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Abstract

Background: Massively parallel reporter assays (MPRAs) have emerged as a popular means for understanding

noncoding variation in a variety of conditions. While a large number of experiments have been described in the

literature, analysis typically uses ad-hoc methods. There has been little attention to comparing performance of

methods across datasets.

Results: We present the mpralm method which we show is calibrated and powerful, by analyzing its performance on

multiple MPRA datasets. We show that it outperforms existing statistical methods for analysis of this data type, in the

first comprehensive evaluation of statistical methods on several datasets. We investigate theoretical and real-data

properties of barcode summarization methods and show an unappreciated impact of summarization method for

some datasets. Finally, we use our model to conduct a power analysis for this assay and show substantial

improvements in power by performing up to 6 replicates per condition, whereas sequencing depth has smaller

impact; we recommend to always use at least 4 replicates. An R package is available from the Bioconductor project.

Conclusions: Together, these results inform recommendations for differential analysis, general group comparisons,

and power analysis and will help improve design and analysis of MPRA experiments.
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Background
Noncoding regions in the human genome represent the

overwhelming majority of genomic sequence, but their

function remains largely uncharacterized. Better under-

standing of the functional consequences of these regions

has the potential to greatly enrich our understanding of

biology. It is well understood that some noncoding regions

are regulatory in nature. It has been straightforward to

experimentally test the regulatory ability of a given DNA

sequence with standard reporter assays, but these assays

are low throughout and do not scale to the testing of large

numbers of sequences. Massively parallel reporter assays

(MPRAs) have emerged as a high-throughput means of
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measuring the ability of sequences to drive expression

[1, 2]. These assays build on the traditional reporter assay

framework by coupling each putative regulatory sequence

with several short DNA tags, or barcodes, that are incor-

porated into the RNA output. These tags are counted

in the RNA reads and the input DNA, and the resulting

counts are used to quantify the activity of a given putative

regulatory sequence, typically involving the ratio of RNA

counts to DNA counts (Fig. 1). The applications of MPRA

have been diverse, and there have been correspondingly

diverse and ad hoc methods used in statistical analysis.

There are three broad categories of MPRA applications:

(1) characterization studies, (2) saturation mutagenesis,

and (3) differential analysis. (1) Characterization studies

examine thousands of different putative regulatory ele-

ments that have a wide variety of sequence features and try

to correlate these sequence features with measured activ-

ity levels [3–10]. Typical statistical analyses use regression

to study the impact of multiple features simultaneously.
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Fig. 1 Structure of MPRA data. Thousands of putative regulatory elements can be assayed at a time in an MPRA experiment. Each element is linked

to multiple barcodes. A plasmid library containing these barcoded elements is transfected into several cell populations (samples). Cellular DNA and

RNA can be isolated and sequenced. The barcodes associated with each putative regulatory element can be counted to obtain relative abundances

of each element in DNA and RNA. The process of aggregation sums counts over barcodes for element in each sample. Aggregation is one method

for summarizing barcode level data into element level data

They also compare continuous activity measures or cate-

gorized (high/low) activity measures across groups using

paired and unpaired t-, rank, Fisher’s exact, and chi-

squared tests. (2) Saturation mutagenesis studies look at

only a few established enhancers and examine the impact

on activity of every possible mutation at each base as well

as interactions between these mutations [11–17]. Anal-

yses have uniformly used linear regression where each

position in the enhancer sequence is a predictor. (3) Dif-

ferential analysis studies look at thousands of different

elements, each of which has two or more versions. Ver-

sions can correspond to allelic versions of a sequence

[18–20] or different environmental contexts [21], such

as different cell or tissue types [22]. These studies have

compared different sequence versions using paired t-tests,

rank sum tests, and Fisher’s exact test (FET) (by pooling

counts over biological replicates).

Despite the increasing popularity of this assay, guiding

principles for statistical analysis have not been put forth.

Researchers use a large variety of ad hoc methods for

analysis. For example, there has been considerable diver-

sity in the earlier stages of summarization of information

over barcodes. Barcodes are viewed as technical replicates

of the regulatory element sequences, and groups have

considered numerous methods for summarizing barcode-

level information into one activity measure per enhancer.

On top of this, a large variety of statistical tests are used to

make comparisons.

Recently, a method called QuASAR-MPRA was devel-

oped to identify regulatory sequences that have allele-

specific activity [23]. This method uses a beta-binomial

model to model RNA counts as a function of DNA

counts, and it provides a means for identifying sequences

that show a significant difference in regulatory activity

between two alleles. While it provides a framework for

two group differential analysis within MPRAs, QuASAR-

MPRA is limited in this regard because experimentsmight

have several conditions and involve arbitrary compar-

isons.

To our knowledge, no method has been developed that

provides tools for general purpose differential analysis of

activity measures from MPRA. General purpose meth-

ods are ones that can flexibly analyze data from a range

of study designs. We present mpralm, a method for test-

ing for differential activity in MPRA experiments. Our

method uses linear models as opposed to count-based

models to identify differential activity. This approach pro-

vides desired analytic flexibility for more complicated

experimental designs that necessitate more complexmod-

els. It also builds on an established method that has

a solid theoretical and computational framework [24].

We show that mpralm can be applied to a wide vari-

ety of MPRA datasets and has good statistical properties

related to type I error control and power. Furthermore,

we examine proper techniques for combining information

over barcodes and provide guidelines for choosing sample
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sizes and sequencing depth when considering power. Our

method is open source and freely available in the mpra

package for R on the Bioconductor repository [25].

Results

The structure of MPRA data and experiments

MPRA data consists of measuring the activity of some

putative regulatory sequences, henceforth referred to as

“elements”. First a plasmid library of oligos is constructed,

where each element is coupled with a number of short

DNA tags, or barcodes. This plasmid library is then

transfected into one or more cellular contexts, either as

free-floating plasmids or integrated into the genome [21].

Next, RNA output is measured using RNA sequencing,

and DNA output as a proxy for element copy number is

measured using DNA sequencing (occasionally, element

copy number is unmeasured), giving the data structure

shown in Fig. 1. The log-ratio of RNA to DNA counts is

commonly used as an activity outcome measure.

Since each element is measured across a number of

barcodes, it is useful to summarize this data into a sin-

gle activity measure a for a single element in a single

sample. Multiple approaches have been proposed for this

summarization step. We consider two approaches. First is

averaging, where a log-ratio is computed for each barcode,

then averaged across barcodes. This treats the different

barcodes as technical replicates. The second approach

is aggregation, where RNA and DNA counts are each

summed across barcodes, followed by formation of a

log-ratio. This approach effectively uses the barcodes to

simply increase the sequencing counts for that element.

In our investigation of the characteristics of MPRA

data we use a number of datasets listed in Table 1. We

have divided them into 3 categories. Two categories are

focused on differential analysis: one on comparing differ-

ent alleles and one on comparing the same element in

different conditions (retina vs. cortex and episomal vs.

chromosomal integration). The two allelic studies natu-

rally involve paired comparisons in that the two elements

being compared are always measured together in a single

sample (which is replicated). We also use two saturation

mutagenesis experiments.

The variability of MPRA data depends on element copy

number

It is well established that count data from RNA sequenc-

ing studies exhibit a mean-variance relationship [26]. On

the log scale, low counts are more variable across repli-

cates than high counts, at least partly due to inherent

Poisson variation in the sequencing process [27, 28]. This

relationship has been leveraged in both count-based anal-

ysis methods [29, 30] and, more recently, linear model-

basedmethods [24]. For count-basedmethods, this mean-

variance relationship helps improve dispersion estimates,

and for linear model-based methods, the relationship

allows for estimation of weights reflecting inherent dif-

ferences in variability for count observations in different

samples and genes.

Because MPRAs are fundamentally sequencing assays,

it is useful to know whether similar variance relation-

ships hold in these experiments. Due to the construction

of MPRA libraries, each element is present in a different

(random) copy number, and this copy number ought to

impact both background and signal measurements from

the element. We are therefore specifically interested in

the functional relationship between element copy num-

ber and the variability of the activity outcomemeasure. As

outcome measure we use the log-ratio of RNA counts to

DNA counts (aggregate estimator), and we use aggregated

DNA counts, averaged across samples, as an estimate

of DNA copy number. We compute empirical standard

deviations of the library size-corrected outcome mea-

sure across samples. In Fig. 2 we depict this relationship

across the previously discussed publicly available datasets

(Table 1). For all datasets, with one exception, there is

higher variation associated with lower copy number. The

functional form is reminiscent of the mean-variance rela-

tionship in RNA sequencing data [24], despite that we

here show variance of a log-ratio of sequencing counts.

Statistical modeling of MPRA data

To model MPRA data we propose to use a simple variant

of the voom methodology [24], proposed for analysis of

RNA sequencing data. Thismethodology is based on stan-

dard linear models, which are coupled with inverse vari-

ance weights representing the mean-variance relationship

inherent in RNA sequencing data. The weights are derived

from smoothing an empirical mean-variance plot. Similar

to voom, we propose to use linear models to model log-

ratio activity data from MPRAs, but we estimate weights

by smoothing the relationship between empirical variance

of the log-ratios and log-DNA copy number, as depicted

in Fig. 2. We call this approach mpralm.

The current literature on analysis of MPRA experi-

ments contains many variant methods (see Introduction).

To evaluate mpralm, we compare the method to the fol-

lowing variants used in the literature: QuASAR-MPRA,

t-tests, and Fisher’s exact test (FET). QuASAR-MPRA is a

recently developed method that is targeted for the differ-

ential analysis of MPRA data [23]. It specifically addresses

a two group differential analysis where the two groups

are elements with two alleles and uses base-calling error

rate in the model formulation. It collapses count informa-

tion across samples to create three pieces of information

for each element: one count for RNA reads for the ref-

erence allele, one count for RNA reads for the alternate

allele, and one proportion that gives the fraction of DNA

reads corresponding to the reference allele. Fisher’s exact
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Table 1 Datasets

Dataset Description Cell culture Replicates Barcodes

Differential analysis: alleles

Tewhey Study of 39,479 oligos coming from 29,173 variants NA12878 (LCL) NA12878: 5 79k pool: ∼73

to follow up on prior eQTL results. NA19239 (LCL) NA19239: 3 7.5k pool: ∼350

Large initial oligo pool: 79k. Second pool: 7.5k. HepG2 HepG2: 5

Ulirsch Study of 2756 variants in strong LD with 75 main K562, K562 with K562: 6 14

variants to identify loci that affect RBC traits. GATA1 over-expr. K562+GATA1: 4

Differential analysis: conditions

Inoue Comparison of episomal and lentiviral MPRA. HepG2 3 Max: 99

Shen Study of tissue specificity of cis-regulatory Mouse retina and 3 ∼8

element in-vivo in mouse. cerebral cortex

Saturation mutagenesis

Melnikov Two inducible enhancers: HEK293T Single: 2 Single: 13

(1) a synthetic cAMP-regulated enhancer and Multi: 2 Multi: 1

(2) the virus-inducible interferon-beta enhancer.

Single-hit scanning alters one base at a time.

Multi-hit sampling alters several bases at a time.

Kheradpour Study of 2104 wild-type sequences and 3314 variant K562 2 10

sequences containing targeted motif disruptions to HepG2

understand base-level effects in motifs.

All datasets are publicly available, see the relevant publication

test similarly collapses count information across samples.

To test for differential activity, a 2-by-G table is formed

with RNA and DNA designation forming one dimension

and condition designation (with G groups) in the second

dimension. The t-test operates on the log-ratio outcomes

directly; we use the aggregate estimator to summarize

over barcodes. Either a paired or unpaired t-test is used

based on experimental design.

Both edgeR and DESeq2 are popular methods for anal-

ysis of RNA-sequencing data represented as counts. The

two methods are both built on negative binomial mod-

els, and both attempt to borrow information across genes.

These methods allow for the inclusion of an offset.

Because both methods use a logarithmic link function,

including log-DNA as an offset allows for the modeling

of log-ratios of RNA to DNA. This makes these meth-

ods readily applicable to the analysis of MPRA data, and

they carry many of the same advantages as mpralm. In

addition to QuASAR, t-tests, and Fisher’s exact test, we

examine the performance of edgeR and DESeq2 for dif-

ferential activity analysis in our evaluations. We point out

that although our application of edgeR and DESeq2 to

MPRA data is straightforward, it has not been used in this

way so far in the literature. Tewhey et al. [19] uses DESeq2

to perform differential expression analysis of RNA counts

relative to DNA counts within a single condition. This

assesses whether the regulatory elements have activating

or repressive activity, but it does not assess whether the

activity of regulatory elements differs between conditions.

We remind the community of the ability to use offsets

in the edgeR and DESeq2 negative binomial models, and

explore a new use of these models for MPRA data.

mpralm is a powerful method for differential analysis

First, we focus on evaluating the performance of mpralm

for differential analysis. We compare to QuASAR-MPRA,

t-tests, Fisher’s exact test, edgeR, and DESeq2. We use

four of the previously discussed studies, specifically the

Tewhey, Inoue, Ulirsch, and Shen studies. Two of these

studies (Tewhey, Ulirsch) focus on comparing the activity

of elements with two alleles, whereas the other two (Inoue,

Shen) compare the activity of each element in two differ-

ent conditions. For the allelic studies, we use a random

effects model for mpralm and paired t-tests. In the ran-

dom effects model, we estimate the correlation between

the multiple alleles for a given single nucleotide poly-

morphism (SNP). This correlation estimate improves the

estimation of element-wise variances used in testing for

differences between conditions. Both Tewhey et al. [19]

and Ulirsch et al. [18] compare alleles in different cellular

contexts; we observe similar behavior of all evaluations in

all contexts (data not shown) and have therefore chosen to

depict results from one cellular context for both of these

studies. For the Tewhey dataset we depict results both
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Fig. 2 Variability of MPRA activity measures depends on element copy number. For multiple publicly available datasets we compute activity

measures of putative regulatory element as the log2 ratio of aggregated RNA counts over aggregated DNA counts. Each panel shows the

relationship between variability (across samples) of these activity measures and the average log2 DNA levels (across samples). Smoothed

relationships are lowess curves representing the local average variability. The last plot shows all lowess curves on the same figure

from a large pool of elements used for initial screening and

a smaller, targeted pool.

Figure 3 shows p-value distributions that result from

running all methods on the 5 real datasets. Across these

datasets, all methods except for QuASAR show a well-

behaved p-value distribution; high p-values appear uni-

formly distributed, and there is a peak at low p-values.

QuASAR-MPRA consistently shows conservative p-value

distributions. This feature of the p-value distributions is

not apparent from the QQ-plots (Fig. 3, first row) that

the authors use to evaluate their method [23]. Fisher’s

exact test has a very high peak around zero, likely due to

the extreme sensitivity of the test with high counts. We

examine mpralm using both an average estimator and an

aggregation estimator for summarizing across barcodes;

this cannot be done for the Tewhey dataset where we do

not have access to barcode-level data. To fully interpret

these p-value distributions, we need to assess error rates.

For example, the large number of rejections achieved

using Fisher’s exact test may be associated with a large

number of errors.

To estimate empirical dataset-specific type I error rates,

we simulated count data that gave rise to null comparisons

for each regulatory element (Methods). With all compar-

isons being null, we estimate the dataset-dependent type

I error rate for each method as the fraction of rejected

null hypotheses at a given nominal level. Figure 4 shows

these estimated error rates (based on simulated data).

We observe that Fisher’s exact test has wildly inflated

type I error, presumably because MPRA count data are

overdispersed and because exact tests for large count

data can be very sensitive. The other methods are much

closer to being calibrated, although there is some variabil-

ity from dataset to dataset. Generally, QuASAR-MPRA

seems to be slightly liberal across datasets. The t-test is

close to consistently calibrated. DESeq2 and edgeR are

the most variable in their calibration; in particular, they

are fairly conservative for the Ulirsch dataset and lib-

eral for the Shen dataset. mpralm falls between the t-test

and edgeR/DESeq2 for calibration. For high throughput

assays, there is also interest in type I error rate calibra-

tion at very low nominal levels (e.g. Bonferroni-adjusted
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(a)

(b)

Fig. 3 Comparison of detection rates and p-value calibration over datasets. (a) QQ-plots (row 1), and (b) density plots (rows 2 and 3) for p-values for

all datasets, including a zoom of the [ 0, 0.1] interval for some datasets (row 3). Over all datasets, most methods show p-values that closely follow the

classic mixture of uniformly distributed p-values with an enrichment of low p-values for differential elements. For the datasets which had barcode

level counts (Inoue, Ulirsch, and Shen), we used two types of estimators of the activity measure (log-ratio of RNA/DNA) with mpralm, shown in light

and dark blue

Fig. 4 Empirical type I error rates. Type I error rates were estimated for all methods with simulated null data (Methods). For the datasets which had

barcode level counts (Inoue, Ulirsch, and Shen), we used two types of estimators of the activity measure (aggregate and average estimator) with

mpralm, shown in dark and light blue
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levels). In Table 2, we show estimated error rates for very

low nominal error rates (roughly corresponding to α =

0.05/3000, 0.05/5000, 0.05/7000, 0.05/9000). We see that

at these stringent levels typical of multiple testing situa-

tions in these assays, mpralm with the aggregate estimator

and the t-test tend to not make any errors.

To investigate the trade-off between observed power

(number of rejected tests) and type I error rates, we com-

bine these quantities in two ways: (1) we look at the

number of rejections as a function of observed type I error

rates and (2) we look at estimated FDR as a function of

the number of rejections. Specifically, we use the error

rates we estimate using the simulation (Fig. 4) to adjust the

comparison of the observed number of rejections (Fig. 3).

In Fig. 5 we display the number of rejections as a func-

tion of calibrated (using simulation, Fig. 4) type I error

rates. For a fixed calibrated error rate, we interpret a

high number of rejections to suggest high power (since

the error rates are calibrated to be the same). QuASAR-

MPRA shows poor performance on this metric across

datasets because it generates such conservative p-values.

FET shows good performance for the Tewhey and Inoue

datasets, but this is caused by its extremely liberal p-value

distribution. It performs more poorly relative to the other

methods in the Ulirsch and Shen datasets. Across these

datasets, mpralm tends to have the best performance, par-

ticularly at low nominal error rates (Fig. 4, rows 2 and 3).

However, edgeR and DESeq2 are close behind.

If we know the proportion of true null hypotheses, π0,

and the true type I error rate, we can compute false dis-

covery rates (FDR). The true π0 is an unknown quantity,

but we estimate it using a method developed by Phipson

et al. [31]. The true type I error rate is also an unknown

quantity, but we estimated it via a realistic simulation as

described earlier (Fig. 4). Using these estimates, we com-

pute an estimated FDR (Methods). In Fig. 6 the estimated

FDR (for a given π0) is displayed as a function of the num-

ber of rejections. QuASAR-MPRA, t-tests, and Fisher’s

exact test tend to have the highest false discovery rates.

mpralm tends to have the lowest FDRs, with edgeR and

DESeq2 close behind. For the Inoue dataset, all meth-

ods have very low FDR, presumably because a very high

fraction of elements are expected to be differential given

the extreme expected differences between the comparison

groups.

In conclusion, we observe that Fisher’s exact test has too

high of an error rate and that QuASAR-MPRA is under-

powered; based on these results we cannot recommend

either method. T-tests perform better than these two

methods but are still outperformed by mpralm, edgeR,

and DESeq2. These methods have similar performance,

but mpralm seems to have slightly better performance

than the latter two in terms of consistency of type I error

calibration and power.

Comparison of element rankings betweenmethods

While power and error calibration are important evalu-

ation metrics for a differential analysis method, they do

not have a direct relation with element rankings, which

is often of practical importance. for the top performing

methods in our evaluations (mpralm, t-test, edgeR and

DESeq2) we examine rankings in more detail.

We observe fairly different rankings between mpralm

and the t-test and examine drivers of these differences

in Fig. 7. For each dataset, we find the MPRA elements

that appear in the top 200 elements with one method

but not the other. We will call these uniquely top rank-

ing elements, and they make up 24% to 64% of the top

200 depending on dataset. For most datasets, DNA, RNA,

and log-ratio activity measures are higher in uniquely top

ranking mpralm elements (top three rows of Fig. 7). It is

desirable for top ranking elements to have higher values

for all three quantities because higher DNA levels increase

confidence in the activity measure estimation, and higher

RNA and log-ratio values give a stronger indication that

a particular MPRA element has regulatory activity. In the

last two rows of Fig. 7, we compare effect sizes and vari-

ability measures (residual standard deviations). The t-test

uniformly shows lower variability but also lower effect

sizes for its uniquely top ranking elements. This follows

experience from gene-expression studies where standard

t-tests tend to underestimate the variance and thereby

exhibit t-statistics which are too large, leading to false

positives. In MPRA studies, as with most other high-

throughput studies, it is typically more useful to have

elements with high effect sizes at the top of the list. Such

elements are able to picked out in mpralm due to its

information sharing and weighting framework.

We similarly compare mpralm rankings with edgeR and

DESeq2 rankings in Figs. 8 and 9. The ranking concor-

dance between mpralm and these two methods is much

higher than with the t-test. Generally, uniquely top rank-

ing mpralm elements have higher DNA and RNA levels,

but lower log-ratio activity measures. Uniquely top rank-

ing mpralm elements also tend to have larger effect sizes.

The variability of activity measures (residual SD) is similar

among the methods.

Accuracy of activity measures and power of differential

analysis depends on summarization technique over

barcodes

MPRA data initially contain count information at the

barcode level, but we typically desire information sum-

marized at the element level for the analysis stage. We

examine the theoretical properties of two summarization

methods: averaging and aggregation. Under the assump-

tion that DNA and RNA counts follow a count distri-

bution with a mean-variance relationship, we first show

that averaging results in activity estimates with more
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Table 2 Observed type I error rates for low nominal error rates

Nominal edgeR DESeq2 QuASAR mpralm mpralm FET t-test

error rate (agg) (avg)

Tewhey - large

1.62e-05 8.21e-04 8.22e-04 1.97e-03 1.64e-04 NA 2.82e-01 0

(5/6088) (5/6084) (12/6088) (1/6088) (1718/6088) (0/6088)

1.03e-05 6.57e-04 8.22e-04 1.64e-03 0 NA 2.73e-01 0

(4/6088) (5/6084) (10/6088) (0/6088) (1663/6088) (0/6088)

7.25e-06 4.93e-04 8.22e-04 1.64e-03 0 NA 2.66e-01 0

(3/6088) (5/6084) (10/6088) (0/6088) (1618/6088) (0/6088)

6.25e-06 4.93e-04 6.57e-04 1.64e-03 0 NA 2.62e-01 0

(3/6088) (4/6084) (10/6088) (0/6088) (1597/6088) (0/6088)

Tewhey - targeted

1.62e-05 5.71e-04 5.71e-04 1.71e-03 5.71e-04 NA 2.57e-02 0

(2/3503) (2/3503) (6/3503) (2/3501) (90/3503) (0/3503)

1.03e-05 5.71e-04 5.71e-04 1.71e-03 5.71e-04 NA 2.37e-02 0

(2/3503) (2/3503) (6/3503) (2/3501) (83/3503) (0/3503)

7.25e-06 5.71e-04 5.71e-04 1.43e-03 5.71e-04 NA 2.14e-02 0

(2/3503) (2/3503) (5/3503) (2/3501) (75/3503) (0/3503)

6.25e-06 5.71e-04 5.71e-04 1.43e-03 5.71e-04 NA 2.00e-02 0

(2/3503) (2/3503) (5/3503) (2/3501) (70/3503) (0/3503)

Inoue

1.62e-05 1.64e-03 2.05e-03 4.1e-04 0 4.1e-04 3.69e-03 4.1e-04

(4/2440) (5/2440) (1/2440) (0/2440) (1/2440) (9/2440) (1/2440)

1.03e-05 1.64e-03 2.05e-03 4.1e-04 0 4.1e-04 3.28e-03 4.1e-04

(4/2440) (5/2440) (1/2440) (0/2440) (1/2440) (8/2440) (1/2440)

7.25e-06 8.20e-04 2.05e-03 4.1e-04 0 4.1e-04 2.87e-03 4.1e-04

(2/2440) (5/2440) (1/2440) (0/2440) (1/2440) (7/2440) (1/2440)

6.25e-06 8.20e-04 2.05e-03 4.1e-04 0 4.1e-04 2.46e-03 4.1e-04

(2/2440) (5/2440) (1/2440) (0/2440) (1/2440) (6/2440) (1/2440)

Ulirsch

1.62e-05 0 0 1.09e-03 0 0 4.14e-01 0

(0/2756) (0/2756) (3/2756) (0/2756) (0/2756) (1140/2756) (0/2756)

1.03e-05 0 0 7.26e-04 0 0 4.06e-01 0

(0/2756) (0/2756) (2/2756) (0/2756) (0/2756) (1119/2756) (0/2756)

7.25e-06 0 0 7.26e-04 0 0 3.96e-01 0

(0/2756) (0/2756) (2/2756) (0/2756) (0/2756) (1092/2756) (0/2756)

6.25e-06 0 0 7.26e-04 0 0 3.93e-01 0

(0/2756) (0/2756) (2/2756) (0/2756) (0/2756) (1083/2756) (0/2756)

Shen

1.62e-05 2.45e-03 1.67e-02 2.98e-04 0 3e-04 7.39e-01 0

(8/3264) (51/3052) (1/3358) (0/3286) (1/3337) (2412/3264) (0/3264)

1.03e-05 2.45e-03 1.54e-02 0 0 3e-04 7.33e-01 0

(8/3264) (47/3052) (0/3358) (0/3286) (1/3337) (2393/3264) (0/3264)

7.25e-06 2.14e-03 1.31e-02 0 0 3e-04 7.30e-01 0

(7/3264) (40/3052) (0/3358) (0/3286) (1/3337) (2384/3264) (0/3264)

6.25e-06 1.84e-03 1.21e-02 0 0e+00 0e+00 7.29e-01 0

(6/3264) (37/3052) (0/3358) (0/3286) (0/3337) (2379/3264) (0/3264)
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Fig. 5 Number of rejections as a function of observed error rate. To compare the observed detection (rejection) rates of the methods fairly, we

compare them at the same observed type I error rates, estimated in Fig. 4. The bottom two rows are zoomed-in versions of the top row. We see that

mpralm, edgeR, and DESeq2 consistently have the highest detection rates

bias. Second, we examine real data performance of these

summarization techniques.

Let Rb and Db denote the RNA and DNA count, respec-

tively, for barcode b = 1, . . . ,B for a putative regulatory

element in a given sample. We suppress the dependency

of these counts on sample and element. Typically, B is

approximately 10 to 15 (for examples, see Table 1). We

assume that Rb hasmeanμr and variance krμr and thatDb

hasmeanμd and variance kdμd. Typically the constants kd
and kr are greater than 1, modeling overdispersion. Nega-

tive binomial models are a particular case with k = 1+φμ,

where φ is an overdispersion parameter. Also let Nd and

Nr indicate the library size for DNA and RNA, respec-

tively, in a given sample. Let pd and pr indicate the fraction

Fig. 6 Estimated FDR. For each dataset and method, the false discovery rate is estimated as a function of the number of rejections. This requires

estimation of the proportion of true null hypotheses (Methods). The bottom row is a zoomed-in version of the top row
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Fig. 7 Distribution of quantities related to statistical inference in top ranked elements with mpralm and t-test. MPRA elements that appear in the top

200 elements with one method but not the other are examined here. For these uniquely top ranking elements, the DNA, RNA, and log-ratio

percentiles are shown in the first three rows. The effect sizes (difference in mean log-ratios) and residual standard deviations are shown in the last two

rows. Overall, uniquely top ranking elements for the t-test tend to have lower log-ratio activity measures, effect sizes, and residual standard deviations

of reads mapping to element e for DNA and RNA, respec-

tively, in a given sample so thatμr = Nrpr andμd = Ndpd.

Let a be the true activity measure for element e defined

as a := log(pr/pd). When performing total count normal-

ization, the RNA and DNA counts are typically scaled to a

common library size L.

The average estimator of a is an average of barcode-

specific log activity measures:

âAV =
1

B

B
∑

b=1

log

(

RbL/Nr + 1

DbL/Nd + 1

)

Using a second order Taylor expansion (Methods), it can

be shown that this estimator has bias approximately equal

to

biasAV ≈
1

2

(

kd

μd
−

kr

μr

)

=
1

2

(

kd

Ndpd
−

kr

Nrpr

)

The aggregate estimator of a first aggregates counts over

barcodes:

âAGG = log

(

1 + (L/Nr)
∑B

b=1 Rb

1 + (L/Nd)
∑B

b=1 Db

)
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Fig. 8 Distribution of quantities related to statistical inference in top ranked elements with mpralm and edgeR. Similar to Fig. 7

Using an analogous Taylor series argument (Methods), we

can show that this estimator has bias approximately equal

to

biasAGG ≈
1

B
biasAV

The aggregate estimator has considerably less bias than

the average estimator for most MPRA experiments

because most experiments use at least 10 barcodes per

element. Bias magnitude depends on count levels and

the true activity measure a. Further, the direction of bias

depends on the relative variability of RNA and DNA

counts. Similar Taylor series arguments show that the

variance of the two estimators is approximately the same.

The choice of estimator can impact the estimated

log fold-changes (changes in activity) in a differential

analysis. In Fig. 10 we compare the log fold-changes

inferred using the two different estimators. For the

Inoue dataset, these effect sizes are very similar, but

there are larger differences for the Ulirsch and Shen

datasets.

Aggregation technique affects power in a differential

analysis. In the last three columns of Figs. 3, 4, 5, and 6, we

compare aggregation to averaging using mpralm. The two

estimators have similar type I error rates but very different

detection rates between datasets. The average estimator is

more favorable for the Ulirsch and Shen datasets, and the

aggregate estimator is more favorable in the Inoue dataset.
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Fig. 9 Distribution of quantities related to statistical inference in top ranked elements with mpralm and DESeq2. Similar to Fig. 7

Recommendations for sequencing depth and sample size

To aid in the design of futureMPRA experiments, we used

the above mathematical model to inform power calcula-

tions. Power curves are displayed in Fig. 11. We observe

that the variance of the aggregate estimator depends

minimally on the true unknown activity measure but is

greatly impacted by sequencing depth. We fix one of

the two true activity measures to be 0.8 as this is com-

mon in many datasets. We use a nominal type I error

rate of 0.05 that has been Bonferroni adjusted for 5000

tests to obtain conservative power estimates. We also

use ten barcodes per element as this is typical of many

studies.

Our model suggests different impacts of sample size,

and a marked impact of increasing the number of repli-

cates, especially between 2 and 6 samples. From Fig. 12,

we can see that large effect sizes (effect sizes of 1 or

greater) are typical for top ranking elements in many

MPRA studies. In this situation it is advisable to do 4 or

more replicates per group.

Discussion
The field of MPRA data analysis has been fragmented

and consists of a large collection of study-specific ad hoc

methods. Our objective in this work has been to provide

a unified framework for the analysis of MPRA data. Our
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Fig. 10 Comparison of the average and aggregate estimators For the three datasets containing barcode-level information, we compare the effect

sizes (log fold changes in activity levels) resulting from use of the aggregate and average estimators. The y = x line is shown in red

(a) (b)

(c) (d)

(e) (f)

Fig. 11 Power analysis. Variance and power calculated based on our theoretical model. (a) Variance of the aggregate estimator depends on library

size and the true unknown activity level but not considerably on the latter. (b)-(f) Power curves as a function of library size for different effect sizes

and sample sizes. Effect sizes are log2 fold-changes



Myint et al. BMC Genomics          (2019) 20:209 Page 14 of 19

Fig. 12 Effect size distributions across datasets. Effect sizes in MPRA differential analysis are the (precision-weighted) differences in activity scores

between groups, also called log2 fold-changes. The distribution of log2 fold changes resulting from using mpralm with the aggregate estimator are

shown here

contributions can be divided into three areas. First, we

have investigated techniques for summarizing informa-

tion over barcodes. In the literature, these choices have

always been made without justification and have varied

considerably between studies. Second, we have developed

a linear model framework, mpralm, for powerful and flex-

ible differential analysis. To our knowledge, this is the

second manuscript evaluating for statistical analysis in

MPRA studies. The first proposed the QuASAR-MPRA

method [23], which we show to have worse performance

than mpralm. In our comparisons, we provide the largest

and most comprehensive comparison of analysis methods

so far; earlier work used only two datasets for compar-

isons. Third, we have analyzed the impact of sequencing

depth and number of replicates on power. To our knowl-

edge, this is the first mathematically-based power investi-

gation, and we expect this information to be useful in the

design of MPRA studies.

The activity of a regulatory element can be quantified

with the log-ratio of RNA counts to DNA counts. In the

literature, groups have generally taken two approaches

to summarizing barcode information to obtain one such

activity measure per element per sample. One approach is

to add RNA and DNA counts from all barcodes to effec-

tively increase sequencing depth for an element. This is

termed the aggregate estimator. Another approach is to

compute the log-ratio measure for each barcode and use

an average of these measures as the activity score for an

element. This is termed the average estimator, and we

have shown that it is more biased than the aggregate esti-

mator. Because of this bias, we caution against the use

of the average estimator when comparing activity scores

in enhancer groups (often defined by sequence features).

However, it is unclear which of the two estimators is more

appropriate for differential analysis.

In addition to barcode summarization recommenda-

tions, we have proposed a linear model framework,

mpralm, for the differential analysis of MPRA data. Our

evaluations show that it produces calibrated p-values and

is as or more powerful than existing methods being used

in the literature.

While the count-based tools, edgeR and DESeq2, would

seem like natural methods to use for the analysis of MPRA

data, they have not yet been used for differential analy-

sis of MPRA activity measures between groups. There has

been some use of DESeq2 to identify (filter) elements with

regulatory activity (differential expression of RNA relative

to DNA) [19, 32]. However, these tools have not been used

for comparisons of activity measures between groups.

In this work we propose the use of log-DNA offsets as

potential sensible uses of these software for differential

analysis. In our evaluations, we see that this approach

is most competitive with mpralm. For the allelic stud-

ies [18, 19], we observe that the degree of within-sample

correlation affects the power of mpralm relative to com-

parison methods. In particular, there is little difference in

the performance of the different methods for the Tewhey

large pool experiment, and this experiment had overall

low within-sample correlation. Both the Tewhey targeted

pool experiment and the Ulirsch experiment had larger

within-sample correlations, and we observe that mpralm

has increased power over the comparison methods for

these datasets. We expect that mpralm will generally be

more powerful for paired designs with high within-pair

correlations.

In terms of element rankings, mpralm, edgeR, and

DESeq2 are similar. However, we observe a substantial dif-

ference in ranking between t-tests andmpralm and believe

top ranked mpralm elements exhibit better properties

compared to those from t-tests.

Linear models come with analytic flexibility that is nec-

essary to handle diverse MPRA designs. Paired designs

involving alleles, for example, are easily handled with lin-

ear mixed effects models due to computational tractabil-

ity. The studies we have analyzed here only consider two

alleles per locus. It is possible to have more than two alle-

les at a locus, and such a situation cannot be addressed

with paired t-tests, but is easily analyzed using mpralm.

This is important because we believe such studies will

eventually become routine for understanding results from

genome-wide association studies. We note that for allelic

studies, it is often of interest to filter detections of
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significant differences to those cases where at least one

allele appears to show regulatory activity. This is not

inherent in thempralmmethod, but it is possible to screen

for regulatory activity with a conventional count-based

differential analysis of RNA counts versus DNA counts

using methods such as voom, edgeR, or DESeq2.

While we have focused on characterizing the mpralm

linear model framework for differential analysis, it is

possible to include variance weights in the multivariate

models used in saturation mutagenesis and characteriza-

tion studies. We expect that modeling the copy number-

variance relationship will improve the performance of

these models.

For power, we find a substantial impact of even small

increases in sample size. This is an important observa-

tion because many MPRA studies use 2 or 3 replicates

per group, and our results suggest that power can be sub-

stantially increased with even a modest increase in sample

size. We caution that using less than 4 replicates can be

quite underpowered.

In short, the tools and ideas set forth here will aid in

making rigorous conclusions from a large variety of future

MPRA studies.

Conclusions
We have observed differences in the MPRA activity esti-

mates resulting from the averaging and aggregation meth-

ods of summarizing counts across barcodes. For this rea-

son, we recommend that practitioners perform sensitivity

analyses for their results by using both of these estima-

tion procedures. The mpralm linear model framework

appears to have calibrated type I error rates and to be as or

more powerful than the t-tests and Fisher’s exact type tests

that have been primarily used in the literature. mpralm

has similar performance to variations of the edgeR and

DESeq2 methods that we introduce here. These variations

involve includingDNA counts as offsets in the RNAdiffer-

ential analysis procedures. We recommend either of these

3 methods for unpaired differential analysis settings (such

as tissue comparison studies), but we recommendmpralm

for allelic studies due to its ability to better model the

paired nature of the alleles with mixed models. Finally, we

recommend that practitioners use at least 4 samples per

condition for reasonable power to detect differences for

top ranking elements.

Methods

Data

See Table 1. Dataset labels used in figures are accompa-

nied by short descriptions below.

Melnikov: Study of the base-level impact of mutations

in two inducible enhancers in humans [12]: a synthetic

cAMP-regulated enhancer (CRE) and a virus-inducible

interferon-beta enhancer (IFNB). We do not look at the

IFNB data because it contains only one sample. We con-

sider 3 datasets:

Melnikov: CRE, single-hit, induced state: Synthetic

cAMP-regulated enhancer, single-hit scanning, induced

state.

Melnikov: CRE, multi-hit, uninduced state: Synthetic

cAMP-regulated enhancer, multi-hit sampling, uninduced

state.

Melnikov: CRE, multi-hit, induced state: Synthetic

cAMP-regulated enhancer, multi-hit sampling, induced

state.

Kheradpour: Study of the base-level impact of muta-

tions in various motifs [15]. Transfection into HepG2 and

K562 cells.

Tewhey: Study of allelic effects in eQTLs [19]. Trans-

fection into two lymphoblastoid cell lines (NA12878 and

NA19239) as well as HepG2. In addition two pools of plas-

mids are considered: a large screening pool and a smaller,

targeted pool, designed based on the results of the large

pool. We use data from both the large and the targeted

pool in NA12878.

Inoue: chromosomal vs. episomal: Comparison of

episomal and chromosomally-integrated constructs [21].

This study uses a wild-type and mutant integrase to study

the activity of a fixed set of putative regulatory elements

in an episomal and a chromosomally-integrated setting,

respectively.

Ulirsch: Study of allelic effects in GWAS to understand

red blood cell traits [18]. Transfection into K562 cells as

well as K562 with GATA1 overexpressed. We use the data

from K562.

Shen: mouse retina vs. cortex: Comparison of cis-

regulatory elements in-vivo in mouse retina and cerebral

cortex [22]. Candidate CREs that tile targeted regions are

assayed in-vivo in these two mouse tissues with adeno-

associated virus delivery.

Simulation of data for type I error rate estimation

Here we describe the realistic simulation of data to closely

match properties of the real datasets. The starting point is

a given dataset with two comparison groups:

1. Compute log-ratio activity measures from the

original RNA and DNA counts.

2. Calculate and save the element-wise residual

standard deviations of the log-ratios after

mean-centering them in each group. Calculate and

save the mean of the original log-ratios in group 1.

These element-wise means will become the mean for

both groups in the new null data.

3. Standardize the log-ratios in each group to have

mean zero and unit variance.

4. The standardized log-ratios from both groups all

have mean zero and unit variance. Resample these
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standardized residuals without replacement for each

element in each sample. For paired (allelic) studies,

resample each allele-allele pair without replacement.

5. Multiply the resampled residuals by the element-wise

residual standard deviations, and add the original

group 1 element-specific means. This creates

identically distributed log-ratios in both comparison

groups.

6. Retain the original DNA counts from all samples.

7. Compute RNA counts using the original DNA

counts and the resampled log-ratio activity measures.

8. The original DNA counts and the new RNA counts

form the new synthetic dataset.

Count preprocessing

DNA and RNA counts are scaled to have the same library

size before running anymethods.We performminimal fil-

tering on the counts to remove elements from the analysis

that have low counts across all samples. Specifically, we

require that DNA counts must be at least 10 in all samples

to avoid instability of the log-ratio activity measures. We

also remove elements in which these log-ratios are identi-

cal across all samples; in practice this only happens when

the RNA counts are zero across all samples. Both filtering

steps remove clear outliers in the copy number-variance

plot (Fig. 2).

Modeling

The square root of the standard deviation of the log-

ratios over samples is taken as a function of average

log DNA levels over samples, and this relationship is

fit with a lowess curve. Predicted variances are inverted

to form observation-level precision weights. Log-ratios

activity measures and weights are used in the voom anal-

ysis pipeline. For the allelic studies, a mixed model is fit

for each element using the duplicateCorrelation

module in the limma Bioconductor package [33].

This linear model approach has a number of advan-

tages. (1) It is flexible to different functional forms of the

variance-copy number relationship. (2) It allows for a uni-

fied approach to modeling many different types of MPRA

design using the power of design matrices. (3) It allows for

borrowing of information across elements using empiri-

cal Bayes techniques. (4) It allows for different levels of

correlation between elements using random effects.

mpralm enables modeling for complex comparisons

While many comparisons of interest in MPRA studies can

be posed as a two group comparison (e.g. major allele vs.

minor allele), more complicated experimental designs are

also of interest. For example, in the allelic study conducted

by Ulirsch [18], putative biallelic enhancer sequences are

compared in two cellular contexts. The first is a standard

culture of K562 cells, and the second is a K562 culture that

induces over-expression of GATA1 for a more terminally-

differentiated phenotype. A straightforward question is

whether an allele’s effect on enhancer activity differs

between cellular contexts. Let yeia be the enhancer activity

measure (log ratio of RNA over DNA counts) for element

e, in sample i for allele a. Let x1eia be a binary indica-

tor of the mutant allele. Let x2eia be a binary indicator of

the GATA1 over-expression condition. Then the following

model

Yeia =β0e + β1ex1eia + β2ex2eia+

β3ex1eiax2eia + bi + ǫeia

is a linear mixed effects model for activity measures,

where bi is a random effect that induces correlation

between the two alleles measured within the same sam-

ple. We can perform inference on the β3e parameters to

determine differential allelic effects. Such a model is easy

to fit within the mpralm framework, since our framework

supports model specifications by general design matri-

ces. In contrast, this question cannot be formulated in

the QuASAR, t-test, and Fisher’s exact test frameworks.

Neither edgeR nor DESeq2 support the fitting of mixed

effects models.

Runningmpralm, QuASAR, t-test, fisher’s exact test

For all methods, DNA and RNA counts were first cor-

rected for library size with total count normalization. For

edgeR and DESeq2, DNA counts were included as off-

set terms on the log scale before standard analysis. For

the t-test we computed the aggregate estimator of the

log-ratio as the outcome measure. For Fisher’s exact test,

we summed DNA and RNA counts in the two condi-

tions to form a 2-by-2 table as input to the procedure.

For QuASAR-MPRA, we summed RNA counts in each

condition to get one reference condition count and one

alternative condition count per element. We also summed

DNA counts in all samples and in the reference condition

to get one DNA proportion for each element. These were

direct inputs to the method.

Metrics used for method comparison

We use a number of metrics to compare methods and

describe them in detail here.

• Shape of p-value distributions. Calibrated

differential analysis methods have a characteristic

shape for the p-value distribution. Normally the

majority of p-values are uniformly distributed,

corresponding to null comparisons, and there is a

peak at low p-values for the truly differential
comparisons. We compare the methods with regards

to this expected shape.
• Type I error rates. For all methods and datasets, we

estimate via realistic simulation (described above) the
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proportion of truly null comparisons in which we

reject the null hypothesis.
• Number of rejections as a function of type I error

rate. To some degree, this is a comparison of power

between methods. We cannot compare power of

methods by comparing the height of the peaks

around zero in the p-value distributions because
those plots tell us nothing about type I error rates.

We wished to fix type I error rate and compare the

number of rejections made by the different methods.

For a given nominal type I error rate, we computed

(1) the number of rejections made by a method and

(2) the estimated true type I error rate. For example, a

conservative method would have a true type I error

rate of 0.03, say, at a nominal level of 0.05. Quantity

(2) is plotted on the x-axis of Fig. 5, and quantity (1)

is plotted on the y axis. Curves that are above others

indicate higher detections for fixed type I error rate.
• False discovery rates. These are defined as the

fraction of rejections that are false positives. The

estimation of these FDRs is described below.
• Metrics that describe top ranking elements. The

metrics above focus on type I error rates and power.

Comparisons of the element rankings produced by

the different methods were performed by taking

elements that were ranked in the top 200 for one

method but not the other. (Comparisons were done

pairwise with mpralm always being one method

compared.) Metrics measured the magnitude of the

RNA counts, DNA counts, estimated log-ratio

activity measures, effect sizes (difference in activity

between groups), and residual standard deviations of

the activity measures. It is nice if the RNA, DNA,

log-ratios, and effect sizes are higher in top ranking

elements. It is nice if the top ranking elements have

residual standard deviations that are low, but not so

low as to have been underestimated. It is common for

variability to be underestimated when there are

uniformly low counts across samples.

Estimation of FDR

The proportion of truly null hypotheses π0 for each

dataset was estimated using the “lfdr” method in the

propTrueNull function within limma [31]. As is com-

monwith π0 estimation procedures, the p-values resulting

from a statistical analysis are used in the estimation pro-

cess. To this end, the π0 proportion was estimated with the

p-values resulting from mpralm, t-test, QuASAR, edgeR,

and DESeq2, and the median of these estimates was used

as the estimate for π0 for a given dataset. Fisher’s exact test

was excluded from this estimate because it gave an esti-

mate of π0 that was considerably smaller than the other

methods, and which was dubious in light of its uncon-

trolled type I error rate. We multiply the number of tests

by these π0 estimates to obtain an estimate of the num-

ber of truly null hypotheses. We then multiply this by

our estimate of the true dataset-specific type I error rate

(as shown in Fig. 4) to obtain an estimate of the num-

ber of false positives. Dividing by the number of rejected

hypotheses at a given nominal significance level gives the

estimated FDRs in Fig. 6.

Bias and variance of estimators

We use Taylor series arguments to approximate the bias

and variance of the aggregate and average estimators. The

following summarizes our parametric assumptions:

E[Rb] = μr = Nrpr Var(Rb) = krμr

E[Db] = μd = Ndpd Var(Db) = kdμd

We suppress the dependency of these parameters on sam-

ple and element. Library sizes are given byN. The fraction

of reads coming from a given element is given by p. Dis-

persion parameters are given by k. The common library

size resulting from total count normalization is given by

L. The true activity measure of a given element is given by

a := log(pr/pd).

Average estimator: The “average estimator” of a is an

average of barcode-specific log activity measures and is

written as:

âAV =
1

B

B
∑

b=1

log

(

RbL/Nr + 1

DbL/Nd + 1

)

The second-order Taylor expansion of the function

f (Rb,Db) = log(RbL/Nr + 1) − log(DbL/Nd + 1)

around the point (E[Rb] , E[Db] ) = (μr ,μd) is:

log

(

RbL/Nr + 1

DbL/Nd + 1

)

≈

log (μrL/Nr + 1) − log (μdL/Nd + 1)

+
L/Nr

μrL/Nr + 1
(Rb − μr)

−
L/Nd

μdL/Nd + 1
(Db − μd)

−
(L/Nr)

2

2(μrL/Nr + 1)2
(Rb − μr)

2

+
(L/Nd)

2

2(μdL/Nd + 1)2
(Db − μd)

2
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We use the expansion above to approximate the expecta-

tion of the average estimator:

E
[

âAV
]

≈ log

(

μrL/Nr + 1

μdL/Nd + 1

)

+
(L/Nd)

2kdμd

2(μdL/Nd + 1)2
−

(L/Nr)
2krμr

2(μrL/Nr + 1)2

≈ log

(

pr

pd

)

+
kd

2μd
−

kr

2μr

= a +
kd

2μd
−

kr

2μr

We can also approximate the variance under the assump-

tion that the barcode-specific log-ratios are uncorrelated:

Var(âAV ) =
1

B
Var

(

log

(

RbL/Nr + 1

DbL/Nd + 1

))

≈
(L/Nr)

2krμr

B(μrL/Nr + 1)2
+

(L/Nd)
2kdμd

B(μdL/Nd + 1)2

−
2(L/Nr)(L/Nd)Cov(Rb,Db)

B(μrL/Nr + 1)(μdL/Nd + 1)

Aggregate estimator: The “aggregate estimator” of a first

aggregates counts over barcodes and is written as:

âAGG = log

(

1 + (L/Nr)
∑B

b=1 Rb

1 + (L/Nd)
∑B

b=1 Db

)

= log

(

1 + (L/Nr)R
AGG

1 + (L/Nd)DAGG

)

The second-order Taylor expansion of the function

f (RAGG,DAGG) = log((L/Nr)R
AGG

+ 1) − log((L/Nd)D
AGG

+ 1)

around the point (E[RAGG] , E[DAGG] ) = (Bμr ,Bμd) is:

log

(

1 + (L/Nr)R
AGG

1 + (L/Nd)DAGG

)

≈

log (BμrL/Nr + 1) − log (BμdL/Nd + 1)

+
L/Nr

BμrL/Nr + 1
(RAGG

− Bμr)

−
L/Nd

BμdL/Nd + 1
(DAGG

− Bμd)

−
(L/Nr)

2

2(BμrL/Nr + 1)2
(RAGG

− Bμr)
2

+
(L/Nd)

2

2(BμdL/Nd + 1)2
(DAGG

− Bμd)
2

We use the expansion above to approximate the expecta-

tion:

E
[

âAGG
]

≈ log

(

BμrL/Nr + 1

BμdL/Nd + 1

)

+
Bkdμd(L/Nd)

2

2(BμdL/Nd + 1)2

−
Bkrμr(L/Nr)

2

2(BμrL/Nr + 1)2

≈ log

(

pr

pd

)

+
kd

2Bμd
−

kr

2Bμr

= a +
kd

2Bμd
−

kr

2Bμr

We can also approximate the variance:

Var(âAGG) ≈

(L/Nr)
2Bkrμr

(BμrL/Nr + 1)2
+

(L/Nd)
2Bkdμd

(BμdL/Nd + 1)2

−
2(L/Nr)(L/Nd)Cov(R

AGG,DAGG)

(BμrL/Nr + 1)(BμdL/Nd + 1)
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