.898

200 −0.001 0.096 0.926 −0.001 0.034 0.899

30 −0.002 0.206 0.946 0.001 0.053 0.913

1 30 100 −0.005 0.112 0.949 −0.001 0.028 0.935

200 0.000 0.081 0.944 −0.001 0.022 0.902

30 −0.010 0.269 0.939 −0.004 0.105 0.903

2 10 100 0.009 0.145 0.933 −0.001 0.056 0.915

200 −0.008 0.105 0.931 −0.002 0.038 0.934

30 −0.006 0.216 0.943 −0.001 0.070 0.939

2 30 100 0.006 0.115 0.947 −0.001 0.039 0.948

200 −0.004 0.084 0.935 −0.000 0.027 0.940

30 −0.048 0.245 0.949 −0.043 0.075 0.725

3 10 100 −0.060 0.134 0.927 −0.047 0.041 0.548

200 −0.052 0.095 0.907 −0.046 0.029 0.355

30 −0.023 0.207 0.946 −0.017 0.041 0.847

3 30 100 −0.028 0.112 0.942 −0.019 0.022 0.762

200 −0.024 0.079 0.941 −0.019 0.015 0.628
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Table 2

Estimated coefficients and 95% confidence interval for model (15) of HeartSteps data. Estimators are obtained 

using R package lmer, and the 95% confidence interval are based on t distribution with Satterthwaite 

approximation implemented in R package lmerTest.

Model with b1i Model without b1i

coefficient estimate 95% CI estimate 95% CI

α0 1.990 ( 1.643, 2.338) 1.997 ( 1.646, 2.348)

α1 −0.009 (−0.021, 0.002) −0.009 (−0.021, 0.002)

α2 0.851 ( 0.238, 1.465) 0.840 ( 0.226, 1.453)

α3 0.539 ( 0.495, 0.583) 0.537 ( 0.493, 0.582)

α0 −0.177 (−0.586, 0.232) −0.182 (−0.591, 0.228)

α1 0.008 (−0.006, 0.023) 0.008 (−0.007, 0.023)

α2 −0.871 (−1.522, −0.221) −0.863 (−1.514, −0.212)

α3 −0.156 (−0.206, −0.107) −0.154 (−0.204, −0.104)

β0 0.415 ( 0.105, 0.724) 0.410 ( 0.100, 0.719)

β1 −0.017 (−0.028, −0.005) −0.017 (−0.028, −0.005)

β2 0.122 (−0.156, 0.400) 0.130 (−0.148, 0.408)

Var(b0i) 0.160 0.182

Var(b1i) 0.003 -

Corr(b0i,b1i) 1.000 -

Var(ϵit+1) 7.138 7.139
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Table 3

Estimated coefficients and 95% confidence interval for model (16) using WCLS estimator in Boruvka et al. 

(2018).

coefficient estimate 95% CI

ψ0 0.454 ( 0.156, 0.753)

ψ1 −0.018 (−0.029, −0.006)

ψ2 0.096 (−0.219, 0.410)
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