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Abstract

In this paper, we describe the explicit application of ar-

ticulation constraints for estimating the motion of a system

of planes. We relate articulations to the relative homog-

raphy between planes and show that for affine cameras,

these articulations translate into linear equality constraints

on a linear least squares system, yielding accurate and nu-

merically stable estimates of motion. The global nature of

motion estimation allows us to handle areas where there is

limited texture information and areas that leave the field of

view. Our results demonstrate the accuracy of the algorithm

in a variety of cases such as human body tracking, motion

estimation of rigid, piecewise planar scenes and motion es-

timation of triangulated meshes.

1. Introduction

The principal challenge in developing general purpose

motion estimation algorithms is the variety of rigid and non-

rigid motions encountered in the real world. Consider the

three examples shown in Figure 1. In the first image pair,

the motion of a human is shown where each limb is able

to move with six degrees of freedom. Motion of a rigid

scene, shown in the second image pair, is induced by the

confluence of the structure of the scene and the motion of

the camera. Finally, the motion of a nonrigid object such

as the cloth in the third image pair depends on the elasticity

of the object and the force acting on it. In computer vision,

the problem of motion estimation for varied objects such

as these has resulted in the proposition of a large number

of algorithms [17, 2, 26, 3, 7, 29, 1, 16, 14]. In particular,

due to their wide applicability, layered motion models have

gained significant traction over the years [28, 23, 30]. How-

ever, existing layers based motion algorithms do not exploit

a key constraint that exists in the motion of a large number

of real scenes.

In this paper, we demonstrate that articulation con-

straints are important in many common scenarios for mo-

tion estimation and yield useful constraints when taken into

(a) (b) (c)
Figure 1. Examples of articulated motion (a) Motion of human

body limbs are dependent on each other. (b) Motion of the facades

of a building are dependent on each other and on the ground plane.

(c) A popular choice for parameterizing the motion of a nonrigid

surface is a triangulated mesh, where the motion of each triangle

is dependent on the its neighboring triangles.

account explicitly. Articulation constraints posit the exis-

tence of points where the motion of a pair of planes is equal.

For instance, even though a human body can move in a va-

riety of complex ways, one constraint that must be followed

is that the motion of the upper and lower arm must move

the elbow to the same position (Figure 1(a)). Rigid, piece-

wise planar scenes also observe this constraint because the

motion on the line of intersection of any two planes is the

same for the two planes. For nonrigid surfaces, a triangu-

lated mesh is a popular representation. Each vertex, shared

by multiple triangles, must also move to the same position

under the motion of all those triangles.

We address the problem of motion estimation for both

rigid and nonrigid entities by taking articulation constraints

explicitly into account. We study the relationship between

articulations and the homographies induced by articulated

planes (Section 2). Unlike previous constraints [14, 26], we

define exact equality constraints on the motion model of the

articulated planes (Section 3), and propose a motion estima-

tion algorithm that solves a linear equality constrained least

squares system for the motion of multiple planes simulta-
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Figure 2. Articulation Constraints (a) Articulations transform

identically under the transformations of two planes (b) Singly ar-

ticulated planes as a model for body tracking. Five points connect

six body parts.

neously (Section 4). Our results demonstrate that motion is

estimated accurately for a variety of settings such as human

body tracking, estimating motion in rigid, piecewise planar

scenes and estimating the motion of nonrigid surfaces (Sec-

tion 5).

2. Articulated Planes

Between a pair of planes (Πi,Πj) in IR3 undergoing

3D Euclidean transformations (Ti,Tj) respectively, an ar-

ticulation P, is a 3D point that moves identically under

the action of both Ti and Tj . There can be at most two

such points between planes since if there are three non-

collinear articulations the two moving planes are, in fact,

the same plane. Singly articulated planar systems are a pop-

ular model of the human body [14, 15] (see Figure 2) and

what can be considered doubly articulated planar systems

have found application in shadow analysis, view synthesis

and in scene reconstruction, [18, 12, 21]. Under the action

of a projective camera, the motion field induced by a mov-

ing plane can be described by a homography,
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that is x′ ∼= Hx where x,x′ ∈ IP2 and H is a nonsingular

3 × 3 matrix. The motion fields induced between a pair of

articulated planes are not independent and their dependen-

cies physically manifest themselves in 2D motion as well.

Let p be the image of P and let Hi and Hj be the respec-

tive homographies induced by the motion of the two planes.

Since p is the image of an articulation, it follows that,

p
′ ∼= Hip ∼= Hjp. (2)

2D articulations can be computed directly from the pair of

homographies by noting that they are related to the fixed

or united points ([25]) of the relative homography Ωij =
H−1

i Hj . The 2D articulations correspond to eigenvectors
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Figure 3. Magnitude of the difference between the motion fields in-

duced by two homographies. The black dots denote the real eigen-

vectors of the relative homography. (a) From homographies in-

duced by two identical planes rotating in opposite directions about

a common point. (b) From homographies whose relative homog-

raphy is a planar homology. Note that two points lie on a line of

fixed points.

of Ωij (and Ωji). This can be seen since

sk
i Hipk = p′

k, sk
j Hjpk = p′

k. (3)

Since Hi is non-singular and real,

(H−1

j Hi − λkI)pk = 0, (4)

where λk =
sk

j

sk
i

and I is a 3 × 3 identity matrix. Thus,

given (H1,H2), finding all p that satisfy Equation 3 is the

generalized eigenvalue problem. From Equation 4, each λk

is an eigenvalue and each pk is an eigenvector of H−1

j Hi.

To illustrate the meaning of articulations in terms of optic

motion, the absolute difference in motion fields generated

by two homographies is shown in Figure 3. The location

of the eigenvectors of the relative homography are marked

by black dots. It should be noted that all eigenvectors of

the relative homography do not necessarily correspond to

3D articulations. A relevant example is that of a pair of

moving planes fixed with respect to each other. The relative

homography in this case is a planar homology ([18]). Two

eigenvectors are images of points that lie on the fixed line

of intersection (which can be considered a stationary articu-

lation) but the third eigenvector does not correspond to any

3D articulation (see Figure 3(b)).

Conversely, knowledge of articulations can be used to

constrain the estimation of homographies. To eliminate the

effects of scale, we can rewrite equation 2 as,

Hip × Hjp = 0. (5)

Equation 5 can be rearranged to yield three relationships,

pT C1p = 0

pT C2p = 0

pT C3p = 0,



where the conics C1, C2 and C3 are functions of the two ho-

mographies Hi and Hj . Each articulation satisfies the three

conic equations. Thus, the constraints induced by articula-

tion are quadratic in terms of the elements of (Hi,Hj). In

the next section we show that if affine cameras are assumed,

these constraints are simplified into linear constraints, suit-

able for numerically stable and accurate estimation of mo-

tion.

3. Articulation Constraints for Affine Cameras

For affine cameras, the motion induced between two

views of a plane is represented by an affine transformation,
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or equivalently x′ = Aix. Between plane Πi and plane Πj

articulated at p, the articulation constraint takes a particu-

larly simple form,

Aip = p′ = Ajp. (7)

Equation 7 can be rewritten as,

(Ai − Aj)p = 0, (8)

and therefore the null-vector of (Ai − Aj) is p.

We also observe that for a pair of affine transformations,

(Ai,Aj), with two articulations, p1 and p2, any point on

the line defined by p1 and p2 is also a articulation. All

points that lie on the line defined by the articulations p1

and p2 can be expressed through the convex relationship

p3 = αp1 + (1 − α)p2. Since p1 and p2 are articulations,

from Equation 7,

Aip1 = p′
1 Ajp1 = p′

1,

Aip2 = p′
2 Ajp2 = p′

2.

We can see that when p3 is transformed by Ai and Aj we
get,

Aip3 = Ai(αp1 + (1 − α)p2)

= αAip1 + (1 − α)Aip2 = αp
′

1 + (1 − α)p′

2

= αAjp1 + (1 − α)Ajp2 = Aj(αp1 + (1 − α)p2)

= Ajp3,

and therefore any point p3 that lies on the line defined by

two articulations of a pair of affine transform is itself an ar-

ticulation. This property is useful when considering motion

estimation over triangulated meshes (Figure 4) as it ensures

that tears do not occur while warping the underlying im-

ages.

Finally, a remark on the linear dependencies of con-

straints from articulations between multiple (≥ 3) planes.

For a system such as the one shown in Figure 4, there

are five unique articulations1: p12, q12, r23, q23 and

1
aij refers to the articulation a between triangles i and j.
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Figure 4. A system of three triangles sharing three articulations (a)

before and (b) after motion.

q13. However, there are only four linearly independent con-

straints since the constraint produced by q13 is linearly de-

pendent on those of q12 and q23.

4. Articulated Motion Estimation

In this section, we describe how to use articulation con-

straints in the estimation algorithm proposed by Bergen et

al. [2]. By making the brightness constancy assumption be-

tween corresponding pixels in consecutive frames, the mo-

tion estimation process involves SSD minimization,

E({a}) =
∑

x

(

It(x) − It+1

(

W (x|{a})
)

)2

, (9)

where W is a warp function, {a} are the motion parame-

ters. Gauss-Newton minimization is used to estimate the

motion parameters. Thus, applying a first order approxima-

tion yields the optical flow constraint equation,

∇Ixu + ∇Iyv + ∇It = 0, (10)

where ∇Ix, ∇Iy and ∇It are the spatiotemporal image gra-

dients and u = x′ − x and v = y′ − y are the horizontal

and vertical components of the optical flow vector. Under

an affine transformation,

x′ = a1x + a2y + a3, (11)

y′ = a4x + a5y + a6. (12)

Equations 10, 11 and 12 can be combined to create a

linear system of equations in the unknown values a =
[a1, · · · a6]

⊤. Thus, in a system of planes, for the i-th plane

we have,

Λi(∇Ix,∇Iy,∇It)ai = bi(∇Ix,∇Iy,∇It), (13)

where Λi and bi define the same linear system as in [2].

For two planes Πi and Πj , their independent linear systems

may be combined by means of a direct sum into a larger

system,

[

Λi(∇I) 0

0 Λj(∇I)

] [

ai

aj

]

=

[

bi(∇I)
bj(∇I)

]

. (14)



Solving the system in Equation 14 is equivalent to solv-

ing individually for each plane. However, if Πi and Πj

share an articulation p, the affine transformations Ai and

Aj are related as described in Equation 8. In terms of

[ai aj ]
⊤ this constraint can be written as,
[

p 0 −p 0

0 p 0 −p

] [

ai

aj

]

=

[

0
0

]

, (15)

or simply [θ(p) θ(−p)][ai aj ]
⊤ = 0. Estimating [ai aj ]

⊤

from Equations 14 and 15 is a standard equality constrained

linear least squares problem which can be solved stably as

described in Appendix A or by standard optimization pack-

ages (such as lsqlin in Matlab). For further details on

such optimization the interested reader is directed to [9].

For more than two planes with pairwise articulations,

such as the case in Figure 2 (b), this analysis can be used to

globally constrain the estimate of the planes. Each pairwise

articulation introduces a pair of constraints on the affine pa-

rameters of the system. For n planes with k articulations,

we have 6n affine parameters and 2k equality constraints.

The matrix in Equation 14 would be expanded into a block

diagonal matrix with n blocks.
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Each of the k articulations would provide two constraints

that can be directly encoded in a single matrix. As an il-

lustration, consider the following linear equations for the

system in Figure 4,
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or in matrix form, ΓA = B.

The corresponding constraint equations for the system

would be,
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or in matrix form, ΘA = 0.

From commutativity, it should be noted that the motion

of p is not independent of the motion of Π3 even though an

explicit connection is not present. The network of articula-

tions place a constraint on the global motion estimation of

the system of planes.

5. Applications

We have conducted several experiments to evaluate our

motion estimation algorithm for a wide variety of motions

Objective

Given 2 images, P articulations and the support of each of the N

planes, estimate the motion of the system of articulated planes.

Algorithm

Do until convergence

1. Create Linear System: Create a block diagonal matrix Γ

and a vector B as in 16 for the system of planes.

2. Apply Articulation Constraints: Create the linear equality

constraint matrix Θ as in Equation 15.

3. Solve Linearly Constrained Least Squares System: Solve

ΓA = B subject to ΘA = 0 (See Appendix A).

4. Update Source Image: Warp the source image towards the

target image.

Figure 5. Motion Estimation for Systems of Articulated Planes.

that occur in real scenes. In particular, we evaluated our

algorithm on the specific tasks of estimating the motion of

the upper body of a human, estimating the motion of rigid,

piecewise planar scenes with low texture planes, and finally

on estimating the motion of several nonrigid surfaces.

5.1. Human Body Tracking

A human body can be modeled as a system of singly

articulated planes, where each limb shares one articula-

tion with an attached limb. We collected a large data set

of 11,000 frames of 3 people wearing 5 different types of

clothing, over a period of several imaging sessions. This

data set has on the order of about 25 human activities, with

each activity roughly 400 frames long at 30 frames per sec-

ond.

We manually initialized eleven points on the upper body,

of which five were articulations. Based on these points, a

rectangular box around each limb is obtained and the pix-

els lying in each box are used to construct Λi and bi for

that plane. The articulations are used to set up the linear

constraint matrix, Θ. Thus, a system of 36 unknowns with

10 constraint equations is constructed, which is solved us-

ing the algorithm outlined in Figure 5 at an average speed

of 4 seconds per frame in MATLAB. We conducted sev-

eral tests on a variety of activities such as reaching for the

glove box, changing gears, and reaching into the center con-

sole. Several results are shown in Figure 6. An interest-

ing point can be made about tracking through motion blur

(Figure 6(c)). Since our tracking algorithm uses articula-

tions, therefore, even though the information content locally

around the blurred area is low, the tracker is able to incor-

porate information from the connected limbs to successfully

track the blurred object. During experimentation the princi-

pal sources of failure were strong occlusions and the pres-

ence of strong background gradient during severe blurring.
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(b)

(c)

(d)
Figure 6. Human body tracking (a) Key frames of tracking a human performing a complete activity (reaching for the center console box).

(b) Key frames of tracking a human reaching for the center instrument panel. (c) Key frames of successful tracking of blurred body parts.

Since, we use articulation constraints, therefore even though the information content locally around the blurred area is low, we are able to

use the information from other articulations. (d) Key frames of tracking a human performing miscellaneous activities.

(a)

(b)
Figure 7. Tracking a rigid, piecewise planar scene with low texture layers. Note that it is challenging to track points on low texture walls

and the ground plane without the use of articulation constraints.
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(d)
Figure 8. Result of tracking a triangulated mesh on a variety of nonrigid surfaces. (a) Snapshots of large illumination change resistant

tracking of a sponge. (b) Tracking a paper being moved in a wave-like manner. (c) Tracking large deformations on a paper bag. (d) Robust

tracking of a cloth bag, where the points on the right side of picture, disappear and then reappear in the field of view. Notice that when

the points reappear, they are at their correct locations. Despite not having any gradient information, they are tracked correctly because of

the articulation constraints from the neighboring points. We initialize the points (mesh vertices) in the first frame using the Harris corner

detector and track the points in the consecutive frames.

5.2. Tracking Rigid Piecewise Planar Scenes

An important manifestation of doubly articulated planes

occurs between the rigid faces of a building in urban scenes.

As the camera moves, the motion of connected facades of

a building are dependent on each other. Accurate motion

estimation that ensures connectivity leads to application in

3D scene reconstruction and view synthesis of rigid scenes

[12]. Figure 7 shows results of motion estimation in scenes

containing multiple planes fixed with respect to each other

(in 3D). It can be observed from the images that due to the

articulation constraints, planes which have little or no tex-

ture can also be tracked. For example in Figure 7(a) two

of the planar faces have unidirectional texture. Despite this,

the articulation constraints allow the ground plane to anchor

the motion of the other two planes. This ability is even more

apparent in Figure 7(b), where the ground plane has barely

any texture at all. This is a common phenomenon in real

urban scenes, and articulations provide a solution for esti-

mating ground plane motion robustly.

5.3. Motion Estimation of Triangulated Meshes

Consider the problem of estimating the motion of a non-

rigid surface such as a piece of cloth or paper. The under-

lying motion of such a surface cannot be captured by a sin-

gle, globally defined parametric motion model and hence

must take on more sophisticated representations such as

Thin Plate Splines (TPS) or triangulated meshes. The prin-

cipal advantage of using triangulated meshes is that surface



discontinuities can be handled by triangulated meshes, but

require additional mechanisms with TPS.

Given a mesh constructed, for example, out of Harris

corner points or uniformly sampled points, we set up the

linear system using the pixels contained within each trian-

gle. The constraint system is setup so that mesh vertices are

transferred to the same location by all the triangles sharing

that point. This system is then solved using the algorithm

outlined earlier in Figure 5. Figure 8 presents result on dif-

ferent nonrigid surfaces on which we applied our algorithm.

Note that we do not require point correspondences to esti-

mate motion.

Several interesting observation can be made about the

results. We are able to robustly estimate the motion of the

nonrigid surface through large illumination changes in part

because the motion of the triangles which lie in saturated

areas of the image is well-constrained by the other neigh-

boring triangles through the articulation constraints. This is

the same reason as to why we are able to accurately recover

the motion of triangles even after part of the triangulated

mesh has left the field of view. This is evident in several re-

sults, in particular the Cloth Bag sequence (Figure 8(d)) —

note the accurate localization of the vertex on the last “E” of

“DEFENSE”. This happens because a large number of ar-

ticulation constraints are placed by the triangulated mesh on

each triangle and hence even if the triangles, or some parts

of the triangles are not visible, the neighboring triangles can

accurately constrain their positions.

The principal source of error in these experiments was

the inability of the triangulated mesh to express the under-

lying motion of the surface. There is a tradeoff between the

size of the triangles (which ensures that each triangle con-

tains sufficient gradients) and the resolution of triangula-

tions (which allows greater expression of nonrigid motion).

6. Related Work

In this paper, we describe the use of articulation con-

straints on direct algorithms and demonstrate their applica-

bility in a variety of applications. The study of articula-

tion has a long history in the field. Since the introduction

of spring constraints in the seminal work of Fischler and

Elschlager [8] in 1973, motion estimation algorithms have

modeled articulation constraints in many different ways to

capture the space of physically realizable set of motions

[10, 22]. Nishihara and Marr [19] represented the body as a

hierarchical collection of cylinders. Each component cylin-

der was connected to other cylinders using adjunct rela-

tions, which were predefined relations that specify the loca-

tion of the component cylinder relative to the torso. Rourke

et al. [20] introduced constraints on human body models

such as distance constraints or joint angle limits to refine

the 3D joint positions. Johansson in [13] and Lee et al. in

[15] introduced and made popular the stick figure model

for understanding and analyzing human body motion. This

model was later extended by Ju [14], where each body limb

was modeled by a planar patch and a set of constraints, two

per limb, were introduced as representing a “smoothness”

term. More recently, Bregler [6] modeled human body mo-

tion constraints as a product of exponential maps in a kine-

matic chain, where each articulation is modeled as a twist.

Sigal [26] introduced conditional probabilistic modeling of

limb articulations, where the limb articulation constraints

are learnt from the motion capture training data.

Methods in the tradition of the Lucas-Kanade algorithm

([17]), also called “direct” algorithms [11], have been pro-

posed for many different parametric motion models such as

the affine transformation [2] and the homography [27]. In

addition, several direct methods that utilize appearance in-

formation for estimating non-rigid deformation have been

proposed in the literature [4, 7]. Bookstein in [5] introduced

Thin Plate Spline (TPS) model for warping points between

two frames to estimate nonrigid motion. This idea was fur-

ther explored by others [16]. Sclaroff et al. [24] employed

texture-mapped triangulated meshes, active blobs, for track-

ing deformable shapes in images. Active blobs, similar in

spirit to the TPS model, solve an energy minimization prob-

lem with an application dependent regularization parameter

to perform nonrigid tracking. One limitation of TPS model

is their inability to handle surface discontinuities such as the

ones encountered in Figure 7.

Our goal in this work is to consider articulation con-

straints, not as a form of soft regularization or “smooth-

ness”, but as linear, exact equality constraints that are placed

on the 2D motion estimation task. We show that these trans-

late into linear constraints that enable us to depart from es-

timating or hard-coding potentially nonlinear spring con-

straints and regularization weights. Since there are no appli-

cation dependent parameters, our motion estimation frame-

work allows us the flexibility to employ the algorithm for a

variety of tasks without parameter tuning.

7. Conclusion

In this paper, we have presented a motion estimation al-

gorithm that explicitly employs articulation constraints to

recover a variety of real world motions. The algorithm con-

structs an over-constrained system of linear equations sub-

ject to linear, exact equality constraints to solve for the mo-

tion of multiple entities simultaneously. Since, we solve for

the motion of all entities simultaneously, therefore the en-

tire set of constraints bears on the motion parameters for all

the entities. In some cases, this enables the algorithm to

track parts of the object even if they have left the field of

view and when there is little gradient information available

for that plane.

The value of our algorithm lies in its ability to compute

motion estimates for systems of articulated planes without



the use of any application dependent regularization parame-

ters or smoothness terms. This points to broad applicability

of the algorithm to a variety of real-world motion estimation

tasks as demonstrated in this paper.

During experimentation, we noted two primary sources

of error. The first source of error is occlusion. For cases

such as the human body, this is an important considera-

tion where self-occlusion is a fairly common phenomenon.

The second type of error occurs in nonrigid surface track-

ing, when the resolution of the model is unable to represent

the motion. This raises an important open question of what

is an appropriate triangulation of a nonrigid surface and

should the mesh be constructed out of feature detectors or

uniformly or perhaps affected by the underlying motion of

the nonrigid surface. Developing occlusion handling mech-

anisms and resolving the question of triangulation coverage

and resolution will be the focus of future research.
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Appendix A. Least Squares with Linear Equal-

ity Constraints

We wish to solve,

min
A

‖B − ΓA‖2 subject to ΘA = 0, (19)

where Γ is an M×N matrix, B is a M -vector, Θ is a C×N

matrix and C ≤ N ≤ M . Using Lagrange Multipliers,

f(A|λ) = ‖B − ΓA‖2
2 + 2λT ΘA. (20)

The gradient of f(A|λ) equals zero when,

ΓT ΓA + ΘT λ = ΓTB, (21)

and

ΘA = 0. (22)

This can be written and solved as a Karush-Kuhn-Tucker

system,

[

ΓT Γ ΘT

Θ 0

] [

A
λ

]

=

[

ΓTB
0

]

. (23)


