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AbstractÐThe determination of camera position and orientation from known

correspondences of 3D reference points and their images is known as pose

estimation in computer vision and space resection in photogrammetry. It is well-

known that from three corresponding points there are at most four algebraic

solutions. Less appears to be known about the cases of four and five

corresponding points. In this paper, we propose a family of linear methods that

yield a unique solution to 4- and 5-point pose determination for generic reference

points. We first review the 3-point algebraic method. Then we present our two-

step, 4-point and one-step, 5-point linear algorithms. The 5-point method can also

be extended to handle more than five points. Finally, we demonstrate our methods

on both simulated and real images. We show that they do not degenerate for

coplanar configurations and even outperform the special linear algorithm for

coplanar configurations in practice.

Index TermsÐPose estimation, space resection, 2D-3D image orientation,

exterior orientation determination, perspective-n-point-problem, four points, five

points.

æ

1 INTRODUCTION

GIVEN a set of correspondences between 3D reference points and
their images, pose estimation consists of determining the position
and orientation of the calibrated camera with respect to the known
reference points. The problem is called space resection in the
photogrammetry community. It is one of the oldest and most
important tasks in computer vision and photogrammetry. It is
well-known that there are closed-form orientation solutions for
three points. The first algebraic solution may be tracked back to
[1841] by the photogrammetrists [1]. Many variants [2], [3], [1] of
the basic 3-point algorithm have been developed ever since.
Fischler and Bolles [2] give one such method that is popular in
computer vision together with a RANSAC paradigm to detect
outliers in the data. They also termed the problem as the
perspective-3-point-problem (P3P) or, generally, PnP for any n
points. Church's iterative 3-point method [4] is equally widely
used by photogrammetrists. Haralick et al. [1] review many old
and new variants of the basic 3-point method and carefully
examine their numerical stabilities due to different orders of
substitution and elimination. However, additional information is
required to guarantee the uniqueness of solution as there exist
multiple solutions for three points. Four points generically suffice
for uniqueness outside of certain critical configurations in space.
All critical configurations for which multiple distinct or coinciding
(unstable) solutions occur are known [5], [6]. The camera pose is
ambiguous if the projection center is coplanar with any three of the
four reference points or if it goes through the Euclidean horopter
curve or one of its degenerate forms (the Euclidean horopter lies on
a circular cylinder) uniquely determined by four given reference
points.

Camera pose determination from redundant data has also been
developed. However, most of them rely either on iterative methods
or on applying the closed-form solutions to minimal subsets of the
redundant data. Iterative methods suffer from the problems of

initialization and convergence, while algebraic methods applied to

subsets suffer from poor noise filtering and the difficulty of

selecting the common root from the noisy data. For instance, Lowe

[7] and Yuan [8] developed techniques based on Newton-Raphson

iteration. Dementhon and Davis [9] presented an iterative

algorithm for four points or more starting from ªscaled ortho-

graphicº approximation. Horaud et al. [10] convert P4P into a

special 3-line problem. Unfortunately, this conversion uses only

partial information and inherits the same fourth degree poly-

nomial equations.
Camera calibration is closely related to pose estimation, but is

more general as the calibration simultaneously estimates both pose

and the intrinsic parameters of the camera. Abdel-Aziz and Karara

[4], Sutherland [11], and Ganapathy [12] proposed a direct linear

method ªDLTº for solving the 11 entries of the camera projection

matrix from at least six corresponding points. The method is

further improved by Faugeras and Toscani [13] using a different

constraint on the projection matrix. Lenz and Tsai [14] proposed

both linear and nonlinear calibration methods. Although these

methods might be applied to pose determination, full calibration is

a heavy over-parameterization for the pose problem, giving

reduced stability and requiring more points.
Mostly in computer vision, methods for pose estimation using

line segments instead of points as image features have also been

developed. Dhome et al. [15] and Chen [16], developed algebraic

solutions for 3-line algorithms, and Lowe [17] used the Newton-

Raphson method for any number of line segments. Liu, et al. [18]

combined points and line segments into the same pose estimation

procedure.
Motivated by the lack of methods which directly provide a

unique pose solution for the redundant data case, we develop

in this paper a family of linear, unique-solution algorithms for

4-, 5-, and n-point camera pose. We therefore avoid iteration

while taking advantage of data redundancy. Developing linear

algorithms using redundant data for various vision tasks has

always attracted attention of many researchers in computer

vision [19], [20], [21], [22].
The paper is organized as follows. In Section 2, the basic 3-point

closed-form solution is reviewed and discussed. Then, the linear 4-

point, 5-point, and N-point algorithms are successively presented

in Section 3 and Section 4. The experimental results are presented

in Section 6, in which the methods developed in this paper are

validated both on various simulated and real image data. The

comparison is also made with the special linear algorithm for

coplanar configurations. Finally, Section 7 summarizes the con-

tributions of the paper.

2 THE CAMERA POSE FROM THREE POINTS REVISITED

Given a calibrated camera at C and n correspondences between 3D

reference points pi and their images ui, each pair of correspon-

dences pi $ ui and pj $ uj gives a constraint on the unknown

camera-point distances xi � jjpi ÿ cjj and xj � jjpj ÿ cjj (cf. Fig. 1):

dij
2 � xi2 � xj2 ÿ 2xixjcos�ij;

where dij � jjpi ÿ pjjj is the known inter-point distance between

the ith and jth reference points and �ij is the 3D viewing angle

subtended at the camera center by the ith and jth points. The

cosine of this viewing angle is directly computed from the

coordinates of the image points and the calibration matrix K of

the camera as
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cos �ij �
uTi Cui

�uTi Cui�1=2�ujCuj�1=2
;

where C � �KKT �ÿ1. This formula is derived from the direction

vector of the viewing line Kÿ1u. for the given image point u.
This quadratic constraint can be rewritten as

fij�xi; xj� � xi2 � xj2 ÿ 2xixjcos�ij ÿ dij2 � 0: �1�

For n � 3, we obtain the following polynomial system

f12�x1; x2� � 0;
f13�x1; x3� � 0;
f23�x2; x3� � 0

8
<
:

for the three unknown distances x1; x2; x3. This system has a

Bezout bound of 8 � 2� 2� 2 solutions. However, since it has no

linear terms, xi 7! ÿ xi preserves the form and the eight solutions

occur in four pairs. Using classical Sylvester resultant, x3 can be

eliminated between f13�x1; x3� and f23�x2; x3� to get a polynomial

h�x1; x2�. Then, further elimination of x2 between f12�x1; x2� and

h�x1; x2�) gives an eighth degree polynomial in x1 with only even

terms, i.e., a fourth degree polynomial in x � x2
1:

g�x� � a5x
4 � a4x

3 � a3x
2 � a2x� a1 � 0:

This has at most four solutions for x and can be solved in closed

form. As xi is positive, x1 �
���
x
p

. Then, x2 and x3 are uniquely

determined from x1. Note that this fourth degree polynomial is

different from that derived in [2].
To obtain a unique solution, we need to add one more

point. For n � 4, an overconstrained system of six polynomials

fij�xi; xj� � 0 is obtained for the four unknowns x1; x2; x3; x4.

One straightforward approach is to take subsets of three of the

four points, solve the fourth degree polynomial equation for

each subset of three points, and, finally, find the common

solution of the subsets. This is, indeed, the common practice

both in photogrammetry and computer vision. However, there

are several drawbacks. First, we have to solve several fourth

degree polynomials. Second, we need to find the common

solution, which might be difficult due to noisy data. Finally,

and probably the most important part, is that we cannot profit

from the data redundancy, which should increase stability.
After having recovered camera-point distances xi, these

distances are converted into the camera-centered 3D coordinates

~pi � xiKÿ1ui of the reference points in space. The final step is the

absolute orientation determination, a similarity transformation

between two sets of 3D points ~pi , pi. The best least-square

rotation is obtained in closed-form using quaternions [23], [24]. The

determination of the translation and the scale follow immediately

from the estimate of the rotation.

3 THE LINEAR 4-POINT ALGORITHM

The goal is to directly obtain the unique solution from a redundant

polynomial equation system. Finding the common roots is

equivalent to the determination of the zero-dimensional variety

generated by the ideal of the polynomials. A linear polynomial in

generic cases and in one of the unknowns could be algebraically

obtained by successive applications of Ritt-Wu method or

pseudodivision [25] of polynomials. This can effectively be done

with any computer algebra system and will directly give the

unique solution of the problem for general configurations of the

points. However, this algebraic method is hardly useful for

practical situations as the successive elimination will ultimately

give complicated coefficients for the final linear polynomial which

compromise the numerical stability of the solution. Instead of

doing it algebraically, we to develop a numerical linear method

which indeed gives the unique solution if it does exist.
For n points, we have n�nÿ1�

2 quadratic constraints of type

fij�xi; xj� � 0 on the n unknown distances x1; . . . ; xn, and �nÿ1��nÿ2�
2

fourth degree polynomials of type g�x� � 0 in one variable x � x2
i .

For n � 4, three fourth degree polynomials are given as follows:
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TABLE 1
Seven Possible Values of i; j; k; l for Nonlinear Constraints among the

Components of the Vector t5

Fig. 1. The basic geometry of the camera pose determination for each pair
of the correspondences pi $ ui and pj $ uj between the 3D reference
points and their images.



g�x� � a5x
4 � a4x

3 � a3x
2 � a2x � a1 � 0;

g0�x� � a05x
4 � a04x

3 � a03x
2 � a02x � a01 � 0;

g�x� � a5x
4 � a4x

3 � a3x
2 � a2x � a1 � 0:

8
<
:

�2�

This can be rewritten in matrix form:

a1 a2 a3 a4 a5

a01 a02 a03 a04 a05
a001 a002 a003 a004 a005

0
B@

1
CA

1
x
x2

x3

x4

0
BBBB@

1
CCCCA
� A3�5t5 � 0;

where

t5 � �t0; t1; . . . ; t4�T � �1; x; . . . ; x4�T :

This system can be viewed as a homogeneous linear equation

system in ti � xi for i � 0; . . . ; 4. Since the matrix A3�5 has at most

rank 3 � min�3; 5�, let its singular value decomposition be

U3�5diag��1; �2; �3; 0; 0��v1; . . . ;v5�T :

The null space of A3�5 is spanned by the right singular vectors

v4 and v5. A one-dimensional solution space for t5, parameterized

by � and �, can be constructed as

t5 � �v4 � �v5 for �; � 2 RR: �3�

Now consider the nonlinear constraints among the components of

t5. It can be easily checked that

titj � tktl for i� j � k� l; 0 � i; j; k; l � 4 : �4�

Substituting ti from (3) in (4) gives a homogeneous quadratic

equation in � and �:

b1�
2 � b2��� b3�

2 � 0;

where
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Fig. 2. The median, mean, and standard deviation of the relative errors of pose w.r.t. varying Gaussian noise levels computed by the 4-point and 5-point algorithms are
shown in the first, second, and third rows. The left column is the relative rotation error and the right column is the relative translation error.



b1 �v
�i�
4 v

�j�
4 ÿ v

�k�
4 v

�l�
4 ;

b2 �v
�i�
4 v

�j�
5 � v

�i�
5 v

�j�
4 ÿ �v

�k�
4 v

�l�
5 � v

�k�
5 v

�l�
4 �;

b3 �v
�i�
5 v

�j�
5 ÿ v

�k�
5 v

�l�
5 :

We have seven such equations for the seven different values of

f�i; j; k; l�; i� j � k� l and 0 � i; j; k; l � 4g

modulo the interchanges of i and j or k and l (see Table 1).
These seven quadratic equations can be written in the following

matrix form:

b1 b2 b3

b01 b02 b03

..

. ..
. ..

.

b
�6�
1 b

�6�
2 b

�6�
3

0
BBBBB@

1
CCCCCA

�2

��

�2

0
B@

1
CA � B7�3y3 � 0:

Again, this overdetermined system can be viewed as linear in �2,

��, and �2, and solved by SVD as the right singular vector of the

smallest singular value of B7�3. It is clear that these seven

equations are linearly, but, not algebraically independent. The

constraints are the algebraic conditions for xi, i � 0; . . . ; 4, to be a

geometric series.
Given the null vector y3, we solve for

�=� � y0=y1 or �=� � y1=y2:

After obtaining the ratio �=�, the scalars � and � can be determined

using one of the scalar equations of the solution (3),

1 � �v
�0�
4 � �v

�0�
5 :

The vector t5, is therefore, completely determined. The final x is

taken to be

x � t1=t0 or t2=t1 or t3=t2 or t4=t3; �5�

or the average of all these values. Since x � x2
i , the final depth is

xi �
���
x
p

.
Hence, the camera pose is uniquely determined by four point

correspondences provided that the four reference points together with the

camera center do not lie in a critical configuration. The unique solution

can be estimated by the linear 4-point algorithm.
It is important to notice that configurations of four or more

coplanar points are not generically critical for this 4-point

algorithm. This can be easily proven as the configuration of four

coplanar points is still constrained by the six independent

interpoint distances as in the noncoplanar case. It is also well-

known that the camera pose can be estimated linearly from at least

four coplanar reference points [2], [26]. These two methods will be

compared in Section 6.

4 THE LINEAR FIVE AND n-POINT ALGORITHMS

From n � 5 on, there are sufficiently many fourth degree

polynomials to directly solve ti � xi linearly.
For the n � 5 case, six fourth degree polynomials can be

arranged into the following matrix equation:

a1 a2 a3 a4 a5

a01 a02 a03 a04 a05

..

. ..
. ..

. ..
. ..

.

a
�5�
1 a

�5�
2 a

�5�
3 a

�5�
4 a

�5�
5

0
BBBBB@

1
CCCCCA

1

x

x2

x3

x4

0
BBBBBB@

1
CCCCCCA
� A6�5t5 � 0:

Let the singular value decomposition of A6�5 be U6�6�6�5V
T
5�5,

the vector t5 is directly obtained as the right singular vector v5 of

the smallest singular value of A6�5. Then x can be obtained using

(5), as for the linear 4-point algorithm.

The same algorithm is also valid for any n � 5 points. We just

need to SVD the matrix A of �nÿ1��nÿ2�
2 � 5 to get the solution for the

vector t5.
Hence, the camera pose is uniquely determined by n � 5 point

correspondences provided these n points, together with the camera center

of the camera, do not lie in a critical configuration. The unique solution

can be estimated by the linear N-point algorithm.

5 OUTLINE OF THE ALGORITHMS

The linear algorithms described above can be outlined as follows:

. Data preprocessing: Compute the interpoint distances
dij � jjpi ÿ pjjj and the cosines of the angular separa-
tions �ij from the image points and the camera
calibration matrix K.

. Solve for the depths of the reference points: from
�nÿ 1��nÿ 2�=2 fourth degree polynomial equations of
form g�x� � 0, the measurement matrix A �nÿ1��nÿ2�

2 � 5
can be formed, then SVD is applied to A either in
two steps for four points or in one step for five or
more points. The square of the depth x is obtained
from (5), then the depth is set to xi �

���
x
p

.
. Absolute orientation: The recovered depths of the refer-

ence points are converted into a camera rotation and
translation using the absolute orientation method briefly
described in Section 2.

6 EXPERIMENTAL RESULTS

We first demonstrate the accuracy and stability of the linear 4- and

5-point algorithms, both on simulated and real image data. Then,

the linear 4-point method is also compared with the special linear

algorithm for four coplanar points.

6.1 The Linear 4- and 5-Point Algorithm

We first simulate a number of images in which 4- or 5-point

correspondences are given. The coordinates of four or five

reference points in 3D are randomly generated within a cube of

width 200 by a uniform random number generator. The orientation

Euler angles of the camera are also positioned randomly. The

reference points are projected onto an image plane using the

camera pose and internal parameters. The focal length is set to

1,500 and the principal point to (256, 256). One hundred camera

poses are generated and 100 sets of points are generated for each
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Fig. 3. The calibration pattern.



camera pose. The positions of the image points are perturbed by

Gaussian noises.
The relative error of the estimated translation ti w.r.t. the true t

is measured by 2jjti ÿ tjj=�jjtijj � jjtjj�. The relative error of the

estimated rotation Ri w.r.t. the true R is measured by the sum of

the absolute values of the three Euler angles of the relative rotation

RiR
T .

The median, mean, and standard deviation of the relative errors

w.r.t. varying noise levels are illustrated in Fig. 2. We observe that

both 4- and 5-point algorithms yield very graceful degradation

with increasing noises and are, therefore, very stable. The 5-point

algorithm slightly outperforms the 4-point one as its data

redundancy is higher.
The algorithms are also demonstrated on real image data from

the calibration pattern illustrated in Fig. 3. Five images of the

pattern are taken and about 160 target points are accurately

extracted from each image [27]. A complete camera calibration is

carried out for each image the camera pose from the calibration
matrix serves as ground truth. One hundred sets of four and five
points are drawn randomly from the extracted targets. The same
procedure as in the simulated data case for the pose estimation and
result analysis carried out. The median, the mean, and the
standard deviation of the relative error are illustrated in Fig. 4 in
which we see very good stabilities of the algorithms.

6.2 The Linear 4-point Versus the Special Linear
Algorithm for Coplanar Points

The coplanar configurations are of particular interest since there
exists an exact linear algorithm for the unique pose solution that
we have already mentioned in Section 3. At first, we use a similar
simulation set-up as in Section 6.1 to generate sets of coplanar
points. The relative errors w.r.t. varying noise levels are illustrated
in Fig. 5. Then, we use a real quasi-coplanar data set to compare
the two methods. This real data set contains 28 points making a
cross shape, but the two bars of the cross are not exactly sitting on
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Fig. 4. The median, mean, and standard deviation of the relative errors of pose for real calibration data computed by the 4-point and 5-point algorithms are shown in the
first, second, and third rows. The left column is the relative rotation error and the right column is the relative translation error.



the same plane; the noncoplanarity is about 5 percent. The results
obtained from different poses and different sets of points of this
quasi-coplanar configuration are shown in Table 2.

We observe that our 4-point method performs almost as well as
the special linear four point algorithm for configurations of
coplanar points. And, the 4-point method clearly outperforms
the special linear one for quasicoplanar configurations. Some large
relative errors are also observed in Table 2 for the special linear
algorithm. This corresponds to configurations of the four points
which are degenerate for it but not for our method. For instance,
when three of the four points are aligned, the special linear
algorithm fails.

7 DISCUSSION

We have presented a family of linear algorithms for N-point pose
determination. For four points, a two-step linear algorithm was

developed and, for n � 5 points, a simple one-step algorithm was
developed. These linear algorithms give a unique solution
whenever the reference points are not sitting on one of the the
known critical surfaces. The main advantages of this family of
linear algorithms can be summarized as follows: The unicity of
solution is guaranteed, they do not degenerate for coplanar
configurations, and even outperform the special linear algorithm
for quasi-coplanar points. Finally, the methodology developed in
this paper can easily be applied to other problems in vision with
overconstrained systems of polynomial equations.
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Fig. 5. The median, mean, and standard deviation of the relative errors of pose w.r.t. varying Gaussian noise levels computed by our 4-point algorithm and the special
algorithm for coplanar configurations are shown in the first, second, and third rows. The left column is the relative rotation error and the right column is the relative
translation error.
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TABLE 2
The Relative Error in Percentage of the Computed Depth by the Special Linear Algorithm (SL) and the linear 4-point (L) for each different camera

position of the quasicoplanar real image data.


