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Abstract. This paper presents a linear algorithm for simultaneous computation of 3D points and camera positions

from multiple perspective views based on having a reference plane visible in all views. The reconstruction and

camera recovery is achieved in a single step by finding the null-space of a matrix built from image data using

Singular Value Decomposition. Contrary to factorization algorithms this approach does not need to have all points

visible in all views. This paper investigates two reference plane configurations: Finite reference planes defined by

four coplanar points and infinite reference planes defined by vanishing points. A further contribution of this paper is

the study of critical configurations for configurations with four coplanar points. By simultaneously reconstructing

points and views we can exploit the numerical stabilizing effect of having wide spread cameras with large mutual

baselines. This is demonstrated by reconstructing the outside and inside (courtyard) of a building on the basis of 35

views in one single Singular Value Decomposition.

Keywords: structure from motion, projective reconstruction, multiple views, missing data, duality, critical

configurations, reference plane, planar parallax

1. Introduction

The efficient computation of 3D structure and cam-

era information from multiple views has been a sub-

ject of considerable interest in recent years (Hartley

and Zisserman, 2000; Faugeras and Luong, 2001). The

problem can be formulated most generally as a bi-linear

inverse problem (including unknown scale factors) for

finding camera and 3D information from image data.

Contrary to the case of parallel projection (Tomasi and

Kanade, 1992) no algorithm for direct factorization

of camera parameters and 3D structure has been pro-

duced for perspective projection cameras. The perspec-

tive factorization algorithm suggested in Sturm and

Triggs (1996) relies on the pre-computation of scale

factors “projective depths” in order to cast the problem

into the same form as in Tomasi and Kanade (1992).

Approaches have been invented for efficient combi-

nation of groups of views (Fitzgibbon and Zisserman,

1998; Koch et al., 1998), or iterative methods exploiting

all views (Heyden et al., 1999). The approach in Quan

(1994) using “shape constraints” dual to epipolar con-

straints (Carlsson, 1995; Carlsson and Weinshall, 1998;

Weinshall et al., 1995) can in principle be exploited for

computing projective structure using arbitrary number

of views (Hartley and Debunne, 1998; Schaffalitzky

et al., 2000). It is however limited to a restricted num-

ber of points at a time.

Ideally an algorithm for reconstructing camera and

scene information from multiple views should exploit

all points and views simultaneously as in Tomasi and

Kanade (1992). Inevitably points become occluded as

the camera view changes. Therefore, a certain point

is only visible in a certain set of views. An efficient
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algorithm should be able to deal with this problem.

Note that this problem is not handled by any suggested

general reconstruction algorithm so far, although it has

been given some attention (Jacobs, 1997; Qian and

Medioni, 1999; Quan and Heyden, 1999).

In this paper we will show that by adding the sim-

ple assumption of having four points on a reference

plane visible in all views (Kumar et al., 1994; Heyden

and Åström, 1995, 1997; Triggs, 2000), the problem

of reconstruction and camera recovery can be formu-

lated and solved very efficiently as a linear null-space

problem. It is based on the fact that having a reference

plane in arbitrary position in 3D, the problem is trans-

formed into the equivalent problem of reconstructing

a set of translating calibrated cameras. Variations of

this has been observed and discussed (Oliensis, 1995,

1999; Heyden and Åström, 1995; Oliensis and Genc,

1999; Triggs, 2000) but it seems that its full poten-

tial for reconstruction and camera recovery has not yet

been exploited. A more detailed discussion and com-

parison of these methods to our approach will be given

later. The advantage that the constraints, given by the

2, 3 or 4 view tensors, become linear if a plane is vis-

ible in all views (Heyden and Åström, 1995; Heyden,

1998) has been exploited in Hartley and Zisserman

(2000) and Hartley et al. (2001). However, the num-

ber of geometrically corresponding views is limited to

four and structure and motion cannot be simultaneously

reconstructed.

The crucial observation exploited in this paper is that

with the reference plane the projection relations be-

tween image points, scene points and cameras become

linear in 3D points and camera positions as opposed to

being bilinear in the general case. We will show how

this relation can be derived for general reference planes

and also how it relates to general perspective projec-

tion. In particular we will demonstrate the relation

between general shape-viewpoint duality (Carlsson,

1995; Carlsson and Weinshall, 1998; Weinshall et al.,

1995), and the dual structures that arise with a refer-

ence plane (Criminisi et al., 1998; Irani and Anandan,

1996; Irani et al., 1998; Weinshall et al., 1998). Most

of the past work which studied the geometry for scenes

containing a reference plane, i.e. parallax geometry,

focused on the reconstruction of scene points for two

views (Kumar et al., 1994; Irani and Anandan, 1996;

Criminisi et al., 1998) or multiple views (Irani et al.,

1998). The reference plane formulation of this paper,

which reveals the linear relationship between points

and camera centers in multiple views, can therefore

been seen as an extension and simplification of most

planar parallax approaches.

A potential problem for numerical calculations is

the fact that the reference plane will be at infinity in the

representation that linearizes the problem. The con-

sequence is that points which are on or close to the

reference plane have to be reconstructed separately.

We will demonstrate however that this problem can be

dealt with both from a theoretical and practical point

of view. An especially interesting case is when the

reference plane actually is at infinity. As a practical

demonstration of this we consider the reference plane

at infinity spanned by three mutual orthogonal vanish-

ing points obtained from viewing typical architectural

structures. Multiple points are viewed with only par-

tial overlap. 3D positions of points and camera centers

are reconstructed using a single Singular Value De-

composition based on all observed points in all views

simultaneously.

The linearity and symmetry of space points and cam-

era positions makes it especially easy and interesting to

investigate problems of numerical stability and critical

configurations of points and cameras in the scene. In

this paper the problem of critical configurations for the

special case of having four coplanar points will be dis-

cussed. A configuration of points and cameras is critical

if the projected image points are insufficient to deter-

mine the points and cameras uniquely, up to a projective

transformation. We will show that if all points are vis-

ible in all views, i.e. no missing data, all configuration

(apart from trivial ones) where points and camera cen-

ters are non-coplanar are non-critical. If not all points

are visible in all views, i.e. missing data, a method to

construct non-critical configurations is proposed.

The content of this paper is based on Rother and

Carlsson (2001). However, in contrast to Rother and

Carlsson (2001) this paper presents novel results about

critical configurations for the case of four coplanar

scene points. Furthermore, the reconstruction algo-

rithms and the underlying theory are presented in more

detail.

2. Duality, Symmetry and Linearity

of Projection Relations

General perspective projection to an image point with

homogeneous coordinates p can be described as:

p ∼ H (I | −Q̄)P ∼ H (P̄ − Q̄), (1)
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where P and P̄ are the homogeneous and non-

homogeneous cartesian coordinates of the 3D-points

respectively. The 3 × 3 matrix I is the identity matrix

and Q̄ are cartesian coordinates of the camera centers.

The 3×4 matrix H (I | −Q̄) represents the camera ma-

trix. In a general projective representation the homogra-

phy H will be factored out and we are left with relations

between 3-D points and camera centers. Already from

Eq. (1) we see that these quantities are symmetrically

related. The symmetry relations in a complete projec-

tive description will be somewhat different depending

on whether we exploit the presence of four points on a

reference plane in 3D.

With five points P1, . . . , P5 as basis, any point P

and camera center Q in 3D can be expressed using

projective coordinates:

P ∼ XP∗
1 + YP∗

2 + ZP∗
3 + WP∗

4
(2)

Q ∼ AP∗
1 + BP∗

2 + CP∗
3 + DP∗

4.

Similarly, four image points p1, . . . , p4 can be used as

a basis for expressing image coordinates

p ∼ xp∗
1 + yp∗

2 + wp∗
3 . (3)

The normalizations P∗ and p∗ are chosen so that points

P5 and p4 get projective coordinates (1, 1, 1, 1)T and

(1, 1, 1)T respectively. Specifying 5 scene points and

4 image points fixes the 15 degrees of freedom of

the projective space P3 and the 8 degrees of freedom

projective space P2. Choosing a specific basis in an

image implies that a projective transformation has to

be applied to the observed image points which are in a

camera specific basis.

The mapping of scene points to image points

M : (X, Y, Z , W )T −→ (x, y, w)T (4)

can be computed for the general case and for the case

of having four points on a reference plane.

2.1. General Point Configurations

This case was treated in e.g. Faugeras (1992), Quan

(1994) and Carlsson (1995) and it means that we take

the image basis points p1, p2, p3, p4 as projections of

the 3D basis points P1, P2, P3, P4 (see Fig. 1(a)). We
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Figure 1. Projective basis points in 3D P1, . . . , P4 and image

p1, . . . , p4 for general configurations (a) and reference plane con-

figurations (b).

then get the constraints on the mapping M :

M :

P1 P2 P3 P4 Q

− − − − −
1 0 0 0 A

0 1 0 0 B

0 0 1 0 C

0 0 0 1 D

−→

p1 p2 p3 p4 0

− − − − −
1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

. (5)

This results in the following projection relations:

x

y

w

∼

X

A
−

W

D

Y

B
−

W

D

Z

C
−

W

D

(6)

which can be written as two constrained equations:

w
X

A
− x

Z

C
+ (x − w)

W

D
= 0

w
Y

B
− y

Z

C
+ (y − w)

W

D
= 0.

(7)

These relations make explicit the duality of space

points and camera centers in the sense that the

homo-geneous projective coordinates of space points

X, Y, Z , W and inverse coordinates of camera centers

A−1, B−1, C−1, D−1 are bilinearly related in a sym-

metric way.
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For completeness, Eq. (1) can be explicitly written

as:






x

y

w






∼







A−1 0 0

0 B−1 0

0 0 C−1







×





1 0 0 −A/D

0 1 0 −B/D

0 0 1 −C/D















X

Y

Z

W











(8)

where Q̄ = (A/D, B/D, C/D)T as the non-homo-

geneous camera center. This means that the homog-

raphy H in Eq. (1) depends on the camera centers. The

choice of the fifth basis point P5 has further conse-

quences (see e.g., Carlsson, 1995) which are, however,

not relevant in this context.

2.2. Four Points on a Reference Plane

If we have four points P1, P2, P3, P4 on a reference

plane visible in all views we can use the images of

these as a four point basis for image coordinates (see

Fig. 1(b)). This has similar consequences leading to

a similar but non-equivalent duality or symmetry be-

tween space points and camera centers. Note, in this

case P4 can not be used as a basis point for the pro-

jective basis, which has to consist of five non-coplanar

points. How the remaining degrees of freedom of the

projective space, i.e. P4, P5, of the projective space, are

fixed will be discussed later. Let us choose the point P4

in a canonical way as in e.g. Heyden and Åström (1995)

and Triggs (2000). The constraints on the mapping M

become:

M :

P1 P2 P3 P4 Q

− − − − −
1 0 0 1 A

0 1 0 1 B

0 0 1 1 C

0 0 0 0 D

−→

p1 p2 p3 p4 0

− − − − −
1 0 0 1 0

0 1 0 1 0

0 0 1 1 0

. (9)

We see that the four points define the plane at infin-

ity, which is specified by W = 0. Using this we can

compute the projection relations:

x

y

w

∼

X

W
−

A

D

Y

W
−

B

D

Z

W
−

C

D

. (10)

If we compare this to the general projection rela-

tions in Eq. (6) we see that the relationship between

points and cameras is different, however, still sym-

metric. The symmetry now relates to the substitutions

(X, Y, Z , W ) ↔ (A, B, C, D). More importantly the

relations are linear in the non-homogeneous projective

coordinates for points X/W etc. and cameras A/D

etc. This means that the projection relations only ap-

ply to non-homogeneous points and cameras which are

outside the plane at infinity, i.e. W �= 0. We can now

rewrite the projection relations as linear constrained

equations:

x

(

Z

W
−

C

D

)

− w

(

X

W
−

A

D

)

= 0

y

(

Z

W
−

C

D

)

− w

(

Y

W
−

B

D

)

= 0 (11)

x

(

Y

W
−

B

D

)

− y

(

X

W
−

A

D

)

= 0.

Obviously only two of the three projection relations

are linearly independent. However, two relations are

insufficient for special cases where e.g. w = 0 and
Z
W

− C
D

= 0.

Arbitrary numbers of points and views can be used to

build one matrix consisting of all projection relations

in terms of image coordinates. For n points in m views

the linear system takes the form:

















































S11 0 0 . . . 0 0 −S11 0 . . . 0

S12 0 0 . . . 0 0 0 −S12 . . . 0

.

.

.

.

.

.

S1m 0 0 . . . 0 0 0 0 . . . −S1m

0 S21 0 . . . 0 0 −S21 0 . . . 0
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.

.
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.

0 S2m 0 . . . 0 0 0 0 . . . −S2m

.
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.
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(12)

for non-homogeneous projective point coordinates

X̄ = X/W etc. and camera centers Ā = A/D etc.
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where

Si, j =







0 wi, j −yi, j

−wi, j 0 xi, j

yi, j −xi, j 0






(13)

are 3 × 3 matrices built up from image coordinates of

point i visible in view j . In the following we denote

the matrix which forms the linear system in Eq. (12) as

the S-matrix.

Before the solution of points and cameras can be

obtained from the linear system, the projective space

defined by the four coplanar points have to be consid-

ered in more detail. With the four points P1, P2, P3, P4

on the plane at infinity (Eq. (1)) can be explicitly written

as:







x

y

w






∼







1 0 0 −A/D

0 1 0 −B/D

0 0 1 −C/D

















X

Y

Z

W











(14)

or more compact as (see as well Eq. (10)):

p ∼ (I | −Q̄)P ∼ P̄ − Q̄. (15)

We see that the homography H in Eq. (1) is now the

identity matrix. This means that having four coplanar

points is projectively equivalent to having purely trans-

lating calibrated cameras. This simple result was al-

ready stated in e.g. Heyden and Åström (1995) and

Triggs (2000), however, it was differently exploited in

contrast to this paper.

It is well known that a 3D projective space has 15

degrees of freedom. This can be expressed as a 4 × 4

homography which transforms a point P to P ′ as:

P ′ =
(

A t

bT λ

)

P, (16)

where A is a 3 × 3 matrix, bT , t are 3 dimensional

vectors and λ a scalar (see e.g. Hartley and Zisserman

2000; Faugeras and Luong, 2001). The choice of the

points P1, P2, P3, P4 as in Eq. (9) implies that A =
µI and bT = (0, 0, 0). This means that 11 of the 15

degrees of freedom of the projective space are fixed.

The remaining 4 degrees of freedom correspond to the

arbitrary choice of t, µ and λ (minus an overall scale).

Let us apply a Singular Value Decomposition (SVD)

on the S-matrix (Eq. (12)) which gives the null-space

of the S-matrix. Since the chosen projective space

has 4 degrees of freedom, the null-space of S is

at least of dimension 4. However, three of the four

singular vectors of the null-space have the trivial

form: P̄ i = Q̄ j = (1, 0, 0)T , P̄ i = Q̄ j = (0, 1, 0)T and

P̄ i = Q̄ j = (0, 0, 1)T . This reflects the fact that the

translation t in Eq. (16) can be chosen arbitrarily.

Therefore, if S has a four dimensional null-space, the

summation of all four singular vectors of the null-space

gives the non-trivial solution for all camera centers and

points. However, certain configurations of points and

cameras might give a null-space of dimension larger

than 4. Such configurations are called critical and they

will be the subject of Section 5.

To summarize, the simple addition of a fourth copla-

nar point implies that the general bilinear problem

of reconstruction and camera recovery from multiple

points and views is transformed into a linear problem,

i.e. finding the null-space of a matrix with elements

computed from the image coordinates in all available

views. In contrast to this, reconstruction algorithms for

general scenes are not that straight forward. Factor-

ization based methods, e.g. Sturm and Triggs (1966),

Sparr (1996), and Heyden et al. (1999) have to deter-

mine fundamental matrices (Sturm and Triggs, 1966)

or iterate the solution (Sparr, 1996; Heyden et al., 1999)

in order to obtain depth scale factors. Other methods,

e.g. Fitzgibbons and Zisserman (1998) and Koch et al.

(1998) have to determine complete camera projection

matrices before doing reconstruction.

Utilizing the homography H in Eq. (1) to linearize

the reconstruction problem has also been exploited by

Oliensis (1995, 1999) and Oliensis and Genc (1999).

It is known (Hartley and Zisserman, 2000) that cor-

responding image points of purely rotating cameras

define the homography: H = K ′RK−1, where K , K ′

is the calibration matrix of the first and second cam-

era and R the rotation between them. The basic as-

sumption in Oliensis work is a small movement of the

camera between successive frames. This means that

H can be approximately determined. With the knowl-

edge of H , the relationship between points and cam-

era centers can be linearized by applying the inverse

homography on the image points: H−1 p ∼ P̄ − Q̄

(compare Eq. (1)). This is used to initialization an it-

erative reconstruction algorithm (Oliensis, 1999). Fur-

thermore, if the calibration is known, i.e. K and K ′,

the rotation R can be determined and a Euclidean

reconstruction may be obtained (Oliensis and Genc,

1999).
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3. Finite versus Infinite Reference Plane

The relative simplicity of the S-matrix hides a poten-

tially disturbing fact for numerical calculations. The

linearity is expressed in non-homogeneous projective

coordinates X/W etc. for points and A/D etc. for cam-

eras. Therefore, for points on the reference plane we

have W = 0, i.e. they are moved to infinity in the pro-

jective basis representation. This was noted in Triggs

(2000) as a fundamental requirement for obtaining this

simple structure of purely translating calibrated cam-

eras. In contrast to the reconstruction method in Triggs

(2000), this has consequences for points which are on

or close to the reference plane. In this section we will

demonstrate however that this problem can be dealt

with both from a theoretical and practical point of view.

An especially interesting case is when the reference

plane actually is at infinity. However, having 4 points

on the plane at infinity, which are visible in all views,

in general constrains the camera positions in a multi

view situation. When we consider the practically in-

teresting case of architectural scenes, we see that they

are often characterized by orthogonal directions, i.e

three orthogonal vanishing points. We will show that

the knowledge of three orthogonal vanishing points,

which span the plane at infinity, together with some

simple natural assumptions about the camera parame-

ters result in the same linear reconstruction problem as

with four points on an arbitrary reference plane.

3.1. Finite Reference Plane

We see that the reference plane is the plane at infinity,

i.e. W = 0, in the projective basis representation. This

means that only those points can be reconstructed by

the linear system in (12) which do not lie on the ref-

erence plane. Therefore, points which are on the refer-

ence plane have to be reconstructed separately. How-

ever, points on the reference plane are particularly easy

to determine. From Eq. (14) we see that a point at in-

finity (X, Y, Z , 0)T can be reconstructed directly as:







x

y

w






∼







X

Y

Z






. (17)

Let us consider the case if we put a point which lies

on the reference plane, e.g. P1 = (X1, Y1, Z1, 0), into

the linear system (12). The projection relations (17) can

be written as linear constrained equations:

x Z1 − wX1 = 0

y Z1 − wY1 = 0 · (18)

xY1 − y X1 = 0

In this case the submatrices S1, j contain these equations

instead of the equations in Eq. (11). We see that, inde-

pendent of all camera centers and all other points, the

vector (X1, Y1, Z1, 0, . . . , 0) represents an additional

solution to the linear system (12). This means that we

obtain a five-dimensional null-space for the S-matrix,

i.e. 2 non-trivial solutions for the points and cameras.

Although in practice points are seldomly exactly on

the reference plane, the linear system gets numerically

instable if points which are “close” to the reference

plane are included into the linear system (12). Firstly,

due to errors in the image coordinates the singular vec-

tor which does not represent the complete solution for

all points and cameras could have a smaller singular

value than the singular vector which does represent

the complete solution. Secondly, the coordinates of the

points which are not close to the reference plane have

very small values in contrast to the coordinates of the

points which are close to the reference plane. This po-

tentially increases the inaccuracy in all those points

which are not close to the reference plane.1

Therefore, the points which are on or close to the

reference plane have to be excluded from the linear

system (12). This means that we have to decide for

each point whether it lies on (or close to) the reference

plane or not. However, this decision can be achieved

with the knowledge of the image coordinates of the four

reference points P1, P2, P3 and P4. Since these points

lie on the reference plane and are visible in all views

they introduce a planar homography between each pair

of views. Therefore, we can determine for each pair

of views, in which a certain world point is visible, a

residual parallax vector (see Irani and Anandan, 1996;

Hartley and Zisserman, 2000). It has been shown that in

case of parallel projection the parallax vector depends

only on the distance between the world point and the

reference plane (see Irani and Anandan, 1996; Kumar

et al., 1994). This result can be utilized for projective

cameras as an approximation. Therefore, a ranking of

all world points with respect to their distance to the

reference plane can be obtained on the basis of the

magnitude of their parallax vectors. Points on and off

the plane can now be separated by defining a thresh-

old. However, the choice of such a threshold depends
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on the scene and camera motion, i.e. the distance be-

tween scene points and the camera. This choice can be

circumvented by successively excluding points from

the linear system (12) on the basis of this ranking, i.e.

distance to the reference plane. This leads, however, to

an iterative algorithm. An explicit formulation of the

algorithm will be given in Section 4.

3.2. Choosing a Reference Plane

or Reference Points

The plane plus points configurations, i.e. a reference

plane and points which lie not on the reference plane,

has received significant attention in the past e.g. Kumar

et al. (1994), Irani and Anandan (1996), Criminisi et al.

(1998), Irani et al. (1998), Cross et al. (1999), and

Hartley et al. (2001). These approaches are character-

ized by the basic assumption of a reference plane visible

in all views. This assumption seems to be more general

in contrast to the assumption we do, i.e. four reference

points visible in all views. However, we will see that

those four reference points can be easily derived from

the general assumption of a visible reference plane.

A reference plane visible in all views introduces

planar homographies between each pair of views. Let

us introduce four “virtual” basis points which lie on

the reference plane. The position of these points can

be fixed by choosing their image coordinates in one

arbitrary view. With the use of the inter-view planar

homographies, the image coordinates of these points

can be established in all other views. Therefore, these

four “virtual” basis points can be used as the points

P1, P2, P3, P4 as in the previous section. This means

that a reference plane visible in all views is sufficient

for establishing a unique projective basis for all points

and cameras.

However, depending on the image coordinates some

inter-view homographies might be inaccurate. This

could introduce a substantial numerical instability in

the reconstruction process. In order to avoid this source

of error, we concentrate our current interest on the spe-

cial configuration of four points visible in all views.

3.3. Reference Plane at Infinity

If the points P1, P2, P3 on the reference plane are

moved to infinity it can be easily shown that the pro-

jective 3D coordinates in the basis P1, . . . , P5 become

affine coordinates in an affine system defined by the di-

rection vectors P1 − P4, P2 − P4 and P3 − P4. The point

P4 represents the origin of the affine system which is not

at infinity. If these directions are specialized to being or-

thogonal, the affine 3D coordinates become Euclidean

by proper choice of the normalizing point P5. This

is true for a general un-calibrated perspective camera.

This can typically be achieved if the points P1, P2, P3

are chosen as the orthogonal vanishing points in e.g. a

city block architectural scene. The main advantage in

these kinds of scenes is the use of images estimated for

very different camera positions. However, the exploita-

tion of the infinite reference plane needs additionally

the image of a fourth coplanar reference point. Having

a specific point at infinity visible in all views will sub-

stantially restrict the usefulness of the infinite reference

plane for the general perspective camera. By consider-

ing a special case of perspective cameras, however, we

can make use of the reference plane at infinity given by

the three orthogonal vanishing points only.

For the special case of perspective camera:

p ∼ K R(I | −Q̄)P (19)

where K contains the internal camera parameters:

K =







σ 0 x̄0

0 σ ȳ0

0 0 1






, (20)

i.e. zero skew and the same scale factor horizontally

and vertically, it is possible to recover internal param-

eters K and camera rotations R from knowledge of

three orthogonal vanishing points (Caprile and Torre,

1990; Liebowitz and Zisserman, 1999; Svedberg and

Carlsson, 1999). Normalizing image coordinates with

this knowledge we can write the projection relation as:

p′ ∼ P̄ − Q̄, (21)

where p′ = RT K −1 p. This is the same situation of

purely translating calibrated cameras just as derived

using the pure projective representation in the previous

section. The fact that we have knowledge of the projec-

tion of vanishing points at infinity together with their

orthogonality implies that we can compute a metric

reconstruction, i.e. 3D structure up to similarity trans-

formations.

3.4. Determination of K and R

In order to identify the internal camera parameters K

and camera rotations R, mutual orthogonal directions
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Figure 2. Relationship between the CCS and the BCS, which is

defined by the orthogonal vanishing points v̄x , v̄y and v̄z .

in the scene have to be detected. Although this task

has recently raised great interest e.g. Rother (2000),

it is manually performed in the current version of the

algorithm. This has the reason that falsely detected van-

ishing points might significantly reduce the quality of

the reconstruction.

Since the three mutual orthogonal vanishing points

v̄x , v̄y and v̄z are visible in all views, they specify the

directions of a 3D, cartesian basis coordinate system

(BCS). Figure 2 shows the geometrical relation be-

tween the BCS and a camera coordinate system (CCS).

The orthogonality relation of the three vanishing points

can be algebraicly defined as: 〈K −1v̄x , K −1v̄y〉 =
0, 〈K −1v̄x , K −1v̄z〉 = 0 and 〈K −1v̄y, K −1v̄z〉 = 0,

with 〈·, ·〉 as scalar product. From these equations the

focal length σ and the principal point (x̄0, ȳ0) of the

specific camera model introduced in Eq. (19) can be

derived. However, in case one or two of the vanish-

ing points are at infinity (so-called degenerated cases)

with respect to the image plane, i.e the image plane is

parallel to the corresponding axis of the BCS, not all in-

ternal camera parameters are determinable (Liebowitz

and Zisserman, 1999; Rother, 2000). In the current ver-

sion of the algorithm, we assume fixed internal cam-

era parameters for the process of acquiring images.

This allows us to improve the camera calibration sig-

nificantly, by averaging all those internal camera pa-

rameters which were derived from non-degenerated

cases.

With the knowledge of K , the rotation matrix R can

be determined. For that the correspondence problem

between the three vanishing points and the x-, y- and

z-axis of the BCS has to be solved. Furthermore, direc-

tions given by each vanishing point have to be uniquely

defined, i.e. the sign of K −1v̄x,y,z has to be determined.

We define:

R = (±K −1v̄x |±K −1v̄y | ± K −1v̄z) with det(R) = 1.

Since the condition det(R) = 1 has to be fulfilled,

we obtain 24 possible R in case of unknown corre-

spondence and 4 possible R otherwise. Note, for the

determination of R two of the three orthogonal van-

ishing points are sufficient, since v̄z = v̄x × v̄y . In the

current version of the algorithm, the ambiguity in R is

manually solved.

4. Outline of the Algorithm and Optimization

We have seen that with the use of a reference plane

points and cameras can be simultaneously recon-

structed in closed-form. However, the prize we have

to pay is that an algebraic error function is minimized.

Such an error is suboptimal in contrast to a geomet-

ric error, e.g. the Euclidean distance between image

points and reprojected scene points. In this section this

algebraic error function will be analysed and we will in-

vestigate how it can be optimized with the restriction of

having a closed-form solution. The section concludes

with an explicit description of the algorithm for finite

and infinite reference planes.

4.1. Optimization of the Error Function

Let us reconsider Eq. (1) where the scene point Pi is

mapped by the camera j on the image point pi j :

λi j pi j = H j (Q̄ j − P̄ i ). (22)

The vector pi j represents now the observed image point

before normalization (Eq. (3)) and λi j is an unknown

scale, which is denoted in Sturm and Triggs (1996) as

projective depth. We have seen in Section 2.1 that the

homography H j depends on the camera center Q̄ j for

general scenes. In case of a reference plane visible in

all views, H j is the identity matrix with respect to the

normalized image points (see Eq. (15)). This means

that H−1
j represents the projective transformation of

image points pi j into the normalized image points p′
i j

defined in Eq. (3). Explicitly written:

p′
i j = H−1

j pi j with H−1
j :

(p1 p2 p3 p4) −→







1 0 0 1

0 1 0 1

0 0 1 1






, (23)

where p1, p2, p3, p4 are the projections of the 4 copla-

nar points P1, P2, P3, P4. In order to eliminate the
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unknown scale λi j , the ratios of x, y and w-coordinates

of the image points p′
i j were considered (see Eq. (11)).

These ratios are the subject of minimization in the lin-

ear system of Eq. (12). Minimizing such an algebraic

error is, however, statistically suboptimal in contrast to

geometric error functions used e.g. for bundle adjust-

ment (see e.g. Triggs et al., 1999).

How can this algebraic error function be improved?

We have seen that the key for obtaining a closed-form

solution is the linear relationship between scene points

and camera centers, i.e. the knowledge of H j . This

linear relationship is not affected by a change of the

image basis, i.e. applying a homography B, and by an

individually scaling si j of the image points p′
i j :

p′′
i j ∼ si j Bp′

i j ∼ BP̄ i − BQ̄ j ∼ P̄ ′
i − Q̄′

j . (24)

If B and si j are chosen, p′′
i j can be derived and we obtain

a linear system as in Eq. (12):

S′(X̄ ′
1, Ȳ ′

1, Z̄ ′
1, . . . , X̄ ′

n, Ȳ ′
n, Z̄ ′

n,

Ā′
1, B̄ ′

1, C̄ ′
1, . . . , Ā′

n, B̄ ′
n, C̄ ′

n)T = 0. (25)

The matrix S′ consists now of the image points p′′
i j (see

Eq. (13)).

Let us consider the choice of the homography B first.

It has been shown in Hartley (1997) that different nor-

malizations of the image coordinates can dramatically

influence the result of a computation based on image

coordinates. Hartley (1997) suggested to choose the

centroid of all image coordinates as the origin and to

normalize the average distance of an image point to

the origin to
√

2. If we consider Eq. (24), such a nor-

malization would involve to determine for each view j

an individual matrix B j , which represents the normal-

ization. However, such a B j would destroy the linear

relationship between points and camera centers. There-

fore, the matrix B has to be determined independently

of a certain view j . We define:

B =
1

m

m
∑

j=1

B j/‖B j‖2, (26)

where ‖ · ‖2 is the Frobenius norm of a matrix and m

is the number of views.

We have seen in Section 2.2 that a finite reference

plane has to be chosen as the plane at infinity in or-

der to obtain the simple situation of purely translat-

ing cameras. However, this suboptimal choice can be

compensated by an appropriate selection of the scale

factors si j . Let us consider a point P1 which is closer to

the reference plane than another point P2. By choosing

the reference plane as the plane at infinity, the coordi-

nates of the reconstructed point P̄1 are larger than the

ones of P̄2. This means that in the presence of noise,

the point with larger coordinates is reconstructed more

accurately. In order to eliminate this favoring of cer-

tain points we suggest to choose the scale factors in

Eq. (24) as si j = dis(Pi ), where dis(Pi ) ∈ [0, 1] de-

notes the distance between Pi and the reference plane

(see Section 3.1). This scaling just inverses the effect

of moving a finite plane to infinity.2 This means that

points which are closer to the reference plane are in-

hibited. The same applies to the equations in the linear

system of Eqs. (12) and (25) of such a point.

4.2. Outline of the Algorithm

On the basis of the previous sections the algorithm for

finite and infinite reference planes can be explicitly

formulated. In case of a finite reference plane the algo-

rithm is composed of the following steps:

1. Determine 4 coplanar points and other correspond-

ing points

2. Normalize the image basis, i.e. p′
ij = H−1

j pi j

(Eq. (23))

3. Calculate the distance between scene points Pi and

the reference plane (Section 3.1)

4. Exclude iteratively points from the S-matrix (or

choose a threshold) (Section 3.1)

5. Determine matrix B (Eq. (26))

6. Determine scales si j and image points p′′
ij = si j

‖BH−1
j p′

i j‖2 (Section 4.1)

7. Obtain P̄ ′
i , Q̄′

j by SVD (Eq. (25)) and points Pi on

(or close to) the reference plane with Eq. (17)

8. Take the best result on the basis of RMS-error be-

tween image points and reprojected scene points

9. Undo the basis change: P̄ i = B−1 P̄ ′
i and Q̄ j =

B−1 Q̄′
j

The Euclidean norm is denoted by ‖ · ‖2. The quality

of the reconstruction is evaluated in terms of the Root-

Means-Square (RMS) error between image points and

reprojected scene points. However, other criteria could

be used.

If three orthogonal vanishing points are detected in

the scene, the algorithm has a simpler form since finite

scene points do not lie on the reference plane. The

algorithm can be explicitly written as:
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1. Determine 3 orthogonal vanishing points and other

corresponding points

2. Calculate K j , R j for each camera j (Section 3.4)

3. Normalize the image basis, i.e. p′
i j = H−1

j pi j

(Eq. (23))

4. Determine matrix B and image points p′′
i j =

‖BH−1
j p′

i j‖2 (Section 4.1)

5. Obtain P̄ ′
i , Q̄′

j by SVD (Eq. (25))

6. Undo the basis change: P̄ i = B−1 P̄ ′
i and Q̄ j =

B−1 Q̄′
j

5. Critical Configurations and Minimal Visibility

In the following we investigate the constraints that

points and cameras have to satisfy in order to obtain

a unique reconstruction for the special case of having

four coplanar points.

In practice, not all n points are visible in all m views,

i.e. we have to deal with missing data. In order to spec-

ify a certain overlap between points and views we in-

troduce the visibility matrix V . An element V (i, j) of

the visibility matrix is set if the j th point is visible in

the i th view. The following example shows a specific

visibility matrix of n = 5 points partly visible in m = 3

views:

V = views

points

1 2 3 4 5

1 • •
2 • • • • •
3 • • •

(27)

Note, the visibility matrix does only specify which

point is visible in which view. However, it does not

specify the actual placement of points and camera

centers in the scene. Therefore, we denote a specific

placement of points and cameras in the scene as a

configuration. Note, a configuration is only unique up

to a certain transformation, which is in our case ei-

ther a projective transformation (finite reference plane)

or a similarity transformation (three orthogonal vanish-

ing points). In this context a fundamental question is:

Is a certain visibility matrix sufficient, i.e. is there at

least one configuration which represents a unique re-

construction?

Sufficient visibility does not necessarily imply a

unique reconstruction. Therefore, we denote a configu-

ration as critical if the visibility matrix is sufficient but

the projected image points are insufficient to determine

a unique reconstruction (Hartley and Zisserman, 2000).

This poses a second fundamental question: What are

the critical configurations of a sufficient visibility

matrix?

Let us consider these questions for the special case of

four coplanar points. For n points and m views the total

number of degrees of freedom (dofs) of the the linear

system in (12) is: #dofs = 3(m + n) − 4. Note, the ref-

erence points on the reference plane are not included in

this counting. In the case of a finite reference plane we

had additionally 4 reference points (P1, P2, P3, P4) and

for an infinite reference plane 3 orthogonal vanishing

points (P1, P2, P3). Let us consider the rank of the S-

matrix (Eq. (12)). This is at the most #dofs. If the rank of

the S-matrix is smaller than #dofs, the dimensionality

of the null-space is larger than four which means that

the reconstruction is not unique. We can state: A given

visibility matrix is sufficient if the rank of the S-matrix

is equal to the number of dofs, for a generic set of points

and camera centers, i.e. points and camera centers in

“general pose”. Furthermore, we can state: A given

configuration is critical if the rank of the S-matrix is

smaller than the number of dofs for this configuration.

The question of critical configurations is not only of

theoretical interest, however, from a numerical point

of view we should expect instabilities whenever the S-

matrix comes close to rank deficiency, i.e. whenever a

configuration is close to a critical one.

In the past these two questions have been inves-

tigated for two different cases: no missing data and

missing data. This corresponds to two different types

of visibility matrices: full and not full visibility matrix.

For the special case of four coplanar points, these two

types of visibility matrices will be discussed separately

as well.

Before addressing these questions, let us recapitu-

late the constraints on points and cameras we have so

far. If we reconstruct points which lie on the reference

plane with the linear system in (12), we have seen,

that we do not obtain a unique (up to 4 dofs) solution.

However, points on the reference plane can be uniquely

detected and reconstructed separately as we showed be-

fore. Therefore, such configurations are in general not

critical configurations.

5.1. No Missing Data—Full Visibility Matrix

The problem of critical configurations for the gen-

eral case of projective reconstruction has received con-

siderable interest in computer vision over the years
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(Maybank, 1992; Hartley and Debunne, 1998; Hartley,

2000). The classical case of 2 view critical configura-

tions implies that all cameras and points are located on

a ruled quadric (Krames, 1942). From the duality of

camera centers and space points (Carlsson, 1995) fol-

lows that this applies also for 6 points and any number

of cameras (Hartley and Debunne, 1998). The case of

three cameras and an arbitrary number of points and

its dual is somewhat more complex (Hartley, 2000).

The non-linearity of the general case means that crit-

ical configurations generally imply a finite number of

multiple solutions given projected image data. Having

four points on a reference plane on the other hand,

gives us a linear reconstruction problem and therefore

either a unique solution or an infinite number. The case

of an infinite number of solutions will occur when the

S-matrix becomes rank deficient so that the dimension-

ality of the null-space increases.

We will prove that the only critical configurations

for 2 points (excluding all points on the reference

plane) visible in 2 views are if the camera centers and

the points are coplanar. This is not a contradiction to

the general case of projective reconstruction, since the

placement of points and camera centers is not restricted

in the general case. Additionally, we will prove that 2

points and 2 views provide minimal visibility. Further-

more, for the multi view case we will prove that a con-

figuration is non-critical if (a) the points and the camera

centers are non-coplanar and (b) all camera centers and

one of the points are non-collinear and (c) all points and

one of the camera centers are non-collinear.

5.1.1. Two View Configurations. Let us consider the

case of 2 points (excluding all points on the reference

plane) visible in 2 views. From the projection relation

(Eq. (11)) we obtain at the most 8 linearly indepen-

dent constraints for the S-matrix. Note, only 2 of the 3

projection relations are linear independent. If all these

8 equations were linearly independent we would get a

unique reconstruction, since the number of dofs is 8.

Therefore, we can make the conjecture that 6 points,

where 4 of them are coplanar, are sufficient for a recon-

struction from two un-calibrated views. In case of the

reference plane at infinity defined by three orthogonal

vanishing points we conjecture that 5 points are suf-

ficient under the assumption of a camera model with

zero skew and unit aspect ratio. We will now prove that

this is indeed the case.

Theorem 1. A configuration of 2 points (excluding

all points on the reference plane) visible in 2 views is

critical if and only if the points and the camera centers

are coplanar.

Proof: Since the S-matrix has a four dimensional

null-space, we are free to choose either a space point or

a camera center as the “origin”, i.e. (0, 0, 0, 1), of the

projective space. The S-matrix (Eq. (12)) then takes on

either of the forms:











S21 −S21 0

S22 0 −S22

0 S11 0

0 0 S12

















































X̄2

Ȳ 2

Z̄2

Ā1

B̄1
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= 0

(28)











S12 0 −S12

0 S22 −S22

S11 0 0

0 S21 0
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Ȳ 1

Z̄1

X̄2

Ȳ 2

Z̄2

Ā2

B̄2

C̄2







































= 0

where

Si, j =







0 wi, j −yi, j

−wi, j 0 xi, j

yi, j −xi, j 0






(29)

are 3 × 3 matrices built up from image coordinates of

point i visible in view j .

In case of a non-critical configuration these matri-

ces are of rank 8 which means that the null vector is

unique up to scale. If the matrices were of rank 7 or

less, the dimension of the null-spaces would be larger

than one and the null vector no longer unique up to

scale. Rank deficiency of a matrix is generally checked

by computing the singular values. In our case, however,

we are interested in the algebraic conditions on the el-

ements of the matrix for it to be rank deficient. Rank
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deficiency, i.e. a rank less than 7, of the S-matrix im-

plies that the determinants of all the 8 × 8 submatrices

of the S-matrix are zero.

These subdeterminants were computed using

MAPLE and it was found that all subdeterminants

that were not genericly zero have a simple common

structure. By reordering rows and columns it can be

shown that the two cases in Eq. (28) are completely

equivalent by the choice of the origin. Therefore, all

computations were made for the case of choosing the

first camera as the origin, i.e. Ā1 = B̄1 = C̄1 = 0. By

expressing the elements in the Si, j matrix in terms of

coordinates of space points P̄1, P̄2 and coordinates

of the second camera center Q̄2 it was found that all

8 × 8 subdeterminants could be factored into:

(A) The determinant:

det(P̄1 P̄2 Q̄2) (30)

(B) A factor computed by selecting one coordinate

element from five vectors in three different ways:

1. (P̄2 − Q̄2) (P̄1 − Q̄2) P̄1 P̄2 Q̄2

2. (P̄2 − Q̄2) (P̄1 − Q̄2) P̄1 P̄2 P̄1 (31)

3. (P̄2 − Q̄2) (P̄1 − Q̄2) P̄1 P̄2 P̄2.

This factor is then computed by multiplying these five

elements together, e.g.:

(X̄2 − Ā2) (Ȳ 1 − B̄2) X̄1 Z̄2 Ā1. (32)

Rank deficiency of the S-matrix, implying that all sub-

determinants are zero, will occur if either the A factor

or the B factor is zero for all combinatorial choices.

Obviously rank deficiency will occur if:

det(P̄1 P̄2 Q̄2) = 0 (33)

which means that points P1, P2 and Q2 are coplanar

with the origin, i.e. point Q1.

We will now show that all rank deficient configura-

tions are described by this coplanarity condition. Sup-

pose this condition is not fulfilled, i.e.

det(P̄1 P̄2 Q̄2) �= 0 (34)

This means that the B factor for every determinant has

to be zero. This in turn implies that at least one of the

conditions:

P̄2 − Q̄2 = 0, P̄1 − Q̄2 = 0, P̄1 = 0, P̄2 = 0

(35)

has to be fulfilled. Let us assume that this is not the

case. Let us consider the determinants which were con-

structed as in the second and third way. For such a de-

terminant there is at least one element of each vector

which is non-zero. If we select these very elements for

the computation of the B factor we obtain a non-zero

B factor after multiplying all those elements. Since the

A factor was assumed to be non-zero we would obtain

a subdeterminant which is non-zero and therefore an

S-matrix which is not rank deficient. Therefore, at least

one of the four conditions in Eq. (35) has to be fulfilled.

Since these conditions imply coincidence of points and

cameras they all imply coplanarity of the four points

P̄1, P̄2, Q̄2, Q̄1 = 0, i.e. det(P̄1 P̄2 Q̄2) = 0. This

concludes the proof that all rank deficient configura-

tions are given by the coplanarity of the two points

P̄1, P̄2 and camera centers Q̄1, Q̄2.

We are now able to answer the question of minimal

visibility.

Theorem 2. The sufficient and minimal visibility ma-

trix contains 2 points (excluding all points on the ref-

erence plane) visible in both 2 views.

Proof: 2 points visible in both 2 views is obviously

sufficient. All configurations where P̄1, P̄2, Q̄1 and Q̄2

are not coplanar give a unique reconstruction.

Furthermore, we have to prove that this visibility

matrix is minimal. Let us assume that not all points

are visible in all views. This means that we obtain:

#equations < 8 = #dofs. If we assume that only one

view is available, we obtain #equations = 2n < 3n −
1 = #dofs for n > 1. However, one point visible in

one camera can not be reconstructed. The case of one

point is dual to the case of one view. This concludes

the proof.

5.1.2. Multi View Configurations. For the case of

n points visible in all m views the S-matrix has (at

the most) 2mn linear independent equations and 3(n +
m) − 4 dofs. This means that the S is over-constrained,

if it is not rank deficient. Let us investigate the critical

configurations for such a case.
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Theorem 3. A configuration of n points (excluding

all points on the reference plane) visible in m views

is non-critical if (a) the points and the camera centers

are non-coplanar and (b) all camera centers and an

arbitrary point are non-collinear and (c) all points and

an arbitrary camera center are non-collinear.

Proof: We will show that a configuration which does

not fulfill the conditions (a), (b) and (c) is a non-critical

configuration. This will be done by actually construct-

ing such a unique reconstruction.

First of all we state, that a point and a camera center

can never coincide, since such a point would not have a

unique projection in such a camera. With the assump-

tion that the condition (a) is not fulfilled we have at

least two camera centers and two points which are not

coplanar. W.l.o.g we denote the views as Q̄1 and Q̄2

and the points as P̄1 and P̄2. In the previous section we

have proved that we obtain a unique reconstruction for

such a configuration. We will now show that we can

add an arbitrary view Q̄i to the 2 view system and ob-

tain a 3 view system with a unique reconstruction. Let

us assume that the points P̄1, P̄2 and the camera center

Q̄i are not collinear. Figure 3(a) shows the geometric

interpretation of such a configuration. Obviously the

lines l1 = P̄1 − Q̄i and l2 = P̄2 − Q̄i uniquely define

the camera center Q̄i .

In the other case, if P̄1, P̄2 and Q̄i are collinear, the

lines l1 and l2 coincide (see Fig. 3(b)). This means that

the camera center Q̄i has one dof, i.e. has to lie on the

line l1. Since we assume that the condition (c) is not

fulfilled there is a point P̄ j which does not lie on the

line l1. Let us consider the epipolar plane � j1, which is

defined by P̄ j, Q̄i and Q̄1, and the epipolar plane � j2,

which is defined by P̄ j, Q̄i and Q̄2. The intersection of

the epipolar plane � j1 and the line l1 defines the camera

center Q̄i uniquely if l1 and � j1 do not coincide. The

Figure 3. Geometric interpretations for the proof of Theorem 3.

same applies to the epipolar plane � j2. We will now

show that either of these two cases is true. Let us assume

that the two planes � j1 and � j2 are different. This

implies that the two planes intersect uniquely in the line

l3 = P̄ j − Q̄i . Since P̄ j does not lie on l1, the two lines

l1 and l3 are different. Therefore, either the plane � j1

or the plane � j2 does specify the camera center Q̄i

uniquely. We are left with the case that � j1 and � j2

are identical. This implies that the plane � j1 contains

the camera centers Q̄1 and Q̄2. However, if l1 coincided

with the plane � j1, the condition (a) would be violated,

i.e. P̄1, P̄2, Q̄1 and Q̄2 would be coplanar. Therefore,

l1 can not coincide with � j1 and the camera center Q̄i

is uniquely defined by l1 and � j1.

Furthermore, if P̄ j lay on the baseline between Q̄1

and Q̄i or on the baseline between Q̄2 and Q̄i , the point

P̄ j would specify this very baseline which means that

the camera center Q̄i is uniquely defined as well.

In this way all the views can be added to the 2 view

system. Therefore, we obtain a unique reconstruction

with m views and the two points P̄1 and P̄2.

With the assumption that the condition (b) is not ful-

filled we can finally reconstruct all points. This means

that for every configuration which does not satisfy the

conditions (a), (b) and (c) we obtain a unique recon-

struction. This concludes the proof.

Let us consider which of the configurations (a–c) are

actually critical. A configurations of type (b) where all

camera centers and one of the points are collinear is ob-

viously critical. Such a point lies on the baselines of all

pairs of cameras and can not be reconstructed. There-

fore, configurations of type (c) are critical as well, since

they are dual to the configurations of type (b). However,

a configuration of type (a) where all camera centers and

points are coplanar is not necessarily critical. Note, the

fact that all pairs of possible 2-view cases are criti-

cal (as proved in Theorem 1) does not imply that the

configuration is critical. The investigation of configu-

rations of type (a) for n points and m views would be

of theoretical interest.

Let us consider the question of sufficient visibility

for n points and m views.

Theorem 4. Every visibility matrix which contains 2

or more points (excluding all points on the reference

plane) and 2 or more views is sufficient if all points are

visible in all views.

Proof: We choose a configuration which does not ful-

fill the conditions (a), (b) or (c). Obviously, this can be
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done for an arbitrary (more than 2) amount of views

and points. Such a configuration has a unique recon-

struction as proved in Theorem 3.

With Theorems 2 and 4 we can conclude that the

basic condition that #equations ≥ #dofs is a sufficient

check for sufficient visibility in the case of no miss-

ing data. With a full visibility matrix we obtain:

#equations = 2mn and #dofs = 3(m + n) − 4.

5.2. Missing Data—Not Full Visibility Matrix

Compared to the previous case of no missing data, the

problem of minimal visibility and critical configura-

tions for the general case of multi view projective re-

construction with missing data has received less atten-

tion in the past. In Quan and Heyden (1999) all recon-

structions for sufficient visibility matrices with 3 and 4

images are cataloged.

We will now address the problem of minimal visi-

bility and critical configurations for the case of missing

data and with the assumption of having four coplanar

points. Furthermore, we will introduce a constructive

method of choosing points and cameras which provide

sufficient visibility and non-critical configurations.

5.2.1. Minimal Visibility and Critical Configurations.

Let us first consider the question of minimal visibility

in the case of missing data. The basic condition that

#equations ≥ #dofs is insufficient to answer the ques-

tion of sufficient visibility. For a non-full visibility ma-

trix we obtain for the maximum number of linearly in-

dependent equations: #equations = 2#(V (i, j) = set)

and for the number of dofs: #dofs = 3(m + n) − 4 (the

reference points excluded). However, if these equations

include linear dependences, the number of linearly in-

dependent equations reduces. In order to give a com-

plete answer for a given visibility matrix, the rank (or

the subdeterminants) of the corresponding S-matrix

has to be investigated for a generic set of points and

cameras. Such an investigation can be carried out with

MAPLE.

Let us consider the specific visibility matrix in (27).

Although the number of equations is equal the num-

ber of dofs, i.e. #equations = 20 = #dofs, the corre-

sponding S-matrix has rank 19, i.e. is rank deficient,

for a generic set of points. In this case the linear de-

pendence of equations can be seen if we consider the

views 1 and 2 and the views 2 and 3 as separated 2-

view cases. The second 2-view case includes a linear

dependence since #equations = 12 > 11 = #dofs. Ex-

cluding e.g. point 5 results in linear independent equa-

tions for the second 2-view case, since #equations =
8 = #dofs. However, in this case the resulting S-

matrix for the 3-view case is under-constrained since

#equations = 16 < 17 = #dofs.

The general problem of critical configurations in the

case of missing data is very complex. Basically ever

specific visibility matrix might give a different set of

critical configurations. Therefore, the rank (or the sub-

determinants) of the S-matrix for a specific configura-

tion has to be investigated in the same manner as we

did in the 2-view case with no missing data.

5.2.2. A Constructive Method. So far we have con-

sidered the questions of sufficient visibility and critical

configurations for a given visibility matrix. However,

in practice the placement of cameras and the number

of visible points can be chosen freely to a certain ex-

tent. Therefore, it is of particular interest of having a

method of choosing points and cameras which provide

sufficient visibility and non-critical configurations.

We will now introduce and prove such a method for

the multi view case. This will be done in an iterative

way in terms of the number of cameras. Let us assume

that we have a unique reconstruction of n points and

m views and we want to add a new view Q̄m+1 to this

m view system. In order to obtain a unique reconstruc-

tion with the additional view, we have to specify the 3

dofs of the new camera center Q̄m+1. There are vari-

ous ways of doing this. Let us assume that a point P̄ i

which is already reconstructed is visible in the view

Q̄m+1. Furthermore, a new point P̄n+1 is visible in

Q̄m+1 and in Q̄ j , which belongs to the m view system.

Figure 4 shows the geometric interpretation of such a

case. The point P̄ i gives at least 2 more constraints. The

point P̄n+1 adds 3 dofs to the new m + 1 view system,

Figure 4. Adding a new view Q̄m+1 to a system with n points and

m views which has a unique reconstruction.



Linear Multi View Reconstruction and Camera Recovery 131

however, it supplies 4 more constraints on the system

as well. This is sufficient for specifying the 3 dofs of the

new camera center Q̄m+1. Therefore, such a visibility

is sufficient for obtaining a unique reconstruction for

the m + 1 views case.

The remaining question is: which are the critical con-

figurations of such a multi view system?

Figure 4 shows the geometric relationship between

points and cameras. The point P̄ i introduces a line

li = P̄ i − Q̄m+1, where the camera center Q̄m+1 has

to lie on. Furthermore, the point P̄n+1 introduces the

epipolar plane �n+1 which contains the camera cen-

ters Q̄ j and Q̄m+1. Let us assume that the point P̄n+1

does not lie on the baseline between Q̄ j and Q̄m+1. In

this case, the camera center is uniquely defined if li

does not coincide with the plane �n+1. This is true if

P̄ i , P̄n+1, Q̄ j and Q̄m+1 are not coplanar. We are left

with the case that P̄n+1, Q̄ j and Q̄m+1 are collinear.

The point P̄n+1, which is assumed to be visible only in

Q̄ j and Q̄m+1, cannot be reconstructed, since it lies on

the baseline between Q̄ j and Q̄m+1. Let us summarize:

a configuration of such a multi view system is critical

if and only if (a) P̄ i , P̄n+1, Q̄ j and Q̄m+1 are coplanar

or (b) Q̄ j , P̄n+1 and Q̄m+1 are collinear.

Obviously, adding more points to this system does

not affect a non-critical configuration as long as the

following condition is satisfied, such a point is not

collinear with those camera centers from which the

point is visible.

A possible visibility matrix for such a multi view

system is:

V = views

points

1 2 3 4 5 · · ·
1 • •
2 • • •
3 • • •
4 • • •
5 • • ·
· · · ·
· · · ·
· · ·

Such a band-structured matrix typically appears for re-

constructing large scale scenes, e.g. architectural envi-

ronments, as we will see in the experimental section. It

reflects the fact that model points appear and disappear

in the sight of view while the camera moves around an

object, e.g. a building.

6. Experiments

6.1. Synthetic Data

The synthetic experiments were conducted for the case

of a finite reference plane. However, some of the con-

clusions drawn from the synthetic experiments can also

be applied to infinite reference planes since the algo-

rithm for infinite reference planes is part of the algo-

rithm for finite reference planes (see Section 4.2). In

order to investigate the performance of our algorithm,

it was applied to two different synthetic configurations

(see Fig. 5). The synthetic scene consists of a cube with

26 points floating above a reference plane. The refer-

ence plane is a square where the four corners depict the

reference points. In the first configuration (Fig. 5(a))

a camera circled around the cube with a radius of 10

units and shot 8 images (CIR-configuration). In the sec-

ond configuration (Fig. 5(b)) the camera moved trans-

lationally towards the scene (TRA-configuration). The

dimensions of the configurations are as in Fig. 5. The

internal calibration matrix of the camera was set to

diag(1000,1000,1).

In a first experiment, the influence of noise on the

image data was investigated. Therefore different lev-

els of Gaussian noise: σ = 0, 0.2, . . . , 3.0 (standard

deviation) were added to the image data, i.e. repro-

jected 3D points. Additionally, our algorithm was ap-

plied to a special situation: Gaussian noise was added

to all image points except for the reference points (de-

noted in the following as perfect basis). The com-

puted reconstructions were evaluated in terms of the

Root-Mean-Square (RMS) error between reprojected

3D points and 2D image data (potentially corrupted

by noise). Figure 6(a) shows the results for the CIR-

configuration and Fig. 6(b) for the TRA-configuration.

Additionally, the performance of the projective factor-

ization algorithm of Sturm-Triggs (Sturm and Triggs,

1996) is shown, which assumes that all points are vis-

ible in all views. The “projective depths” used in this

method were initialised to one and reestimated by re-

projection. This is a simplification of the original ap-

proach by Sturm-Triggs, however, it has been demon-

strated by Heyden et al. (1999), Hartley and Zisserman,

(2000), and Hartley et al. (2001) to produce good re-

sults as well. The first observation is that the different

algorithms performed approximately the same for both
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Figure 5. Two synthetic configurations with circular motion (radius 10 units) of the camera (a) and translational movement of the camera

towards the scene (b).

Figure 6. Performance of our algorithm (Our-alg.) and Sturm-Triggs algorithm (ST-alg.) with respect to noise on the image points for the

CIR-configuration (a) and the TRA-configuration (b).

configurations. If the reference points were not cor-

rupted by noise (perfect basis), our method and projec-

tive factorization performed nearly identical. The per-

formance of both algorithms are close to the theoretical

minimum, i.e. Cramer-Rao lower bound. If noise was

added on the reference points, the performance of our

algorithm is slightly worse. This leads to the conclusion

that, independent of the configuration, the noise on the

reference points is crucial for the performance of our

algorithm. Further experiments, including the case of

an infinite reference plane, confirmed this conclusion.

The second experiment investigated the problem of

separating points on (or close to) and off a finite ref-

erence plane. Therefore the distance between the cube

and the reference plane was varied between 0 and 2

units (see Fig. 5(b)). If the distance is 0, 9 out of 26

points of the cube lied on the reference plane. Two

different variations of our algorithm were utilized:

always all points are used for the S-matrix (without

threshold ) and points are iteratively excluded form the

S-matrix (with threshold ). The iterative exclusion of

reference points means that the threshold for separat-

ing points is automatically detected (see Section 4.2).

Figure 7(a) shows the performance of the algorithms

in terms of RMS-error for the CIR-configuration. The

performance is very similar above a certain distance,

i.e. about 0.5 units. However, if the cube is closer to

the reference plane, the performance of the algorithm

“without threshold” is worse and eventually fails. The

algorithm which reconstruct points close to the refer-

ence plane separately, i.e. “with threshold”, has a con-

stant performance for all distances. The ratio between

the fifth and fourth last singular value is depicted in

Fig. 7(b). The curves are as expected. The solution

gets less stable if the cube moves closer to the reference

plane. If the cube is closer than 0.5 units to the reference
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Figure 7. The performance of two variations of our algorithm: always all points are used for the S-matrix (without threshold ) and points are

iteratively excluded form the S-matrix (with threshold ). The performance is analysed in terms of RMS-error (a) and the ratio between the fifth

and fourth last singular value (b).

plane the algorithm “with threshold” performed much

more stable than the one “without threshold”. This is

due to the fact that in this case 9 out of 26 points of the

cube were reconstructed separately. We may draw the

conclusion that the problem of separating points on (or

close to) and off the reference plane can be handled by

our algorithm. However, an algorithm which does not

take care of this problem eventually fails if points are

on or close to the reference plane.

6.2. Real Data—Finite Reference Plane

In a first experiment a tape holder was reconstructed.

Four images of the tape holder were taken from view-

points with considerably wide mutual baselines (see

Fig. 8(a)–(c)). Since the tape holder itself contains a

plane which is visible in all images this plane was used

as the finite reference plane. The four points, which

are marked with circles, define the reference plane. On

the basis of this, the reconstruction of 24 model points

was achieved in one SVD. The 6 model points which

lie on or close to the reference plane were automati-

cally detected and separately reconstructed. In order to

visualize the result we assumed knowledge of five Eu-

clidean coordinates to rectify the projective structure.

Figure 8(d)–(f ) shows the results of the reconstruction

from three different views. We see that the reconstruc-

tion matches with the approximate size of the object

which is 6.0 cm (x-direction), 15.8 cm (y-direction)

and 6.8 cm (z-direction). Furthermore, the symmetry of

the object is maintained in the reconstruction. Since the

ratio between the fifth last singular value (0.766) and

the fourth last singular value (0.031) is substantially

high, i.e. 24.7, this configuration can be considered as

non-critical. By manually selecting points which lie

on same model planes we created a VRML model,

which consists solely of planes. Figure 8 (g)–(i) de-

picts 3 novel views of the VRML model.

In a second experiment we reconstructed a teapot. In

order to achieve this, the teapot was posed on a box (see

Fig. 9(a)–(c)). With the aid of the box both methods,

with finite and infinite reference plane, can be applied.

The four corner points of the box, which are marked

with circles, specify the finite reference plane. The mu-

tual orthogonal edges of the box were used to determine

K and R, i.e. the plane at infinity. For a better visualiza-

tion, only those model points were reconstructed which

lie on the contour in the top, side or front view of the

model. Figure 9 shows the reconstruction of 99 model

points, which were determined with the finite (d)–(f )

and infinite (g)–(i) reference plane approach. The re-

constructed model points include the corner points of

the box and a cuboid, which was placed beside the

teapot. The Euclidean coordinates of the cuboid were

used to rectify the projective reconstruction, which we

obtained with the finite reference plane approach. Let

us consider the metric reconstruction which was de-

rived with the infinite reference plane approach. The

average error between selected image points and back-

projected model points was 0.65 pixel, whereas the size

of the image is 1600×1200 pixel. The respective max-

imum error was 5.2 pixel. The ratio between the fifth

last singular value (360.36) and the fourth last singular

value (4.65) was 77.5. For the approach with a finite

reference plane, the ratio between the fifth last sin-

gular value (0.0545) and the fourth last singular value

(0.0014) was 38.9. Let us compare both reconstructions
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Figure 8. Three original views of the tape holder (a)–(c). The top (d), side (e) and front (f ) view of the reconstruction, where the dots represent

the reconstructed model points and the dashed lines display the contour and the symmetry axis of the model. Three novel views of the tape

holder (g)–(i).

of the teapot, which has the approximate dimen-

sions of 14.5 cm (x-direction), 19.7 cm (y-direction)

and 15.9 cm (z-direction). The average difference is

0.76 cm and the maximal difference is 1.31 cm.

6.3. Real Data—Infinite Reference Plane

In a first experiment of a large scale environment we re-

constructed three buildings of the campus of the Royal

Institute of Technology in Stockholm/Sweden. 26 im-

ages of size 1600×1200 pixel were taken with a hand-

held camera (Olympus 3030) (see Fig. 10(a) and (b)).

The internal camera parameters remained fix while the

pictures were taken. In order to establish a correspon-

dence between the three buildings, we utilized addi-

tionally a postcard of the campus (see Fig. 10(c)). Nat-

urally, we had no calibration information, e.g. the focal

length, of the postcard available. For this application

the plane at infinity was used as reference plane. There-

fore, we manually selected mutual orthogonal edges in

each image, which were used to determine K and R

for each view. The camera’s calibration was improved

by assuming fixed internal camera parameters. In case

of the postcard, one of the vanishing points is close

to infinity (horizontal lines). However, the focal length

can still be determined for this degenerate configura-

tion with the additional assumption that the principal

point is close to the middle of the image. Furthermore,

the correspondences of 114 model points were man-

ually achieved. On the basis of this the campus was

reconstructed in one single SVD. Figure 11 shows the
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Figure 9. Three original views of the teapot (a)–(c). The top, side and front views of the reconstruction with a finite (d)–(f ) and infinite (g)–(i)

reference plane.

            

(a)

            

(b)

            

(c)

Figure 10. Two original views (a) and (b) and a postcard (c) of the campus. The corresponding camera positions are labeled in the top view

(Fig. 11).
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Figure 11. Top view of the reconstruction of the campus with 114 model points (dots) and 27 cameras (arrows). A map of the campus is

superimposed. The labeled cameras correspond to images in the respective figures.

top view of the reconstruction, whereas the dots rep-

resent reconstructed points, arrows depict cameras and

the grey structure represents the superimposed map of

the campus. The labeled cameras correspond to images

in the respective figures. We stress that no further con-

straints, e.g. orthogonality, were imposed, which would

presumably improve the reconstruction. As in the pre-

vious experiment, we obtain a VRML model by man-

ually selecting model points which lie on same model

planes. By projecting image texture onto the planes we

acquire the final VRML model of the campus. Figure 12

shows 6 novel views of the VRML model.

Let us consider the results. The fourth and the fifth

last singular values of the SVD were 12.55 and 143.5

respectively, which corresponds to a ratio of 11.44. The

average error between selected image points and back-

projected model points was 0.83 pixel. The respective

maximum error was 35.2 pixel, which is 1.8% of the

image diagonal. The accurate match between the top

view of the reconstruction and the true map of the cam-

pus (see Fig. 11) demonstrates the high quality of the

reconstruction.

The visibility matrix in Fig. 13 shows the 114 points

partly visible in 27 images. We see that the matrix is

only sparsely filled, i.e. 10.4% of the entries are set. The

first 24 images can be divided into three groups of 8

images, whereas each group represents images of a cer-

tain building. Therefore, most of the model points are

visible exclusively in one group. Those model points

2
7

 v
ie

w
s

114 points

Figure 13. The visibility matrix of the campus with 27 images and

114 model points. If the j th point is visible in the i th view, the

corresponding element V (i, j) is set (a black square).

which are visible in more than one group, have to be

visible in images which display more than one building,

e.g. Fig. 10(c).

In a second experiment we reconstructed the out-

side and inside (courtyard) of the City Hall in Stock-

holm/Sweden. 35 images of size 1600 × 1200 pixel

were taken, whereas the internal camera parameters

remained fix (see Fig. 14). As in the previous exper-

iment, the plane at infinity was used as the reference

plane. Since some parts of the building can be seen

from both the outside and inside, e.g. the tower (see

Fig. 14(a)–(c)), a correspondence between the outside

and inside can be established. With the knowledge of

the correspondences of 129 model points, the building

was reconstructed in one single SVD. 6 novel views of

the textured VRML model of the building are displayed

in Fig. 15. Since part of the roof can not be seen from a

ground plane position, the roof was not reconstructed.
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Figure 12. Six novel views of the campus. The corresponding camera positions are labeled in the top view (Fig. 11).

Figure 15. Six novel views of the City Hall. The corresponding camera positions are labeled in the top view (Fig. 16).
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Figure 14. Three original views of the City Hall. The corresponding camera positions are labeled in the top view (Fig. 16).

Figure 16. Top view of the reconstruction of the City Hall with 129 model points (dots) and 35 cameras (arrows). A map of the City Hall is

superimposed. The labeled cameras correspond to images in the respective figures.

The top view of the reconstruction with a superimposed

map of the City Hall is shown in Fig. 16. As in the pre-

vious example, no further constraints were imposed in

order to improve the reconstruction.

The ratio between the fifth last singular value (57.24)

and the fourth last singular value (12.75) was 4.49. The

average error between selected image points and back-

projected model points was 0.81 pixel. The respective
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Figure 17. The visibility matrix of the City Hall with 35 images

and 129 model points. If the j th point is visible in the i th view, the

corresponding element V (i, j) is set (a black square).

maximum error was 97.31 pixel, which is 4.9% of the

image diagonal. Let us consider the quality of the re-

construction (see Fig. 16). It stands out that the build-

ing was not designed as a perfect rectangular build-

ing. However, this fact does not considerably affect the

good reconstruction. The fact that the detected vanish-

ing points are not perfectly mutually orthogonal influ-

ences the camera calibration as well as the estimation

of the rotation matrix R. Since the accuracy of R di-

rectly affects the camera’s position, we would expect

a higher “positioning error” for cameras with less ac-

curate R. This reasoning would explain the deviation

between the reconstruction and the true map at the top,

left corner of the building.

The visibility matrix in Fig. 17 depicts the 129 model

points partly visible in the 35 images. As in the previ-

ous experiment, the matrix is only sparsely filled, i.e.

9.7% of the entries are set. The upper half of the matrix

comprises images of the outside of the building. Most

of these correspondences between points and images

are close to the diagonal of the matrix. This reflects

the fact that model points appear and disappear in the

sight of view while the camera moves around the out-

side of the building. The lower half of the matrix which

represents images of the inside of the building seems

less structured. This is due to the fact that the strat-

egy of taking pictures is more complex in this case.

The strategy was to maximize both the baseline of the

cameras and of the model points (see Fig. 16). The re-

maining correspondences which do not belong to one

of the regions discussed above represent model points

which are visible from the outside and the inside of the

building, e.g. part of the tower (see Fig. 14(a)–(c)).

7. Summary and Conclusions

We have demonstrated theoretically and experimen-

tally that points and camera centers in a multi view situ-

ation can be simultaneously, projectively reconstructed

by computing the null-space of a matrix built from

image coordinates in an arbitrary number of views.

The only specific requirement is to have four copla-

nar points (or a reference plane) visible in all views.

This results in a substantial simplification relative to

previous algorithms for multi view reconstruction and

calibration that e.g. rely on systematic procedures for

exploiting two or three views at a time (Fitzgibbon and

Zisserman, 1998). Contrary to factorization algorithms

for affine reconstruction (Tomasi and Kanade, 1992) or

projective reconstruction (Sturm and Triggs, 1996), we

do not need to have all points visible in all views. This

gives a very flexible algorithm for the reconstruction

of e.g. large scale scenes such as architectural environ-

ments where the reference plane can be chosen as the

plane at infinity using vanishing points as the reference

points.

Most of the planar parallax approaches utilized a

reference plane to either reconstruct points in two

views (Kumar et al., 1994; Irani and Anandan, 1996;

Criminisi et al., 1998) or multiple views (Irani et al.,

1998) or to recover the camera’s motion (Hartley et al.,

2001). In contrast to this, the approach by Triggs (2000)

and our method reconstruct structure and motion si-

multaneously. Both methods utilize the assumption of

having four coplanar points (or a reference plane) to for-

malize the projective reconstruction problem in terms

of purely translating calibrated cameras. In contrast to

our approach, Triggs method needs all points to be

visible in all views. This is a major restriction for prac-

tical applicability. However, this assumption makes it

possible to determine points and cameras from a rank-

1 factorization of a matrix containing all image points

and projective depths. Furthermore, these projective

depths have to be determined in a pre-processing step

which implies that multi-image tensors, e.g. fundamen-

tal matrices, have to be additionally known. The main

advantage of Triggs method is that all points, which

includes points on and close to the reference plane,

are used in the factorization step. In case of a finite

reference plane those points, which are on or close to

the reference plane, have to be reconstructed separately

with our approach. This is suboptimal, however, it has

been shown in experiments on synthetic and real data

that this problem is not critical. The size of the ma-

trix, which contains all image data, is in case of full

visibility (n points and m views) 3mn × 3(m + n) for

our method and 3m × n for Triggs method. Since both

methods apply a SVD on this matrix, our method is

eventually slower. Furthermore, we have seen that the
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price we have to pay in order to obtain a closed-form

solution for all points and cameras is that an algebraic

error function is minimized. However, we have demon-

strated experimentally that despite this suboptimal cost

function the performance of our algorithm is nearly op-

timal, i.e. very close to the theoretical minimum.

Experimental results on real data indicate that the

use of arbitrary number of cameras leads to numer-

ically robust reconstructions which can be expected

since large mutual baselines are exploited. We consider

this as a major practical advantage over existing algo-

rithms. The reconstructions can potentially be further

improved by applying the non-linear, iterative bundle

adjustment method (Triggs et al., 1999).

The linearity and specific symmetry relation be-

tween points and camera centers implies that any anal-

ysis of critical configurations, numerical stability etc.

is greatly simplified. The questions of critical configu-

rations was discussed under the assumption of having

four points on a reference plane. We have proved that if

all points are visible in all views, i.e. no missing data,

all configuration (apart from trivial ones) where points

and camera centers are non-coplanar are non-critical.

If not all points are visible in all views, i.e. missing

data, a method to construct non-critical configurations

was proposed.

Notes

1. This issue will be reconsidered in the next section.

2. This can be seen by the mapping (0, 1)T → (1, 0)T and (1, 1)T →
(1, 1)T in the projective space P1.
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Heyden, A. and Åström, K. 1997. Simplifications of multilinear

forms for sequences of images. Image and Vision Computing,

15(10):749–757.

Heyden, A., Berthilsson, R., and Sparr, G. 1999. An iterative

factorization method for projective structure and motion from

image sequences. Image and Vision Computing, 17(13):981–

991.

Irani, M. and Anandan, P. 1996. Parallax geometry of pairs of

points for 3d scene analysis. In European Conf. Computer Vision,

Cambridge, UK, Springer-Verlag, pp. 17–30.

Irani, M., Anandan, P., and Weinshall, D. 1998. From refer-

ence frames to reference planes: Multi-view parallax geometry

and applications. In European Conf. Computer Vision, Freiburg,

Germany, Springer-Verlag, pp. 829–845.

Jacobs, D. 1997. Linear fitting with missing data for structure-from-

motion. In IEEE Conf. Computer Vision and Pattern Recognition,

San Juan, Puerto Rico, pp. 206–212.

Koch, R., Pollefeys, M., and VanGool, L. 1998. Multi viewpoint

stereo from uncalibrated video sequences. In European Conf.

Computer Vision, Freiburg, Germany, Springer-Verlag, pp. 55–

65.
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