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Linear Models and Convex Geometry:
Aspects of Non-Negative Variance Estimation1

F r i e d r i c h  Ptt k e l s h e i m  -

Summary. Geometric aspects of linear model theory are surveyed as they bear on mean 
estimation, or variance covariance component estimation. It is outlined that notions 
associated with linear subspaces suffice for those of the customary procedures which are 
solely based on linear, or multilinear algebra. While conceptually simple, these methods 
do not always respect convexity constraints which naturally arise in variance component 
estimation.

Previous work on negative estimates of variance is reviewed, followed by a more detailed 
study of the non-negative definite analogue of the MINQUE procedure. Some characteri­
zations are proposed which are based on convex duality theory. Optimal estimators now 
correspond to (non-linear) projections onto closed convex cones, they are easy to visualize, 
but hard to compute. No ultimate solution can be recommended, instead the paper con­
cludes with a list of open problems.

Key words: Mean estimation, variance covarianee component estimation, analysis of 
variance, negative estimates of variance, projections on convex cones, convex duality, 
non-negative MINQUE.

1. Introduction

A. C. A itk k n  (1935), A. N. K olmogorov (1946), H. Sch effe (1959) and many 
others since have emphasized ease and appeal of matrix notation and geometric 
visualization in linear model theory. Familiar pairs of notions derived from 
statistical concepts on the one hand and geometric concepts on the other comprise
■ estimation space and range of the design matrix,
■ least squares estimation and projection,
■  degrees of freedom and dimension,
■ dispersion matrix and inner product.
Section 2 (Mean estimation) highlights further geometrical aspects, as far as linear 
estimation of the mean is concerned.

Variance covariance component estimation originally developed as a field in 
its own right and separate from mean estimation. This separation was overcome

1 Extended version of a paper presented at the V I International Conference on Mathe­
matical Statistics, Wisla, Poland, December 7—13, 1978.

2 Institut für Mathematische Stochastik der Universität, Hermann-Herder-Straße 10, 
D-7800 Freiburg im Breisgau, Federal Republic of Germany.
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when J. See l y  (1970) showed that both mean estimation and dispersion esti­
mation pose the same theoretical problem and only differ in their interpretation 
as parts of an applied setting. The common denominator of this unified theory is 
regression analysis in finite dimensional linear spaces with inner product; points 
may then be realized as usual column vectors for mean estimation, or as symmetric 
matrices for dispersion estimation. In this way pairs of concepts evolve referring 
to dispersion estimation on the one hand and mean estimation on the other:
■  C. R . R ao ’s (1973, p. 303) MINQUE and least squares estimates,
■ MIVQUB and BLUE,
■  J. Se e l y ’s (1971) quadratic subspaces of symmetric matrices and G. Z y s - 

kustd’s (1967) invariance of the estimation space.
In view of this correspondence the geometry of most of the customary theory of 
quadratic estimation of dispersion components coincides with the geometry of 
linear estimation of the mean, when the latter is reinterpreted in the space of 
symmetric matrices.

However, integration of variance covariance component estimation into (multi-) 
linear algebra encounters natural limits: There is no possibility to properly incorpo­
rate restrictions such as non-negativity of variance estimates, or non-negative defini­
teness of estimates of the dispersion matrix. Section 3 (Negative estimates of variance) 
is devoted to a short review of previous work concerned with this negativity defect.

An ultimate solution to non-negative variance estimation has not yet been 
obtained, and hence it seems reasonable to restrict further investigations to 
a conceptually simple and thus transparent procedure such as C. R . R a o ’s 
MINQUE. Nonnegative MINQUE and its characterization by convex program­
ming methods is the prime interest of J. H artung  (1981), and F. P ukelsheim  
(1977a, 1977b, 1978a, 1978b), and the present paper is intended to survey these 
results and complement their analytical calculus by its geometric counterpart. 
Section 4 (Minimum bias and non-negative definiteness) shows that the minimum 
bias requirement of J. H artung  (1981) corresponds to a projection argument in 
the parameter space, and does not really lead beyond unbiased non-negative 
definite estimation as discussed in F. Pukelsheim (1981). The main results and 
various characterizations of the non-negative analogue of MINQUE are discussed 
and illustrated in Section 5 (Non-negative definite MINQUE). Roughly one may 
say that with a restriction to an appropriate sub-model (and the associated loss 
in degrees of freedom) the customary MINQUE procedure coincides with its non­
negative analogue, but explicit determination of these sub-models may not be 
easy. The final Section 6 (Open problems) concludes with some questions that are 
raised by this discussion.

Genera] references pertaining to the subject are the textbooks C. R . R ao  (1973) 
and S. R . Searle  (1971), the proceedings volumes J. N. Sr ivastava  (1975) and 
L. D. v a n  Vleck  & S. R . Searle  (1979), the survey paper J. K letee  (1977), 
and the bibliography H. Sa h a i (1979). More specific references are mentioned 
throughout the paper.
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As in F. P ukelsheim  (1981) a linear model is represented by its moments, 
according to

with the tacit understanding that
■ Y  is a random Rn-vector of observations,
E the mean vector of Y  is X(5, where the nXk  design matrix X  is given and 

fixed while /? 6 R* is the unknown mean parameter,
■ and the dispersion matrix of Y  is tjVjt where the I real symmetric nXn  

matrices V¡ are given and fixed while r =  (rlt . . ., rt)’ is the unknown dispersion 
parameter.

The natural parameter set for r is the set G of those R*-vectors t=( t i, . . ., t¡)' for 
which tjVj is non-negative definite. Depending on the particular structure 
of Vj one may interprete r3- as a variance component or as a covariance component.

Because of the correspondence between mean estimation and dispersion esti­
mation as mentioned above we will have frequent opportunity to refer to the 
geometry of the space Sym (n) of real symmetric nX n  matrices. Its Euclidean 
inner product is (A, B) =  trace AB,  with associated norm [¡̂ 4|| =  ^ trace A 2. The 
subset NND(w) of non-negative definite matrices in Sym(w) forms a closed con­
vex cone whose interior consists of the set of all positive definite matrices. A prime 
denotes transposition.

2. Mean estimation

In a model Y~(Xfi ;  a2V) familiar linear estimators for the mean vector fi =  X(i are
■ the least squares estimate PY, P  =  X X + =X(X'X)~X',  with residual vector 

M Y , M = I n- P ,
■ the co variance adjusted estimate GY, C =  P — P  V M {M V M )+ M,
■ and the Aitken estimate A Y ,  A = X ( X ' V +X ) +X ' V +.

The matrix M also determines the set of all linear estimates which are unbiased 
for 0, namelv, z 'Y  has expectation 0 if and only if z — Mz. Thus the Lehm ann- 
S c h e f fé  criterion reads: a linear estimate 1 7  is a BLUE for ¡u if and only if 
L V M  =  0.

A straightforward calculation shows that the covariance adjusted estimate GY  
is a BLUE fo:1 fi. Its second term P V M (M V M )+ M Y  is most easily interpreted

when X  is taken to be in canonical form |^*J, and when F =  | and Y  =

are partioned accordingly, since in this case GY  equals Y ^ - V n V¿.Y2, see the 
original paper ov C. R . R ao  (1967), or A. A lb e r t  (1973), G. Z y sk in d  (1975). 
Moreover, the second term vanishes if and only if P V M  =  0, i.e., precisely when 
the least squares estimate is BLUE. The condition P V M  — 0 means geometrically 
that the range of VM  be contained in the range of M,  so that the dispersion
18 statistics, Vol. 12, No. 2
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matrix F transforms the error space range M  into itself, and the residual vector 
M  Y  does not contribute any information concerning the estimation space range X.

—+ —+
As an example, consider the transformed m odel F 2, T ~ ( F 2 Xfi: o2VV+), here

—+
the least squares estimate is a BLUE for V 2 /i. J_+

Intuitively one would tend to believe that the transformation y  ->• F 2 y  does
not leave out essential aspects of the original model provided all of the estimation

- _ i _ +

space range X  is accounted for under the transformation F 2 .I n  fact, if the 
range of V covers the range of X,  then in the transformed model the least squares 
estimate for fi is X(X' V+X ) +X ’ V+ Y, and thus coincides with the Aitken esti­
mate of the original model where it is a BLUE for ¡jl. More precisely, the two 
matrices A and G are equal if and only if the range of F covers the range of X.  
Geometrically this means that all of the estimation space is subject to random 
variation, algebraically an equivalent formulation is VV~X =  X.  That the Aitken 
estimate needs an assumption of this kind is easy to see: Suppose there exists 
some f3(l€R* such that a0 =  (In—VV+) X/S0=t=0, then although the normal distri­
bution Nn(X/?0; F) is supported by the affine space av +  range F the Aitken esti­
mate will project the affine shift a{) into 0. (The covariance adjusted estimate 
will do so if and only if range Fdrange X). Further representations of the Aitken 
estimate are discussed by G. Zyskind (1975), J. K. Baksalary & R. K ala (1978), 
C. R. Rao (1978).

A more general model Y  ~  {X¡3; tjVj) also calls for estimates of the dispersion 
components trj, or linear combinations thereof. In a coordinate-free framework 
J. Seely  (1970) showed the equivalence of quadratic estimation of a combination 
q't, and linear estimation of a combination c'/L Alternatively, one may choose 
some fixed isomorphism to translate one problem into the other, see F. P uke^s- 
heim  (1974, 1976), K. G. Bro w n  (1977, 1978). However, these purely linear and 
multilinear methods do not respect the non-negativity constraint which is in­
herent in dispersion parameter estimation.

3. Negative estimates of variance

It is well known that analysis of variance estimates of variance components may 
yield negative estimates, see R. L. A ndekson  (1965), S. R. Searle  (1971, 
pp. 406—408). Two kinds of reaction suggest themselves: either change the model 
assumptions, or change the class of estimators. In the first case, a model assump­
tion of a finite underlying population does, in fact, lead to some explanation, see 
J. A. N e l d e r  (1954), R. B. M cH ugh & P. W. Mielk e  Jr. (1968), H. Sa h a i (1974).

Changes in the class of estimators have been discussed by many authors. 
H; 0 . H artley  & J. N. K. R ao  (1967), W. J. H emmerle & H. O. H artley  (1973) 
investigate algorithms for maximizing the normal likelihood under a non-nega­
tivity constraint, see also D . A. H arville  (1977). L. H. H erbach  (1959), H . D r y -
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gas (1972), H. D ry gas & G. H upet  (1979) fairly completely study non-negativity 
of the estimators they discuss, but these results are restricted to their particular 
models. The estimator of W. T. F e d e r e r  (1968) is non-negative but lacks other 
desirable properties. Unbiasedness and non-negative definiteness are frequently 
incompatible, see L. R . L a M otte (1973), F. P u kelsheim  (1981). A collection 
of biased estimators may be found in W . A. F u ller  & J. N. K. R ao  (1978),
S. D . H orn  & R . A. H orn  (1975), J. N. K. R ao  (1973), P. S. R . S. R ao  & Y. P. 
Chatjbey (1978).

Negative variance estimates invalidate the estimation procedure, but do not 
necessarily contradict the model or question thé data. L. R. V erdooren  (198D) 
vividly demonstrates that analysis of variance estimates may be negative with 
positive probability, and provides tables of these probabilities for various choices 
of parameters for the 1-way classification, random effect model.

The approach to non-negative variance estimation presented below is based on 
convex analysis and convex programming. Programming methods have been 
applied to linear model theory by G. G. J udge  & T. Tak ay am a  (1966), D. J. 
H udson  (1969), and C. K. L ie w  (1976) for constraint mean estimation, and 
D. K. R ich  & K. G. B r o w n  (1979) for variance component estimation. Those 
authors restrict their study to computational algorithms and numerical aspects. 
Quite differently programming methods may also be employed to characterize, 
or derive properties of interest, of optimal non-negative variance estimates. The 
motivation for this approach originates from the theory of tests where best tests 
appear as optimal solutions of linear programs, as described in H. W ittin g  (1966, 
pp. 69—73), or 0 . K r a f f t  (1970).

4. Minimum bias and non-negative definiteness

Consider a model Y  ~  (Xfi ; JJ -r̂ F*) in which q'r is to be estimated, qÇ/Rl. Define 
Unb (q) to be the set of all A  £ Sym (n) such that Y'A Y  is unbiased for q'r. The non- 
negative definite analogue of theMINQUE procedure leads to the following prob­
lem :
(P) Minimize ||̂4||2 subject to A  £Unb (q) flNND(») .

If q'r is non-negatively estimable , i.e., if there exists a matrix A  ÇNND(îi) such that 
Y'A Y  is unbiased for q'r, then problem (P) has a unique solution, and this solution 
will be denoted by A*.

Every non-negative definite estimate Y'A Y  which is unbiased for q'r is location- 
invariant (M. Atiqullah 1962), i.e., the matrix A satisfies A  =  M AM ,  where 
M  =  I n — X X + as above. This connects (P) with the MINQUE problem:

Minimize |ĵ ||2 subject to ^IçUnb (q), A — M A M  .

The unique optimal solution of the latter problem will be denoted by Â, deter­
mining the estimate “MINQUE given I n” (J. Kxeffe'1977) and leading to mini­
mum variance estimates when the true dispersion matrix is In. J
18*
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Let Gmbe the set of all thoseR*-vectors t =  (tu . . .,t{)' such that t¿MVjM  is 
non-negative definite, and let Cl be the set of those coefficient vectors q£ R* such 
that q't is non-negatively estimable. For the remainder of this paper we adopt 
the following

Then it is shown in ([37], Theorem 1) that Cl and GM are closed convex cones 
which are dual to each other, see Figure 1. The following example demonstrates 
that some assumption is needed in order to ascertain closedness of Q.

the convex cone Cl is the union of the open right half-plane and the origin, hence Cl 
is not closed.

proposes a minimum bias procedure: First find all location-invariant non-

Fig. 1. The set of all coefficient vectors qÇll1 for which q'r is non-negatively estimable 
forms a closed convex cone Q,. Its dual is the cone 0 M of those parameter values t =  (tit . . . , 
te)' for which 2  tjMVjM  is non-negative definite. Unbiased non-negative definite estima­
tion for q'r coincides with minimum bias non-negative definite estimation for all those 
forms p'x for which q is the projection of p  onto Q. In the 2-dimensional version of the
figure p = is projected onto Q as required in Example 2.

Assumption. There is at least one choice of t such that tjVj is positive definite.

Examplel (R. B ellm an  & K. F a n , 1963). In the model T ~

For a form p’x which is not non-negatively estimable, ^»ÇR4, J. Hartttng (1981)

2 Parameter Space IR *

1
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negative definite estimates Y' A Y  which minimize the bias function (pj —trace 
AMVjM)'2 over NND (n), and secondly find the minimum norm element among 
all these solutions. However, the minimum of {Pj — trace AMVjM)2 subject to 
J.6NND (n) is the same as the minimum of ||i>—?||2 subject to q££i, since the sets D, 
and {(trace AMV±M,  . . trace AMViM)'  | A  6 NND (n)} are equal. Hence we 
have:

Theorem 1. Minimum bias non-negative definite estimation for p 't coincides with 
unbiased non-negative definite estimation for q'x, where q is the projection of p onto 
the closed convex cone Q.

This is the exact analogue of the interplay between unbiasedness and minimum 
biasedness as in the unconstrained case, see J. Kxeffe (1977, p. 217). Note that 
while in mean estimation the question of identifiability and estimability lead to 
the same answer, this is no longer the case in dispersion component estimation, 
see ([36], Theorem 1). The following example illustrates the use of Theorem 1, for 
an alternative discussion see J. Hartung (1981).

Example 2 (J. Harttjng 1981). Consider a 1-way classification, random model, 
with balanced data Y ~  (ln/x; o2J a® J n+ o 2J a® /„), where a, n > l ,  and lm is the 
R”-vector consisting of one’s, and Jn =  tnl'n. Here 0  contains those vectors

q= for whichqs^ q j n s 0 ,  see L. R. LaMotte (1973). The variance component

al is not non-negatively estimable. The projection of its associated coefficient

vector j  onto 0, is q=ri1 {n2+ 1)-1 • Thus minimum bias non-negative

definite estimation for a2x is the same as unbiased non-negative definite estimation 
for n2 (n2+ 1)-1 a2x+ n  (n2+  l)“ 1 a\ for which the optimal solution of (P) is the 
analysis of variance estimate, see ([37], Theorem 2).

5. Non-negative definite MINQIJE

Suppose the form q'x is non-negatively estimable.
Both A*  and Ä  are defined as smallest norm elements and thus are closest to 0 

in their respective sets. Another description of this type assures that A * is closest 
to Ä  among all A^JJnb (g)P)NND (n), this following from the fact ¡¡Ä—AH2=  
=\\Ä—4*||2+||j4||2—||J.*||2s||yi—.4*||2. In other words: The optimal solution A*  
of problem (P) is the projection of the MINQUE matrix Ä  onto the closed convex 
cone NOT) (n) along the affine subspace Unb (q) ([33], Lemma 5.2). Although 
geometrically appealing, this does not, in general, facilitate computation of A*.

A  second characterization is due to A. K ozek  (1980). A major theorem o f  
convex analysis (R o c k a f e l la r  1970, Theorem 27.4) states that A*  is the optimal
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solution of (P) if and only if — 2 A*  is normal to Unb (q) Ci NND (n) at A*.  This 
means that for every matrix N  such that Y'N Y  is a location-invariant estimate 
which is unbiased for 0 and such that A* -\-N is non-negative definite one has 
(A*, N ) s  0, i.e ., that Y'A *Y  and Y'N Y  have non-negative correlation under 
true dispersion matrix In. Applicability of this result again amounts to effectively 
handle the set Unb (g,)flNND (n) which is hard to achieve.

A third approach is proposed by J. Hart ung (1981): He defines a sequence of 
functions fm which attain their minimum over the unconstrained space Sym (n) 
at a unique matrix Am such that the sequence A m so obtained converges to the 
optimal solution A*  of problem (P). Here the auxiliary tool consists of an in­
finity of additional problems without constraints, whereas in duality theory it is 
one additional problem with constraints.

The auxiliary problem of duality theory is called the dual of (P), and standard 
theory determines it to be -

(D) Maximize g(B) subject to Bd NND (n) ,

where g(B) =  mm {\\A\\2 — {A, B) \ A£\Jnh (q), A =  M A M }  ([32], [33], [35]). For 
an explicit representation of g define the operator NM(A) =  M A M  — (S^^X  
X(A, MViM) M  VjM, with ¿ ^ ((tr a c e  MVfMV,)).. Then Y 'A Y  is a location- 
invariant quadratic estimator which is unbiased for 0 if and only if A =  NM(A), 
and with an arbitrary unbiased location-invariant quadratic estimator A q for 
q'r, or the particular choice A,  one obtains

=\\A\\2- (A ,B )~ { m ) \ \ N M{B W .
It is immediate that ^4gUnb (q) fl NND (n) and B  6 NND (n) satisfy the weak 
duality relation ||̂4||2 ̂ g(B). Hence a sufficient condition for optimality of A*  in (P) 
is that there exists a matrix i?*(ENND (n) such that ||̂4*||2 =  <7(i?*). In fact, more 
canjbe said on the interplay between A*  and such B*.

Theorem 2. For every B* £ NND (n) the following statements are equivalent:
(a) B* is an optimal solution of the dual problem (D).

(b) A  +  ̂  Nm (B*)£NND (n), and ^  +  ̂ -^ ^ (5 *), B*^ =  0 .

(c) A * = A  +  ̂ r Nm {B*), and (A*, B*) =  0 . ::
"  -

Proof ([33], Theorem 5.1). Employ the subgradient theorem in R o c k a f e l l a r  
(1970, p. 270).

It may happen, however, that the dual problem (D) does not admit an optimal 

solution B*. Note in the following example that is a direction of recession 

common to g and NND (2), compare Theorem 27.3 in R ockafellar  (1970).

g(B)=\\A-\\2- - < 4 r  B " r NM
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Example 3. Consider a model Y  (0;T l ( i  o )+T2 . Here? Y'A Y  is unbi­

ased for t2 if and only if /i =|  ̂2a +  l)'^°r some rea  ̂ J" non-negative

definite member is A*  =  ̂  . For i?£NND (2) the condition (A*, B) =  0 necessi­

tates ^ = | q  q|- On the other hand define Bk — | ^ 9  1 ¡k) ' ^ en i/ |q qj —

=  l/3<lim  g{Bk) — 1 =||J.*jp; whence Bk is an optimizing sequence for (D), but no 
optimal B* exists.

Although (D) may fail to have optimal solutions there always exists an ppti- 
mizing sequence Bk for (D) such that ¡|A*||2 =  lim^(£i),due to the following Fenchel- 
type duality theorem. Also a sufficient condition for the existence of optimal B* 
may be given.

Theorem 3. One has

m>n  ̂6Unb(s)nNND(«) P !!2 =  SUpi;€SSD(>i) §(B) .
For the right supremum to be attained at some B* £ NND (n) a sufficient condition is 
that there exists an unbiased non-negative definite estimate Y'A Y for q't such that A  
has the same rank as M . In general, the matrices A* and B* are optimal solutions of 
problems (P) and (D), respectively, if and only if

(1) ^4*£Unb (g)nNND (n) ,
(2) _B*£NND (n) ,
(3) (A*, B*) =  0 ,
(4) 2A* — M B * M = U j M V j M ,  for some uu . . ., « ¡d R  .

Proof ([33], Theorem 5.2). Apply Theorem 31.4 in R o ck afellab  (1970). 
For the existence statement use a decomposition M = U U '  with U ' U = I r, 
r =  rank M,  to rewrite problems (P) and (D) with the variables 0 = U ' A U ,  and 
D=TJ'BU.  The hypothesis of the theorem ensures that there exists a positive 
definite matrix G such that (UY)'C(UY) is unbiased for q't, and Theorems 31.4 (a) 
or 27.3 in R ockaeellab . (1970) yield the assertion. ,

Condition (4) closely relates to the unconstrained MINQUE procedure. To 
this end a projection matrix Q—Q^=Q' will be called a negativity eliminating 
projector for estimating q't if the range of Q is contained in the range of M  and 
the optimal solution A*  of problem (P) appears as the MINQUE matrix for q't 
in the Q-reduced model Q Y  ~  (0; 2  tjQVjQ), i.e., A* =  2J UjQVjQ with coefficients 

ut determined from unbiasedness for q't.

Theorem 4. Suppose B* £ NND (n) is an optimal solution of problem (D). Define 
Q* to be the projector onto the rangé of A*, and Q* to be the projector onto the nullspace 
of X X ' +  B*. Then the range of Q* is contained in the range of Q*, and every pro­
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jector Q whose range lies between range Q* and range Q* is a negativity eliminating 
projector for estimating q'r.

Proof ([33], Theorem 6.1). Utilizing A* —QA*Q, MQ=Q, B*Q =  0, the asser­
tion follows from condition (4).

This points to an interesting connection between nonnegative and unconstrain­
ed variance estimation: First reduce by a negativity eliminating projector — 
which results in a loss of degrees of freedom — , then employ the customary 
methods. Another reduction of this type is given in Lemma 3 in ([37]). Geomet­
rically a negativity eliminating projector splits the sample space R” into three 
mutually orthogonal subspaces, see Fig. 2:
■ the mean estimation space range X,
■ the space range Q for estimating q'r,
■ and the remaining waste space range ( M —Q).

Fig. 2. Unbiased non-negative definite estimation of a form g'r splits the sample space 
into three mutually orthogonal subspaces:
(x) the mean estimation space range X ,
(y) the variance estimation space range Q where Q is a negativity eliminating projector
for estimating q'r, and
(z) the waste space range (M —Q).
The last two components may vary with different negativity eliminating projectors Q, 
for details see Theorem 4.

Even when the unconstrained procedure is carried through in the original model 
the resulting MINQUE matrix A  contains interesting information on problems 
(P) and (D).

Theorem 5. Suppose .BgNND (n). If {A, -B)&0, then g{B) =gr(0). If {A, 
then N m(B) 4= 0 and the maximum of g along the ray {ccB \ a >  0} is 

g ( - 2  (A, £>11^(3)11-2 B)=\\A\\i +(A ,  B n N M{B)\\~*,
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in fact, if the matrix A  — {A,B)\\NM(B)\\~^NM(B) is nonnegative definite then 
it actually coincides with A*.

Proof ([33], Lemmas 7.1, 7.2). Use Theorem 2(b).

Theorem 5 has to do with the following iterative procedure: (i) project A  onto 
NND (n), and (ii) force this projection into the direction prescribed by Unb (q). 
(i) For any A  £ Sym (n) the projection onto NND (n) is called its positive part 
A + , it is obtained from a spectral decomposition of A  by deleting all negative 
eigenvalues and their associated projectors. The difference A + —A  then gives 
the negative part A__hj  which A  deviates from NND (n). Unless A  itself is non- 
negative definite and hence coincides with A*, its negative part A _  does not 
vanish and is a viable candidate for the matrix B  in Theorem 5. Let H  be the 
hyperplane orthogonal to A _  when the latter is not 0. Then H  separates A  and 
NND (n), and supports NND (n) in the point A +, see Fig. 3. When going from 
A  in the direction of NM(A_) towards NND (n) one can at least proceed until

Space of Estimators Sjrmfn)

Fig. 3. The non-negative analogue o f the MINQUE procedure yields the matrix A*  
which is the projection of the ordinary MINQUE matrix A onto the cone NND of non­
negative definite matrices along the affine subspace Unb (q) of all unbiased location- 
invariant quadratic estimators for q'r. A  reasonable approximation o f A *  is the matrix 
^=^+||^_||2ll^Ji(i_ )| l-2 N m (A_)  which is obtained by projecting the negative part 
A- = A+ — A oi A onto Unb (q) and then proceeding along this direction until the sepa­
rating hyperplane H = {A^}± is met.
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the separating hyperplane H  is met, this point being the matrix

A+\\A-\\2\\Nm (A_)\\-*Nm (A_),

and corresponding to the choice B =  A _  in Theorem 5. If this matrix is non­
negative definite then B* =  2\\Aj\2\\NM(A_)\\-2 A _  is an optimal solution of 
problem (D). Example 3 shows that this construction cannot always yield optimal 
solutions (see also [34], Counterexample 3.9), it is more surprising that it does 
work in certain cases.

Example 4. Consider a model Y  ~  (0; a\ Diag \Ia: l b: 0] +  a\ Biag [0 : I b : I c\),
a, h, o l ,  in which a\ is to be estimated. The MINQUE matrix is A  — 
=  d~i Diag [(6 +  c) I a: clb: — ble],d =  ab +  bc +  ca, and leads to a non-negative definite 
matrix Diag [a~ 1I a\ 0 :0 ]=  A*, as described above. Moreover, since B* =  
— (2/a) Diag [0:0: / c] is an optimal solution of (D) the sufficient condition in Theo­

rem 3 is not, in general, necessary. The negativity eliminating projectors of 
Theorem 4 are Q* =Diag [Ia: 0:0], and Q* =  Diag [Ia:Ib :0].

The model with a common mean and heteroscedastic variances behaves simi­
larly, in that the ranges of MV^M and MVjM, i =t=j, overlap, without being con­
tained in each other. Details for 2 heteroscedastic variances are given in [34], 
Lemma 3.8), for more components the computational difficulties are prohibitive 
since the spectral decomposition is needed of a matrix of size nXn.  Nevertheless 
the calculations may be carried through, as far as an individual component 
a\ is concerned rather than a combination q,¡a? ([34], Lehima 3.4, 3.7), here the 
optimal solution of (P) is the sample variance of the i-th group, see ([37]).

6. Open problems

1. How do the matrices M, Vf, , Vl determine those situations when 
A  +||Ĵ _||2 ||-ZVjif(̂ i-)||-2 Nm (A_) is non-negative definite?

2. Let L  be the line {A-\-a.NM(A_) \ a£R}. Is it possible that L  by-passes 
NND (n) ? Otherwise there is a smallest a* which makes A  +  x*NM(A_) non­
negative definite; how does the matrix so obtained compare with A*  ?

3. In Example 3 there exists a negativity eliminating projector although the 
hypothesis of Theorem 4 is not satisfied. Is it possible to generalize Theorem 4 
in this direction?

4. It is shown in [37], Theorem 2, that if MV^M,  . . . , M V tM  span an /-dimen­
sional quadratic subspace of symmetric matrices then the cone is the image 
of Gm  under the transformation =  ((trace M V ^ V j) ) .  Is the quadratic 
subspace condition also necessary, besides being sufficient ?
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5. Partial results on non-negative definiteness of the estimated dispersion 
matrix also need a quadratic subspace condition, see F. P u k e lsh e im  & G. P. H. 
St y a k  (1979), or [37], Theorem 2. Would here a programming approach prove 
useful?

6. Programming results other than from duality theory are developed, e.g., 
by J. M. B okw ein  & H. W olkow icz (1979). How do they relate to non-negative 
variance estimation?

7. The correspondence between mean estimation and dispersion estimation 
is not quite lost through non-negative variance estimation, as it may seem at 
first glance. A parallel might be constructed as follows: Suppose in a model 
F~(X/3; <t2F) that all components of Y  are non-negative, or more generally, 
that Y  takes its values in a closed convex cone K.  Let / /  =  {/?£R* | be 
the natural parameter set for (i. Again one may discuss non-negative linear forms 
c'/?, and non-negative estimates a' F which are optimal for c'/3.
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Bésumé

Ce travail présente quelques characterisations des estimateurs du type de MINQUE non- 
negatif modifiés pour l’estimation des composants de la variance dans le modèle linéaire 
générale. Les résultats sont obtenus par l’application de la théorie de dualité d ’analyse 
convexe. En outre, on présente une revue générale des aspects géométriques des problèmes 
d ’estimation dans ces modèles.

Zusammenfassung

Es werden geometrische Ansätze zur Mittelwert- und Streuungsschätzung in linearen 
Modellen diskutiert. Für diejenigen herkömmlichen Verfahren, deren Herleitung aus­
schließlich auf linearer oder multilinearer Algebra beruht, reichen die mit einem linearen 
Unterraum verbundenen Begriffe. Dabei müssen allerdings Nebenbedingungen wie die 
Nicht-Negativität von Varianzschätzern unberücksichtigt bleiben. Nach einer kurzen 
Literaturübersicht zu negativen Varianzschätzungen wird auf die nicht-negativ definite 
Abart des MINQUE-Verfahrens genauer eingegangen. Einige Charakterisierungen ergeben 
sich aus der konvexen Dualitätstheorie. Optimale Schätzer entsprechen dann (nicht­
linearen) Projektionen auf abgeschlossene konvexe Kegel, ihre geometrische Darstellung 
ist einfach, ihre explizite Berechnung schwieriger. Für den Praktiker können aus diesen 
Teilergebnissen noch keine Empfehlungen hergeleitet werden, eine abschließende Zu­
sammenstellung ungelöster Probleme betont, daß erst weitere theoretische Untersuchungen 
erforderlich sind.
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