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1 Introduction

In the past few years gene expression microarrays have become

important tools in biology and genetics. Microarrays have had a com-

parably large impact on quantitative fields. A multitude of computa-

tional and statistical issues accompany microarrays, and quantitative

scientists have been invigorated by the problems. Statisticians and

other mathematical scientists have produced a variety of techniques

specifically addressed to microarrays.

A biologist with microarray data who seeks guidance in the liter-

ature may be overwhelmed by the large number of different methods.

As statisticians and other mathematical scientists promote method-

ologies that they helped develop, there is little guidance for a consci-

entious investigator who needs to decide what analyses to perform.

In fact, many methodologies are substantially similar, but this is of-

ten not apparent in the literature. By understanding the similarities

among methods, an investigator might then understand the differences

and has a better chance of making a truly informed decision.

The goal of this paper is to conceptually organize some of the key

methods for two-color microarray data analysis. It is intended to sum-

marize some of the methodologies in a way that illuminates the hidden

similarities and true differences among them. “True differences” refers

to the fact that methods may be presented differently but yield the

same effective analysis and have identical implications for experimen-

tal design. For example, it is not a coincidence that the comparisons

of microarray designs using a regression model as in Yang and Speed

(2002) reproduce the results in Kerr and Churchill (2002), where an
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ANOVA model was employed. Although the data models in the two

papers appear to be quite different, I will show such models actu-

ally differ only marginally. By understanding such connections, the

differences between various methodologies should also become clearer.

A microarray experiment involves many decisions that can effect

the conclusions, including

(1.) What RNA samples will be collected and which pairs will be

hybridized together (experimental design)?

(2.) What method of image analysis will be used and will the data

be adjusted for background (data extraction) ?

(3.) How will the raw data be used to estimate relative gene expres-

sion, and how will differential expression be decided (normaliza-

tion, estimation, statistical inference)?

(4.) How can the data be explored to suggest high-order structure,

or how can gene expression be used as predictors, classifiers, etc.

(clustering, discrimination analysis, etc.)?

This paper concentrates on methodologies contained in (3.), but is

not intended as a comprehensive review of all techniques described

by (3.). Normalization methods are covered in detail elsewhere (Cui

et al, 2002; Quackenbush, 2002; Yang et al, 2002; and many others).

This paper is directed at a set of techniques whose aim is to combine

information across arrays and estimate and infer relative expression.

This covers a large set of analytical tools, but not everything. My

purpose is to offer a framework in which to organize a substantial

subset of the methodologies in use.

Brief reviews of two-color spotted microarray technology (Schena
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et al, 1995) can be found in the introductions of many papers on mi-

croarrays. Nguyen et al (2002) give a thorough description for quan-

titative scientists.

5
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2 Methods of Microarray Data Anal-

ysis

I present data methods organized into four groups. Methods 1 and

2 are explicitly intended to be applied one gene at a time. Method 3

is applied to all the data at once, across genes. Method 4 is a two-

stage approach, where the first stage applies to all the data but the

second stage is applied gene by gene. Method 1 is a model for log-

ratios whereas Methods 2, 3, and 4 are applied to log red and green

intensity values. However, as will be discussed, all four methods are

related despite these apparent differences.

2.1 Notation

After image-processing, a microarray dataset is a set of Cy3 and

Cy5 intensity values for the set of arrays that were hybridized and

for the genes spotted on the arrays. These intensities are either

background-adjusted or not depending on the decision at step (2.)

above. For every gene g spotted on the arrays used in an experiment

the data contain a Cy3 and Cy5 intensity measurement. I use the

following notation throughout this paper. Let yijkg be the intensity

for gene g on array i from dye j. The subscript k indicates which

RNA sample the measurement represents. By the experimental de-

sign chosen by the investigator, i and j determine the variety k. In

other words, the investigator has chosen which RNA sample to label

with dye j for hybridization to array i. Thus the subscripts i, j, and

g suffice to identify a data value in the data array.

6
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The yijkg are assumed to be on log or similar scale and any pre-

processing is assumed to be complete. Informally, the yijkg are “nor-

malized log intensities,” where quotation marks acknowledge that this

designation is imprecise because a multitude of different data trans-

formations are currently in use. Regardless of these transformations, I

refer to within-spot differences in the yijkg as “log-ratios” in line with

convention.

2.2 Methods

Before describing Methods 1–4, I first describe a simple microarray

analysis based on comparisons of log-ratios. For gene g on the ith array,

the log-ratio is

log-ratioig = yi2−g − yi1−g. (1)

The RNA-identifying subscripts k are omitted in (1) since they are

determined by the array i and the dye j.

For simple experimental designs some very straightforward mi-

croarray analyses can be performed using log-ratios. Suppose an ex-

perimental design uses a “reference” RNA in one channel of every

array (say channel 1), as depicted in Figure 1. For example, suppose

a pool of tonsil RNA has been used as the reference RNA. Then gene

expression in the RNAs of interest are measured in “tonsil” units.

With all measurements in comparable units, simple statistical tests,

such as t-tests, can be performed on the log-ratios if there are suitable

replicates or repeated measures. This kind of procedure has been used

by many researchers (Callow et al 2000; Geiss et al 2000; and many

others). Simplicity is the major advantage of this approach. The

7
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greatest disadvantage is that one is severely limited in the experimen-

tal designs that can be employed. Therefore, for designed experiments

one needs to use a more general method, such as those described next.

Method 1. Linear Combinations of Log-Ratios. The straight-

forward procedure of making simple comparisons of log-ratios can be

re-formulated as a linear model. This re-formulation has the advantage

that it allows an investigator to consider other experimental designs

that may hold advantages over the reference design. I first describe

Method 1 for a reference design, then give the generalization to other

experimental designs.

For reference designs (Figures 1 and 2), the parameters of the

Method 1 model are the differences in log gene expression between the

RNAs of interest and the reference RNA. In the yijkg notation, let k =

0 represent the reference RNA and k = 1, 2, 3, . . . represent the RNAs

of interest. The notation ki refers to the RNA in the non-reference

channel of array i. Let dkg be the difference in gene expression between

RNA k and the reference RNA for gene g. We have the model

log-ratioig = dkig + ǫig. (2)

The left-hand side of (2) is the log ratio for gene g from array i. The

parameters of the model are the differences in gene expression dkg.

Model (2) simply re-states the basic analysis described in the be-

ginning of this sub-section as one-way analysis of variance (ANOVA)

model, which is a well-known correspondence. If one applies least-

squares estimation for the parameters of this model to the data from

a simple “reference design” (Figure 1), the dkg parameters are esti-

mated with the log ratios yi2kig − yi10g. If there are no biological or

8

http://biostats.bepress.com/uwbiostat/paper190



technical replicates in this design, no kind of inference can be made

because one cannot estimate error to assess statistical significance.

Applying model (2) to a reference design with replicate arrays (Fig-

ure 2) leads to simple averages of replicate log-ratios. For example,

if arrays 1–3 are replicate hybridizations of RNA 1 with the reference

RNA, then the estimated parameter d1g is just the average of the three

log-ratios from arrays 1–3.

An advantage using this model framework, rather than just com-

paring log-ratios, is that one then is able to consider designed exper-

iments. For example, consider data from a 3-loop microarray design

(Figure 3). The goal in analyzing data from such a design is to ap-

propriately combine all the data relevant to a particular comparison.

In the 3-loop, RNAs A and B are compared directly on array 1 but

also indirectly on arrays 2 and 3. The array 1 comparison is direct,

and thus more precise, and should be given more weight.

For data from a designed experiment like the 3-loop, one could

derive the optimal way to combine all the information for a given

comparison. This means finding optimal linear combinations of dif-

ferent estimates that give higher weight to more precise estimates.

An appropriate linear model does this automatically, drawing on the

theory of least-squares estimation.

To demonstrate the model with the 3-loop, notice there are three

comparisons between the three pairs of RNAs (A-B, B-C, and A-C).

Momentarily suppressing the subscript g, let dAB be the difference

between A and B, dBC be the difference between B and C, and dAC be

the difference between A and C. The log-ratio (dye 2 minus dye 1) from

Array 1 estimates expression in B relative to A, −dAB. The log-ratio

9
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from Array 2 estimates the gene expression in C relative to B, −dBC .

The log-ratio from Array 3 estimates the gene expression in A relative

to C, dAC . Since dAC = dAB + dBC , the model is over-parameterized

if all three terms are included, but any two suffice. Arbitrarily choose

dAB and dBC as the model parameters. In summary:

log-ratio1 = − dAB + ǫ1,

log-ratio2 = − dBC + ǫ2,

log-ratio3 = dAB + dBC + ǫ3.

The parameters of the linear model are the quantities of interest, dif-

ferences in log gene expression. Thus the linear model extends the

logic of the basic analysis of reference designs to designed experiments.

Yang and Speed (2002) use these kind of linear models on log-ratios

(and give a similar example for a 3-loop).

Method 2. Single gene ANOVA Performing an analysis as

described in Method 1 for designed experiments involves choosing and

applying a model parameterization. This was quite simple in the 3-

loop analysis, but can become more cumbersome for larger designs. A

more traditional formulation of this model is as an analysis of variance

(ANOVA) model. An ANOVA model for microarray data includes Ai

as a parameter for array i and Vk as a parameter for RNA k. (The

‘V’ stands for “variety” — a generic term for the different RNAs in

the study.) Unlike Method 1, where a parameterization needs to be

worked out for every design, the ANOVA model is easy to state in

general:

yijkg = µg + Aig + Vkg + ǫijkg (3)
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The model is applied separately for each gene. Note the subscript g

appears in every term in (3) and could be suppressed. In contrast to

Method 1, the data for this analysis are the individual Cy3 and Cy5 log

intensities rather log-ratios. This might seem like a drastic change, but

it is not. Estimates of expression differences among samples are linear

combinations of log-ratios, just like with the linear model on log-ratios.

For example, starting from (3) and taking within-spot differences gives

yi1ki1g − yi2ki2g =[µg + Aig + Vki1g + ǫi1ki1g]− (4)

[µg + Aig + Vki2g + ǫi2ki2g]

=Vki1g − Vki2g + [ǫi1ki1g − ǫi2ki2g].

Notice the left-hand side of (4) is a log-ratio and has expectation

Vki1g − Vki2g. Differences in the estimated values of the Vkg parame-

ters estimate differences in expression and are derived from log-ratios.

Such examination shows that models (2) and (3) produce identical

estimates of gene expression differences.

ANOVA models such as (3) are well-known in classical statistics

as models for “block” designs. Besides convenience and tradition,

ANOVA models have other potential advantages over models on log-

ratios (Method 1). First, model (3) has some important generaliza-

tions. For example, one can include a “dye-effect” Djg in (3) to ac-

count for genes that exhibit a dye-bias (Kerr et al, 2002b):

yijkg = µg + Aig + Djg + Vkg + ǫijkg. (5)

Another generalization (and potential advantage) of the ANOVA for-

mulation is that it allows one to consider treating the “spot effects,”

11
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Aig, as random effects rather than fixed effects. This approach ac-

knowledges that spot-to-spot variation is not pre-defined but arises

from a series of random processes. There is precedent for random-

effects modeling in classical block design, where it is sometimes re-

ferred to as “recovering interblock information” (Cochran and Cox,

1992). Wolfinger et al (2001) and Jin et al (2001) treat spot effects

in microarrays as random (although in a two-step procedure — see

Method 4 below). For Jin et al (2001), random effects modeling en-

abled gene expression comparisons between RNAs that were not “con-

nected” in the design (see Figure 4).

A final potential advantage of an ANOVA formulation is that the

error is modeled on the raw intensity measurement. Arguably, it

makes more sense to think of error as added to the measurements that

are actually made rather than to differences in measurements. How-

ever, this distinction may be largely academic. More importantly, the

ANOVA formulation allows one to consider appropriate error struc-

tures for experiments that include multiple sources of error. For ex-

ample, an experiment may include biological replicates, replicated hy-

bridizations, and repeated spots (Churchill, 2002). Methods for such

error structures are well-developed in an ANOVA framework. In a lin-

ear model for log-ratios such as Method 2, such structures cannot be

accommodated appropriately without restricting the design options.

Method 3. Global ANOVA Methods 1 and 2 are approaches to

microarray data analysis that are applied one gene at a time. Another

option is an ANOVA model that is “global” in the sense that it applies

to the data for all the genes at once. Kerr et al (2000) introduced these

12
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models for microarray data. Such a model is:

yijkg = µ + Ai + Dj + (AD)ij + Gg + (AG)ig + (V G)kg + ǫijkg. (6)

The parameter µ in the model is the overall mean across all factors

– arrays, dyes, and genes. Ai is the overall effect of array i, Dj is

the overall effect of dye j = 1, 2, and (AD)ij is a “channel” effect

for dye j on array i. Notice none of these terms has a g subscript

— they are “global” effects, describing variation across genes. These

terms produce the sorts of linear normalizations that are often done

informally. Gg is the overall effect of gene g across the other factors

and corresponds to the term µg in Method 2. The (AG)ig terms

capture spot effects, and correspond to the Aig terms in Method 2.

The (V G)kg effects represent levels of signal intensity for genes that

can specifically be attributed to the RNA varieties under study. These

correspond to the Vkg terms in Method 2 and are the effects of interest.

Differences in these terms estimate gene expression differences between

varieties of RNA, i.e. for RNAs k and k′, relative gene expression is

estimated as (V G)kg − (V G)k′g.

What are the differences in estimates of expression differences be-

tween Method 1 and 2 (which are equivalent) and Method 3? Method

3 is actually single-gene ANOVA on the data that has been “centered,”

meaning that the average intensity from every channel on every array

is set to 0. (Technically, this equivalence is mathematically exact only

if the same set of genes is spotted on every array in the experiment

with no missing data.) In other words, global ANOVA correspond to

single-gene ANOVA on the data xijkg = yijkg − yijk· (a · indicates av-

eraging over a subscript). In practice, the adjustment yijkg → xijkg is

13
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very small because yijk· is usually small due to normalization processes

that are typically done prior to these analyses.
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Method 4. Two-stage ANOVA As already suggested, Method

3 can be re-written as a two-stage model. First, fit a “centralization”

model

yijkg = µ + Ai + Dj + (AD)ij + xijkg. (7)

The parameters Ai, Dj , and ADij in (7) are interpreted as in (6). The

residuals of this model, xijkg, become the data in the second stage,

which is applied one gene at a time:

xijkg = µg + (AG)ig + (V G)kg + ǫijkg. (8)

Such a two-stage analysis is the approach of Lee et al (2002). Under

typical conditions, Methods 3 and 4 produce mathematically identical

estimates of gene expression differences. Specifically, if the same set of

genes is spotted on every array with no missing data, then Methods 3

and 4 produce identical results if all effects are treated as fixed effects.

This is because all of the gene-specific effects in (6) are orthogonal

to all the global effects under these conditions. If missing data cause

an imbalance in which genes are effectively represented on different

arrays, Methods 3 and 4 are no longer mathematically equivalent but

their difference is typically miniscule. As described in the discussion

of Method 3, estimates from Methods 3/4 tend to vary little from the

estimates produced by Methods 1/2.

15
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3 Data Example

Data come from a study of gene expression in three RNAs (Un-

published data, Sam Bruschi, University of Washington Department

of Medicinal Chemistry). The experimental design is a 3-loop (Figure

3). The three RNAs were derived from the same mouse hepatocyte

cell lines, TAMH (Transforming growth factor - alpha overexpress-

ing mouse hepatocyte cell line). Each RNA sample was prepared and

treated on a different day. The treatment was a 4 hour exposure to 200

uM Tetrafluoroethylcysteine, a toxic metabolite of the industrial gas

Tetrafluoroethylene. Since the only difference between the RNAs is

the day of preparation and treatment, few gene expression differences

were expected.

Each of 7680 clones was double-spotted on each array in two sep-

arate grids so that each array contained two sub-arrays. Substantial

intensity-dependent and spatial variation was observed in the log ra-

tios, but the pattern of spatial variation differed on the two sub-arrays

contained each array. Therefore normalization was done separately

for each sub-array. Normalization was done with via a “loess” proce-

dure to adjust for intensity-dependent and spatial artifacts (Cui et al,

2002). In the following analyses, I also treated sub-arrays as indepen-

dent arrays, implying a repeated 3-loop design as in Figure 3(b). A

more appropriate analysis might account for the dependence between

repeated spots on the same microarray, but treating the sub-arrays as

independent serves the purposes of this example.

For obtaining point estimates of relative gene expression, Methods

1 and 2 are mathematically equivalent, as are 3 and 4. Because nor-
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malization necessarily results in data with log-ratios roughly centered

around 0, the difference between Methods 1/2 and 3/4 is very small.

Figure 5 presents the estimates of gene expression differences between

samples A and B using Methods 1/2 and Methods 3/4. The figure is

uninteresting because the only difference in the estimates is a constant

0.0007 shift. For the B-C and A-C comparisons (data not shown), the

constant differences are -0.0004 and 0.0004 respectively.

As mentioned, ANOVA models such as Methods 2, 3, and 4 can

be varied by treating effects as random instead of fixed. For example,

Wolfinger et al (2001) and Jin et al (2001) use a variant of Method 4

where spot effects are treated as random effects. This decision – ran-

dom or fixed effects – has a much more noticeable effect on estimates

of relative expression than the choice among methods. To illustrate

this, I compared estimates from Method 2 with spot effects treated

as fixed and random. (The mixed effects model was estimated in the

statistical package R (Ihaka and Gentleman, 1996) using the ‘lme’

function and the default REML methodology for estimating variance

components.) As seen in Figure 6, this change makes little difference

in estimation for comparing RNAs B and C. However, for the other

pairwise comparisons, A vs. B and A vs. C, this change results in some

large differences for a handful of genes.

When spot effects are treated as fixed effects, estimates of relative

expression are linear functions of “within-spot” differences, i.e. log-

ratios. For example, in a simple 3-loop (Figure 3(a)), the comparison

of RNAs A and B for a given gene is given by

V̂ F
A − V̂ F

B =
2

3
(y1A − y1B) +

1

3
(y3A − y3C + y2C − y2B). (9)

17
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The numerical subscript on the y’s refers to the array (as denoted in

Figure 3(a)) and the letter in the subscript refers to the RNA. The

superscript F denotes the model with fixed spot effects. For the design

in the data example (Figure 3(b)), the estimate can be expressed in the

same form by averaging measurements from replicate hybridizations.

Notice that each expression inside parentheses in (9) has expectation

VA − VB, but the first is given double weight since its variance is half

as much.

When spot effects are treated as random effects, let α2 denote their

variance. The estimate of relative gene expression is more complicated

than in the fixed-effects case, as it now depends on α2 as well as the

error variance σ2:

(3α2 + 2σ2)(V̂ R
A − V̂ R

B ) = 2α2(y1A − y1B) + α2(y3A − y3C + y2C − y2B)

+ σ2(y1A + y3A − y1B − y2B). (10)

The superscript R denotes the estimate with random spot effects. An

instructive form in which to express the estimate is:

V̂ R
A − V̂ R

B =
3α2(V̂ F

A − V̂ F
B ) + 2σ2((y1A + y3A − y1B − y2B)/2)

3α2 + 2σ2
(11)

Thus V̂ R
A − V̂ R

B is a weighted average of the fixed effects estimate

V̂ F
A − V̂ F

B from (9) and the quantity 1

2
(y1A + y3A − y1B − y2B). Note

that this latter quantity is a simple contrast of the observations from

variety A and the observations on variety B. It is an unbiased estimate

of VA−VB since the spot effects are random variables with expectation

0. Notice that as σ2

α2 → 0, then V̂ R
A − V̂ R

B converges to V̂ F
A − V̂ F

B . In

other words, if spot variation is much larger than measurement error,

then the estimate of VA−VB using random spot effects will be close to

18
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the estimates using fixed spot effects. This is the case in the analyzed

data. The estimated ratio 2σ2

3α2+2σ2 is very small for most genes, with a

median of 0.0075 and 75th quantile 0.0182. Out of 7680 genes on the

array, only 82 have the estimated ratio 2σ2

3α2+2σ2 > 0.5. Thus V̂ R
A −V̂ R

B is

heavily weighted towards V̂ F
A −V̂ F

B , and the two have little opportunity

to differ. Even when 2σ2

3α2+2σ2 is large, (y1A + y3A − y1B − y2B)/2 must

also differ from V̂ F
A −V̂ F

B in order for V̂ R
A −V̂ R

B to deviate substantially.

19
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4 Discussion

An advantage of single-gene models (Methods 1, 2, and 4) is com-

putational practicality. General statistical software cannot handle

models such as (6) because of the large number of parameters. On

the other hand, model-fitting algorithms specialized for microarrays

get around this problem rather easily (Wu et al, 2003) by capitalizing

on the relationships described in this paper. Method 4 can be viewed

as a computationally tractable re-formulation of Method 3. Param-

eter estimates from the two-stage model in Method 4 can be pieced

together to construct the global model. This can be done in a statisti-

cal programming language (Wolfinger et al, 2001), or through software

specialized for microarray data analysis (Wu et al, 2002).

Section 2.2 discusses the mathematical equivalence of several dif-

ferent methods for microarray data analysis for estimating differences

in gene expression. All of the models discussed in this paper are linear.

As such, they reflect the assumption that relative fluorescence (prop-

erly normalized) is proportional to the relative amount of transcript

in the dye-labeled cDNA pool. The validity of combining data across

arrays to estimate relative gene expression relies on this assumption.

As shown in Section 2.2, Methods 1 and 2 are equivalent, as are 3

and 4. Further, the practical difference between Methods 1/2 and 3/4

is very small, as illustrated in Section 3. One might conclude from

these results that it does not matter which method is used. How-

ever, although the methods produce the same (or nearly the same)

point estimates of gene expression differences, they can differ substan-

tially in statistical inference. That is, they can lead to very different
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conclusions about what genes are differentially expressed. Momentar-

ily setting aside the issue of fixed and random effects, quite different

conclusions can be reached solely due to how measurement error is

modeled. This is the error denoted by ǫ throughout Section 2.2.

Methods 1, 2, and 4 are explicitly one-gene-at-a-time analyses.

This means the inference of whether a particular gene is differentially

expressed is based only on the data for that gene. If the only replicates

are technical replicates, then this assumption is that the technical or

measurement error is different for every gene. While the generality of

this assumption is appealing, it is problematic. There is usually not

enough data for individual genes to get an accurate estimate of the

error variance. Across thousands of genes, many will have small error

variances by chance. Empirical evidence suggests that a one-gene-

at-a-time approach leads to many “false positives” when differential

expression is assessed (Efron et al, 2001; Tusher et al, 2001). Various

ways to get around this problem have been used but only a little

theoretical work has been done on the problem (Lönnstedt and Speed,

2002).

Global models of microarray data analysis enable one to combine

data across genes to estimate error distributions. For example, Kerr

et al (2002a) observed larger error for low-intensity genes. They com-

bined information for genes at similar intensity levels for estimating

error variances and making inferences. This produced more robust in-

ference than modeling error separately for every gene. Global models

are conducive to combining data across genes for realistic and robust

models of error.

Combining information across genes may also be useful if random
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effects are modeled. For example, Kerr et al (2002a) observed spot-to-

spot variation that was normally distributed across genes. As seen in

Section 3, the decision of whether to treat some effects, such as spot

effects in an ANOVA model, as fixed or random can make a substantial

difference in the results. Ideally, we would like to remove (through

normalization) or model all the systematic effects so that variation in

spot intensity could be treated as random. However, in practice it is

difficult to evaluate whether this has been accomplished. For the data

examined in Section 3, there was a noticeable trend for less intense

spots in the lower half of one array. Modeling or attempting to correct

such trends through normalization increases the risk of overfitting the

data. Therefore, although random spot effects may be philosophically

preferable, the assumption may still not be reasonable. This is an

outstanding issue in microarray data analysis. A general conclusion

applicable to every microarray dataset might not be possible.

A general conclusion is that microarray data should be analyzed by

a conscientious statistician or other scientist who understands the im-

plications of the choices that are made. Modeling assumptions should

be evaluated in any analysis. This means, for example, looking for

systematic trends in the model residuals that might cast doubt on

the results. Residual analysis can also reveal whether the data have

been analyzed on the proper scale (Kerr et al, 2002a). A potential

advantage for global modeling over single-gene methods is that model

evaluation and residual analysis is feasible. In contrast, such evalua-

tion is not practical for gene-by-gene analyses because it is not feasible

for a data analyst to examine residual plots for every gene.
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5 Figure Captions

Figure 1 A reference design. The nodes represent RNA samples

and arrows represent microarrays, with the head and tail of an arrow

representing dye-labeling with Cy3 and C5. See Kerr and Churchill

(2001) or Yang and Speed (2002) for an explanation of this graphical

depiction of microarray designs.

Figure 2 Reference-type designs. A reference design with (a) re-

peated hybridizations and (b) dye-swap arrays.

Figure 3 Loop designs. (a) A loop design for three RNAs of in-

terest. (b) The design for the data analyzed in Section 3, where sub-

arrays of the physical arrays were analyzed as independent arrays.

Figure 4 The design used by Jin et al (2001). There were three bi-

nary factors in this study of fruitflies, sex (male and female), strain (O

and S), and age (1 week vs. 6 weeks old). The numbers on the arrays

indicate the number of replicate arrays of each type. All microarrays

were comparisons across age within a sex and strain. Random-effects

modeling of spot-to-spot variation enabled comparisons across strain

and sex.

Figure 5 A comparison of estimates of relative expression using

different linear models. For the data analyzed in Section 3, the fig-

ure compares estimates of log2 differences in gene expression between

samples A and B using Methods 2/3 and Methods 3/4. The differ-

ence is a constant 0.0007 for every gene, so the points in the graph
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fall almost along the line of identity.

Figure 6 A comparison of estimates of relative expression treating

spot effects as fixed and random. For the data analyzed in Section 3,

the figures compare estimates of the log2 difference in gene expression

for Method 2 when spot effects are treated as fixed or random.
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