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Linear Model Predictive Control for
Lane Keeping and Obstacle Avoidance on Low Curvature Roads

Valerio Turri∗, Ashwin Carvalho†, Hongtei Eric Tseng♯, Karl Henrik Johansson∗, Francesco Borrelli†

Abstract— This paper presents a control architecture based
on a linear MPC formulation that addresses the lane keeping
and obstacle avoidance problems for a passenger car driving
on low curvature roads. The proposed control design decouples
the longitudinal and lateral dynamics in two successive stages.
First, plausible braking or throttle profiles are defined over the
prediction horizon. Then, based on these profiles, linear time-
varying models of the vehicle lateral dynamics are derived and
used to formulate the associated linear MPC problems. The
solutions of the optimization problems are used to determine for
every time step, the optimal braking or throttle command and
the corresponding steering angle command. Simulations show
the ability of the controller to overcome multiple obstacles and
keep the lane. Experimental results on an autonomous passen-
ger vehicle driving on slippery roads show the effectiveness of
the approach.

I. INTRODUCTION

Over the last two decades, the increased presence of elec-
tronics and software in vehicles has allowed the introduction
of several active safety systems, e.g., Anti-lock Braking
System (ABS), Electronic Stability Control (ESC), Adaptive
Cruise Control (ACC). Nevertheless, the number of fatal
road traffic incidents due to driver distraction and speeding
is still significantly high [1]. Recent advances in sensing
technologies and 3D environment reconstruction [2]–[4] have
opened up new possibilities and have provided a base for
the design of advanced autonomous and semi-autonomous
guidance systems.

Because of its capability of systematically handling non-
linear time-varying models and constraints, and operating
close to the limits of admissible states and inputs, Model
Predictive Control (MPC) has been widely used to address
the autonomous vehicle guidance problem [5]–[10]. In [5],
the MPC problem has been formulated as a quadratic pro-
gram (QP) by limiting the intervention to the steering, and
linearizing the vehicle dynamics around a constant vehicle
speed and small slip angles. In [8]–[10], the authors address
the problem of integrated braking and steering control by
using a hierarchical control architecture. A high-level con-
troller generates an obstacle-free trajectory, while a low level
controller tracks this planned trajectory. In order to combine
braking and steering, both levels implement a nonlinear
MPC formulation which requires the online solution of a
non-convex optimization problem. In order to reduce the
real-time computational complexity, in [9], the authors have
proposed the use of a spatial vehicle model which simplifies
the problem. However, the nonlinear nature of the model
used in the MPC problem significantly limits the maximum
prediction horizon implementable.

In this paper, we propose a linear MPC-based control
architecture suitable for vehicles driving in low curvature
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Fig. 1. Illustration for the bicycle model.

roads, such as highways. It addresses the lane-keeping and
obstacle avoidance problems by combining steering and
braking actions. In particular, the paper presents two main
contributions: first, under the assumption of a large radius of
curvature, we derive a linear time-varying (LTV) model of
the vehicle lateral dynamics, as a function of the longitudinal
braking or throttle profile; second, we use this model to for-
mulate a linear MPC problem for lane-keeping and obstacle
avoidance, accounting for both the longitudinal and lateral
dynamics. The linearity of the model allows us to recast the
MPC problem as a set of convex QPs and, hence, to reduce
the overall computational complexity of the problem.

The rest of the paper is organized as follows: in Section
II, we introduce the extended bicycle model and show how it
can be simplified to obtain a LTV model of the vehicle lateral
dynamics. In Section III, we show how the objectives of lane
keeping and obstacle avoidance are formulated as convex
constraints on the vehicle’s states and inputs. In Section
IV, we introduce the linear MPC formulation. In Section V,
we demonstrate the effectiveness of the proposed controller
through hardware-in-the-loop simulations and experiments
on a real passenger vehicle. Finally, in Section VI, we
provide some concluding remarks and outline future work.

II. VEHICLE MODEL

In this section, we present a modified version of the vehi-
cle bicycle model [6] and the corresponding simplified LTV
model of the lateral dynamics used in the MPC formulation.

A. The extended bicycle model

In this paper we are using a modified version of the clas-
sical bicycle model, that also accounts for the longitudinal
and lateral load transfers while computing the forces acting
on the tires. Therefore, the extended bicycle model can be
considered as a trade-off between the classical bicycle model
and the four wheel vehicle model [11].

Bicycle model equations

The notation used in the vehicle model is shown in
Figure 1. The vehicle dynamics are described by the fol-



Fig. 2. Sketch of the vehicle and modeling notation for the computation
of the longitudinal and lateral load transfers.

lowing set of differential equations:

mẍ = Fxfl
+ Fxfr

+ Fxrl
+ Fxrr

− kdẋ
2 (1a)

mÿ = −mẋψ̇ + Fyfl
+ Fyfr

+ Fyrl + Fyrr (1b)

Iψ̈ = a(Fyfl
+ Fyfr

)− b(Fyrl + Fyrr ), (1c)

where ẋ and ẏ denote the longitudinal and the lateral speed

of the vehicle, and ψ̇ denotes the yaw rate. The constants m
and I denote the vehicle’s mass and rotational inertia about
the yaw axis, respectively, and a and b denote the distances
from the center of gravity (CoG) to the front and rear
axles, respectively. In Equation (1a), −kdẋ

2 represents the
aerodynamic longitudinal force with kd =

1
2
ρCdSd, where ρ

is the air density, Cd is the aerodynamic drag coefficient and
Sd is the vehicle frontal cross section. Fx∗•

and Fy∗• (where
∗ = f, r, • = l, r) are the tire forces acting along the vehicle
longitudinal and lateral axes relative to each wheel. These
forces are related to the forces fx∗•

and fy∗• acting along
the wheel longitudinal and lateral axes, respectively, through
an equality for the rear wheels (Fxr•

= fxr•
, Fyr• = fyr• )

and a rotation depending on the steering angle δ for the
front wheels (Fxf•

= fxf•
cos(δ) − fyf•

sin(δ), Fyf•
=

fxf•
sin(δ) + fyf•

cos(δ)).

Tire forces

In connection to the computation of the longitudinal and
lateral load transfers, we introduce the following assumption.

Assumption 1: In the load transfer computation, the effect
of the aerodynamic forces acting on the vehicle is negligible.
Considering the sketch in Figure 2, we can derive the forces
acting along the vehicle vertical axis of each wheel Fz∗• due
to the load transfer as,

Fzfl
=
bFz − eFx

2(a+ b)
−

eFy

2c
, Fzfr

=
bFz − eFx

2(a+ b)
+
eFy

2c
,

Fzrl =
aFz + eFx

2(a+ b)
−

eFy

2c
, Fzrr =

aFz + eFx

2(a+ b)
+
eFy

2c
.

(2)

where Fx =
∑

∗=f,r;•=l,r Fx∗•
, Fy =

∑

∗=f,r;•=l,r Fy∗•
and Fz = mg are the cumulative forces acting on the
wheels along the longitudinal, lateral and vertical vehicle
axes, respectively; the constants c and e denote respectively
the vehicle width and the height of the CoG and g is the
gravitational acceleration.

The second input of the model is the braking ratio, denoted
as β, with β = −1 corresponding to maximum braking and
β = 1 corresponding to maximum throttle. We introduce the
following assumptions regarding the longitudinal forces:

Assumption 2: The rotational inertia of the wheels is
negligible. The torque Tx∗•

about the wheel’s axis produces

Fig. 3. The curvilinear coordinate system. The dynamics are derived about
a curve defining the centerline of a track. The coordinate s defines the arc-
length along the track.

a longitudinal force fx∗•
= Tx∗•

/r, where r is the wheel’s
radius.

Assumption 3: The low level controller of the longitudinal
dynamics distributes the forces as

fx∗•
= Fz∗•µβ, (3)

where µ denotes the friction coefficient between the tire
and the road surface.
Note that Fz∗• and, consequently fx∗•

, depend on Fx and
Fy . The force component fy∗• can be computed using a
simplified version of the semi-empirical Pacejka formula [12]
as fy∗• =

√

(µFz∗•)
2 − f2x∗•

sin(C arctan(Bα∗)), where C
and B are tire parameters calibrated using experimental data.
The variable α∗ denotes the slip angles of the front and rear
wheels, which can be computed as,

αf =
ẏ + aψ̇

ẋ
− δ, αr =

ẏ − bψ̇

ẋ
. (4)

Substituting (3) in the expression of fy∗• , we obtain an al-
ternate representation of the lateral forces which emphasizes
the linear relationship between fy∗• and Fz∗•

fy∗• = µFz∗•
√

1− β2 sin(C arctan(Bα∗)). (5)

As we will show in the subsection II-B, this linear relation-
ship allows us to decouple the longitudinal dynamics from
the lateral dynamics.

Road curvilinear coordinate system

Figure 3 shows the curvilinear coordinate system describing
the interaction between the vehicle and the road, which can
be used to derive the following kinematic equations:

ėψ = ψ̇ − ψ̇s
ėy = ẏ cos(eψ) + ẋ sin(eψ)

ṡ =
ρ

ρ− ey
(ẋ cos(eψ)− ẏ sin(eψ)),

(6)

where eψ and ey denote the heading angle error and the lat-
eral position error relative to the road centerline, respectively,
and s denotes the projected vehicle position along the road
centerline. ρ and ψs are the radius of the curvature and the
heading of the road centerline, respectively. ψ̇s is the time
derivative of ψs and depends on ṡ according to the relation

ψ̇s = ṡ/ρ. We also define ψr =
dψs

ds
as the derivative of ψs

with respect to the curvilinear coordinate s. ψr is the inverse
of ρ and is assumed to be known.

The differential equations (1)–(6) completely define the
extended bicycle model.



B. A LTV model for the vehicle lateral dynamics

In this subsection we present the simplifications required
to obtain a LTV model of the lateral dynamics from the
extended bicycle model. The discretized version of this
model will be used in section IV to formulate the MPC
problem.
The following assumptions are introduced.

Assumption 4: The braking ratio β(t) is assumed to be
constant over the prediction horizon (i.e., β(t) = β̄).

Assumption 5: The vehicle is driven in a typical highway
scenario (i.e. high speed limit and low curvature lane), which
implies that:

• the heading angle error is small (i.e., eψ ⋍ 0),
• the steering angle necessary to reach the tire saturation

is small (i.e., δ ⋍ 0).
Assumption 5 also implies: cos(δ) ⋍ 1, sin(δ) ⋍ δ ⋍

0, cos(eψ) ⋍ 1, sin(eψ) ⋍ eψ,
ρ

ρ−ey
⋍ 1.

In summary we can rewrite the vehicle model as:

mẍ = mgµβ̄ − kdẋ
2 (7a)

mÿ = −mẋψ̇ + Fyf + Fyr (7b)

Iψ̈ = aFyf − bFyr (7c)

ėψ = ψ̇ − ẋψr (7d)

ėy = ẏ + ẋeψ (7e)

ṡ = ẋ, (7f)

where Fy∗ = Fy∗l + Fy∗r . Additionally Fx∗•
= fx∗•

and
Fy∗• = fy∗• , where ∗ = f, r; • = r, l. Note that (7a)
and (7f) completely define the longitudinal dynamics of the
vehicle. Therefore, given the input β̄, the initial speed ẋ(t0)
and position s(t0) of the vehicle, the differential equations
(7a) and (7f) can be integrated to obtain explicit expressions
of the speed ˙̄x(t) and position s̄(t), respectively.

The only nonlinearity in the remaining differential equa-
tions (7b)–(7e) is contained in the terms Fyf (αf ) and
Fyr (αr), whose expressions can be rewritten by combining
(2), (4) and (5) as

Fyf =µ
(b− eβ̄)mg

a+ b

√

1− β̄2 sin(C arctan(Bαf )),

Fyr =µ
(a+ eβ̄)mg

a+ b

√

1− β̄2 sin(C arctan(Bαr)).

(8)

Figure 4 displays Fy∗(α∗) for a given value of β̄ and shows
how Fy∗ can be bounded by two linear functions,

C∗L
α∗ ≤ Fy∗ ≤ C∗U

α∗,

where C∗U
and C∗L

are functions of the parameters in
(8). The corresponding slip angle intervals in which the
upper and lower approximations are valid are denoted as
[−α∗,limU

, α∗,limU
] and [−α∗,limL

, α∗,limL
], respectively.

ftoll denotes the maximum acceptable error in the linear
approximations of the tire lateral forces.
These approximations allow us to define the following two
LTV models of the lateral vehicle dynamics:

• Conservative lateral dynamics model: This model un-
derestimates the cornering ability of the vehicle. In
particular, Fyf and Fyr in (7b) are approximated

by CfL(β̄)αf and CrL(β̄)αr, respectively, and Fyf
and Fyr in (7c) are approximated by CfL(β̄)αf and
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Fig. 4. Plots of the lateral force computed with the simplified Magic
Formula (Fy

∗,MF
), with the lower (Fy

∗,L
) and the upper (Fy

∗,U
) linear

approximation, for a given value of the vertical force and longitudinal force.

CrU (β̄)αr. Therefore, the resulting conservative lateral
dynamics model can be expressed as:

mÿ = −m ˙̄xψ̇ + CfLαf + CrLαr

Iψ̈ = aCfLαf − bCrUαr

ėψ = ψ̇ − ˙̄xψr

ėy = ẏ + ˙̄xeψ

δ̇ = u,

(9)

where αf = ( ẏ+aψ̇˙̄x − δ) and αr = ẏ−bψ̇
˙̄x

. The term
“conservative” emphasizes the robustness of the model
to the nonlinear tire characteristics. This model plays
the main role in the MPC formulation.
Note that the steering angle δ has been added to the
state space, while the new input variable is the steering
rate, denoted by u. This modification allows us to
keep the inputs constant over certain time intervals
while continuously varying the steering angle. A similar
modification has been introduced in the next model.

• Overreacting lateral dynamics model: This model over-
estimates the cornering ability of the vehicle. In particu-
lar, Fyf and Fyr in (7b) are approximated by CfU (β̄)αf
and CrU (β̄)αr, respectively, and Fyf and Fyr in (7c)

are approximated by CfU (β̄)αf and CrL(β̄)αr, re-
spectively. The resulting overreacting lateral dynamics
model can be written as,

mÿ = −m ˙̄xψ̇ + CfUαf + CrUαr

Iψ̈ = aCfUαf − bCrLαr

ėψ = ψ̇ − ˙̄xψr

ėy = ẏ + ˙̄xeψ

δ̇ = u,

(10)

where αf = ẏ+aψ̇
˙̄x

− δ and αr =
ẏ−bψ̇

˙̄x
.

Both models hold for slip angles αf and αr inside the
intervals

|αf | 6 αf,lim, |αr| 6 αr,lim, (11)

where αf,lim = min{αf,limU
, αf,limL

} and αr,lim =
min{αr,limU

, αr,limL
}. Even if the slip angles doesn’t have

the same sign over the horizon, through simulations it



has been possible to observe that the vast majority of the
trajectories obtained with the nonlinear model are bounded
by that ones predicted with the two presented liner models.

C. Model discretization

Equations (7a), (7f), (9) and (10) describe linear
continuous-time models. Their discretization is performed in
two steps using a forward Euler approximation with a dis-
cretization time step ∆t. Firstly, given the initial longitudinal
position sj and speed ẋj at tj and the braking or throttle
effort β̄, the longitudinal states can be computed over the
prediction horizon Hp as

˙̄xβ̄k+1,j = ˙̄xβ̄k,j +∆tmgβ̄ −∆tkd( ˙̄x
β̄
k,j)

2

s̄β̄k+1,j =s̄
β̄
k,j +∆tx̄β̄k,j

t̄k+1 =t̄k +∆t

(12)

for k = j, .., j+Hp−1, where s̄β̄j,j = sj , ˙̄xβ̄j,j = ẋj and t̄j =

tj . ˙̄xβ̄k,j and s̄β̄k,j represent the longitudinal speed and posi-

tion, respectively, at time t̄k, predicted at time tj . Secondly,

using the computed sequences s̃β̄j = {s̄β̄j,j , .., s̄
β̄
j+Hp−1,j}

and ˙̃xβ̄j = { ˙̄xβ̄j,j , .., ˙̄x
β̄
j+Hp−1,j}, and a suitable discretization

scheme, the models (9) and (10) can be used to obtain LTV
models of the lateral vehicle dynamics to be used in the MPC
formulation. We denote the discretized conservative lateral
dynamics model by

ξcm,β̄k+1,j = Acm,β̄k,j ξcm,β̄k,j +Bcm,β̄k,j uβ̄k,j , (13)

and the discretized overreacting lateral dynamics model by

ξom,β̄k+1,j = Aom,β̄k,j ξom,β̄k,j +Bom,β̄k,j uβ̄k,j , (14)

for a given value of β̄. The state vector of the models is

defined as ξ∗,β̄k,j = {ẏ∗,β̄k,j , ψ̇
∗,β̄
k,j , eψ

∗,β̄
k,j , ey

∗,β̄
k,j , δ

∗,β̄
k,j }, and the

input is the steering rate uβ̄k,j .

III. SAFETY CONSTRAINTS

In this section, we show how the requirements of keeping
the vehicle in the lane while avoiding obstacles and operating
in a stable region can be expressed as constraints on the
vehicle’s states and input.

A. Actuator limits

The use of an Active Front Steering (AFS) unit to drive
the steering angle imposes bound on the steering angle and
its derivative. These bounds can be represented as linear
constraints on the input and the state vector:

−δlim 6 δ∗,β̄k,j 6 δlim (15a)

−δ̇lim 6 uβ̄k,j 6 δ̇lim, (15b)

for k = j, .., j +Hp − 1.

B. Slip angles bounds

The conservative and overreacting lateral dynamics model
are valid for values of αf and αr satisfying (11). This
requirement can be expressed as linear constraints on the
state vector:
∣

∣

∣

∣

∣

ẏ
∗,β̄
k,j + aψ̇

∗,β̄
k,j

¯̇xβ̄k,j
− δ

∗,β̄
k,j

∣

∣

∣

∣

∣

6 αf,lim,

∣

∣

∣

∣

∣

ẏ
∗,β̄
k,j − bψ̇

∗,β̄
k,j

¯̇xβ̄k,j

∣

∣

∣

∣

∣

6 αr,lim,

(16)

for k = j, .., j +Hp − 1.
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Fig. 5. Structure of the obstacle avoidance controller.

C. Lane boundaries

Lane boundaries can be easily introduced in the model as

constraints on the lateral position error ey
∗,β̄
k,j :

|ey
∗,β̄
k,j | 6

1

2
lw, (17)

for k = j, .., j +Hp − 1, where lw denotes the lane width.

D. Obstacle avoidance constraints

Finally, we show how static and moving obstacles can
be expressed as additional linear constraints on the lateral

position error ey
∗,β̄
k,j . We introduce the following assumptions:

Assumption 6: The current and the future positions of
all obstacles in the proximity of the vehicle are known as
function of time.

Assumption 7: The controller knows the side of the ob-
stacle on which it is safe to pass.

These assumptions allow us to map the obstacles’ posi-
tions to a safe region on the road defined by its left and
right bounds ey,left(t, s) and ey,right(t, s), respectively. Note
that these bounds are a function of time t and position s

along the road. The pre-computation of s̃β̄j defines a unique

correspondence between t̄j and s̄β̄k,j (i.e. s̄k,j(t̄k)) for a given

β̄, and allows us to recast the obstacle avoidance problem as
LTV constraints on the lateral position error:

ey,right(t̄k, s̄k,j(t̄k)) 6 ey
∗,β̄
k,j 6 ey,left(t̄k, s̄k,j(t̄k)), (18)

for k = j, .., j +Hp − 1.

E. Summary of constraints

The constraints (15a), (16), (17) and (18) can be compactly
written as

ξ∗,β̄i

k,j ∈ Ξβ̄i

k,j ,

for k = j, .., j+Hp−1, where Ξβ̄i

k,j is time-varying sequence
of convex sets. The inequality (15b) can be rewritten as

uβ̄i

k,j ∈ U for k = j, .., j + Hp − 1, where the set U is
convex.

IV. CONTROLLER DESIGN

In this section we describe the MPC architecture used to
address the obstacle avoidance problem. As shown in Figure
5, we decompose the controller into three sequential blocks:
longitudinal profiles generation (A), MPC problems (B) and
post-computation (C).



A. Longitudinal profiles generation

The longitudinal profiles generator block is responsible
for defining a set of nβ possible braking ratio commands

β̃ = {β̄1, .., β̄nβ
} and a reference braking ratio βref com-

puted using a PI controller which tracks a given reference
speed vref . In our work, we have investigated two different
definitions of the set of braking ratios:

• nβ braking ratios: In this approach, we consider the
braking ratios to be nβ uniformly spaced points in the
interval [β̄1, β̄nβ

]. While β̄1 is set to −1, β̄nβ
depends

on the sign of βref : if βref 6 0, then β̄nβ
= 0;

otherwise β̄nβ
= βref .

• 3 braking ratios. This definition of the braking ratios set

β̃ = {β̄1, β̄2, β̄nβ
} is a consequence of the observation

that the optimal braking ratio β∗ changes slowly with
time. Hence, given the last two optimal braking ratios

β∗

p and β∗

pp, β̃ is computed as follows:

β̃ =







{β∗

p −∆β, β∗

p , β
∗

p +∆β} if β∗

p = β∗

pp

{β∗

p , β
∗

p +∆β, β∗

p + 2∆β} if β∗

p > β∗

pp

{β∗

p − 2∆β, β∗

p −∆β, β∗

p} if β∗

p < β∗

pp,

where the perturbation ∆β is a parameter to be chosen.

B. MPC problems

This block formulates and solves the constrained finite
time optimal control problem at each time step. Using (12)
for every β̄i, i = 1, .., nβ , the sequence of longitudinal

positions s̃β̄i

j and speeds ˙̃xβ̄i

j over the prediction horizon Hp

is computed. The MPC formulation predicts the vehicle’s
states using both the conservative lateral dynamic model and
the overreacting lateral dynamic model. The states predicted
over the horizon Hp using conservative lateral dynamic
model play the main role and they appear both in the cost
function and in the constraints. The overreacting lateral
dynamic model, instead, has an auxiliary role and it is used
with a shorter prediction horizon Hp2 in the constraints
definition. The MPC problem can be synthesized as follows:

min
U

β̄i
j

JN (ξ̃cm,β̄i

j , U β̄i

j ) (19a)

subj. to ξcm,β̄i

k+1,j = Acm,β̄i

k ξcm,β̄i

k,j +Bcm,β̄i

k uβ̄i

k,j , (19b)

k = j, .., j +Hp − 1

ξom,β̄i

k+1,j = Aom,β̄i

k ξom,β̄i

k,j +Bom,β̄i

k uk,β̄i
, (19c)

k = j, .., j +Hp2 − 1

uβ̄i

k,j ∈ U k = j, .., j +Hp − 1 (19d)

ξcm,β̄i

k,j ∈ Ξβ̄i

k,j k = j, .., j +Hp − 1 (19e)

ξom,β̄i

k,j ∈ Ξβ̄i

k,j k = j, .., j +Hp2 − 1 (19f)

ξcm,β̄i

j,j = ξom,β̄i

j,j = ξ(tj), (19g)

where JN (ξ̃cm,β̄i

j , U β̄i

j ) is a convex quadratic function de-
pending on the states, the slip angles and the input.

ξ̃cm,β̄i

j = {ξcm,β̄i

j,j , ξcm,β̄i

j+1,j , .., ξcm,β̄i

j+Hp−1,j} is the se-

quence of states over the prediction horizon Hp pre-
dicted at time tj , and updated according to the dis-

cretized conservative lateral dynamics model (13). ξ̃om,β̄i

j =

{ξom,β̄i

j,j , ξom,β̄i

j+1,j , .., ξ
cm,β̄i

j+Hp2
−1,j} is the sequence of states

over the prediction horizon Hp2 predicted at time tj , and
updated according to the discretized overreacting lateral

dynamics model (14). uβ̄i

k,j ∈ R
mr is the kth vector of the

input sequence U β̄i

j = {uβ̄i

j,j , .., , u
β̄i

j+Hp−1,j}
T ∈ R

mrHp .

Since the models and the constraints are linear, it is possible
to formulate every MPC problem as a QP. Each MPC
controller in Figure 5 returns the optimal steering rate u∗i
and the optimal value of the cost function f∗i,lat. In order
to reduce the computational complexity, the input is kept

constant for every Hi time-steps (i.e. uβ̄i

j+iHi+k,j
= uβ̄i

j+iHi,j

for k = 1, ..., Hi − 1, i = 0, ..., (Hp/Hi)). With this
simplification the number of optimization variables can be
significantly reduced, speeding up the computations.

C. Post-computation

In the post-computation block, the optimal cost functions
f∗i,lat are augmented by adding a quadratic term representing

the deviation of β̄i from βref as follows,

f∗i = f∗i,lat + ||β̄i − βref ||
2
Qβ
,

The optimal braking ratio β∗ and the corresponding steering

rate δ̇∗ can be then computed as,

(β∗, δ̇∗) = {(β∗

i , δ̇
∗

i ) : f
∗

i = min(f∗1 , .., f
∗

nβ
)}.

V. SIMULATION AND EXPERIMENTAL RESULTS

In this section we present the obtained results through
simulations and real experiments.

A. Simulation setup description and results

Hardware-in-the-loop simulations of the controller are per-
formed on a dSPACE rapid prototyping system consisting of
a DS1401 MicroAutoBox (IBM PowerPC 750FX processor,
800 MHz) and a DS1006 processor board (Quad-core AMD
Opteron processor, 2.8 GHz). The controller runs on the
MicroAutoBox, and the DS1006 board simulates the vehicle
dynamics using a nonlinear four wheel vehicle model with
a Pacejka tire model.
The simulations have been performed using the following
parameters: Hp = 45, Hp2 = 20 and Hi = 3. The considered
scenarios consist of a straight slippery road (µ = 0.3) with
one or more static obstacles. The edge of each obstacle is
at a distance of 2 m from the road centerline. Note that no
tolerance has been added to the lane or obstacle bounds to
account for the vehicle’s width.

Figure 6 shows the path of the vehicle while avoiding a
single obstacle, while Figure 7 shows the path of the vehicle
while avoiding two obstacles. The vehicle is able to avoid
the obstacles and return to the lane centerline in both cases.
Moreover, the vehicle travels close to the obstacle while
avoiding it.

B. Experimental setup description

The experiments were performed on a Jaguar S–type
vehicle (m = 2050 kg, I = 3344 kg-m2) at the Smithers
winter testing center (Raco, MI, U.S.A.) on tracks covered
with packed snow (µ ≈ 0.3). A picture of the vehicle and the
environment is shown in Figure 8. The vehicle is equipped
with an Active Front Steering (AFS) system and four wheel
independent braking. An Oxford Technical Solutions (OTS)
RT3002 sensing system is used to measure the position and
orientation in the inertial frame, and the vehicle velocities
in the body frame. The OTS RT3002 system comprises



0 20 40 60 80 100 120 140
−10

−8

−6

−4

−2

0

2

4

6

8

10

Y
[m

]

X [m]

 

 

Actual path
Centerline
Obstacles

Fig. 6. Simulation 1: The vehicle avoids one obstacle with an entry speed
of 50 kph.
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Fig. 7. Simulation 2: The vehicle avoids two obstacles with an entry
speed of 50 kph.

of a differential GPS, an IMU and a DSP. The real-time
computations are performed on a dSPACE DS1005 Autobox
system which consists of a PowerPC 750GX processor
running at 933 MHz.
The simulations have been performed using the following
parameters: Hp = 30, Hp2 = 20 and Hi = 3.
The test scenario consists of a straight road with a single
obstacle. The edge of the obstacle is a distance of 1.5 m
from the road centerline. The path of the vehicle is shown
in Figure 9. It is seen that the vehicle avoids the obstacle
and returns to the road centerline with a low overshoot. The
performance is similar to that seen in simulations. Note that
the scenario with two obstacles was not considered in the
experiments due to the lack of testing time.

VI. CONCLUSIONS

We have presented a LTV model of the vehicle dynamics,
and used it to formulate an MPC problem for obstacle
avoidance and lane keeping. The linearity of the model
and convexity of the constraints is used to recast the MPC
problem as a set of QP subproblems. The low computational
complexity of each subproblem allows us to solve the MPC

Fig. 8. Experimental setup: Jaguar S-Type test vehicle driving on snow
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Fig. 9. Experimental result: The vehicle is able to avoid the obstacle
with an entry speed of 50 kph.

problem in real-time while using long prediction horizons.
Future work involves exploring customized embedded QP
solvers for the fast solution of each QP.
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