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C O M P U T A T I O N A L B I O L O G Y
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Thomas Sicheritz-Ponten,1 Marina Olhovsky,4 Adrian Pasculescu,4 Jes Alexander,8

Stefan Knapp,9 Nikolaj Blom,1 Peer Bork,2,10 Shawn Li,6 Gianni Cesareni,5 Tony Pawson,4

Benjamin E. Turk,7 Michael B. Yaffe,8† Søren Brunak,1,2† Rune Linding4,8,11†

(Published 2 September 2008)

Systematic and quantitative analysis of protein phosphorylation is revealing dynamic regulatory net-
works underlying cellular responses to environmental cues. However, matching these sites to the ki-
nases that phosphorylate them and the phosphorylation-dependent binding domains that may
subsequently bind to them remains a challenge. NetPhorest is an atlas of consensus sequence motifs
that covers 179 kinases and 104 phosphorylation-dependent binding domains [Src homology 2 (SH2),
phosphotyrosine binding (PTB), BRCA1 C-terminal (BRCT), WW, and 14–3–3]. The atlas reveals new
aspectsofsignalingsystems,includingtheobservationthattyrosinekinasesmutatedincancerhavelower
specificitythantheirnon-oncogenicrelatives.Theresourceismaintainedbyanautomatedpipeline,which
usesphylogenetic trees to structure the currently available in vivo and in vitro data to derive probabilistic
sequencemodelsof linearmotifs. Theatlas is available asacommunity resource (http://netphorest.info).

INTRODUCTION

Proteins in eukaryotes consist of two fundamentally different types of

functional building blocks or modules: protein domains and linear mo-

tifs. Whereas domains are often defined as large (>30 residues) glob-

ular units with defined binding or catalytic activities (1–4), linear

motifs are short colinear sequences, typically of less than 10 residues,

that often reside in disordered regions (1). Domains are frequently con-

served over long evolutionary distances and change through divergent

evolution (2, 3), whereas linear motifs evolve much more rapidly (5)

and can likely arise through convergent evolution because of their short

length (6).

Posttranslational modification of linear motifs is a driving force be-

hind directional and dynamic protein-interaction networks (7). One

such modification is phosphorylation, which modulates the binding

of protein domains (such as SH2 and BRCT) and thereby creates logic

gates (7). This enables the cell to swiftly integrate and respond to com-

binations of internal and external cues. Advances in mass-spectrometry

techniques have led to the identification of thousands of in vivo phos-

phorylation sites (8–11). However, most of these sites are uncharacter-

ized with respect to their roles in signaling, because the kinases

responsible for their phosphorylation and the proteins that recognize

these phosphorylated sites are often unknown (12). Linking these sites

to the hundreds of protein kinase catalytic domains (from hereon re-

ferred to as kinases) and modular binding domains is a challenge for

in-depth understanding of cellular signaling processes.

Whereas several resources exist for identifying protein domains

from sequence alone, for example, SMART (3) and Pfam (2), equally

powerful resources do not exist for linear motifs primarily because of

their low information content (4, 13, 14). Numerous methods

have been developed to predict potential phosphorylation sites for

specific kinases; these include the pioneering work (Scansite) on

position-specific scoring matrices (PSSMs) derived from peptide

libraries (13, 15–17), manually constructed sequence patterns

(14, 18, 19), and a variety of machine-learning algorithms that have

been trained on in vivo phosphorylation data (20–24). As new, powerful

phosphoproteomics methods continue to increase our knowledge of

cellular phosphorylation sites (8–11), models that are optimized to

classify experimentally identified sites (rather than to predict them)

according to the relevant kinase family or corresponding binding do-

mains are increasingly important. Classification is a difficult task, be-

cause of the limited number of known targets for individual kinases

and phosphorylation-dependent binding domains (phospho-binding

domains) and the large number of different domains [for example,

∼518 kinases in human (25)], many of which recognize similar se-

quence motifs.

Here, we present NetPhorest, an atlas of linear motifs involved in

phosphorylation-dependent signaling, which consists of 125 sequence

models that classify the substrates and ligands of 179 protein kinases

and 104 phospho-binding domains (phosphotyrosine: SH2 and PTB;

phosphoserine and phosphothreonine: 14-3-3, BRCT, and WW). We al-

so describe the computational framework and pipeline used for automat-

ically constructing this resource on the basis of currently available data

and experiments performed as part of this study. NetPhorest can thus be
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maintained as an up-to-date resource for analysis of phosphorylation-

dependent signaling.

RESULTS

The NetPhorest resource accomplishes four major goals. First, it pro-

vides the most comprehensive atlas of linear motifs recognized by spe-

cific protein kinases and domains that bind to phosphorylated residues.

Second, it contains a collection of probabilistic classifiers that enables

experimentally identified phosphorylation sites to be classified (ac-

cording to kinases and phospho-binding domains) with much higher ac-

curacy than existing sequence-based methods. Third, an automatic

pipeline keeps the resource up to date with the latest data from in vivo

and in vitro experiments. Fourth, the classifiers are made available both

through a Web interface (http://netphorest.info) and as a fast, portable

stand-alone software application.

Tree-based data organization and redundancy reduction
The first essential steps toward automated construction of sequence

models of linear motifs are the collection and organization of the data.

Weuse two fundamentally different types of experimental data. First, dec-

adesof targetedstudieshaveresulted ina relatively largeandfairly reliable

data set of in vivo protein-phosphorylation sites that are linked to at least

one kinase [Phospho.ELM (26)] or phospho-binding domain [DOMINO

(27)]. Second, several in vitro methods allow the interrogation of kinase

specificity by degenerate peptide libraries (15,17,28).Whereas the latter

represent the most abundant data type, for our purposes it is essential to

design a framework that can combine the two, resulting in a single clas-

sification system. To this end, we map both in vivo and in vitro data onto

phylogenetic trees of the kinase and phospho-binding domains (25, 29)

(Fig. 1A and fig. S2), which capture how similar the domains are to

one another and thereby how likely they are to have similar substrate

specificities. The tree-based approach thus enables us to make infer-

ences based on the fact that highly similar domains typically have simi-

lar substrate specificities, but it does not assume that dissimilar domains

necessarily have dissimilar substrate specificities.

The domain trees also serve as a powerful data structure that

enables us to automatically incorporate all data related to any family

or subfamily of domains. Thus, the trees are used to automatically

compile training and benchmark data sets for specific domains and

for families of related domains (Fig. 1B). For example, known in vivo

substrates of all protein kinase C (PKC) isoforms would be included as

positive examples in the data set for the PKC family, whereas negative

examples would be drawn from the known in vivo substrates of all oth-

er kinases. By contrast, the data set on PKCα would include only its

own substrates as positive examples, and substrates of other PKC iso-

forms and all other kinases would now be considered negative ex-

amples. Consequently, the sequence models are evaluated on their

ability to discriminate between substrates of different kinases or targets

of distinct binding domains, which is the task at hand when interpret-

ing phosphoproteomics data, rather than on their ability to predict

phosphorylation sites (20–24). The exclusion of nonphosphorylated

sites also ensures that the sequence-specificity atlas is not distorted

by the numerous sites that are not phosphorylated by any kinase be-

cause they are structurally inaccessible to all kinases and hence contain

no information about their sequence specificity.

Frequently, corresponding phosphorylation sites from sets of similar

proteins have been identified in separate studies. These observations

cannot be considered independent observations because of their evolu-

tionary relationship, and therefore we eliminate redundant sites for

which either the proteins or the sites themselves are too similar in

sequence (Fig. 1C, see Methods for details). Because many machine-

learning methods as well as accuracy measures work poorly on highly

unbalanced data sets in which the numbers of positive and negative

examples differ by orders of magnitude (30), we randomly reduce each

data set to include only five negative examples per positive example.

Constructing sequence models of linear motifs
Early initiatives for ab initio prediction of linear motifs relied on simple

consensus patterns compiled from the literature; for example, the pat-

tern [ST]P..[RK] is commonly used to search for cyclin-dependent ki-

nase (CDK) substrates (14, 18, 19). Although appealing because of

their simplicity, such patterns oversimplify the mechanisms that govern

kinase–substrate recognition (20, 31). In particular, they are unable to

model correlations between individual residues and their joint contri-

bution to the binding energy. Furthermore, the absence of a scoring

scheme implies that predictions cannot be sorted according to their re-

liability, which makes the approach unsuited for large-scale studies.

To represent the relative affinities with which domains recognize dif-

ferent peptide sequences, we use PSSMs and artificial neural networks

(ANNs) (32), which mainly differ in that the latter can also capture non-

linear correlations between residues. For the in vitro assays that cannot

reveal such correlations (16, 33), we construct PSSMs, whereas we train

ANNson the invivo andpeptide-based invitrophosphorylationdata (34).

Although many other machine-learning algorithms are available, we

chose to use ANNs because they are fast to construct and to execute

and have been successfully used for predicting various linear motifs

(20, 35, 36).Moreover, different machine-learning algorithms give simi-

lar results when trained on the same data (36, 37), and resources are thus

better spent, in our view, on improving the quality of the training data and

on automation to rapidly accommodate new data rather than on testing

many alternative machine-learning algorithms.

Three data sets are needed to construct an ANN: a training set for opti-

mizing the weights, a test set for selecting the optimal network architecture

and training parameters, and an independent validation set for assessing the

prediction accuracy. To optimally use the available data, we adopt a fourfold

cross-validation scheme in which the final sets of positive and negative

examples are randomly partitioned into four equal parts, of which we use

two for training, one for testing, and one for validation. All 12 possible per-

mutations of these sets are then used for training and evaluating an ensem-

ble of ANNs (Fig. 1D, see Methods for details). Applying this procedure to

the currently available data yielded 151 and 134 ANN predictors for sub-

strates of kinases and targets of phospho-binding domains, respectively.

Integration of heterogeneous models
Sequence models of linear motifs produce scores that are not directly

comparable between models for different domains. To enable use of a

collection of PSSMs and ANNs for classification of phosphorylation

sites, this issue must first be resolved. We therefore designed a scoring

scheme in which the raw scores from different models are calibrated

through benchmarking against a common reference, namely, our com-

pilation of phosphorylation sites. The benchmarking converts the raw

scores into probabilistic scores, which, in contrast to the raw scores or

percentile scores, can be directly compared between classifiers.

To construct a calibration curve for each ensemble of ANNs, we calcu-

late the fraction of correct predictions within different score intervals on the

validation set and fit these values with a sigmoid function (fig. S4, see

Methods for details). In case of PSSMs, we first calculated a scaling factor

for each PSSM on the basis of its score distribution on random peptides.

Subsequently, we calculate individual calibration curves based on the
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Fig. 1. Tree-based organization, redundancy reduction, and partitioning

of data. (A) All available data from in vivo and in vitro experiments for ki-

nase, SH2, and PTB domains are organized by mapping them onto the

phylogenetic domain trees. (B) The tree data structure enables us to au-

tomatically compile a data set of positive and negative examples for each

domain or family of related domains. For a given domain (leafs in the tree)

or domain family (branch points in the tree), we exclude phosphorylation

sites that cannot be unambiguously designated as positive or negative

examples, because they were annotated at a higher level in the tree.

(C) Redundant phosphoproteins and phosphorylation sites are identi-

fied and eliminated on the basis of sequence similarity of the full-length

protein sequence or the phosphorylation sites themselves. (D) Each

redundancy-reduced data set is partitioned into four parts that are

used for training, test, and validation of ANNs. See fig. S1 for a flow-

chart of the pipeline, fig. S2 for an overview of the data coverage, and

Methods for details.
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complete redundancy-reduced data setswhen at least 12 siteswere known for

thekinasesorbindingdomainsinquestion.For theremainingPSSMs,wecon-

structed two generic calibration curves representing the average reliability of

PSSMs for kinase and phosphotyrosine-binding domains, respectively.

The resulting calibration curves enable us to estimate the (posterior)

probability that a site is recognized by a particular kinase, phospho-

binding domain, or family thereof. However, because the fractions of

positive examples within the redundancy-reduced data sets do not re-

flect the corresponding prior probabilities (the probability that a kinase

or domain recognizes a site regardless of its sequence), the calibration

curves must first be rescaled accordingly. Because the prior probability

for each family of kinases or phospho-binding domain is not known, an

estimated prior probability was used that is based on the square root of

the number of different domains within the family in question; the

square root was chosen to take into account that the prior probability

increases less than proportionally with size of the family, as similar

domains often recognize similar motifs (see Methods for details).

Selecting a nonredundant set of classifiers
The final step in the NetPhorest workflow is to select a set of classifiers

that strikes a compromise between having the highest prediction accu-

racy, the most finely resolved families, and the broadest coverage of

kinases and phospho-binding domains. The tree-based organization

of the data and the consistent benchmarks of all sequence models

are the keys to automating this task (Fig. 2).

First,weassigntheclassifiers tofamiliesofrelatedkinasesorphospho-

bindingdomainsbasedon thephylogenetic domain trees.WhereasANNs

naturally belong to the family forwhich theywere trained (Fig. 2A), an in

vitro experiment is always performed with a specific purified protein or

domain (for example, the ataxia telangiectasia mutated (ATM) protein

kinase), yet the resulting PSSM may be better used as a classifier for a

family including other closely related domains (for example, the sub-

family composed of ATM and ATM Related (ATR), the ATM/ATR sub-

family).WethusbacktrackeachPSSMin the treeandconsider it apossible

classifier for everynodeon thepath connecting the root of the treewith the

node at which the PSSM was initially assigned (Fig. 2B). To avoid as-

signing a single classifier to an overly divergent family of kinases or

phospho-binding domain, we calculate the pairwise sequencesimilarity

of all domain sequences within each family and eliminate families with a

self-normalized bit score less than 0.3 (Fig. 2C, see Methods).

Next, we evaluate the predictive performance of the classifiers on the

basis of their receiver operating characteristic (ROC) curves, which show

sensitivity as function of false-positive rate (fig. S8).We summarize each

curve in a single number, the area under theROCcurve (AROC),which is

equivalent to the Mann–Whitney U statistic (38). We discard any of the

sequence models that do not perform significantly better than random

(P < 0.05), as judged by resampling the scores of positive and negative

examples toconstruct a (bootstrapped)AROCdistribution (seeMethods).

In cases where we are still left with several alternative classifiers for the

Fig. 2. Selectionof classifiers using thephosphoinositide3-kinase-related

kinase (PIKK) family of kinases as an example. (A) ANNs are trained for in-

dividual domains, subfamilies, and families of domains; by contrast, the

PSSMs are initially assigned to the specific domain with which the in vitro

assay was performed. (B) As some PSSMs (for example, the one for ATM)

may be better used as classifiers for a subfamily of closely related kinases

(forexample,ATM/ATR),webacktrackallPSSMstoward therootof the tree.

(C)Weeliminate families thatcontaindomainsthatarehighlydissimilar from

each other (for example, the PIKK family and the ATM/ATR/mTOR sub-

family), in order not to describe highly divergent domains with the same

ANNs and PSSMs (see Methods). (D) Whenever possible, we benchmark

theANNsandPSSMsanddiscardclassifiers thatdonotperformsignificant-

ly better than random expectation. (E) A nonredundant set of classifiers is

selected that maximizes the average AROC across all kinases, SH2 do-

mains, or PTB domains. (F) For the PIKK family of kinases, this procedure

selects the ANNs for the ATM/ATR subfamily, mTOR, and DNA-

dependent protein kinase (DNAPK) to be the best combination of classi-

fiers. See fig. S3 for an overview of the current selection of classifiers.

R E S E A R C H A R T I C L E

www.SCIENCESIGNALING.org 2 September 2008 Vol 1 Issue 35 ra2 4

 o
n
 S

e
p
te

m
b
e
r 2

, 2
0
0
8
 

s
tk

e
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://stke.sciencemag.org


same family of domains (for example, an ANN and a Scansite PSSM for

the ATM kinase), we select the one with the best predictive performance

according to our benchmarks (Fig. 2D).

At this stagewemay still have multiple classifiers that cover the same

kinase or phospho-binding domain; for example, wemay have classifiers

for both ATM alone and for the ATM/ATR subfamily (Fig. 2E). To elim-

inate this redundancy,weselectanonoverlappingsetamongtheremaining

classifiers thatmaximizes the averageAROC across all domains. For this

purpose, PSSMs that could not be benchmarked because of lack of site-

specific data are considered to have the average AROC of PSSMs for the

domaintypeinquestion(that is,kinase,SH2,PTB,BRCT,WW,or14–3–3).

Any domain that is not covered by a given set of classifiers is considered

equivalent to a random predictor (AROC = 0.5). In the case of ATM, this

leads to the selection of the ATM/ATR subfamily over ATM alone because

theAROC for the subfamily is higher than the average for its twomembers,

ATM and ATR (Fig. 2F). Using these selection criteria, the NetPhorest

pipelineyields anonredundant collectionof 125 sequence-based classifiers

that cover 179 of 518 kinase domains, 93 of 118 SH2 domains, 8 of 18

phosphotyrosine-binding PTB domains, and the PIN1 WW domain (fig.

S3 and table S1). This includes new PSSMs for the kinases LKB1, MST1,

TLK1 and TNIK (seeMethods). Moreover, NetPhorest currently contains

two classifiers for BRCT domains and 14-3-3 proteins, respectively.

Comparison with other methods
Assessing the performance of a computational method is important for

two reasons: (i) to quantify the reliability of its predictions on an absolute

scale (for example, by calculatingposterior probabilities as described above)

(Fig. 3, fig. S8, and table S1 for details) and (ii) to determine how it fares

relative to existingmethods, that is, if scientific progress has beenmade

(30). To address the latter issue, we compared NetPhorest to four pub-

lished methods for kinase-specific prediction of phosphorylation sites

[GPS (22), KinasePhos (24), NetPhosK (20), and Scansite (13)] and to

the simple sequence patterns collected by theELM(14), PROSITE (19),

and HPRD (18) databases.

Because most methods have been trained on data from Phospho.ELM,

to make a fair comparison, we benchmarked each method on only the

phosphorylation sites that are dissimilar in sequence to those used for de-

veloping the NetPhorest method. Provided that at least five positive

examples were left, we evaluated the predictive performance of each pre-

dictor by calculating the AROC. Using a bootstrap procedure (see

Methods), we tested if the AROC of each predictor of each method is sig-

nificantly (P < 0.05) better than random guessing, significantly poorer than

the corresponding AROC of NetPhorest, or comparable to it. Of the 140

predictors that could be evaluated, 40 were random, 60 were worse, and 40

had comparable performance to NetPhorest (Fig. 4 and table S2). None of

the evaluated predictors were significantly better, this despite the fact that

the regular expressions tested may have been derived from some of the

examples in our benchmark sets and therefore have an unfair advantage.

We thus conclude that NetPhorest performs significantly better than

every other method tested and that more advanced machine-learning

methods should be preferred over simple pattern-matching approaches

whenever sufficient data exist. This underlines the importance of having

a fully automated pipeline that allows new data to be easily incorporated.

Properties of linear motifs
The large number of kinases and phospho-binding domains covered by

NetPhorest provides a systematic viewof the biochemical features of phos-

phorylated linear motifs. The average length of a linear motif is often cited

as less than 10 amino acids (13, 14). This number agrees well with the

average lengths of our automatically selected ANN-based sequence

models, which are 11 and 9 amino acids for kinases and phospho-binding

domains, respectively. A related issue with linear motifs is the degree to

which the positions within a short peptide can be assumed to be

independent of eachother, that is, howmuchadditional information is pres-

ent in the inter-residue correlations. To investigate this, we compared the

performance of linear and nonlinear ANNs trained on the same data sets,

which allowed direct measurement of nonlinearity in the sequence model.

Underliningtheimportanceof inter-residuecorrelations,theaveragepredic-

tive performance (AROC) for kinases drops from 0.79 to 0.75 (P < 10−3,

Wilcoxon test) when a linear model is used [an ANNwith no hidden layer

(32)]. This is particularly evident for the tyrosine kinases Tec, FLT,CSF1R,

andMet, for which the AROCdrops bymore than 20%when inter-residue

correlations are not considered (table S1). This limits the usefulness of in

vitro assays that reveal only position-specific amino acid preferences.

Comparing sequence specificities of the many kinases and phos-

photyrosine-binding domains revealed that, whereas similar protein ki-

nases and phosphotyrosine-binding domains tend to recognize similar

substrates or ligands, the correlation between domain and substrate

similarity is far from perfect (R2 = 0.18, P < 10−12 and R
2 = 0.31, P <

10−6 for kinases and SH2 domains, respectively; only domain pairs with

a self-normalized bit score of 0.3 or higher are considered) (fig. S5).

Whereas closely related domains typically recognize similar sequence mo-

tifs, the reverse is not true because even distinct domain families that di-

verged before the last common ancestor of eukaryotes may have similar

sequence specificities. Prominent examples of the latter include the pro-

line-directed kinases [CDKs and the mitogen-activated protein kinases

(MAPKs)] and the kinases ATM, ATR, and DNAPK that recognize a glu-

tamine (Q) in position +1 relative to the phosphorylated serine or threonine

residue (fig. S5).However,we observe subtle differences in sequence spec-

ificity even among the proline-directed kinases. Whereas CDK1, 2, 3, and

5 all show the canonical preference for positively charged residues in po-

sition +3 (and to a lesser extent, +2 and +4), the MAPKs favor proline or

leucine in position −2 [as well as −1 in case of the c-Jun N-terminal kinase

(JNK) subfamily] (fig. S7).

DISCUSSION

The objective, data-driven procedure by which the final set of classifiers

was selected gives insight into the sequence specificity of individual

members within kinase families. This analysis reveals that, given the cur-

rentdata, it isoftenimpossible toderiveindividualkinase-specific classifiers,

Fig. 3. Overview of the performance of the NetPhorest classifiers. The his-

togram shows the distribution of areas under the receiver operating

characteristic curves (AROCs). More than 60% of the classifiers have

AROC > 0.75 (see table S1 for the complete list of AROCs and fig. S8 or

http://netphorest.info for the collection of ROCs).
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even when sufficient data are available for several family members. In par-

ticular, it is clear that kinases of the Src family recognize the same, weak

consensus sequence. In other words, the current data strongly suggest that

these kinases are very similar at themotif level, implying that either they

are functionallyredundantor their specificity must be determined by the

context in which the kinase is presented to a potential substrate. We

recently showed that combining sequence motifs and contextual

information greatly improves the accuracy with which kinases and

substrates can be linked (12). This approach, NetworKIN, will ben-

efit from the extended library of sequence motifs in NetPhorest.

The specificity of many kinases is provided in part through the rec-

ognition of binding motifs other than those containing the phosphoryl-

ation site itself; as an example, MAPKs typically bind short docking

motifs within their substrates (12, 39). Because all Src family kinases

contain SH2 domains, which may help direct the kinases to their proper

substrates, we tested if the tyrosine kinase domains that are linked to

SH2 domains have lower sequence specificities than other tyrosine ki-

nases and are reliant on an SH2 domain to function similar to a MAPK

docking motif. Comparison of the predictive power (AROC) of the

sequence models for the two groups of kinases revealed that this is in-

deed the case (P < 10−3, Student's t test; Fig. 5A). We thus speculate

that the combination of low-specificity kinase domains with interaction

domains (for example, SH2 and SH3) and docking motifs, which pro-

vide specificity in a combinatorial fashion, is a common theme in

phosphorylation-dependent signaling.

We further speculated thatmisregulation of kinaseswith low sequence

specificity could induce particularly large changes in phosphorylation

networks, which may lead to disease. This is supported by the obser-

vation that tyrosine kinases exhibit lower sequence specificity (AROC)

than serine/threonine kinases (P < 10−10, Student’s t test; Fig. 5A) and

are 10-fold more likely to harbor mutations that are causally implicated

in cancer according to the Cancer Genome Project (P < 10−8, Fisher’s

exact test). Furthermore, cancer-related tyrosine kinases, including those

encodedby theBCR–ABLandTEL–PDGFR fusiononcogenes,have low-

erAROC than other tyrosine kinases (P< 0.003, Student’s t test; Fig. 5B).

Together these observations suggest that the global regulatory network

changes observed in complex diseases, such as cancers, are in part due

to nonspecific kinases, which potentially phosphorylate new substrates

if they are abnormally expressed or become constitutively active.

Kinase activity is commonly regulated by autophosphorylation. It has

been suggested (40, 41) that the autophosphorylation sites of serine/threo-

nine kinases differ in sequence from sites within other substrates. The motif

scores for autophosphorylated sites in 10 serine/threonine kinases were sig-

nificantly lower than those for other substrates of the same kinases (P <

0.04, Kolmogorov–Smirnov test; Fig. 5C). Our results thus support a struc-

tural study of three serine/threonine kinases (41) and suggest that weak

sequence motifs may be a general feature of autophosphorylation sites.

In summary,we have presented a framework,NetPhorest, which auto-

mates the data set construction and training of sequencemodels for linear

motifs. The framework was applied to current data for substrates of pro-

tein kinases and phosphorylation-dependent binding domains. The re-

sulting classifiers have higher classification and predictive performance

than existing methods and cover 179 kinases, 93 SH2 domains, 8 PTB

domains as well as BRCT domains, WW domains, and 14-3-3 proteins.

With technologies such as peptide arrays (13, 16, 17, 42), phage display

(43), and semisynthetic epitope construction (44), a rapid increase in the

amount of linear motif data can be expected, stressing the importance of

having a fully automated system for training, benchmarking, and selec-

tion of sequence models. Thus, as additional data become available for

kinase docking motifs, phosphatases, or other types of modifications,

these can readily be included in the atlas to provide a more complete pic-

ture of signaling networks.

We envisage that theNetPhorest atlaswill be useful formany different

aspects of signaling- and proteomics-related research (Fig. 6). First, there

has been a recent trend in generating antibodies that recognize specific

phosphorylated residues or sequences (phospho-specific antibodies). In

particular, kinase “consensusmotif antibodies,” such as pS/T-Q, are pow-

erful tools for both targeted studies (12) as well as systems studies (45).

The atlas could be used to derive peptide sequences for raising such anti-

bodies. A related use is for designing synthetic peptides that can be used

to rewire cellular interaction networks or design new logic gates (46). In

addition, mass spectrometry–based proteomics experiments frequently

use simple sequence patterns for finding systematic biases in phospho-

peptides identified in shotgun approaches (8–11). Such studies will ben-

efit from the more robust and comprehensive collection of motifs in

NetPhorest.Computationalbiologystudies can, forexample,useNetPhorest

Fig. 4. Comparison of NetPhorest to other motif resources. We com-

pared NetPhorest to Scansite (13) and the sequence patterns of ELM

(14), PROSITE (19), and HPRD (18) using the entire compilation of phos-

phorylation sites. For NetPhosK (20), GPS (22), and KinasePhos (24), we

used only the subset of sites that was dissimilar in sequence to those used

to train classifiers of NetPhorest (see Methods for details). When at least

five positive examples were left, the AROC was calculated. Subsequent-

ly, we tested how many of the predictors from each method performed

no better than random, better than random but significantly poorer than

NetPhorest, or comparable to NetPhorest. No predictor from any of the

tested methods performed significantly better than the corresponding

NetPhorest classifier. The number on each pie chart specifies how many

predictors were tested from the method in question (see table S2 for de-

tails). Because classifiers from NetPhosK and Scansite were included in

NetPhorest, those two resources are shown above the dotted line.
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for evolutionary studies of cellular signaling networks. Finally, NetPhorest

will be used in future versions of the widely used resources Scansite (13),

NetPhosK (20), andNetworKIN (12). Its ability to continuously incorporate

the latest data will help accelerate systems-level modeling of cellular

signaling events. Furthermore, wewish to develop NetPhorest into a global

linear motif atlas by including other eukaryotic model organisms, such as

yeast, as well as other types of posttranslational modifications.We cordially

invite the scientific community to help expand the coverage of this resource

bysubmittingdataandpurifiedactiveenzymestotheauthors.TheNetPhorest

resource is released under the Creative Commons Attribution licenses and

can be accessed at http://netphorest.info.

METHODS

Collection of published phosphorylation sites
TobuildANN-basedpredictors andevaluate PSSMs for substrate recognition

by kinases and phospho-binding domains, we collected phosphorylation data

from several sources. The Phospho.ELM database (26) is the key repository

for phosphorylation sites and contains more than 13,000 experimentally

mapped phosphorylation sites of which most have been identified in vivo

in mammalian proteins. An updated andhand-curateddata set of 4169exper-

imentally verified kinase-specific phosphorylation sites distributed over 272

different kinases was obtained from version 7.0 of the Phospho.ELM

database (26). From the PepCyber database (47), we obtained 948, 174,

and 7 phosphoserine and phosphothreonine peptides previously shown to

bind to 14-3-3 proteins and to the WWand BRCT domains, respectively.

From Phospho.ELM (26), we also obtained a set of 238 phospho-

tyrosine sites known to bind 45 different SH2 and PTB domains. We

extended this data set by curating data from in vitro assays (28, 48, 49).

For Smith et al. (49), the intensity threshold for a phosphotyrosine

binding site was set to five times the intensity of the nonphosphorylated

peptides. Furthermore, only phosphotyrosine-binding PTB domains (the

APPL, DOK, FRS, and SHC families) (49) were included in the analysis

(fig. S3). This yielded a total of 969 phosphotyrosine sites annotated to

bind 67 and 8 different SH2 and PTB domains, respectively.

SH2 sites from high-density peptide arrays
A total of 6200 peptides, 13 amino acids long and containing a phospho-

tyrosine in the central position, were arrayed in three identical replicas on a

microscope slide. The printed slides were incubated with SH2 domains

fused to glutathione S-transferase (GST) and, after washing, the bound do-

mains were identified and quantified by incubation with fluorescently

labeled antibodies against GST. After background subtraction and aver-

aging over the three replicas, each experiment yielded 6200 data points de-

scribing the peptide recognition profile of 66 specific SH2 domains (34).

Kinase matrices from positional scanning peptide
libraries
Protein kinase phosphorylation motifs for Clk2, Clk3, LKB1, Mst1, Mst4,

S6K1, Tlk1, and TNIK were determined with arrayed positional scanning

peptide libraries (PSPL) as previously described (16). Briefly, we used a

series of biotinylated peptides in which each of nine positions surrounding

a central phosphorylation site was systematically substituted with each of

the 20 proteogenic amino acids. This set of peptides was subjected in

parallel to radiolabel kinase assays followed by capture on streptavidin

membranes. Membranes were washed and exposed to a phosphor storage

screen (fig. S6). To generate PSSMs for use with NetPhorest, spot inten-

sities from at least two independent peptide library screens were quantified

with ImageQuant software. Background subtracted data were normalized

by dividing each value by the average of all values in a given position.

SH2 matrices from oriented peptide array libraries
The starting oriented peptide library contained the sequence KX3-pY-X5D,

whereXdenotes amixture of 19 naturally occurring amino acids (except for

cysteine). Sublibraries containing substitutions of each X by an amino acid

were synthesized on soluble nitrocellulose membranes on an Auto-Spot

ASP 222 Robot (Abimed, CA). After being dissolved in a trifluoric acetic

acid cocktail, these sublibraries, 19 × 8 = 152 in total, were printed onto

Brady labels, producingmultiple copies of identical oriented peptide array

Fig. 5. Weak sequence specificity of oncogenic kinases and auto-

phosphorylated sites. Using the AROC as a proxy for the degree of

sequence specificity, we compared several subsets of kinases and

SH2 domains. (A) Serine/threonine (S/T) kinases exhibit stronger se-

quence specificity (higher AROC) than tyrosine (Y) kinases (P < 10−10).

Tyrosine kinases with SH2 domains are less specific (lower AROC) than

other tyrosine kinases (P < 10−3). (B) Oncogenic tyrosine kinases, as

defined by the Cancer Genome Project (56), have lower AROC than their

non-oncogenic counterparts (P < 0.003). Error bars show the 90% confi-

dence intervals and statistical significance was tested by Student's t test.

(C) The score distribution of serine/threonine autophosphorylation sites in

10 kinases is shifted toward low values, whereas the random expectation

would be a uniform distribution (P < 0.04; see Methods). This shows that

autophosphorylation sites typically have weaker sequence motifs than

other sites phosphorylated by the same kinase.
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Fig. 6. The role of NetPhorest in phosphoproteomics and modeling of

phosphorylation-dependent signaling networks. The NetPhorest atlas of

consensus linear motifs can be used for designing synthetic peptides

for the development of kinase- or family-specific antibodies (for example,

pS/T-Q), will replace Scansite (13) and NetPhosK (20) as the motif

component of the NetworKIN resource (http://networkin.info) (12, 57),

and can be used to detect biases arising from the enrichment procedures

commonly used in phosphoproteomics [for example, phosphoramidate

chemistry (PAC), immobilized metal affinity chromatography (IMAC), and

titaniumoxide (TiO2) (58)]. TheNetPhorestWebsite (http://netphorest.info)

provides the means to classify phosphorylation sites on the basis of con-

sensus sequence motifs.
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libraries (OPAL). Screening of an OPAL membrane with a purified GST–

SH2 domain fusion protein yielded a defined binding pattern that was sub-

sequently imaged and quantified. The above binding datawere used to gen-

erate a matrix used in the prediction of SH2-binding peptides (33). To

ensure high-quality PSSMs, only those with information content above 2

bits (not considering the central phosphorylated residue) were included.

This threshold was estimated by manual inspection of the raw images.

Position-specific scoring matrices
For this work, we collected the most comprehensive set to date of PSSMs

from previously published works, from unpublished data, and from

experiments specifically made for this study. From the Scansite database

(13), we obtained 20, 11, and 1 PSSMs for kinases and SH2 and PTB

domains, respectively. Combined with the PSPL and OPAL data de-

scribed above, this yields a collection of PSSMs that covers 50 kinases,

77 SH2 domains, and 1 PTB domain. Information on both positive and

negative selection of residues at each position is used.

Construction of phylogenetic domain trees
To obtain a phylogenetic tree file of the human kinome, tree files for the

individual kinase superfamilies were downloaded from http://kinase.

com/human/kinome/phylogeny.html. These files were manually merged

and edited to obtain a kinase tree consistent with the one published by

Manning et al. (25). The SH2 domain tree file was manually constructed

according to the dendogram of the human SH2 domains shown in (29).

To produce the 14-3-3 and PTB domain trees, we extracted the se-

quences of these domains as predicted by SMART (3), aligned thesewith

MAFFT (50), identified conserved blocks with Gblocks (51), and con-

structed a maximum likelihood tree with PhyML (52).

Tree-based data organization
To enable mapping of all experimentally determined phosphorylation

sites and PSSMs onto the domain trees described above, we standard-

ized the kinase and phospho-binding domain names used in each data

source to follow the Phospho.ELM nomenclature (while maintaining a

mapping to HGNC and KinBase names). Using the phylogenetic trees

of kinase and phospho-binding domains as guides, we partitioned the

data into specific (terminal nodes) or family-based (internal nodes)

subsets. These subsets constituted the positive data for ANN training.

The remaining part of the total data set was used as negative data, ex-

cept if the data were assigned directly to upstream parental nodes.

For each specific or family-based predictor, the positive and negative

data sets were pooled and redundancy reduced. This was first performed

on full-length proteins and subsequently on 13-mer peptide level (positive

or negative phosphorylation site centrally placed) by use of CD-HIT (53)

with default values and 90% sequence identity threshold in both cases. The

amino acids thatwere not annotated as phosphorylation sites in the positive

data were pruned from the negative data. For example, because adenosine

protein kinase A (PKA) phosphorylates serine and threonine and not tyro-

sine, the phosphotyrosine sites were removed from the negative data.

Artificial neural network training
In this work, we used a standard three-layer feed-forward network that

was trained with the backpropagation algorithm as previously described

(54). To balance the training, we reduced the negative data sets to only

contain five negative examples per positive example. At least 12 positive

sites after redundancy reduction were required before an ANN was

trained. The resulting data set was divided into four subsets by random

partitioning. We trained an ANN on two subsets, determined the optimal

network architecture and training parameters on the third subset, and ob-

tained an unbiased performance estimate from the fourth subset. This was

repeated in a round-robin fashion to use all data for training, test, and val-

idation. The following ANNparameters were varied to optimizeMatthews

correlation coefficient on each test set: thewindow size (5, 7, 9, 11, and 13

for phospho-binding domains and up to 21 for kinases), the number of

hidden neurons (0, 2, 4, 6, 10, 15, and 20), and the learning rate (0.05,

0.01, and 0.005). The three best parameter combinations from each

cross-validation were kept to obtain an ensemble of 12 ANNs. This im-

proved the predictive performance compared to using only the best

parameter combination, whereas using a larger ensemble did not lead

to further improvement but made the method markedly slower. We

calculated the AROC by applying each ANN to the corresponding

independent validation set. For unclassified sites, we averaged the output

of the ANNs in each ensemble. The training data and the classifiers are

available at http://netphorest.info.

Score calibration
To make the output scores from different PSSMs comparable, we cal-

culated a scaling factor for each PSSM on the basis of its score dis-

tribution on random peptides. We then calibrated the scores from both

ANNs and PSSMs through benchmarking on the compilation of phos-

phorylation sites. The positive predictive value [true positives/(true

positives + false positives)] was calculated within different score win-

dows (running bins) on the validation set. Subsequently, we fitted a lo-

gistic function to these values, minimizing the sum of squared errors.We

chose the logistic function on the basis of visual inspection of the cali-

bration plots and because it is monotonic.

For about one-third of the PSSMs (47 of 142), a sigmoid function

could not be estimated because not enough corresponding phosphoryl-

ation sites were available for benchmarking (less than 12 positive

examples). Assuming that these PSSMs have comparable perform-

ances to those that could be evaluated, we calculated a general PSSM

sigmoid on the basis of data from the PSSMs that we were able to

benchmark. In this way, we calculated three general sigmoid curves

for kinases, SH2 domains, and PTB domains, respectively.

Because the fraction of positive examples in the evaluation set does

not reflect the prior probability of a site being phosphorylated by a par-

ticular family of kinases, the sigmoid curve does not directly yield the

posterior probability. To correct for this, we assumed that the prior

probability is
ffiffiffiffi

N
p

/50 for kinases,
ffiffiffiffi

N
p

/35 for phospho-binding do-

mains, where N is the number of domains in the family in question.

These values are largely arbitrary but correspond to guessing that, in

vivo, each phosphorylation site can on average be phosphorylated by

10 different kinases and bound by 2 phospho-binding domains. It

should be noted that the choice of these parameters have no influence

on the performance of each classifier, and hence also not on which

classifiers are selected by the procedure described below.

Sequence similarity of domains
Pairwise sequence similarity was calculated [with the ParAlign software

(55)] as self-normalized bit scores between all domain sequences in the

kinase, SH2, and PTB domain trees. The self-normalized bit scores of do-

mains A and B were calculated as the bit score of A to B divided by the

minimum of the bit score of A to A and B to B. For internal nodes in the

trees, the pairwise sequence similarity was calculated as the average simi-

larity of all members of the family to all members of the family in question.

Placement of PSSMs and ANNs in the trees
ANNs were trained for all possible nodes in the trees with the phosphoryl-

ation site data described above. The PSSMs used in this work were based

R E S E A R C H A R T I C L E

www.SCIENCESIGNALING.org 2 September 2008 Vol 1 Issue 35 ra2 9

 o
n
 S

e
p
te

m
b
e
r 2

, 2
0
0
8
 

s
tk

e
.s

c
ie

n
c
e
m

a
g
.o

rg
D

o
w

n
lo

a
d
e
d
 fro

m
 

http://stke.sciencemag.org


on in vitro experiments, which were always performed with a specific im-

munoprecipitated or otherwise purified domain. However, the resulting

PSSMmay be better used as a classifier for a family including other closely

related domains. To investigate this, the phosphorylation site data set was

used to benchmark each PSSM considering it as a classifier at every node

on the path connecting the root of the tree with the node at which the PSSM

was initially assigned. Using the pairwise domain sequence similarity de-

scribed above, we eliminated families with a self-normalized bit score less

than 0.3. This threshold was chosen on the basis of the fact that above a

domain similarity score of 0.3, there is a significant correlation between

domain sequence similarity and substrate similarity (fig. S5).

Selection of classifiers
The predictive performance of the ANN and PSSM classifiers was esti-

mated by calculating the AROC with the compilation of phosphorylation

sites. We discarded any classifiers not performing significantly better than

random (P < 0.05), as judged from a bootstrappedAROC distribution con-

structed by resampling the scores of positive and negative examples. The

PSSMs that could not be benchmarked were assumed to have comparable

performance to other PSSMs obtained from the same type of assay, and

were thus assigned the average AROC of the PSSMs that could be bench-

marked. Any domains that were not covered by a given set of classifiers

were considered equivalent to random performance (AROC = 0.5).

At each node in the tree, we selected the classifier with the highest

AROC. If multiple PSSMs have identical AROC, the one with the

highest Kullback–Leibler information content was chosen. To obtain

a nonredundant set of classifiers, the average AROC was maximized

across all domains with a recursive procedure that starts from the leaf

nodes. When multiple solutions had identical AROC, we chose the one

that covered the largest number of domains.

Benchmarking of published methods
To perform a fair benchmark of the available methods for predicting kinase-

specific phosphorylation,we constructed avalidation set consisting of phos-

phorylation sites that were not used during training of the respective

methods. To this end we obtained the training data sets from the authors

of GPS (22) and KinasePhos (24) and removed identical or highly similar

phosphoproteins from our compilation of phosphorylation sites with the

same criteria as for redundancy reduction. The resulting independent vali-

dation sets consisted of 182 and 79 phosphorylation sites for GPS and

KinasePhos, respectively. We applied each prediction method to its respec-

tive validation set and calculated the AROC for the kinases or family of ki-

nases for which we had at least five phosphorylation sites in the validation

set. To test if the observed performance was significantly higher than ran-

dom or significantly poorer than NetPhorest, we constructed bootstrap es-

timates of the uncertainty associated with each AROC by resampling of the

score distributions for positive and negative examples.

We used a similar procedure for benchmarking the sequence

patterns (for example, [ST]P..[RK])from ELM (14), PROSITE (19),

and HPRD (18). As multiple regular expressions may be provided

for the same domain or family of domains, we scored each site on

the basis of the fraction of the sequence patterns that matched the site.

As we have no way of determining which sites were used for deriving

the regular expressions, the complete, nonredundant compilation of

phosphorylation sites was used for benchmarking them.

Analysis of substrate specificity for oncogenic kinases
A complete list of genes for which mutations (both germline and somatic)

have been causally implicated in cancer was obtained from the Cancer Ge-

nome Project (Cancer Gene Census catalog version 2007.02.13, http://

www.sanger.ac.uk/genetics/CGP/) (56). The list was matched to the set

of serine/threonine and tyrosine kinases in the NetPhorest atlas. The frac-

tion of protooncogenes in each set was calculated and compared by Fisher's

exact test. Subsequently, the average AROC was calculated for oncogenic

and non-oncogenic tyrosine kinases compared by Student’s t test.

Comparison of autophosphorylated sites and other
phosphorylation sites
We extracted all autophosphorylated sites in the Phospho.ELM database

(26) and scored them with NetPhorest. The resulting posterior probabil-

ities were converted to fractiles in the score distribution of all known

phosphorylation sites for the kinase in question. The distribution of frac-

tiles was compared to random expectation (uniform distribution) by the

Kolmogorov–Smirnov test.

SUPPLEMENTARY MATERIALS
www.sciencesignaling.org/cgi/content/full/1/35/ra2/DC1

Figure S1: Overview of the NetPhorest pipeline.

Figure S2: Phosphorylation data mapped onto domain trees.

Figure S3: Coverage of classifiers for targets of kinases, SH2 domains, and PTB domains.

Figure S4: Score calibration.

Figure S5: Correlation between domain similarity and substrate specificity.

Figure S6: Kinase matrices from Positional Scanning Peptide Libraries (PSPL).

Figure S7: Sequence logos for kinases and pS/pT-binding domains.

Figure S8: Receiver output characteristic (ROC) curves for the NetPhorest classifiers.

Table S1: The selected set of NetPhorest classifiers.

Table S2: Benchmark of the NetPhorest method.

Poster: A Sequence-Specificity Atlas of the Kinase World
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