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Abstract

With the advent of PCR-based STR typing systems, mixed samples can be separated

into their individual DNA profiles.  Quantitative peak information can help in this

analysis.  However, despite such advances, forensic mixture analysis still remains a

laborious art, with the high cost and effort often precluding timely reporting.

We introduce here a new automated approach to resolving forensic DNA mixtures.  Our

linear mixture analysis (LMA) is a straightforward mathematical approach that can

integrate all the quantitative PCR data into a single rapid computation.  LMA has

application to diverse mixture problems.  As demonstrated here on laboratory STR data,

LMA can assess the quality and utility of its solutions.  Such rapid and robust methods

for computer-based analysis of DNA mixtures may help in reducing crime.
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In forensic science, DNA samples are often derived from more than one individual.  In

such cases, key objectives include elucidating or confirming a mixed DNA sample’s

component DNA profiles, and determining the mixture ratios.  Current manual

qualitative peak analysis of mixed DNA samples is slow, tedious, and expensive.  These

difficulties can generate considerable delay in the casework analysis of forensic DNA

mixtures, underscored by the current USA backlog comprised of over 100,000

unanalyzed rape kits.

Under appropriate laboratory conditions, STR peak data can be quantitatively analyzed.

Such quantitative approaches have spawned heuristic (1) and computer-based (2, 3)

methods that can potentially resolve these complex data.  These statistical computer

programs typically analyze each STR locus separately, and may require human

intervention when combining the locus results into a complete solution.

We have developed a quantitative analysis method that represents the mixture problem

as a linear matrix equation.  We call our approach “Linear Mixture Analysis,” or “LMA.”

Unlike previous methods, the mathematical LMA model uses STR data from all the loci

simultaneously for greater robustness.  The linear mathematics permits rapid computer

calculation, and provides a framework for statistical analysis.  An associated error

analysis can measure the quality of the overall solution, as well as the utility of each

contributing locus.
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In this paper, we introduce the linear LMA model, and then provide some illustrative

examples.  We describe several problem formulations, each one based on a particular

subset of data available to the examiner.  We then focus on laboratory data analysis

results for one important mixture problem, before extending the method to other

analyses.  We conclude with some observations on the potential applications of LMA.

Linear Model

In the PCR amplification of a mixture, the amount of each PCR product scales in rough

proportion to relative weighting of each component DNA template.  This holds true

whether the PCRs are done separately, or combined in a multiplex reaction.  Thus, if

two DNA samples A and B are in a PCR mixture with relative concentrations weighted

as wA and wB (0 ≤ wA  ≤ 1, 0 ≤ wB ≤ 1, wA + wB = 1), their corresponding signal peaks

after detection will generally have peak quantitations (height or area) showing roughly

the same proportion.  Therefore, by observing the relative peak proportions, one can

estimate the DNA mixture weighting.  Note that mixture weights and ratios are

interchangeable, since the mixture weight 
[ ]

[ ] [ ]
A

A B+
 is in one-to-one correspondence

with the mixture ratio 
[ ]
[ ]
A

B
.

To mathematically represent the linear effect of the DNA sample weights (wA, wB, wC,

...), we combine all the locus data into a single linear matrix equation:

d G w= ⋅ ,



Linear Mixture Analysis 5

Here, column vector d describes the mixture profile’s peak quantitation data, matrix G

represents the genotypes (column j gives the alleles for individual j), and w is the weight

column vector that reflects the relative proportions of template DNA or PCR product.

The quantitative data profile d is the product of genotype matrix G and the weight vector

w.  (A more complete data description would add an error term e; expected values

suffice for our purposes.)

More precisely, we can write the vector/matrix equation d G w= ⋅  for mixture coupling (of

individuals and loci) as coupled linear equations that include the relevant data:

d g wik ijk
j

j= ∑ ,

where for locus i, individual j, and allele k:

• dik is the allele k proportion in the observed mixture data at locus i;

• gijk is the genotype of individual j at locus i in allele k, taking values 0 (no

contribution), 1 (heterozyote or hemizygote contribution), or 2

(homozygote contribution), though with anomalous chromosomes other

integer values are possible; and

• wj is the weighting in the mixture of individual j’s DNA proportion.

Illustrative Examples

This tutorial section motivates the use of vectors and matrices in modeling STR

mixtures.
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We first illustrate the coupling of DNA mixture weights with relative peak quantities.

Suppose that there are three individuals A, B, C represented in a mixture, where 50% of

the DNA is derived from individual A, 25% from individual B, and 25% from individual C.

Mathematically, this corresponds to a weighting of wA=0.5, wB=0.25, and wC=0.25.

Further suppose that at one locus the genotypes are:

A has allele 1 and allele 2,

B has allele 1 and allele 3, and

C has allele 2 and allele 3.

This information, and the predicted peak quantities, are laid out in Table 1.

The Table 1 information can be connected via the linear vector/matrix equation:
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Representing each allele as a position in a column vector, we have the linear

relationship:

0 75

0 75

0 50

1

1

0

1

0

1

0

1

1

0 50

0 25

0 25

.

.

.

    

.

.

.

















=
































































⋅
















which is the mathematical expression of Table 1.  Note that the sum of alleles in each

allele column vector (whether mixture or individual) is normalized to equal two, the

number of alleles present.
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With multiple loci, the weight vector w is identical across all the loci, since that is the

underlying chemical mixture in the DNA template.  This coupling of loci can be

represented in the linear equations by extending the column vectors d and G with more

allele information for additional loci.

To illustrate this coupling of DNA mixture weights across multiple loci, we add a second

locus to the three individual mixture above.  At locus two, suppose that the genotypes

are:

A has allele 1 and allele 2,

B has allele 2 and allele 3, and

C has allele 3 and allele 4.

We can combine this vector information via the partitioned matrix equation:
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Representing each allele as a position in a column vector, we have:
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Multiple loci produce more data and provide greater confidence in estimates computed

from these linear equations.

Problem Formulations

Given partial information about equation d G w= ⋅ , other elements can be computed by

solving the equation.  Cases include:

• When G and w are both known, then the data profile d can be predicted.  This

is useful in search algorithms.

• When G and d are both known, then the weights w can be computed.  This is

useful in confirming a suspected mixture, and in search algorithms.

• When d is known, inferences can be made about G and w, depending on the

prior information available (such as partial knowledge of G).  This is useful

in human identification applications.

The DNA mixture is resolved in different ways, depending on the case.

We assume throughout that the mixture profile data vector d has been normalized at

each locus.  That is, for each locus, let NumAlleles be the number of alleles found in an

individual’s genotype (typically NumAlleles = 2, one for each chromosome).  For each

allele element of the locus quantitation data, multiply by NumAlleles, and divide by the

sum (over the observed alleles) of all the quantitation values for that locus.  Then, the

sum of the normalized locus quantitation data is NumAlleles, which totals 2 in the

illustrative example above.
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Resolving DNA mixtures using LMA entails (a) obtaining DNA profile data that include a

mixed sample, (b) representing the data in a linear equation, (c) deriving a solution from

the linear equation, and (d) resolving the DNA mixture from the solution.  The LMA

approach is illustrated in the following problem formulations.

Determining mixture weights

First consider the case where all the genotypes G and the mixture data d are known,

and the mixture weights w need to be determined.  This problem is resolved by solving

the linear equations d G w= ⋅  for w using a least squares matrix division method.  One

standard method is linear regression (4), which is often implemented using singular

value decomposition (SVD) (5).  In the MATLAB programming language, w can be

estimated as:

w = G\d

using the built-in matrix division operation “\”.  With full rank matrices, matrix

multiplication via the normal equations computes the weights as:

w G G G dT 1 T= ⋅( ) ⋅ ⋅
−

.

Others have computed mixture weights by minimizing parameters at single loci (3).

From the LMA perspective, this pioneering work essentially minimizes at a single locus

the sum of squares deviation d G w− ⋅ 2 over w for each feasible integer-valued
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genotype matrix G.   LMA improves on such earlier search methods by providing a

mathematical basis that can use the data from all the loci simultaneously in a rapid

numerically computed global minimization.  Moreover, LMA permits the genotype matrix

entries to assume any possible value, and not just integers.

Analogous mixture problems occur in other fields, and are similarly modeled using linear

matrix equations.  In chemometrics, the approach is termed “multivariate calibration”

(MC) (6).  These MC methods are quite different from computing genotypes (and

mixture weights) from the data.  For example, MC finds real-valued solutions but

genotypes are whole numbers; calibration exploits signal continuity whereas locus

patterns contribute combinatorially; and MC methods rely on multiple samplings

whereas (with limited forensic samples) mixture data arise from a single multiplex PCR

experiment.  Therefore, our methods must be tailored to the needs of the STR mixture

data, as described next.

Determining genotype profiles

Consider now the case of two individuals A and B where one of the two genotypes (say,

A) is known, the mixture weights w are known, and the quantitative mixture data profile

d is available.  Expand d G w= ⋅  in this case as:

d = wA⋅gA + wB⋅gB ,
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where gA and gB are the genotype column vectors of individuals A and B, and wA and

wB = (1-wA) are their mixture weights.  Then, to resolve the genotype, we can

algebraically rewrite this equation as:

gB = (d - wA⋅gA)/wB

or, equivalently, as:

gB = (d - wA⋅gA)/(1 - wA)

and then solve for gB by vector arithmetic.  The computed gB is the normalized

difference of the mixture profile minus a fraction of A’s genotype.  The accuracy of the

solution increases with the number of loci used, and the quality of the quantitative data.

Typically, however, the mixture weights w are not known.

Consider now the critical case of making inferences about the genotype matrix G

starting from a mixture data profile d.  This case has practical applications for forensic

science.  In one typical scenario, a stain from a crime scene may contain a DNA mixture

from the victim and an unknown individual, the victim’s DNA is available, and the

investigator would like to connect the unknown individual’s DNA profile with a candidate

perpetrator.  This scenario typically occurs in rape cases.  The perpetrator may be a

specific suspect, or the investigator may wish to check the unknown individual’s DNA

profile against a DNA database of possible candidates.  If the mixture weight wA were

known, then the genotype gB could be computed immediately from the vector

difference operation of the preceding paragraph.
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Heuristic Search Algorithm: Mixture Deconvolution

Since wA is not known, one workable approach is to search for the best weight w in the

[0,1] interval that satisfies additional constraints on the problem.  By setting wA equal to

this best w, we can compute the genotype g(wA) as a function of this optimized wA

value, and derive gB = g(wA).  A suitable constraint is the prior knowledge of the form

that possible solution genotype vectors g can take.  It is known that solutions must have

a valid genotype subvector at each locus (e.g., having alleles taking on values 0, 1 or 2,

and summing to 2).  One may also consider null alleles, corresponding to failed PCR

amplifications.  This knowledge can be translated into a heuristic function of g(w) which

evaluates each candidate genotype solution g against this criterion.  The result of this

“mixture deconvolution” algorithm is a computed genotype gB and the mixture weights

w.

The heuristic we apply is a function of the unknown weight w, the observed data profile

d, and the known genotype gA.  Since d and gA are fixed for any given problem, in this

case the function depends only on the optimization variable w.  For any given w in (0,1),

compute the vector:

g(w) = (d - w⋅gA)/(1-w).

Then, at each locus, compute and record the deviation devlocus(g(w)).

The devlocus function at one locus is defined as:
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• Assume the genotype comprises one allele.  Compute the deviation by finding

the index of the largest peak, and forming a vector oneallele that has the

value 2 at this index and is 0 elsewhere.  Let dev1 be the sum of squares

difference between g(w) and oneallele.

• Assume the genotype comprises two alleles.  Compute the deviation by finding

the index of the two largest peaks, and forming a vector twoallele that has

the value 1 at each of these two indices and is 0 elsewhere.  Let dev2 be

the sum of squares difference between g(w) and twoallele.

• Return the the lesser of the two deviations as minimum(dev1, dev2).

To compute dev(g(w)), we sum the component devlocus(g(w)) at each locus.  That is, the

heuristic function is the scalar value

dev w dev w( ( )) ( ( ))g g= ∑ locus
loci

  .

We can appropriately optimize (e.g., minimize, or detect local minimum peaks for) this

function over w in [0,1] to find wA, and estimate gB from the computed g(wA).  If

desired, the summation terms can be normalized to reflect alternative weightings of the

loci or alleles, e.g., based on variance.  One useful reweighting, (1-w)2⋅dev(g(w)), is

derived from the data error.  Other heuristic functions can be used that reflect

reasonable constraints on the genotype vectors (3).

To assess the quality of the computed STR profile, we can use information from the

heuristic search.  Rule checking can identify potentially anomalous allele calls,

particularly when peak quantities or sizes do not conform to expectations (7).  Quality
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measures can be computed on the genotypes, which may suggest problematic calls

even when no rule has fired.  A most useful quality score in our mixture analysis is the

deviation dev(gB) of the computed genotype.  Low deviations indicate a good result,

whereas high scores suggest a poor result.  It may be helpful to partition the deviations

by locus, using the locus deviation function devlocus(gB).  When a locus has an

unusually high deviation, it can be removed from the profile, and the resulting partial

profile then used for human identity matching.

Data Results

We analyzed two anonymous human DNA samples (A and B) both individually and in

different mixture proportions (1:9, 3:7, 5:5, 7:3, 9:1).  We PCR amplified the samples on

a PCT-100 thermocycler (MJ Research, Waltham, MA) using the ten STR locus

SGMplus multi-mix panel (PE BioSystems, Foster City, CA).  We then size separated

the fluorescently labeled PCR products with internal size standards on an ABI/310

Genetic Analyzer capillary electrophoresis instrument (PE Biosystems).  Our manual

GeneScan analysis included comparison with allelic ladder runs for allelic size

designation, and recording of the peak heights and areas.

Our mixture analysis used the mixed DNA profile data d, along with the reference profile

genotype gA.  We implemented the LMA heuristic search algorithm in MATLAB (The

MathWorks, Natick, MA), and analyzed the data on a Macintosh PowerBook G3 (Apple

Computer, Cupertino, CA).  We applied the automated heuristic algorithm to each data



Linear Mixture Analysis 15

case, with the program searching for local minima to compute the mixture weight w and

the unknown genotype profile gB.  The computation time for each problem was less

than 0.1 second.  We recorded the total deviation dev(gB), along with the deviations at

each locus and allele.  We also compared our computed profile with the actual profile

for individual B.  (While known in advance for assessment purposes, neither the mixture

weight w nor B’s profile were used in the calculations.)

For each mixture proportion, for both height and area, the computed mixture weights

and sum of squares deviations (between the estimated and actual genotypes) are

shown (Table 2).  There is good agreement between the estimated weights and the

known proportions.  When the unknown proportion (B) becomes small (e.g., at 10% in

the 9:1 case), the low relative signal can lead to less certain results, as measured by the

deviation.

We examine the data analysis for the 3:7 (30% A to 70% B) case in more detail.  Using

peak area data, the search (Figure 1) for weight w by minimization of dev(g(w)) gave a

weighting of 29.18%; this value is close to the true 30% DNA mixture.  The total sum of

squares deviation dev(g(w)) of the computed genotype from the closest (and correct)

feasible solution was 0.1000.  A summary diagram (Figure 2) shows the locus-by-locus

profiles in separate rows for (1) the mixture data d, (2) the reference profile gA, and (3)

the numerically derived unknown profile gB.  Quality assessment of the computed

profile gB shows uniform peak heights that are consistent with a correct genotype.
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Data and results are tabulated for each locus (Table 3).  “Mixture” is the normalized

peak quantity data from the mixed sample.  “Geno A” is the known genotype of

individual A.  “Profile” is the numerical estimate of B’s genotype computed by the

mixture deconvolution heuristic search algorithm.  “Geno B” is the resulting integer

genotype (and, in this case, identical to B’s actual genotype) obtained by rounding

Profile to the nearest integer.  “Sq Devs” are the sum of squares deviations of the

Profile from Geno B.  Examination of the squared deviation components for each allele

revealed no major outliers.  The largest within-locus sum of squares deviation was the

nominal value 0.0272 at locus D2S1338; this locus has relatively long DNA fragment

lengths, which is consistent with finding larger variation.

We applied our automation methods to data from other laboratories, obtaining accurate

results.  For example, we reanalyzed the original six locus STR data (provided by Dr.

Peter Gill) underlying the quantitative analysis of mixture sample MT/NO in (3).  Taking

individual MT as the known reference profile, for each approximate mixing ratio (1:10,

1:5, 1:2, 1:1, 2:1, 5:1, 10:1), we derived exact mixture weights and estimated individual

NO’s genotype.  The respective computed weights (10.02%, 13.83%, 27.87%, 41.89%,

58.43%, 77.25%, 86.66%) are in close agreement with the four allele locus weights that

the authors had estimated (Table 6 for 5ng DNA in (3)).

To assess three person mixture deconvolution, we analyzed three anonymous human

DNA samples (A, B and C) in different mixture proportions.  We generated SGMplus

STR data on these mixed samples using the protocols described above, and recorded



Linear Mixture Analysis 17

the peak measurements (height, area, size, designation).  The (very approximate) 4:1:1

DNA combination experiment generated 44 alleles across the 10 STR loci.  Specifying

all three known genotypes, we estimated the true mixture weights using LMA, and

determined that the weights were wA = 70.56%, wB = 11.43%, and wC = 18.01%.

We then performed mixture deconvolution on the three person mixture data d.  We used

genotypes gA and gB as known references, but left genotype gC (and the mixture

weights) as unknown parameters.  Mixture deconvolution explored the 44 dimensional

allele measurement space by searching for the best two dimensional (wA, wB)

weighting pair, and estimated the weights as wA = 70%, wB = 11%, and wC = 19%.

This weighting result is in good agreement with the “all knowns” calculation, and

suggests that LMA may be useful on data containing more than two contributors.

Other Analyses

Stutter peaks are often a concern in mixture analysis.  One clean analysis method is to

mathematically remove the stutter artifact from the quantitative signal using stutter

deconvolution methods (8) prior to the mixture analysis.  Other forensic scientists have

used Bayesian approaches to account for stutter (9).  However, direct stutter removal

from the data signal can be highly robust, since it is working directly at the level of the

stutter artifact, prior to any mixture computation.
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In the reporting of mixture analysis, some courts are interested in likelihood ratio

formulations.  Bayesian methods have been developed to provide such likelihoods (2).

However, these reporting methods require a reasonable estimate of the conditional

probability Prob(d | G, w) of the observed mixture data, given an hypothesized

genotype and mixture weight.  Our LMA can help supply such estimates, since the

linear algebra provides a geometric framework for measuring the Euclidean distance

d G w− ⋅  or its square (which is the sum of squares deviation) between an observed

mixture profile d, and a profile estimate G w⋅ .  One can compute the requisite

conditional probabilities by correlating these distances with genotype correctness on

empirical mixture data, or by using linear statistical models (4).

The LMA model is also useful for resolving mixtures when there are no reference

profiles available.  In this situation, the computer considers all feasible genotype pairs Hi

at a locus subset, and then determines the weight w (and genotype pair Hi) that

provides the best possible fit to the data by minimizing d w− ⋅Hi .  Progressing in this

way from the most informative loci (e.g., those with the most alleles in their data), the

computer can ascertain the full genotype profiles of both individuals.

Once large DNA databases have been constructed, there will be an alternative LMA

approach to resolving mixtures without reference profiles.  With such a database, one

could iterate through an entire convicted offender database, testing each offender

profile in turn as a possible gA, and then compute gB.  If a gB profile of sufficient

quality were derived, this could implicate both individuals (having DNA profiles gA and
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gB) as the contributors to the mixture.  In this way, the mathematical LMA method,

coupled with knowledge of criminal profiles from a database, would effectively search

for the individual component profiles.

Conclusion

STR profiling of human DNA is proving to be an effective mechanism for reducing

crime.  However, DNA mixtures have become a key bottleneck impeding the rapid

resolution of cases.  Interestingly, the underlying PCR amplification step, as well as the

fluorescent detection step, show a quantitatively linear response in the presence of DNA

mixtures.  This suggests the use of linear algebraic models to explain mixture problems

and compute their solutions.

We have introduced linear mixture analysis (LMA), a straightforward mathematical

method for resolving DNA mixture problems.  The underlying linear mathematics

permits rapid and robust solutions on real quantitative data.  LMA uses all the data in a

single combined computation, which contributes to its robustness and accuracy – the

method is unlikely to find an incorrect solution.  Moreover, heuristic algorithms based on

LMA have built-in approaches for determining error, identifying suspect loci, and

establishing confidence.

Under reasonable PCR conditions, multiplex STR data appear to demonstrate linear

additivity, once DNA concentrations have been renormalized within each locus.  Our
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linear analysis of each experiment produced a mixture weight having only small

deviations across the loci.  Based on 6-plex STR data, others have conjectured that

DNA mixtures amplify linearly (3); our 10-plex data and linear analysis concur.  Ongoing

experimentation will assess the linearity of newer multilocus multiplex panels.

LMA may see broad application in rape cases.  Applying the LMA-based mixture

deconvolution method to the mixed DNA crime profile, together with a reference profile

from the victim, may enable rapid and automated determination of the perpetrator’s

DNA profile.  When coupled with the anticipated large offender DNA databases,

perpetrator identities could be revealed in a matter of hours.  This technological “DNA

surveillance” capability may have a deterrent effect on some subpopulation of potential

offenders.
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TABLE LEGENDS

Table 1.  The relative data quantity is calculated for each allele at the locus as shown.

For example, allele 1’s relative data value of 0.75 is calculated from (a) the genotype

values of <1, 1, 0> (i.e., the allele is <present, present, absent>) at allele 1 for

individuals A, B, and C, and (b) the individuals’ DNA mixture weight contributions of

<0.50, 0.25, 0.25>.  The computation is performed by computing the inner product of

these two vectors as (1x0.50) + (1x0.25) + (0x0.25) = 0.75.

Table 2.  The DNA mixtures were combined in the proportions shown, and the DNA

profiles were generated.  For each proportion, the quantitative peak heights and areas

were measured.  From these data, the mixture weight and sum of squares deviation

from the correct answer were computed.

Table 3.  The detailed quantitation results for a 3:7 mixture of two DNA samples

processed with the SGMplus panel.  The computed profile (Profile) is a reasonable

numerical estimate of the actual genotype (Geno B), as indicated by the small sum of

squares deviations (Sq Dev) listed.  Deviations are listed for alleles, loci (subtotals,

shown in italics), and the sample (grand total, shown in bold).  Please refer to the text

for a detailed description of the other quantities shown.
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Table 1.

Individuals
A B C

Genotypes G
Alleles Data d 1,2 1,3 2,3

1 0.75 1 1 0
2 0.75 = 1 0 1
3 0.50 0 1 1

0.50 0.25 0.25
wA wB wC

Weights w
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Table 2.

Known Derived Weight and Profile Deviations
Proportions (Height) (Area)

A:B      %              Weight    Sq Dev    Weight     Sq Dev
1:9 10% 10.9% 0.0900 9.5% 0.1142

3:7 30% 29.3% 0.1112 29.2% 0.1000

5:5 50% 48.0% 0.3222 48.4% 0.2493

7:3 70% 69.2% 0.5303 69.5% 0.4111

9:1 90% 84.6% 4.3907 86.0% 6.3853
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Table 3.

Locus-Allele Mixture   Geno A    Profile   Geno B    Sq Dev

D3S1358-14 1.0365         1     1.0516        1    0.0027

D3S1358-15 0.9635         1     0.9484        1    0.0027

                                                       0.0053

vWA-17 1.4755         0     2.0835        2    0.0070

vWA-18 0.5245         2    -0.0835        0    0.0070

                                                       0.0140

D16S539-11 1.4452         0     2.0406        2    0.0017

D16S539-13 0.2889         1    -0.0041        0    0.0000

D16S539-14 0.2660         1    -0.0365        0    0.0013

                                                       0.0030

D2S1338-16 0.3190         1     0.0384        0    0.0015

D2S1338-18 0.6339         0     0.8951        1    0.0110

D2S1338-20 0.3713         1     0.1122        0    0.0126

D2S1338-21 0.6758         0     0.9543        1    0.0021

                                                       0.0272

D8S1179-9 0.7279         0     1.0278        1    0.0008

D8S1179-12 0.2749         1    -0.0239        0    0.0006

D8S1179-13 0.6813         0     0.9620        1    0.0014

D8S1179-14 0.3160         1     0.0341        0    0.0012

                                                       0.0040

D21S11-27 0.2787         1    -0.0185        0    0.0003

D21S11-29 0.7876         0     1.1121        1    0.0126

D21S11-30 0.9337         1     0.9064        1    0.0088

                                                       0.0217
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D18S51-12 0.3443         1     0.0741        0    0.0055

D18S51-13 0.6952         0     0.9816        1    0.0003

D18S51-14 0.6755         0     0.9538        1    0.0021

D18S51-17 0.2850         1    -0.0096        0    0.0001

                                                       0.0081

D19S433-12.2 0.6991         0     0.9872        1    0.0002

D19S433-14 0.6060         2     0.0316        0    0.0010

D19S433-15 0.6949         0     0.9813        1    0.0004

                                                       0.0015

THO1-6 0.3178         1     0.0366        0    0.0013

THO1-7 1.0074         1     1.0104        1    0.0001

THO1-9 0.6749         0     0.9530        1    0.0022

                                                       0.0037

FGA-19 1.0580         1     1.0819        1    0.0067

FGA-24 0.2830         1    -0.0124        0    0.0002

FGA-25.2 0.6589         0     0.9304        1    0.0048

                                                       0.0140

                                                       0.1000
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FIGURE LEGENDS

Figure 1.  Five curves are shown, each plotting the squared deviation against the

mixture weight w.  From left to right, these curves correspond to the heuristic functions

of the 1:9 (plus), 3:7 (solid), 5:5 (cross), 7:3 (dash), and 9:1 (dot) mixture ratios.  The

minima of these curves are located near 10%, 30%, 50%, 70%, and 90%, respectively,

demonstrating that mixture deconvolution correctly infers the true mixture weight.  The

shape of the 9:1 (dot) curve reflects the trajectory through allele space as the weight

changes from 0 to 1.

Figure 2.  The quantitative data d of the 3:7 mixture experiment is shown at every

SGMplus locus (first row).  Also shown is the known reference profile of individual a

(second row).  Using mixture deconvolution, the computer estimates the unknown

genotype b (third row) and the mixture weight w.  Note that the estimated genotype is

the same as the actual genotype b (fourth row).
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Figure 1.
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Figure 2.
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