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The equilibrium phenomenon of matching behavior traditionally has been studied in stationary
environments. Here we attempt to uncover the local mechanism of choice that gives rise to matching by
studying behavior in a highly dynamic foraging environment. In our experiments, 2 rhesus monkeys
(Macacca mulatta) foraged for juice rewards by making eye movements to one of two colored icons
presented on a computer monitor, each rewarded on dynamic variable-interval schedules. Using
a generalization of Wiener kernel analysis, we recover a compact mechanistic description of the impact
of past reward on future choice in the form of a Linear-Nonlinear-Poisson model. We validate this
model through rigorous predictive and generative testing. Compared to our earlier work with this same
data set, this model proves to be a better description of choice behavior and is more tightly correlated
with putative neural value signals. Refinements over previous models include hyperbolic (as opposed to
exponential) temporal discounting of past rewards, and differential (as opposed to fractional)
comparisons of option value. Through numerical simulation we find that within this class of strategies,
the model parameters employed by animals are very close to those that maximize reward harvesting
efficiency.
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_______________________________________________________________________________

In this journal, over a decade before the
birth of the first two authors of this article,
Richard Herrnstein published a simple obser-
vation about the choice behavior of animals in
a key-pressing task: ‘‘The relative frequency of
responding on a given key closely approximat-
ed the relative frequency of reinforcement on
that key’’ (Herrnstein, 1961). If, for example,
a pigeon received two thirds of its food-pellet
rewards for pressing a particular key, the
pigeon came to press that key two thirds of
the time. By 1970, this observation had grown
into a general law relating choice behavior to
reward history, now commonly referred to as
Herrnstein’s Matching Law, which he also
published here in the most widely cited
scientific article in JEAB’s history (JEAB,
1993). The matching law asserts that:
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where rk is the number of rewards earned on
any particular option k, ck is the number of
choices made to that option, and the summa-
tions in the denominator are over all available
options. In words, this expression states that
the fraction of total choices that an animal
allocates to an option will match the fraction of
total rewards they earn on that option. This
correspondence between reward and choice
fractions is the central prediction of the
matching law. The research presented in this
article follows directly upon Herrnstein’s,
testifying to the continuing impact of his
seminal work on animal choice.

Over the intervening decades, most studies
of matching behavior have focused on the
steady state—gathering data only after an
animal’s choice behavior equilibrates to any
manipulation of reward contingencies. As
shown by Davison and Baum (Baum &
Davison, 2004; Davison & Baum, 2000) and
by Gallistel and colleagues (Gallistel, Mark,
King, & Latham, 2001; Mark & Gallistel, 1994),
however, important mechanistic insights can
be gained by examining the dynamics of the
system as it operates in a state of flux. We
therefore designed a dynamic foraging para-
digm wherein animals’ behavior must adapt to
frequent changes in environmental conditions
in order to gather rewards efficiently. As in the
previous studies by Davison and Baum and by
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Gallistel and colleagues, our primary goal is to
gain insight into the mechanisms underlying
matching behavior by studying the system as it
operates near the limits of its adaptability.

We collected substantial behavioral data sets
from 2 rhesus monkeys, some of the most
flexible and tenacious reward harvesters in the
animal kingdom (Southwick & Siddiqi, 1985).
In earlier work with this data set, we employed
a local formulation of the matching law,
incorporating ‘‘leaky’’ integration of reward
history, to model the animals’ behavior (Su-
grue, Corrado, & Newsome, 2004). This local
matching rule captured the essential features
of the data well and was more than adequate
for the purposes of our earlier analysis, which
focused on the interpretation of neurophysio-
logical data. Our use of that model, however,
was motivated primarily by its simplicity and
formal similarity to the matching law, not by
a principled exploration of possible alterna-
tives.

We now take a very different approach.
Rather than selecting a specific model and
fitting it as well as possible to the data, we allow
the data themselves to suggest the most
appropriate model within a broad class of
possibilities. Thus we aim to infer more
directly the computations underlying choice
behavior from the data themselves—to esti-
mate rather than to fit. Our specific goal is to
capture the dynamics of choice behavior
within the broad framework of Linear-Non-
linear-Poisson (LNP) models (e.g., Chichil-
nisky, 2001). This class of models, which
includes the leaky matching rule from our
previous study, describes choice in terms of
a feed-forward, three-stage process. However,
rather than assume a specific functional form
for each of these stages, here we reconstruct
the function that best describes each stage
directly from the raw data. To accomplish this,
we employ an established sequential estima-
tion procedure based on a general form of
Wiener kernel analysis (Dayan & Abbott,
2001). Although our solution is constrained
to lie within the LNP framework, this frame-
work is far more general than our earlier
casting of the data in the form of a leaky
matching rule.

Linear systems analysis has been applied
successfully to the analysis of reward-choice
relations in elegant work by several research
groups in the past. Linear techniques have

been employed, for example, in studying the
dynamics of extinction (Palya, Walter, Kessel,
& Lucke, 1996, 2002), session-to-session
changes in behavior under concurrent vari-
able-interval (VI) reward schedules (Hunter &
Davison, 1985), integration of reward effects
over time (Horner, Staddon, & Lozano, 1997),
and to establish a theoretical basis for the
steady-state matching relation first enunciated
by Herrnstein (McDowell, 1980; McDowell,
Bass, & Kessel, 1983; McDowell & Kessell,
1979). Our use of the more general LNP
framework both extends these methods and
applies them in a new behavioral context.

As we will show, this approach ultimately
recovers an LNP choice model that resembles
our earlier leaky matching rule in several
respects, but that also contains a number of
key differences. These refinements include
hyperbolic (as opposed to exponential) tem-
poral weighting of past rewards, and differen-
tial (as opposed to fractional) comparisons of
option value. We will demonstrate that this
revised model successfully predicts single
behavioral choices and independently gener-
ates realistic synthetic behavior. Finally, we will
show how we can use this model to evaluate
the optimality of our animals’ behavioral
strategy in terms of net rewards harvested.

EXPERIMENT

Figure 1A depicts our dynamic foraging task.
In this task, two colored icons, or targets,
appear on a computer screen, one red and
one green. A computer monitors the animal’s
gaze continuously throughout the experiment,
so when the monkey is instructed to make
a choice it does so simply by moving its gaze
from a central fixation cross to the desired
target. The task progresses in rounds, or trials,
in each of which the animal is free to make an
eye movement to either (but not both) of the
two targets. The eye movements are rewarded
with drops of juice, delivered on a VI schedule.

On a VI schedule, rewards are delivered at
random intervals, but at a constant overall rate
and with a single constant magnitude. We
implemented VI schedules using a Poisson
process: at each point in time there is
a constant probability that a reward will appear
on a target. Once a reward is scheduled to
appear on a target, say green, we say that that
target is ‘‘baited.’’ That target remains baited
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until the next time the animal chooses green
and collects the reward. Importantly, this
process of target baiting and reward delivery
(Figure 1B) occurs independently for the two
colored targets.

The use of VI schedules is popular in
classical matching studies because of their
inherent compatibility with the behavior.
When choosing between several options, each
rewarded on a VI schedule, matching is very
nearly the optimal policy for maximizing
overall reward rate (Baum, 1981). Under VI
schedules, therefore, the much-debated con-
flict between matching and maximizing as
descriptions of behavior (e.g., Rachlin, Batta-

lio, Kagel & Green, 1981; Vaughan & Herrn-
stein, 1987) largely disappears.

A second feature that our foraging task
shares with many classical matching paradigms
is the incorporation of a changeover delay
(COD). The COD is a common technique
for introducing a ‘‘cost,’’ in this case a tempo-
ral delay, to switching from one choice
option to another (Shahan & Lattal, 1998).
Consider, for example, a situation in which
the animal chooses the red target for several
trials and then switches to green. Under the
COD, this first choice to green will not be
rewarded even if that target is in fact baited—
the baited reward will be delivered for a sub-

Fig. 1. (A) Schematic depiction of the foraging task. Subjects alternately view a presentation screen where they must hold
their gaze on a central fixation marker (cross), and a choice screen where they are free to direct their gaze to either of the
two colored targets, one red and one green. Rewards are delivered on dynamic VI schedules. (B) Schematic diagram of
the process governing the state of a single target. Empty targets have a constant probability per unit time of being baited.
Once baited, targets only become unbaited when the animal chooses said target and collects the reward. (C) Block-wise
matching behavior for each of the 2 monkeys in our study. Each data point represents a block of trials on which the
baiting probabilities for each target were held constant. Reward and choice fraction are shown here, and in all
subsequent figures, relative to the red target (for the green target, the equivalent metrics are one minus the value for the
red target). Thus the abscissa in 1C denotes the fraction of the total rewards in a particular block that were earned on the
red target. (D) The same data from 1C is replotted as the log of the ratio of choices made to (or the rewards earned on)
the two targets in each block. Blocks for which no rewards were earned on one or the other color are omitted to avoid
data at +/2 infinity. The data are fit by linear regression (solid line); the insets show the equation for the generalized
matching law and the parameters of the fitted regression line.
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sequent response to green only once the COD
has expired. This delay is roughly analogous
to the costs faced by animals in the wild
that must abandon one foraging site and move
to another before collecting additional re-
wards (Baum, 1982). The primary function
of the COD is to deter the animal from
switching rapidly between options, choosing
each target only once. Without such a cost,
an animal can gather rewards surprisingly
efficiently by alternating between options—
sometimes masking or even abolishing match-
ing behavior (Stubbs, Pliskoff, & Reid, 1977).
Thus, although graded matching behavior can
be observed without the use of a COD (see,
e.g., Lau & Glimcher, 2005), its incorporation
shields the data from partial contamination
with competing behavioral strategies based on
alternation.

As noted above, our foraging task departs
most significantly from classical matching
paradigms in its use of dynamic reward
schedules. In this regard, our task builds upon
the dynamic designs introduced by Davison
and Baum (Baum & Davison, 2004; Davison &
Baum, 2000) and by Gallistel and colleagues
(Gallistel et al., 2001; Mark & Gallistel, 1994).
We expose animals to as many as a dozen
changes in reward schedules over the span of
a few hours. In practice, we held the sum of
the reward-baiting probabilities on the two
targets constant, so that on average a reward
appeared on the targets at a combined rate of
one every three choices. Thus only the relative
reward-baiting probabilities were varied during
our experiments.

METHOD

Subjects

Two adult male rhesus monkeys (Macacca
mulatta) weighing 7 and 12 kg were used in
this study. Prior to experimental use, each
animal was prepared surgically with a head-
holding device (Evarts, 1966) and a scleral
search coil for monitoring eye position
(Judge, Richmond, & Chu, 1980). Fluid intake
was restricted outside of the experimental
session but food was freely available. All
surgical, behavioral, and animal care proce-
dures complied with National Institutes of
Health guidelines and were approved by the
Stanford Institutional Animal Care and Use
Committee.

Apparatus

Animals sat in a primate chair at a viewing
distance of 57 cm from a color computer
monitor. Their heads were positioned stably
using the head-holding device, and eye posi-
tion was monitored using a magnetic search
coil apparatus (CNC Engineering, Seattle,
WA). Behavioral control and data acquisition
were managed by a PC-compatible computer
running the QNX Software Systems (Ottawa,
Canada) real-time operating system. The
experimental paradigm was implemented in
the NIH Rex programming environment
(Hays, Richmond, & Optican, 1982). Visual
stimuli were generated by a second PC-
compatible computer and displayed using the
Cambridge Research Systems VSG (Kent, UK)
graphics card and accompanying software
development tools. Liquid rewards were de-
livered to the animals via a gravity-fed juice
tube placed near the animal’s mouth, actuated
by a computer-controlled solenoid valve. All
subsequent data analysis and computer simu-
lations were preformed on Apple MacintoshH
computers in the Mathworks MATLAB (Na-
tick, MA) programming environment.

Behavioral Task

Figure 1A is a schematic of the general
structure of the foraging task. Animals alter-
nately viewed a ‘‘presentation’’ screen where
they were required to hold their gaze on
a central fixation cross, and a ‘‘choice’’ screen
where they were free to direct their gaze to
either of two peripherally presented choice
targets. These targets were of equal luminance
but different color, one red and one green,
and for any given experiment were presented
at a pair of mirror symmetric locations in
opposite hemifields.

Between successive occurrences of the pre-
sentation screen, the red and green targets
were randomly assigned to the two prespeci-
fied locations, meaning that across trials each
location was chosen with equal frequency
irrespective of the baiting probabilities as-
signed to the two colors. On each trial, the
presentation screen was first displayed for
a variable delay period of 1 to 2 s; the
appearance of the choice screen signaled the
end of this delay period and cued the animal
to indicate its choice with an eye movement to
one of the two choice targets within a 1-s grace
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period. The animal was required to maintain
its gaze on the chosen target for a further
variable hold period of 300 to 600 ms. If the
chosen target was baited at the time of the
animal’s choice, a fixed magnitude fruit juice
reward (volume range 0.1 to 0.25 cc across
experimental sessions) was delivered during
this hold period. At the end of the hold period
the presentation screen reappeared, cueing
the animal to return its gaze to the fixation
cross within a grace period of 1 s in order to
trigger the onset of the next trial. Trials
continued as long as the animal maintained
its gaze within a 2u spatial window centered on
the location of the fixation cross or chosen
target. When the animal’s gaze deviated out-
side of this window inappropriately, the trial
was terminated and a 2 to 4 s timeout period
elapsed before the presentation screen reap-
peared. This temporal structure encouraged
the animal to execute long sequences of trials
mimicking continuous foraging behavior in
a trial-based setting.

Target color was the cue to the rate of
reward, specifying the probability per unit
time that an empty target would be baited
with a reward. The sum of the reward-baiting
probabilities on the two colors was held
constant at a rate of 0.12 rewards per second,
resulting in a combined reward-baiting prob-
ability of approximately 0.3 rewards per trial.
Meanwhile, the relative reward-baiting proba-
bilities on the two colors were changed without
signal between blocks of trials that varied in
length between 50 and 300 trials. On each
block, the relative baiting probabilities on the
two colors was chosen unpredictably from
a subset of the ratios: 1:8, 1:6, 1:3, 1:2, 1:1,
2:1, 3:1, 6:1, and 8:1 (though not every daily
experiment used all ratios).

The clock that implemented the reward
schedule on each color ran whenever that
color was unbaited and the presentation or
choice screens were displayed; during timeout
periods the scheduling clock was paused and
the states of the targets (baited or unbaited)
were preserved until the presentation screen
reappeared. Once baited with a reward, a par-
ticular target color became unbaited only
when the animal choose that color and
collected the reward (Figure 1B), at which
point the scheduling clock for that color
began running again. A COD was in effect
continuously during data collection. Enforcing

the COD meant that reward delivery was
withheld for choices of baited targets that
constituted a switch between target colors; on
such trials, the chosen target remained baited
and its reward was delivered normally upon
a second successive choice of the same color.

Training

Each animal was trained over a period of 4
to 5 months during daily sessions that lasted 3
to 4 hr. The endpoint for training was the
production of reliable matching behavior of
the type depicted in Figure 1C and D. Training
occurred in sequential phases that progressed
to this final goal, with the time to accomplish
each phase varying somewhat between mon-
keys.

Phase I: Single target task. In the initial phase
of training, animals learned to fixate a centrally
appearing fixation cross and to make accurate
saccadic eye movements back and forth
between this fixation cross and a single purple
colored target presented elsewhere on the
display. The timing of these movements was
cued by simultaneous increases or decreases in
the luminance of the fixation cross or target.
Initially, all correctly executed movements
were rewarded with the delivery of a fixed
volume of juice with a probability of 1.0. Once
the animal was accustomed to this sequence of
movements, the luminance of the peripheral
target was held constant so that changes in the
luminance of the fixation cross alone cued the
timing of movement execution, and rewards
for movements to the fixation cross were
eliminated. If the animal failed to make an
appropriate eye movement, either to the target
or back to the fixation cross, the task entered
a 10 to 20 s timeout period. This timeout
served as a punishment and was used to
encourage the animal to return to the fixation
cross when cued and begin the next trial. In
this manner, animals learned to link successive
trials into uninterrupted series during which
the timing of the animal’s behavior was under
continuous experimental control. Once the
animal was reliably performing series of 5 to 10
trials, the probability of reward for a correctly
executed movement to a target was gradually
reduced from an initial probability of 1.0 to
a goal level of approximately 0.3 (correspond-
ing to a baiting probability of 0.12 rewards per
second).
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Phase II: Choice task. After the animal was
efficiently performing the single target task
with the same overall baiting probability (0.12
rewards per second) and timing of events that
would be used in the final choice task, we
introduced the choice situation in which two
differently colored targets were presented
simultaneously on each trial. These red and
green targets were otherwise identical to the
single purple target used in the earlier task, as
was the timing of behavioral events. Between
successive trials, red and green targets were
randomly assigned to the available spatial
locations. During initial training, a large num-
ber of spatial locations were used in each
session to discourage the development of
spatial biases; later in training (and during
the collection of most experimental data) only
two locations equidistant from the central
fixation cross were used.

Phase III: Extreme schedules. Initially, 100%
of available rewards (at an overall reward
rate of 0.12 rewards per second) were sched-
uled on one or other target color, and the
animal’s task was to identify the rewarded
color and choose this color irrespective of
where it was presented. Within and across daily
sessions, the identity of the rewarded color was
reversed while monitoring for corresponding
reversals in the animal’s choice behavior.
During the first few of these sessions, an
increase in the luminance of the rewarded
target provided the animal with an additional
cue to the identity of the rewarded color and
aided in reversal of choice behavior. This
luminance cue was quickly eliminated, and
over subsequent sessions the frequency of
unsignaled reversals was increased until the
animal routinely encountered more than
a dozen unsignaled reversals within a single
session. To prevent the animal from anticipat-
ing their occurrence, the time between rever-
sals was varied widely across a range of 50 to
300 trials.

Phase IV: Equal schedules. Once animals
were reliably reversing their choice behavior
in the setting of extreme reward schedules,
blocks of trials were introduced in which
the relative baiting probabilities on the two
colors were varied between these extremes.
Animals were initially exposed to blocks in
which the baiting probabilities on the two

colors were equal. At first, animals continued
to show exclusive preference for one or
the other target color during these equal
probability blocks, a strategy that reduced
the animal’s reward rate by 50%. With in-
creased experience, however, animals began
to distribute their choices between the
targets, eventually allocating 50% of their
responses to each color as predicted by the
matching law.

At this stage of training, animals began to
show a strong tendency simply to alternate
their choices between colors on successive
trials. As mentioned above, the emergence and
efficacy of alternating strategies in the context
of concurrent VI VI schedules is well docu-
mented (Baum, 1974; Stubbs et al., 1977). This
tendency to alternate was rapidly eliminated
with the introduction of a COD, as described
earlier, for the rest of the experiment. After
implementing the COD, each animal’s stay
durations—the number of consecutive choices
of a particular color before switching to the
other color—assumed an exponential distri-
bution consistent with a probability of switch-
ing that was constant on every trial. Such
stochastic switching is characteristic of match-
ing behavior (Gallistel & Gibbon, 2000; Hey-
man, 1979).

Phase V: Intermediate schedules. Equal prob-
ability blocks were initially interleaved with
extreme blocks in which over 90% of rewards
were assigned to one or the other color. Once
animals were reliably changing their allocation
of behavior between blocks of extreme and
equal baiting probabilities, blocks that em-
ployed intermediate ratios of baiting probabil-
ities were introduced. Training continued
until animals reliably matched their choice
and reward fractions across blocks of variable
length on which the relative baiting probabil-
ities on the two colors were chosen unpredict-
ably from the set: 1:8, 1:6, 1:3, 1:2, 1:1, 2:1, 3:1,
6:1, and 8:1.

Phase VI: Experimentation. Once the animals
showed reliable matching behavior on ran-
domly interleaved schedules, the study entered
its experimental phase. The conditions of
experimentation were identical to those in
the final stage of training. All of the data
presented in this article were collected during
this period.
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RESULTS

Rapid Adaptation and Locally Driven
Foraging Behavior

Our animals generated good matching
behavior in a highly dynamic foraging envi-
ronment. Figure 1C (following traditional
depictions of matching behavior) plots the
proportion of choices each monkey made to
that target (choice fraction) as a function of the
proportion of rewards each animal received
from a particular target (reward fraction) over
their entire experimental histories. Each point
represents behavioral data collected during
a single block of 50 to 300 trials where the
reward-baiting probabilities of the two targets
were held constant.

According to the strict matching law (Herrn-
stein 1961, 1970), these points should lie along
the unity line, that is, the fraction of choices
made to the red target should exactly match
the fraction of rewards earned on red.
Although the observed behavior conforms to
the prediction generally, both animals show
a similar tendency toward modest under-
matching: the data points are distributed
along a line with a slope somewhat shallower
than unity. This tendency toward undermatch-
ing is a well-documented deviation from
Herrnstein’s original law, common in many
behavioral experiments (Baum, 1979).

Such deviations are typically quantified in
terms of the generalized matching law in-
troduced by Baum (1974). Baum recognized
that Herrnstein’s original formulation (Equa-
tion 1) can be expressed equivalently in terms
of ratios, rather than fractions,

c1
c2

~
r1
r2
: ð2Þ

This ratio expression is easily generalized to
incorporate parameters that characterize the
typical deviations from pure matching ob-
served in real data:

c1
c2

~ b
r1
r2

� �a

: ð3Þ

In this generalized formulation, the param-
eter a quantifies the sensitivity of choice to
changes in the ratio of rewards, and the
parameter b captures any bias toward one
or other response option independent of
reward. Logarithmically transforming this
equation,

log
c1
c2

� �

~ log bð Þ z a log
r1
r2

� �

, ð4Þ

suggests immediately that these parameters
can be estimated by plotting the data in a log-
ratio space and measuring the slope and
intercept of a regression line (Figure 1D).

In a review of experiments that studied
matching behavior under steady-state condi-
tions, Baum (1979) found sensitivities that
were typically in the range of 0.8 to 0.9. The
sensitivities that we obtained, 0.57 and 0.66 for
Monkeys F and G, respectively, are lower than
those seen in steady-state experiments, but are
in good agreement with those reported in
other studies that have examined matching
under dynamic conditions (e.g., Davison &
Baum, 2000). Lower sensitivities under
dynamic conditions should come as no sur-
prise given that such conditions violate the
basic assumption that behavior has equilibrat-
ed at steady state. Indeed, any analysis that
averages data across an entire session/block is
ill suited to experiments that incorporate
frequent changes in reward contingencies.
Instead, dynamic conditions require analytic
techniques that capture the evolution of
choice allocation as reward contingencies
change within a single experimental session.

We now address these dynamics. Figure 2A
plots the time-course of typical behavior from
Monkey F across a single experimental session.
The thin black line shows the reward-baiting
probability assigned by the experimenter to
the red target (expressed as a fraction of the
total reward probability) as the computer steps
through the blocks of the experiment. In the
second block, for example, the probability of
a red target being baited was twice the
probability of the green target being baited,
thus the fractional baiting probability is 2/3 in
favor of red. The dashed and thick lines depict
the monkey’s reward fraction and choice
fraction, respectively (again relative to the
red target), for the first, middle, and last third
of each block.

The generally similar time-course of the
three traces show that the animal’s behavior is
effectively influenced by our experimental
manipulations. The similarity of the thin and
dashed lines indicates that altering the baiting
probability impacts the animal’s experienced
reward fraction. This correspondence is ap-
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proximate rather than exact, both because of
the stochastic nature of the VI baiting sched-
ules and because the animal’s own choices
affect its experience of rewards. (If the animal

were to choose only red, for example, the
experienced reward fraction in Figure 2A
would be unity irrespective of the pro-
grammed baiting probabilities.) The similarity

Fig. 2. (A) Time-course of reward and choice fractions for a single experiment. The thin line shows the fraction of the
total baiting probability assigned by the experimenter to the red target. The dashed line shows the resulting experienced
reward fraction for the red target, calculated for the first, middle, and last third of each block. The thick line shows the
animal’s choice fraction for the red target over the same period. (B) High temporal resolution view of reward and choice
fraction time-courses. The data are the same as in A, but with reward and choice fractions computed locally using
a Gaussian filter (inset), rather than chunked by thirds of a block. (C) Behavioral response to block transitions. The
dashed and solid curves plot the average time-course of adaptation of reward and choice fractions after a block transition,
in normalized units where the fractional baiting probability on the previous block is 0% and the fractional baiting
probability on the new block is 100%. Reward and choice fractions are computed using a box filter (inset) before
averaging across blocks. (D) Distribution of run lengths for Monkey F across all experiments. Each bin shows the relative
frequency of choosing a target exactly n consecutive times before returning to the other option.
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between the dashed and thick curves, mean-
while, confirms that the monkey’s allocation
of choices conforms to the matching law
even at the timescale of these shorter epochs.
These correspondences seem to suggest that
baiting fraction (thin) influences reward frac-
tion (dashed), which in turn guides choice
(thick).

We found that the animals’ behavior
adapted quickly to changes in the environ-
ment at block boundaries. We analyze this
process of adaptation in Figure 2C, where we
plot the shift in reward fraction and choice
fraction as a function of time since the onset of
the block transition, averaged across 1,153
blocks for Monkey F. The shifts are shown in
percentage change relative to the new block-
wise baiting probability, thus a 0% shift in
reward fraction would indicate that it matched
the fractional baiting probability on the pre-
vious block, whereas a 100% shift would
indicate that it matched the fractional baiting
probability on the new block. Fractions are
calculated over five trials (smoothing function
inset), normalized to the percentage of the
maximum expected shift, and then averaged
across blocks. Following the convention in
panel A, the reward and choice are shown by
dashed and thick lines, respectively.1 Recall
that a shift in observed rewards is the animal’s
only cue that the environment has changed,
and thus sets an upper limit on the rate at
which choice behavior can adjust. Only 10
trials after the block transition, when the shift
in reward fraction is just becoming stable
(dashed line), the animal has already made
the bulk of the choice fraction adjustment
(thick line). After 40 trials, the animal’s

behavior has adapted completely to the new
environment.

Figure 2B demonstrates more precisely the
temporal fidelity of the relation between reward
and choice. This panel replots the data shown in
2A, but now as instantaneous estimates of
reward and choice fraction rather than as
chunked averages. To compute this more local
measure, we begin by smoothing the binary
record of rewards or choices with the Gaussian
function shown in the inset (standard deviation
five trials). We then compute the reward and
choice fractions using these smoothed signals,
allowing a much closer look at the variability
and structure of the behavior.

This closer examination reveals two interest-
ing features that were previously hidden. First,
the stochastic fluctuations in reward fraction
(dashed line) within each block rival in magni-
tude those induced by our experimental ma-
nipulation of baiting probabilities between
blocks. Secondly, the animal’s behavior (thick
line) seems to follow these stochastic fluctua-
tions in reward fraction as tightly as it does the
changes at block boundaries. Essentially, the
animals appear to track the noise in the reward
rates as aggressively as they track ‘‘real’’ changes
in the environment. If this is indeed the case,
then adherence to the matching law is exqui-
sitely local in time—choice patterns track re-
ward patterns not at the time scale of blocks, but
moment by moment. (As a corollary, it would
seem unlikely that the animal is able to
distinguish stochastic fluctuations from actual
changes in the state of the world. We test this
hypothesis below by determining how well
a model based on this principle mimics the
animals’ actual behavior.)

Figure 2D illustrates another important
feature of animal behavior in this task: within
the overall constraint of matching behavior,
choices appear to be stochastic. The figure is
a frequency histogram of run length—consec-
utive choices to a target of a single color—
averaged across all behavioral sessions for
Monkey F. (The frequency histogram for
Monkey G is similar, and is illustrated in
Figure 7B.) The distribution exhibits an
approximately compound exponential form
(verified quantitatively in the section entitled
Model Validation below), consistent with prob-
abilistic choice behavior and conforming to
Bernoulli statistics. The notable exception to
the exponential form is that runs of length

1 In Figure 2C, the average reward fraction asymptotes
below 100% of the expected shift because of bias
introduced by asymmetry in the distribution of observed
reward fractions. As illustrated in the instantaneous plots
in Figure 2B, there are substantial deviations of the
observed reward fraction from programmed baiting
fraction. These excursions are not distributed symmetri-
cally about the mean, but are heavily skewed because of
hard barriers to fractional reward, which obviously can
never be less than 0 or greater than 1. For example, in all
the blocks shown in Figure 2A and B except for Block 5,
there is more room to deviate below 100% expected shift
than there is to deviate above it. This asymmetry induces
a bias, which tends to pull the mean below 100%.
Consistent with this analysis, plots similar to Figure 2C,
constructed with medians as opposed to means, actually
asymptote slightly above 100% of expected shift, rather
than below.
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one are massively under-represented. This, of
course, is the influence of the COD, which
ensures that a single isolated choice to one
color is never rewarded. As a result, after
a single choice to a new color, Monkeys F and
G made a second choice to that color 92% and
96% of the time, respectively.

This distribution of run lengths is particu-
larly germane to the historical characterization
of matching behavior as exhibiting a constant
leaving rate (Heyman, 1979), which is to say
that animals abandon the option that they are
currently choosing with a constant probability
per unit time. In this scenario, the run length
should in fact be distributed exponentially, or
in the discrete approximation, geometrically.
In our dynamic environment, the leaving rate
is not in fact constant, but instead changes as
the reward contingencies change from block
to block. In this case, run length should be
distributed as a mixture of exponentials of
various time constants, resulting in a somewhat
heavier tailed distribution than a pure single
exponential. Intuitively, when applied to a dy-
namic environment, the constant leaving rate
hypothesis implies that the animal flips a coin
on each trial to decide which option to choose,
with the weight of that coin varying para-
metrically with recent reward history.

A Framework for Behavioral Strategy Estimation

The preceding analysis suggests that where-
as aggregate behavior abides by the matching
law, the animals’ decisions are guided by
a mechanism that is inherently local in time.
There are, however, many local behavioral
mechanisms that could give rise to the global
property of matching (e.g., Sugrue et al., 2004;
Vaughan, 1981). To study the behavioral
mechanism that animals employ, we must

work within some framework for describing
possible foraging strategies—one general en-
ough to capture the observed behavior, yet
constrained enough that inference of the
particular underlying strategy from data is
tractable. We have chosen to work within the
class of Linear-Nonlinear-Probabilistic (LNP)
models, of which our earlier leaky matching
rule is an example. We will validate our choice
of framework and the associated estimation
procedure post hoc, through both predictive
and generative testing of the recovered behav-
ioral model.

The LNP framework, diagrammed in
Figure 3, consists of three serial feed-forward
computational stages. The generic form of an
LNP model is as follows: In the first stage (L),
a linear operator projects the high dimension-
al input (reward history) onto a lower di-
mensional output. In our case, this will prove
to be a simple linear filter of recent reward
history that captures the influence of reward
on choice with a single scalar parameter. In
the second stage (N), a static nonlinear
function remaps the output of the L-stage
onto a single decision probability. In the final
stage (P), a point-wise independent random
variable, or Poisson process, draws an outcome
with this probability, thus rendering the
ultimate binary choice.

One aspect of choice behavior that we do
not expect the LNP framework to capture is
the influence of the COD. If the animal
switches its choice of color on trial t, then its
choice on trial t + 1 is a foregone conclusion—
as stipulated by the COD, it must again choose
the color it switched to lest its previous
response be wasted. Thus the COD-related
trials amount to simple duplications of the
previous response—an independent strategy

Fig. 3. Diagram of a generic LNP model for choice. Past rewards enter at the left, coded as a binary stream. A linear
filter weights the rewards based on their distance in the past. The resulting scalar is mapped to probability of choice by
a low-dimensional nonlinear function. That probability of choice is then used to drive an inhomogeneous Poisson
process, which in turn renders the ultimate binary choice.
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that preempts the matching strategy occasion-
ally (20% of all choices for Monkey F and 19%
for Monkey G). Because matching behavior is
the focus of our analysis, we direct our
modeling efforts toward explaining free choices,
those that are guided by the underlying
foraging strategy and unfettered by the partic-
ular form of our COD penalty.

Estimation of Behavioral Strategy

A strength of the LNP framework is that the
best of a family of models can be estimated
from data sets of modest size (e.g., Horwitz,
Chichilnisky, & Albright, 2005). We have
estimated the serial stages of the LNP process
sequentially so as to eliminate the computa-
tional challenge of optimizing all three stages
simultaneously. Under certain assumptions,
this sequential optimization can produce
completely unbiased estimates, and the flaws
introduced by modest violations of these
assumptions are small (Bussgang, 1975, Si-
moncelli, Paninski, Pillow, & Schwartz, 2004).
We show in the Appendix that this sequential
estimation procedure is both stable and sound
for our specific application, despite not being
provably unbiased (see Appendix Figure A1).

Our first challenge is to estimate the linear
(L) stage of our model. The usefulness of
linear operators in describing behavior was
established by Palya et al. (1996, 2002), and in
some sense this is the most critical aspect of
our modeling effort. It is the L-stage that looks
back at the actual history of rewards on the last
N trials and distills the influence of all of those
events into a single number. This scalar
captures the relative value of choosing one or
the other option given recent events, as
evaluated by the particular form of the L-
stage—for convenience we will refer to this
quantity as the model’s scalar value metric.
Because we only consider linear functions for
our L-stage, our scalar value metric is comput-
ed by multiplying a reward event that occurred
i trials ago by a weighting coefficient k(i) and
summing the results for all values of i. In its
most general form this can be written:

L rr tð Þ, rg tð Þ
� �

~

X

N

i~1

kr ið Þrr t { ið Þ

z

X

N

i~1

kg ið Þrg t { ið Þ,
ð5Þ

where rr(t) and rg(t) are binary vectors denot-
ing rewards obtained on the red and green
targets on trial t. (It is important to note that
to preserve the meaning of t as a temporal
index, all trials appear in both reward histories
regardless of which color was chosen on the
trial. Because on each trial t, the reward vector
rq(t) is 1 if and only if color q was chosen and
rewarded, this implies that rq(t) will be 0 either
if color q was chosen on trial t and not
rewarded, or simply because color q was not
chosen on that trial.)

If we assume that the weighting of red and
green rewards is similar, and that their impact
on choice is equal and opposite, we can rewrite
our L-stage operator more simply

L r tð Þ½ � ~
X

N

i~1

k ið Þr t{ið Þ, ð6Þ

where we define a composite reward history

r tð Þ:rr tð Þ{rg tð Þ: ð7Þ

In this format, it is easy to recognize that
different formulations of the weighting coeffi-
cients k(i) will implement different linear
operations on the recent reward history. If,
for example, we chose k(i) 5 1/10 for i 5 1
though 10 and k(i) 5 0 for i . 10, then our
linear operator would compute a scalar value
metric that is a signed average of the rewards
received over the last 10 trials. If instead we
chose k(1) 5 1, k(2) 5 21, k(i) 5 0 for i . 2,
then our linear operator would report the
signed difference of the rewards received on
the last two trials. Thus it is the set of weighting
coefficients k, sometimes called the kernel,
that describes the nature of the filter.

Our task, however, is to find theN coefficients
of the kernel k(i) that best relate recent reward
history to subsequent choice for the strategy our
animals actually employ. To that end, we will try
to find the kernel that gets the output of our L-
stage as close as possible to the final output we
want our model to capture, the actual choice
made by the animal. More formally, we would
like to find a set of k(i) that minimizes the sum
of squared errors between the output of the L-
stage for each trial and the choices made by the
animal on that trial,

E ~

X

t =[ COD

L r tð Þ½ �{c tð Þf g2, ð8Þ(5)
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where choice has been coded as a composite
history much like reward, c(t) 5 cr(t) 2 cg(t),
based on separate binary choice vectors cq(t),
which are 1 if color q was chosen on trial t
and 0 if it was not. (Of course, because one
or the other color is chosen on every trial,
c(t) is comprised entirely of +1 and 21
entries, whereas r(t) is mostly zeros simply
because most trials are unrewarded.) As
discussed earlier, we are only interested in
predicting behavior on free choices, and for
this reason, we accumulate error in this sum
only over trials not governed by the COD.

Fortunately, we do not have to invent
a method for solving this optimization prob-
lem. The problem of finding a discrete linear
filter, defined by k(i), which transforms an
input time series r(t) to most closely match
a desired output time series c(t), is a very
common problem in linear systems analysis
and digital signal processing. Norbert Wiener
famously proved that the solution to this
optimization could be found analytically by
solving the Wiener-Hopf equation:

Cxx
~kk ~ ~CCxy: ð9Þ

The essence of Wiener’s proof was to demon-
strate that the kernel k that minimizes the sum
of squared errors between the time series if the
input x(t) and the output y(t), is the same k
that solves this much simpler matrix equation.
Cxy in this context is the cross-covariance series
between the input and the output, and Cxx is
the auto-covariance matrix of the input. (This
method is extremely closely related to cross-
correlation and reverse-correlation methods
common in behavioral and neurophysiological
studies, which some readers may be more
familiar with. Please see Kay, 1993, for an
introduction to this and related analyses.)

To apply Wiener kernel analysis to our
problem, we must make a few adjustments.
First, because we only wish to allow our filter
access to past rewards in predicting the current
choice, we must additionally constrain our
analysis to recover only purely causal filters.
We enforce causality by restricting our co-
variance calculations to positive lags (those
that correlate the present to the past) and
discarding data at zero lag (that correlates
present choice to the resulting reward) or
negative lags (that correlate present choice to
future reward).

With this in mind, we might consider using
the reward time series r(t) as the input and the
choice time series c(t) as the output. We could
then use the Wiener-Hopf equations to di-
rectly compute the kernel k by inverting the
auto-covariance of r(t),

~kk ~ C{1
rr

~CCrc : ð10Þ
However, as written, this would provide the
best linear filter accumulating error over all
trials, including the COD-related trials. To
remove the contribution of COD trials to the
cross-covariance, Crc, we must make the addi-
tional modification of defining an alternative
free-choice time series to use as the target
output,

ĉc tð Þ~
0 if trial t { 1 was a switch

z1 if free choice to red on trial t

{1 if free choice to green on trial t

8

>

<

>

:

Because this free-choice vector has zeros
wherever the COD governed the choice, these
trials contribute nothing to the cross covari-
ance, provided that the mean of the choice
vector c(t) is zero. The same effect could be
achieved by simply leaving out nonfree choice
trials when constructing the cross-covariance,
but the former procedure is far more compu-
tationally efficient.

We can now write an equation for our
estimate of the best linear filter relating
rewards to choice:

~kk ~ C{1
rr

~CCr ĉc : ð11Þ

Because the overall amplitude of k is immate-
rial, we can additionally normalize k so that

X

N

i~1

k ið Þ~1, ð12Þ

without reducing the representational power
of our LNP model. (The reason scaling
factors on k do not impact the generality of
the model is that any useful multiplicative
factors on the scalar value metric can be
subsumed entirely by the nonlinear N-stage
of our model, and so we can remove them at
this stage and focus just on the relative size of
the weights k(i).)

The data points in Figure 4A illustrate the
Wiener kernel weighting coefficients recov-
ered in this manner for each of the 2 monkeys
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in our study averaged across their entire data
sets. To obtain these average kernels, we
computed Crr and Crĉ for each day’s experi-
ment and averaged them across experiments,
weighting each by the number of free choices
the animal made on that day. Kernel recovery
was then based on these average covariances.
The kernels reconstructed for the 2 animals
are quite similar in overall shape, exhibiting
a super-exponential, or heavy-tailed, appear-
ance. In contrast to the single exponential
profile assumed in Sugrue et al. (2004), these
reconstructions reveal the L-stage kernel is
better described as a mixture, or weighted
sum, of two exponentials,

k ið Þ ~ a
1

n1
e
{

i
t1z 1{að Þ 1

n2
e
{

i
t2 , ð13Þ

where na are normalization constants such
that,

X

N

i~1

1

na
e{

i
ta

� �

~ 1: ð14Þ

The black traces show the best double-expo-
nential parameterization of the recovered
kernels. We acquired these fits by minimizing
the mean squared error between the raw
kernel weights we recover and the parameter-
ized double-exponential. The insets display
the fit parameters for each monkey. The short
exponential seems to reflect rewards accrued
over the past one to two trials, whereas the
long exponential extends 10 to 20 trials into
the past. Both animals put more weight on the
longer timescale exponential, t2. It is impor-
tant to contrast our current estimation ap-
proach with the approach of fitting the data to
an assumed functional form (as was done in
our earlier work). Here we use a double-
exponential only to describe the shape of
the linear filter that was obtained from an
unprejudiced analysis of the data. We made
no a priori assumptions about the filter’s
shape but instead recovered that shape from
direct Wiener kernel analysis of the behavioral
data.

To summarize, our L-stage takes as its input
the reward history on each of the two color
targets, rr(t) and rg(t), and outputs a scalar
value metric for each trial t. The scalar value
metric is computed by the linear filter, L[r(t)]
given in Equation 6, based on a double

exponential kernel k(i) described by Equation
13. For convenience we will refer to this scalar
value metric as differential value.

With this result in hand, we move to the task
of estimating the N-stage of our LNP model.
The role of the N-stage is to remap the output
of our L-stage, the scalar value metric differ-
ential value, onto a probability appropriate for
driving the P-stage. Thus estimation of the N-
stage amounts to nothing more than finding
the function that relates the differential value
computed on trial t to the animal’s instanta-
neous probability of choosing red or green on
that trial. To map this relation, we bin trials
according their differential value and simply
compute the frequency of red choices the
animal made on that subset of responses.
Because observed frequencies yield maximum
likelihood estimates of underlying probabili-
ties, this direct approach produces a maximum
likelihood estimate of the N-stage.

The data points in Figure 4B depict the
recovered N-stages for both monkeys, again
averaged over the entire data set for each. We
grouped the choice data for each monkey into
30 equally populated bins based on the output
of the best-fitting L-stage for that animal.
Again, we omitted choices governed by the
COD so that only free choices contribute to
the results. The 95% confidence intervals on
these probability of choice estimates, based on
binomial statistics, are smaller than the plotted
points. The recovered nonlinearity appears to
be sigmoidal. We therefore fit cumulative
normal functions (black traces) to the estimat-
ed N-stage nonlinearities. The equation for
a cumulative normal used for these fits follows
the standard form:

W x, m, sð Þ ~ 1
ffiffiffiffiffiffiffiffiffiffi

2ps2
p

ðx

{?

e
{

x{mð Þ2
2s2 dx, ð15Þ

m being the bias, or mean, of the underlying
normal distribution; s, the variance, or width.
The cumulative normal fits describe the N-
stage nonlinearity reasonably well, though the
shape of Monkey G’s nonlinearity shows clear
signs of additional complexity for small differ-
ential values. The insets in the figures provide
exact parameters of the fits. Note again that we
use curve fitting only as a secondary tool to
compactly describe a transform that was re-
covered directly by maximum likelihood esti-
mation.
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Figure 5 diagrams the final LNP model
relating reward history to future choice. The
inputs are binary reward histories for each
color (left) that code whether or not a reward
was received from that color on each trial in
the past. Note that these histories contain
a zero for any trial on which the color in
question did not deliver a reward, whether or
not that color was chosen. In the L-stage, these
reward histories are convolved with the heavy-
tailed linear filter that we recovered by Wiener
kernel analysis and parameterized as a double-

exponential. The difference of the outputs of
these linear filters yields an intermediate scalar
value metric that we term differential value.
This scalar value metric operationalizes the
relative value of the two choice options on the
current trial. (Here we describe the difference
operation as following filtering, but it is exactly
equivalent to imagine differencing reward
histories prior to filtering.) In the N-stage,
a sigmoidal operator that we recovered by
maximum-likelihood estimation and parame-
terized as a cumulative Gaussian remaps

Fig. 4. (A) Filters estimated for the L-stage of our LNP model. The points indicate the raw filter weights recovered by
Wiener kernel analysis for each monkey. These weights show the relative influence of rewards earned on each of the last
50 trials on the animal’s subsequent choice. The filters are normalized so that the recovered weights sum to 1.0. The solid
line shows the best double exponential fit to these raw filter weights; the inset shows the parameters that describe this
double exponential. (B) Nonlinear decision criterion estimated for the N-stage of our LNP model. For each monkey, we
show the relation between the scalar value metric, differential value, as computed by the L-stage filters shown in A, and
the animals’ ultimate probability of choice. The data points are equally populated bins showing the fraction of choices
made to the red target for trials when the filtered reward stream held a particular value. Only free choices are included in
computing these probabilities. The solid line shows the best-fitting cumulative Gaussian. Parameters describing this
cumulative Gaussian are shown in the inset.
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differential value (range, 21 to +1) onto the
scalar probability of choice (range, 0 to +1),
which dictates the probability of choosing
red on the current trial. In the P-stage,
a binary random variable driven by the
probability of choice renders the ultimate
selection of the next choice (red or green).
The behavior of the model is completely
described by five parameters: t1 and t2, the
short and long timescale components of the
linear filter, a, the mixing coefficient for these
two components, s, the width of the sigmoidal
nonlinearity, and m, the residual bias. We will
explore the effects of varying these parameters
on choice behavior in a later section.

Model Validation

The estimation procedure discussed in the
previous section would return a model even if
the underlying data were fundamentally not
well described by the LNP framework. Thus we
need a way to validate our model indepen-
dently, by comparing its output to real animal
choice behavior. This requires us to demon-
strate the model’s sufficiency in two distinct
but equally important senses.

First, we demonstrate our model’s predictive
sufficiency. Assessing predictive sufficiency
amounts to asking the question: Given the
animal’s reward history up until time t, how
well can we predict its choice at time t + 1?
Second, we demonstrate the model’s generative
sufficiency. For this we ask the question:
Thrust into the same foraging environment
for extended blocks of trials, does the model
behave in a manner that is qualitatively and
quantitatively similar to the real animal?

Predictive Sufficiency

Figure 6 addresses the question of predictive
sufficiency. Figure 6A (dashed line) shows the
same choice data from Monkey F as Figure 2B;
we compare this behavior with the predictions
of our LNP model for Monkey F (solid line).
So that there is no possibility of unfair
advantage, the model parameters used were
reestimated omitting the data from this
experiment before predictions were made.
(In practice, this resulted in a less than 1%
deviation in the model parameters in Figure 4.)
To generate predictions, we use the animal’s
actual reward history over the previous hun-
dred trials as the model input. Based upon this
history, on every trial, the model computes the
animal’s probability of choosing each target
and renders a binary choice with that proba-
bility. This series of choices produced by the
model was smoothed with the same kernel
used to smooth the monkey choice data, inset
in Figure 2B.

If the model is predicting choice effectively,
the solid and dashed traces in Figure 6A
should be very similar. Looking at this one
example experiment, the LNP model appears
to do well in predicting the animal’s actions.
Note, for example, that the solid prediction
trace in 6A is much more tightly correlated
with choice (both in temporal lag and magni-
tude) than the dashed reward trace in 2B. This
degree of correspondence between predicted
and observed behavior is typical across experi-
ments and across animals.

Figure 6B quantifies the predictive sufficien-
cy of our LNP model averaged across the
entire data set for each animal. On each trial,

Fig. 5. Diagram of our final parameterized LNP model. Past rewards enter at the left, separately coded as a binary
stream for each color. Rewards are coded as zeros if the animal did not choose the target on that trial, or if it chose the
target but was not rewarded. Two identical double exponential filters weight these rewards based on their distance in the
past. The difference of the output of these two filters is an intermediate scalar value metric we term differential value.
Differential value is mapped to probability of choice by a sigmoidal decision function, parameterized as a cumulative
Gaussian. That probability of choice is then used to drive an inhomogeneous Poisson process, which renders the ultimate
binary choice.
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we calculate the probability of choice pre-
dicted by our model (i.e., the output of the N-
stage, before the P-stage has rendered a binary
choice) using the animals’ actual reward
history as the input to our LNP model.
Generalizing our approach above, we generate
these predictions using a modified form of
leave-one-out cross validation: leaving out each
experiment in turn, reestimating model pa-
rameters based on that reduced data set, and
then making predictions for the one omitted
experiment. Based on these predicted proba-
bilities of choosing the red target, we sorted all
free choice trials into 30 equally populated
bins and calculated the observed probability of
choosing the red target for the trials in each
bin. The 95% confidence intervals for these
probability estimates are smaller than the
plotted points. Were our LNP model a perfect
predictor of the animal’s probability of choice,
the data in Figure 6B would lay exactly on the
unity diagonal. We can see that the model
does well at predicting average probability of
choice across its entire range. (Those devia-
tions that are visible are largely due to our
simplifying parameterization of the N-stage of
our model as a simple cumulative Gaussian,
and are not a failure of the LNP framework
more generally.)

One very straightforward way of summariz-
ing the quality of our model’s predictions is to
ask what percentage of each animal’s choices
we can guess correctly by looking at the
model’s output. For example, imagine that
the model predicts that the monkey is more
likely to choose red than green on the trial 653
given the events that led up to that trial. If our
model is a good one, then we should guess
that the monkey will in fact choose red. Using
this simple rule, our LNP models correctly
predict 80% of Monkey F’s free choices and
79% of Monkey G’s free choices—a surprising-
ly high rate given the stochastic nature of
animal choice. (Again, these prediction rates
are leave-one-out cross validated so that the
data being predicted are not included in the
set used to estimate the model parameters
used to make the prediction.)

A slightly more sophisticated metric for
summarizing the predictive performance of
our model is the statistical likelihood of the
actual behavioral data, given the predictions
made by our model. We report this metric as
a per trial, or average, likelihood. A detailed

description of the computation of average-
likelihood can be found in the Appendix
(Equation A4), but the intuition behind this
metric is straightforward. An average-likeli-
hood near 1.0 indicates that the model made
very strong predictions about animal choice
on most trials and these predictions were
largely correct (e.g., the model predicted that
the animal was 99% likely to choose the red
target on trial 653, and the animal did indeed
choose red). An average-likelihood near 0.5
indicates that the model made only very weak
predictions about animal choices (e.g., the
animal was equally likely to choose red or
green on trial 653). An average-likelihood near
0.0 indicates that the model made very strong
predictions, but that these predictions were
inaccurate (e.g., the model predicted that the
animal was 99% likely to choose the green
target on trial 653, when actually the animal
chose red). Thus the advantage of average-
likelihood over the more simple rate of correct
prediction is that average-likelihood correctly
penalizes models for overconfident erroneous
predictions, but rewards them for making
strong predictions that are also accurate.
Again using leave-one-out cross validation, we
found that our LNP model yielded an average-
likelihood of 0.65 for Monkey F and 0.66 for
Monkey G. Given the stochastic nature of the
task, where events are never probability 1.0,
these average-likelihood rates are very high.
For all plausible behavioral models, even when
data are artificially produced in simulation (as
detailed in the next section) average-likeli-
hood rates are below 0.70 between the
synthetic choice data and the LNP model that
actually constructed them.

Generative Sufficiency

We now turn to our second, and more
critical, validation: testing the model’s gener-
ative sufficiency. By this we refer to the
model’s ability (or inability) to independently
generate behavior that is similar to the
animals’ in response to the changing reward
contingencies of our dynamic matching task.
Importantly, predictive sufficiency like that
documented in Figure 6 is no assurance of
generative success. Consider, for example,
a television weatherman who simply predicts
each day that there will be ‘‘no change’’ in the
weather tomorrow. Because of temporal cor-
relations in weather patterns, this algorithm
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can predict the weather correctly on an
impressively high proportion of days. The
algorithm incorporates no understanding of
the mechanisms underlying weather produc-
tion, however, and will fail miserably at
generating realistic patterns of weather change-
over time.

To test the generative sufficiency of our
model, we simulated entire experimental
sessions in which the model itself performs
the foraging task, making choices and re-
ceiving feedback in the same manner as our

monkeys. For each simulated experiment, we
challenged our model with the identical
sequence of baiting probabilities faced by the
monkeys, and evaluated the model’s perfor-
mance just as we evaluated the monkeys’
performance. In the course of these simula-
tions, the model generates its own history of
choices and rewards, which in turn provides
the inputs that guide the model’s subsequent
choices—in contrast to the tests of predictive
sufficiency above, the monkey is now com-
pletely ‘‘out of the feedback loop.’’

Fig. 6. Predictive performance of the model. (A) The monkey’s local choice fraction for this experiment is replotted
from Figure 2B now as a dashed curve. The solid line shows the choice fraction predicted by the LNP model diagramed in
Figure 5, using the parameters given for Monkey F in Figure 4. Predicted choice fractions are smoothed with the same
filter used for the actual choice fractions, shown in the inset of Figure 2B. For reference, the experimenter-manipulated
fractional baiting probabilities also are replotted from Figure 2B as the same thin solid line. (B) Overall predictive
performance of the model. Using the model recovered for each monkey, we computed a predicted probability of choice
on each free-choice trial in our entire data set. Based on these predictions, trials were then sorted into 30 equally
populated bins. In each bin, we compute the probability of choice actually observed as the fraction of red target choices
in each bin. The 95% confidence intervals on these estimates are smaller than the plotted points.
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Figure 7A shows the results of simulated
behavior for the same sequence of baiting
probabilities shown in Figures 2B and 6A. We
set the free parameters of the LNP model to
the values recovered for Monkey F. We then
allowed the model to interact with the
foraging environment, choosing options and
receiving feedback just as the animal would.
For simplicity, we forced the simulated player
to obey the COD rule rigorously; thus the LNP
model was consulted to guide free choices
only. The sequence of simulated rewards and
choices generated by the model are plotted in
the same manner as the animal data shown in
Figure 2B, including smoothing with the same
Gaussian kernel shown therein.

The qualitative similarity between the choice
behavior of the monkey (Figure 2B) and the
simulated choice behavior generated by the
LNP model (Figure 7A) in this example
experiment confirms the generative sufficien-
cy of our model. In both cases, behavior adapts
rapidly to block transitions and tracks local
noise in the sequence of experienced rewards.
In particular, the solid choice trace follows the
dashed reward trace in 7A aggressively, as was
evident in the monkey data shown in 2B. This
close tracking of reward fraction by choice
fraction was typical of all simulated experi-
ments. The most substantial discrepancies
between monkey and model behavior occur
at the extremes of probability, which the
monkey skirts cautiously but the model
approaches boldly. We would better capture
this aspect of the monkeys’ behavior if the
model included a modest bias toward explor-
ing both options equally.

Though they are qualitatively similar, we
expect the traces in Figures 2B and 7A to differ
in their detailed structure. Even if our model
were a perfect descriptor of the animal’s
strategy, the precise sequence of choices made

in simulated and real behavior has to differ
because the decision stage of the LNP model is
probabilistic—we would expect the same de-
gree of difference if we ran the animal on the
same block sequence on 2 consecutive days. By
simply repeating our simulation, we can also
consider the average behavior of the model on
this sequence of blocks. The double-thickness
trace in Figure 7A shows the model’s
smoothed choice fraction averaged across
one thousand such simulations in which we
used different seeds for the random number
generators that drive the P-stage of the model
player and the probabilistic baiting of targets
in the task.

Figures 7B and 7C depict tests of our model’s
generative sufficiency across the entire data set.
Figure 7B focuses on the dynamics of behavior-
al adaptation at block boundaries. These plots
show the time-course of choice fraction adap-
tation, computed exactly as for the behavioral
data in Figure 2C. In the left panel, the solid
line plots the adaptation time-course for
synthetic data produced by our LNP model,
using Monkey F’s parameters. For comparison,
the dashed line illustrates Monkey F’s adapta-
tion time-course taken from Figure 2C. The
right panel shows the same comparison be-
tween synthetic data and real data for Monkey
G. The correspondence for both animals is
excellent, demonstrating that our LNPmodel is
capable of independently generating realistic
choice dynamics.

Figure 7C compares run-length histograms
for synthetic and real behavioral data. In these
panels, we plot the distribution of run lengths
extracted from each monkey’s real behavior,
as we did for Monkey F in Figure 2D. For
comparison, the thick solid line plots the
distribution of run lengths that result from
the model’s simulated behavior. The agree-
ment between real and simulated run lengths

R

Fig. 7. Generative performance of the model. (A) This panel follows the conventions established in Figure 2B, but now
shows local reward and choice fractions for synthetic behavior generated when the model diagrammed in Figure 5
performed the foraging task in simulation. The additional double-thickness line shows the average choice fraction over
many repetitions of this block sequence using different random number seeds, thereby averaging out the noise in
individual runs. (B) Adaptation dynamics. The curves in this panel are calculated as per Figure 2C. The dashed lines show
the time-course of choice fraction adaptation for each monkey after a block boundary transition. The thick black lines
show the same time-course computed from synthetic choice data generated by the model we recovered for each monkey;
simulations were run on the same block sequences experienced by each monkey during our experiments. (C) Run length
histograms for each animal, following the conventions established in Figure 2D. The thick black lines show the
distribution of run lengths produced in the same monkey-specific simulations used to generate the data in Figure 2B.
The inset shows these distributions in finer detail for very long run lengths.
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is excellent. The overall shape of the run-
length distributions is slightly different for the
2 animals, but these differences are recapitu-
lated in the shape of the distributions pro-
duced by the respective LNP model for each
animal.

The most serious discrepancy between ob-
served and simulated run lengths occurs at run
lengths of one or two. We believe that this
effect is attributable to our animals’ imperfect
adherence to the changeover-delay (COD)
rule. By construction, the model adheres
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perfectly to the COD, never choosing a target
only once—thus the frequency of runs of
length one generated by the models is exactly
zero. The animals, of course, do not obey the
COD rule perfectly; they occasionally choose
a color only once, resulting in a nonzero
frequency of runs of length one. Similarly, for
the animals, the effect of the COD may linger
to influence the frequency of run lengths of
two. For a run length of two, the model is
completely guided by our LNP model, and
never misapplies the COD rule on these trials.
For the animals, we have no guarantee that the
distinction is this crisp. For example, Monkey
G, that obeys the COD rule more strictly at run
lengths of one, may occasionally lose track of
how many times it has chosen the current
target, allowing the COD rule to influence its
decision at a run length of two.

For these reasons, we believe that longer run
lengths, those far from the influence of the
COD, are the best test of our model. Corre-
spondence is quite good at run lengths of
three and higher. To show the strength of this
correspondence, the inset depicts a magnified
view of the distributions for very long run
lengths. These events are very rare, each
making up a fraction of a percentage of the
entire data set. Even at these extremes,
however, the monkeys’ distributions follow
the shape of those generated by the models.
The magnitude of the noise in the histograms
even appears to be similar. (The overall height
of the histogram at long run lengths is
influenced by the frequency of run lengths of
one or two because frequency histograms are
normalized to have equal area—it is the shape
and not the absolute levels that are most
important to compare.) The correspondence
in distribution shape, even at this level of
detail, strongly supports our earlier suggestion
that run lengths produced by the monkeys
result from a stochastic choice mechanism.
The model is explicitly probabilistic in the P-
stage and predicts that we should occasionally
observe 50 consecutive choices to a single
color (rightmost histogram bin in the inset);
that these events actually appear in the data set
at a frequency similar to that predicted by the
model is remarkable, and strongly supports
the long-standing claim that animal choice is
probabilistic in the context of matching tasks.

Just as we summarized our model’s pre-
dictive performance as the percentage of each

animal’s choices correctly predicted, we can
summarize generative performance using
these run-length histograms. To do this we
compute the overlap between the run-length
histogram observed in each animal and the
run-length histogram generated by the re-
covered LNP model for that animal. The
overlap of two distributions is defined as the
percentage of the area under one histogram
that is also under the other. If the model
perfectly described the animal’s choice behav-
ior, the two histograms would be identical, and
thus have a 100% overlap. As the statistics of
run-length predictions shift away from those
observed in the animal, overlap decreases. For
Monkey F, the reconstructed model yields an
87% overlap between observed and generated
run length histograms, and 91% overlap for
Monkey G.

The N-Stage: Difference or Division?

A major difference between the LNP model
shown in Figure 5 and the model in Sugrue et
al., (2004) is the form of the N-stage. In this
previous work, the N-stage was based on simple
division, invoked by analogy to the classical
matching law:

pc ~
vr

vr z vg
, ð16Þ

where vr and vg are the values of the red and
green options, which we operationalized above
as L[rr(t)] and L[rg(t)], the output of our L-
stage operating on the binary reward history
vector for each color. For obvious reasons, the
expression on the right side of this equation
was termed fractional value, which served as the
scalar value metric in the previous study.2 In
contrast, the N-stage used here is a nonlinear
function of our scalar value metric, differential
value :

pc ~ s vr{vg
� �

; ð17Þ

2 Sugrue et al. (2004) actually used the term local
fractional income. In that study, the L-stage linear filter
was assumed to be a leaky integrator (i.e. a pure
exponential filter), and this term emphasized that the
inputs to the nonlinearity were summed rewards, or
income. Here we assume no particular form for the L-
stage filter (indeed, in the next section we even relax the
assumption that it operates only on rewards), so we are
forced to abandon the specific term income in favor of the
more general concept of value.
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where s(x) is the sigmoidal function that
smoothly maps differential value to 0 or 1.

Which of these two nonlinearities better
characterizes the choice behavior of our
animals? To make this comparison, we consid-
er the surface defined by the two-dimensional
function:

pc ~ f vr , vg
� �

, ð18Þ

where f is either of the two candidate N-stage
nonlinearities. Intuitively, we simply plot the
probability of choosing red predicted by
each of the two nonlinearities for every
combination of vr and vg . The leftmost two
panels of Figure 8 show these predicted
probability surfaces for the differential value
nonlinearity and fractional value nonlinearity,
respectively. The contours of constant proba-
bility of choice, represented as constant colors
in the figure, differ strikingly for the two
models. The contours generated by the differ-
ential value nonlinearity are parallel, whereas
those generated by the fractional nonlinearity
radiate from the origin like the spokes of
a wheel.

We compare these alternative predictions
with direct measurements of the probability of
choice for each of our monkeys, shown in the
two rightmost panels of Figure 8. These two-
dimensional surfaces are generated in a similar
manner as the one-dimensional curves in
Figure 4B. For each free-choice trial, we simply

compute vr and vg, using the L-stage filters for
each animal, and then bin the animals’ actual
choices based on these values.3 Within each of
these bins, the fraction of free choices made to
the red target provides us with the maximum
likelihood estimate for the probability of
choice under these conditions, which we show
color coded. White gaps represent bins with
insufficient data (less than 10 free choices to
either color).

The plots reveal that the nonlinearity based
on differential value employed in the current
study describes the choice behavior of both
animals better than the fractional value non-
linearity used in our earlier paper. Contours of
constant probability of choice are nearly
parallel for both animals, strongly suggesting
that the decision process depends on the
difference of the L-stage filter outputs rather
than their ratio. This result is surprising
because the fractional-value-based model ex-
plicitly is a local implementation of the
matching law. In fact, the best mechanistic

3To generate the two rightmost panels of Figure 8 we
used the filters recovered for the L-stage of our model to
compute the value of each color. Some might worry that
this would bias us in favor of the N-stage nonlinearity that
we also recovered, and that any apparent preference for
differential versus fractional value is induced by our choice
of filter. To ensure that this was not the case, we repeated
the analysis with arbitrary filters. For both a single
exponential and a simple box filter the clear preference
for differential value remained.

Fig. 8. Comparison of candidate N-stage nonlinearities. Each panel shows a probability of choice surface as a function
of the linear filter outputs for both targets. Thus the pixel in the upper left corner of each panel shows the probability of
choosing the red target when the filtered reward history on the red target produces a value of 0.5 rewards and the filtered
reward history on the green target produces a value of 0.0 rewards. The leftmost panel shows the probability of choice
surface produced by the model diagrammed in Figure 5, where a sigmoidal nonlinearity operated on the difference of
filter outputs (i.e., differential value). The second panel shows the probability of choice surface produced by a model that
computes probability of choice by expressing the output of one filter as a fraction of the summed outputs of both (i.e.,
fractional value). The right two panels show the observed probability of choice surface that was actually observed for each
of the 2 monkeys in our study. In these two panels, the filter output values were computed using the filter recovered for
that particular animal (Figure 4A). Bins containing fewer than 10 free-choice trials are shown in white.
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description of our animals’ matching behavior
(differential value) bears little resemblance to
Herrnstein’s original formulation of the
matching law.

We might consider an even more elaborate
model, employing both operations sequentially.
In such a transformation (which we could term
differential fractional value) value signals first
would be normalized by division (as fractional
value), and subsequently compared using sub-
traction (as differential value). Unfortunately,
no explanatory power can be gained by adding
this complication. Algebraically,

vr
vr z vg

{
vg

vr z vg
~ 2

vr
vr z vg

� �

{ 1, ð19Þ

where the left side of the equation is
differential fractional value and the right side
is a trivial linear transformation of fractional
value. This identity follows from the fact that
there are only two options that the animal is
choosing between in our task: red and green.
Thus the analysis above, which strongly
favored differential value over fractional
value, will similarly favor a pure differential
model over models that compute differential
fractional value as an intermediary.

Choice of Inputs

What input to the LNP model is most
appropriate? Recall that we elected to use
a binary string of ones and zeros coding the
delivery or absence of a reward on each trial.
In essence, this selection of inputs implies that
only rewards exert a significant influence on
the monkeys’ subsequent choices. But this
assumption is, as yet, untested. It might be, for
example, that the history of past choices also
conveys useful information about the animals’
future actions.

One naive approach to this question is to
construct an explicitly choice-based, rather than
reward-based model. To construct this model,
we supply choice history rather than reward
history as the raw binary input and repeat the
estimation procedures described above. As
a result, we recover a different L-stage filter
(Figure 9A) and a different N-stage decision
criterion (Figure 9B)—in effect, an entirely
different model of choice behavior. As shown
in Figure 9C, this choice-based model is
actually a surprisingly good predictor of
animal choice. This simple model correctly

predicts 77% of Monkey F’s free choices (as
compared to 80% for the reward-based model)
and has an average-likelihood of the actual
data given the model predictions of 0.60 (as
compared to 0.65). The counterintuitive suc-
cess of the choice-based model arises from the
fact that a monkey that is matching well will
continue choosing between the two targets in
roughly the same ratio within a block of trials.
Thus information about the recent ratio of
choices within a block permits predictions
about the future ratio of choices even without
direct access to reward information.

Although the choice-based model performs
reasonably well in predictive testing, it is
completely inadequate in generating realistic
behavior, as is shown in Figure 9D. By design,
this model ignores all reward feedback from
the outside world and bases its future actions
on its own previous behavior. Thus it wanders
randomly, choosing one target more or less
frequently, and is completely blind to changes
at block boundaries. The double thickness line
in Figure 9D shows the average behavior of this
model over many simulations with different
random number seeds. Plainly, this average
choice behavior is completely uncorrelated
with shifts in baiting fraction (compare
with Figure 7A). (Correlation coefficients
between smoothed choice fraction and baiting
fraction for both real data and synthetic data
produced by the reward-based model are
approximately 0.7 or 0.8, whereas the corre-
sponding correlation coefficient computed for
this choice-based model is less than 0.02 over
the entire data set.) The small bias seen in the
average trace is a product of a similar bias
present in the recovered nonlinearity in
Figure 9B.

Although choice history alone cannot be
used as a basis for building a valid model of
behavior, perhaps we can combine informa-
tion from both reward and choice history to
construct a better model than either alone. In
our original model, the input vector for red
contains zeros for all trials where red was not
rewarded, regardless of whether red was chosen
and not rewarded, or red was simply not chosen.
Intuitively, however, these events might have
very different effects on subsequent choices:
An unrewarded choice might in fact motivate
the monkey to switch options, actively driving
the value of the unrewarded option down
rather than only reducing value through
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passive decay. If this intuition is correct, we
might predict choices better by constructing
an input vector where rewarded choices to
a color are coded as positive entries, but
unrewarded choices to that color are coded
as negative entries.

We tested this type of reward-choice ‘‘multi-
plexing’’ by examining the predictive and
generative performance of models based on
input strings coded with ones for rewarded
choices, ds for unrewarded choices, and zeros
if the target was not chosen. Positive ds would

Fig. 9. A choice-based model—an LNP model recovered for Monkey F that relates past choices, rather than past
rewards, to future choice. (A) L-stage filter, analogous to Figure 4A. (B) N-stage decision criterion, analogous to
Figure 4B. (C) Predictive performance, analogous to Figure 6A. (D) Generative failure, analogous to Figure 7A.
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imply that unrewarded trials actually reinforce
the chosen option (as does a reward), whereas
negative ds mean that unrewarded trials de-
crease the apparent value of the chosen target,
actively motivating the animal to switch—as
suggested by the intuition developed above.
Figure 10A shows the effect of varying d on the
predictive success of the model. For each value
of d plotted, we reestimated the best LNP
model for each monkey and report the
average-likelihood, d 5 0 being the original
value-based model shown in Figure 4. (Results
are similar if we plot the percentage of free
choices correctly predicted.) Contrary to
the intuition developed above, negative
values of d offer no improvement and actually
impair predictive success—dropping predic-
tion rates to chance levels by d 5 20.5. This
suggests that unrewarded choices do not
provide an active incentive to switch targets.
In the other direction, positive values of delta
offer only infinitesimal gains in predictive
performance before rolling off into more
modest but notable decreases in predictive
performance. In the limit where d 5 1 (all
choices to a color are equally reinforcing
regardless of whether they are rewarded), this

reduces to the pure choice-based model
illustrated in Figure 9.

Generative testing does not strengthen the
case for the usefulness of these multiplexed
models. Figure 10B plots the overlap between
the run-length histograms for each monkey
and the run-length histograms for synthetic
data generated using each particular value of
d. Both curves show significant falloffs as values
of d grow either more positive or negative. In 1
monkey, an approximately 4% increase in
overlap can be achieved by using a value of
d near 20.1, but absent a corresponding result
in the other monkey and at the cost of as
nearly as large a decrease in average-likeli-
hood, this modification to our original model
is unwarranted. Thus the data provide no
compelling reason to replace the simple
reward-based model with a d-based model.

Still more elegant methods exist for com-
bining information from reward and choice in
the hopes of constructing a better model of
behavior (see, e.g., Lau & Glimcher, 2005). In
this vein, we have explored the predictive and
generative success of a model that includes
both reward history and choice history as
separate inputs. We considered LNP models

Fig. 10. Effect of unrewarded trials on model performance. Rather than coding reward histories with ones for rewarded
trials and zeros for all unrewarded trials, we code reward histories for each color with ones when that color was chosen
and rewarded, ds when it was chosen and unrewarded, and zeros when it was not chosen. Positive ds indicate that
unrewarded choices are reinforcing (having the same sign as rewards), whereas negative ds are frustrating (having the
opposite sign). For each value of d, we reestimated the LNP model for each monkey. (A) Effect of d on the prediction of
free choices for each monkey. (B) Effect of d on the overlap between observed and generated run-length histograms for
each animal.
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that allow distinct L-stage filters for rewards
and choices, the outputs of which are in turn
linearly combined before reaching the N-
stage. To accurately reconstruct such a model
from data, the appropriate kernels for filtering
reward and choice information must be
estimated simultaneously so that information
already effectively captured by one is not
reiterated by the other. This can be accom-
plished by generalizations of our above Wiener
kernel approach that allow for the simulta-
neous extraction of correlations with multiple
input streams.

This ‘‘joint’’ reward/choice approach pro-
duces LNP models that perform marginally
better than our reward-based model in pre-
dicting future choices given the animal’s recent
actions (average likelihoods of 0.66 for both
monkeys), but the generative performance of
these models is slightly worse (80% and 86%
overlap in run length histograms for Monkeys
F and G, respectively). Thus the more complex
models offer little or no advantage in un-
derstanding behavior in our task. Lau and
Glimcher (2005), using a similar joint model-
ing approach, obtain more substantial im-
provements in predictive performance with
the incorporation of choice information. A
likely reason for this discrepancy is that Lau
and Glimcher did not employ a changeover
delay to punish alternation between the two
targets. Any residual tendency toward alterna-
tion would introduce predictable regularities
into sequences of choices independently of
reward history, which a joint model could
easily recover. For our data set, extraction of
additional information from the history of
choices and rewards will require more general
models that allow nonlinear interactions be-
tween reward and choice.

Optimality of Model Parameters

Having validated our LNP model through
generative testing, we now leverage that same
simulation environment to examine the effect
of the various free parameters on foraging
performance. In turn, we use this information
to evaluate how closely the monkeys approxi-
mate an optimal behavioral strategy within the
subclass of LNP models diagramed in Figure 5.

We explored a wide range of values for each
of the parameters in our LNP model but
focused on three parameters in particular: t1
and t2, the short and long timescale compo-

nents of the L-stage linear filter, and s, the
width of the N-stage sigmoidal nonlinearity.
We enforced the constraint that t2 $ t1 to
preserve their interpretation as the short and
long timescale components. The effects of
varying the mixing coefficient for the short
and long L-stage components, a, and the
residual N-stage bias, m, are discussed briefly
below. For each combination of parameters
tested, our LNP model performed 10 repeti-
tions of the entire block sequence each animal
experienced during its experimental history,
resulting in a total of over 2.5 million simulat-
ed trials per parameter combination.

We quantify task performance in terms of
harvesting efficiency, the average number of
rewards earned per trial. We report this metric
as a percentage of the combined baiting
probability on both targets. In these units,
a harvesting efficiency of 100% is, in fact,
impossible to achieve because it would require
that every reward be gathered immediately
when placed, even if two targets were baited
simultaneously. At the other bound, a harvest-
ing efficiency of 50% would be achieved by
choosing only one of the two colors for the
course of each day’s experiment—because,
averaged across all experiments, rewards are
equally likely to appear on either red or green.

The three panels of Figure 11A show cross
sections through the parameter space of the
simulations, each showing the effect on
harvesting efficiency of varying a single param-
eter. The leftmost panel shows the effect of
varying t1. For each value of t1, we optimized
the choice of t2 (with t2 $ t1) and s to
maximize harvesting efficiency; thus each data
point in this plot reflects the best harvesting
efficiency possible for any model with the
specified t1. Arrows indicate the values of t1
displayed by Monkey F and Monkey G.
Similarly, the center panel shows the effect of
fixing the value of t2 at various levels while
optimizing t1 and s to maximize performance.
Finally, the rightmost panel of 11A shows the
effect of manipulating s, the width of the
sigmoidal N-stage nonlinearity, while optimiz-
ing t1 and t2. For all simulations in 11A and B,
a was fixed at 33% and m was fixed at 0.0
rewards.

Figure 11A demonstrates that harvesting
efficiency is substantially more sensitive to
the precise values of t2 and s than to t1. The
sensitivity to t2 is easy to understand. In
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essence, the L-stage of the model estimates
reward rate by integrating reward history
over a timescale governed by t2. This time-
scale of integration must be long enough to
smooth out meaningless temporal variation
induced by infrequent, stochastic reward
events. It must be short enough, however, to
permit rapid changes in choice behavior in
response to real changes in the state of the
world (i.e., block transitions). In our task,
therefore, the overall reward probability and
the frequency of block transitions conspire to
define a narrow range of integration time
constants—centered around 15 trials—that
convey useful information about actual reward
rates. Model performance declines precipi-
tously if t2 differs from the optimal value by
more than a factor of two in either direction,

and this decline cannot be rescued by manip-
ulating either t1 or s. As indicated by the
arrows, the animals’ t2 parameter values are
tightly grouped near this maximum in harvest-
ing efficiency.

The same effect is evident for t1 (Figure 11A,
left panel), where optimal performance also
results from values near 15 trials. Values of t1
greater than 15 trials catastrophically reduce
harvesting efficiency, because this manipula-
tion also displaces t2 from its ideal value under
our constraint that t2 $ t1. Interestingly, there
is very little penalty—1% or less—for choosing
values of t1 much smaller than optimal. In fact,
because the optimal tuning of time constants
is t1 > t2 > 15, a single exponential temporal
filter with this time constant would perform
just as well as any of the double exponential

Fig. 11. (A) Effect of model parameters on reward harvesting. From left to right, the three panels show the effect of
varying t1, t2, and s on reward harvesting efficiency. Harvesting efficiency is defined to be the average rewards earned per
trial, normalized by the total baiting probability on both targets. Each point shows the harvesting efficiency of the best-
performing model using the specified parameter value. Thus the leftmost point in the leftmost panel is the performance
of the best model using a t1 of 1/16 of a trial, whereas t2 and s are free to assume any value. (Note: Very small values of
t1, e.g., 1/16, approximate the case where only the first trial is given nonzero weight.) Each point represents the average
harvesting efficiency of this best-performing model over 10 repetitions of our entire data set, using different random-
number seeds for each repetition. Arrows indicate the parameter values recovered in Figure 4 for each monkey. (B) Cross
sections through the volume showing harvesting efficiency as a function of all three parameters. From left to right, the
three panels show a plane with constant t1, t2, and s, respectively. The value of the fixed parameter is shown in the inset.
Harvesting efficiency for all combinations of the other two parameters is shown color coded from blue (poor harvesting
efficiency) to red (high harvesting efficiency).
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filters we consider. For reasons that are not
clear, neither of our animals use this simpler
weighting function; both seem to be dispro-
portionately influenced by the outcome of the
most recent trial or two (t1). The animals pay
little penalty for this strategy, but neither do
they achieve any gains, a point that we
consider further in the Discussion.

In addition to t2, performance depends
critically on s, the width of the decision
criterion at the N-stage of the model
(Figure 11A, right panel). Substantial penal-
ties result from values of s that depart by
a factor of two or more from the optimal value
of 0.15 rewards. The cost of a very shallow
decision criterion (large s) is obvious: the
model fails to respond appropriately to sub-
stantial evidence favoring one or the other
choice. In the limit, when s is very large, the
model chooses each option with near 50%
probability regardless of reward history. The
disadvantage to using very steep decision
criteria (small s) is more subtle, and depends
upon our use of VI schedules, a point to which
we return in the Discussion. Again, both
animals seem to have tuned their choice of s
to optimize reward harvesting performance.

Figure 11B explores potential interactions
between model parameters that might be
concealed in Figure 11A (recall that each data
point in 11A reflects optimization of the other
two parameters). To generate the three panels
in Figure 11B, we fixed one parameter at
a typical value and calculated harvesting
efficiency for all combinations of the other
two parameters. The data reveal no substantial
interactions between parameters, confirming
the accuracy of the optimality tuning por-
trayed in 11A for t1, t2, and s. For example, in
the leftmost panel of Figure 11B, with t1 fixed
at two trials (close to the monkeys’ t1 values),
we see a clear maximum at the values of t2 and
s suggested in 11A, with harvesting efficiency
falling roughly symmetrically in all directions
immediately around the peak near the center
of the graph. Similarly, the center and right
panels of Figure 11B confirm that for any
particular choice of s and t2, respectively, the
choice of t1 matters relatively little, as was
suggested by the left panel of Figure 11A. This
lack of influence of t1 is revealed by the
relatively constant vertical bands of color in
the panels in question. Such comparisons
indicate that the optimization of model

parameters is nearly (though not perfectly)
separable, thereby validating the simpler sin-
gle-dimensional approach to parameter explo-
ration shown in Figure 11A.

The effects of varying the residual N-stage
bias, m, and the mixing coefficient for the
short and long L-stage components, a, are
relatively straightforward. The bias term m
introduces a static preference for the model
to choose one or the other option regardless
of reward input. Any value of m that deviates
from zero results in a decrease in harvesting
efficiency; both monkeys exhibited bias values
very close to optimal (0.02 rewards for Monkey
F and 0.01 rewards for Monkey G). Altering
the mixing coefficient, a, alters the relative
impact of tuning for t1 and t2 in an intuitively
predictable manner. If the value of a is very
small, all the filter weight is put on t2 and
optimizing t1 becomes completely irrelevant.
If value of a is larger, the pressure to optimize
t1 becomes greater, although the need to tune
t2 persists until a approaches 100%. Thus
varying a determines which of the other
parameters must be tuned to obtain good
performance, but itself has little effect on
harvesting efficiency.

DISCUSSION

As in Herrnstein’s seminal papers, the aim
here has been to elucidate the relation
between past reward and future choice. To
this end, we have proposed a mechanistic
model of choice that describes the behavior of
primates in a dynamic foraging environment
(Figure 5). Working within the broad frame-
work of LNP models, we reconstructed this
behavioral model directly from the data. First,
using a generalization of Wiener kernel
analysis, we recovered an L-stage linear filter
that captures the relative influence of recently
experienced rewards. For both monkeys, this
impact of past rewards is strikingly well de-
scribed by a double-exponential decay (Fig-
ure 4A). These recovered linear filters allowed
us to compute an intermediate scalar value
metric, which we were able to relate directly to
probability of choice through our N-stage
nonlinear decision criterion. This relation,
recovered by maximum likelihood estimation,
reveals how the comparison of option values
impacts an animal’s distribution of choices.
For both animals, this relation is well de-
scribed by a sigmoidal function (Figure 4B)
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operating on the difference between the two
option values (Figure 8). In simulations, the
complete LNP model was effective both in
predicting future animal choice from recent
behavior (Figure 6) and in generating realistic
synthetic choice behavior when acting inde-
pendently (Figure 7).

The parameters of the foraging strategy
adopted by our animals appear nearly optimal
among the subclass of LNP models shown in
Figure 5. The complete model has five
parameters: the short and long terms of the
double exponential weighting function (t1
and t2), a mixing coefficient describing the
balance between the two terms of the expo-
nential (a), and the mean and standard
deviation of the cumulative normal distribu-
tion underlying the sigmoidal nonlinearity (m
and s). The tuning of parameters that have
a strong influence on harvesting efficiency—
t2, s, and m—is very similar between the
animals and is extremely close to the values
that achieve maximum rewards earned per
trial. Meanwhile, the tuning of parameters that
have less influence on harvesting efficiency—
t1 and a—is less stereotyped but at little cost to
achieved performance. This strongly suggests
that the behavior of the animals adapted
during extensive training to become opti-
mized for the statistical structure of reward
availability in our task.

Two groups previously have reported rela-
tively rapid shifts in matching behavior in
situations in which animals have been exposed
to frequent changes in reward contingencies.
During daily experimental sessions, Gallistel
and colleagues exposed rats to a single sig-
naled (Mark & Gallistel, 1994) or unsignaled
(Gallistel et al., 2001) change in reward
schedules. Davison and Baum (Baum &
Davison, 2004; Davison & Baum, 2000) ex-
posed pigeons to seven changes per experi-
mental session; however, the time of occur-
rence of each change was signaled by
a preceding blackout period. Our animals
experienced approximately 12 unsignaled
changes in the relative baiting probabilities
each day, marking an unprecedented level of
uncertainty in reward schedules. The animals’
behavior adapted rapidly to new reward con-
tingencies (Figure 2C) in all three of these
studies, a result that contrasts strikingly with
the large majority of prior studies in which
animals typically required many sessions to

stabilize on a new schedule. It appears,
therefore, that behavioral dynamics can be
influenced strongly by the statistical structure
of the reward schedules: rapid changes in
reward contingencies generate rapid changes
in choice allocation. Ultimately, animals seem
to adopt a behavioral strategy that exploits the
statistical regularities of a given environment
(Killeen, 1981, 1994; see also Lau & Glimcher,
2005).

Heavy-Tailed Weighting of Rewards

The most puzzling aspect of the behavioral
strategy revealed by our analysis is the stereo-
typed shape of the value weighting functions
shown in Figure 4A. The shape of this linear
filter is extremely well described as a mixture
of two exponentials, yet the use of a double
exponential value weighting filter cannot be
motivated from the structure of our task.
Optimal reward harvesting could have been
obtained using a single exponential kernel with
a time constant of approximately 15 trials.
Although the animals tune the long timescale
component (t2) of their filter very near to this
optimal value, both animals also display a pro-
nounced additional component of their linear
filter at a much shorter time scale (t1). As
discussed above, this ‘‘extra’’ weighting of very
recent events costs the animal little in terms of
harvesting efficiency, but this does not explain
its presence. We believe the answer to this
riddle is related to temporal discounting,
a topic of intense interest in the field of
behavioral economics.

We know from behavioral economics that
when humans evaluate future rewards, more
distant rewards are depreciated, or discounted,
relative to less distant rewards (reviewed in
Frederick, Loewenstein, & O’Donoghue, 2002,
and Green & Myerson, 2004). Thus a reward of
the same objective magnitude that is delayed
in time is valued less than a comparable, but
more immediate, reward. This sort of pro-
spective discounting of rewards is rational
under the assumption that increased temporal
delay is associated with increasing uncertainty
about whether the reward will actually occur.
Normative economic models based on this
assumption predict a constant rate of dis-
counting for future times, leading to an
exponential weighting profile for the value of
future rewards (Strotz, 1956). However, ex-
periments in behavioral economics suggest
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that humans and animals alike seem to employ
hyperbolic, or superexponential, discounting
(e.g., Green, Myerson, & McFadden, 1997;
Kirby & Maraković, 1995; Loewenstein, 1987;
Mazur 1987; for a review, see Green &
Myerson, 2004). That is to say, experimentally
measured value weighting functions fall off
steeply at first, but then continue with a long
tail. (The use of the term ‘‘hyperbolic’’ is
originally due to Herrnstein, who was the first
to use a hyperbolic form to describe the shape
of prospective discounting functions in pi-
geons; see Chung & Herrnstein, 1967).
Whether heavy-tailed discounting functions
are truly hyperbolic, in the mathematical
sense, or might be better described as a mix-
ture of two single exponentials with different
time constants, has not been convincingly
demonstrated. For example, McClure, Laib-
son, Loewenstein, and Cohen (2004) employ
double exponential discount functions to
explain human behavioral and neural data.

Our situation is certainly different, but the
analogy is striking. We are not investigating the
discounting of future rewards, but we are
measuring the discounting of past rewards.
The linear filters we recover as the first stage of
our LNP model are in fact a direct measure of
the animals’ value weighting for rewards at
different time points in the past. Moreover,
the motivation for discounting at all in our
experimental setting stems from uncertainty in
the world, just as it is for prospective discount-
ing. In our case, it is not that receipt of some
future promised reward may be thwarted by
changing contingencies, but that information
received about past rewards may be rendered
irrelevant by changes in baiting probabilities at
the block boundaries. Similarly, though a sin-
gle exponential discounting function would be
optimal, both of our animals show clear heavy-
tailed, or hyperbolic, value weighting func-
tions. (The value weighting functions in
Figure 4A were significantly better fit by
a double exponential form than they were by
hyperbolic forms with a similar or fewer
number of free parameters. Thus our use of
the term hyperbolic is only meant to be
qualitative, consistent with its usage in behav-
ioral economics.)

These parallel findings suggest the interest-
ing possibility that the representation of
rewards in the brain may have an intrinsically
hyperbolic character across time—that both

prospective and retrospective rewards are
typically discounted with heavy-tailed weight-
ing functions. McClure et al. (2004) have
suggested that the double exponential nature
of prospective value weighting functions may
reflect the existence of two separate evaluative
processes within the brain operating at differ-
ent time scales. Were these two subsystems
operating to encode the value of retrospective
as well as prospective rewards, the overall
shape of the linear filters recovered for our
L-stage might reflect a biological constraint. In
this view, through learning our animals have
tuned the overall timescale of this character-
istic weighting function to exploit the statistics
of reward delivery in our task, and the ‘‘extra’’
unaccounted for weighting of very recent
times is a signature of the underlying neural
mechanisms of valuation.

Importance of the Sigmoid N-Stage

In most discrimination or comparison tasks,
it is advantageous to use as steep a decision
criterion as possible. For example, to have the
greatest chance of correctly identifying which of
two light sources has greater luminance, one
should always choose the option with the
greater measured value even if the available
measures come from very noisy sensors and the
difference in the measured values is miniscule.
For our task, however, performance is maxi-
mized not by the steepest possible decision
criterion, but by one with a gradual transition.
This graded transition between preferring the
more and less valuable target requires the use of
a sigmoidal decision function rather than
a hard, binary decision criterion.

The disadvantage to using very steep de-
cision criteria in our task hinges on our use of
VI schedules. Because VI schedules leave
uninspected options baited until they are
chosen, it is in the player’s best interest to
occasionally visit the less valuable option to
collect rewards that have accumulated there
over time (Houston & McNamara, 1981). It
is for this very reason that matching behavior is
so nearly optimal for VI schedules: A player
should not exclusively choose the option
with the higher baiting probability, but
instead distribute choices between both op-
tions, favoring the target with the higher
baiting probability. This need for continuous
titration of choice fraction as a function of
baiting probability is the reason why a
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smoothly transitioning decision criterion is
preferable.

It is essential to distinguish this situation
from others in which smoothly transitioning
choice functions are observed. For example, in
sensory psychophysics it is common to see
smooth transitions in choosing one option
over the other. These ‘‘psychometric’’ func-
tions also have a sigmoidal shape, but do not
necessarily indicate that a smooth decision
criterion is being used internally. For an
internal decision criterion that is a perfect
digital step function, noise at the level of the
input sensors and the finite limitations of
experimental control can still conspire to
give the appearance of a smooth transition
in the resulting behavior (Green & Swets,
1966). However, were one to construct an
artificial decision maker with finite sensor
accuracy, and parametrically vary the steep-
ness of the internal decision criterion, one
would see that any decrease in steepness
results in poorer performance. We have found
just the opposite. For an artificial player in our
task, it is advantageous to use a soft or blurry
internal decision criterion. Moreover, our
animals have optimized the width of that
decision criterion tomaximize rewards—a find-
ing that argues very strongly for the presence
of an explicit smoothly varying internal de-
cision function.

The Importance of Generative Modeling

We validated our model by testing both its
predictive and generative sufficiency. First, in
testing predictive sufficiency, we quantified
our model’s ability to predict the next choice
the monkey would make, given the animal’s
recent reward history. Second, we explored
our model’s ability to generate behavior on its
own in a simulated foraging environment and
compared the resulting behavior to that of our
animals. Given the obvious success of our
model in cross-validated tests of prediction, is
generative testing actually important? In fact,
generative testing is absolutely critical because
adequate predictive performance (compare
Figure 9C to Figure 6A) can be coupled with
catastrophic generative failure (compare
Figure 9D to Figure 7A). Without the perspec-
tive of generative testing, the choice-based
model that gave rise to the predictive results in
Figure 6A might be considered more plausible
than it actually is.

The key to why the results of predictive and
generative testing can be so different is
feedback. In the simulations used for genera-
tive testing, the choices that the model makes
influence its own subsequent view of the
foraging environment. In other words, the
model’s output feeds back into its input,
a process that reflects its interaction with the
world. In predictive testing, there is no such
feedback; the model is only tested against
conditions that were generated by the animal,
not conditions that the model itself had an
active role in shaping. No passive test of
goodness of fit can reveal how a choice model
will react under the active feedback scenario of
generative testing. Thus generative ability
emerges as a particularly incisive test for
models of choice behavior, especially in con-
texts characterized by extensive feedback,
where individual choices have consequences
that inform future choices. Indeed, we pro-
pose that generative testing is essential for
critical evaluation of any model of behavioral
choice.

It is worth noting that the analytic tech-
niques employed in this paper—Wiener kernel
analysis and maximum likelihood estima-
tion—are inherently biased toward finding
better predictive, not generative, models.
These techniques make no attempt to un-
derstand foraging behavior as a feedback
system, but instead focus on relating input to
output. More effective generative models
might emerge in the future from approaches
such as learned Hidden Markov Models, which
can explicitly incorporate the feedback in-
herent in foraging exploration.

What Drives Choice: ‘‘Income’’ or ‘‘Return?’’

With its emphasis on recent reward experi-
ence as the critical determinant of choice, our
LNP model of primate choice dynamics is
similar in spirit to an existing theory of
matching behavior called melioration (Herrn-
stein & Vaughan, 1980; Vaughan 1982).
Melioration proposes that matching results
from a process in which choice continually
shifts toward alternatives that yield higher
return for behavioral investment, where return
is defined as the average reward experienced
per choice of (or time spent on) a particular
option. Under steady-state conditions, melio-
ration predicts the emergence of a behavioral
equilibrium at which the returns from com-
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peting options are equal and the distribution
of an animal’s responses among these options
is consistent with the matching law. Our
present model differs from melioration with
respect to both the quantity that drives
behavioral change and the temporal window
over which that quantity is computed.

In contrast to return, the driving force in our
LNP model is the income that an animal has
experienced from a particular option. To
appreciate the key difference between return
and income, consider the example of comput-
ing local estimates of these two quantities for
the red option in our task. On the one hand,
to calculate local return for the red option, we
might tally the number of rewards delivered
on the red option over the last, say, 10 choices
to that option. To calculate income, on the
other hand, we would tally the number of
rewards received on red for the last 10 choices
to either option. Tabulating rewards over
choices to only one option versus choices to
either option can have a strong impact on the
calculated quantities. For example, if the
animal has chosen the red option exclusively
over the last 10 trials, then our local estimates
of return and income would be numerically
equal. If, however, the animal then makes
a spate of choices to green, red income will
decay as the red rewards are diluted by green
choices. In contrast, red return will remain
completely unchanged because only red
choices are considered in the calculation.
Thus, whereas green choices cause the recent
income experienced from the red option to
decay, they have no effect on the return
experienced from red.

Gallistel and colleagues have highlighted
fundamental inconsistencies between a return-
driven choice process and the statistics of
matching behavior (Gallistel & Gibbon, 2000;
Gallistel et al., 2001; Mark & Gallistel, 1994).
Return-based models predict that the proba-
bility of terminating a run of successive choices
of a particular option ought to increase with
each unrewarded choice. However, the expo-
nential distribution of run lengths commonly
observed in matching studies (Gallistel et al.,
2001; Heyman, 1979, 1982; Sugrue et al., 2004)
suggests that this probability is constant as
a function of time. Consistent with these
studies, we find that return-based models
perform exceedingly poorly at both predicting
and generating behavior in our matching task

(data not shown). Thus, in the context of
matching behavior, experimental data from
several laboratories seem at odds with the
prevailing paradigm in the field of reinforce-
ment learning in which return is the dominant
driver of choice behavior (Sutton & Barto,
1998).

Like our LNP model, melioration theory
emphasizes the primacy of local processes in
determining choice as opposed to more global
processes such as maximization. Melioration,
however, is vague about the exact temporal
window over which average returns should be
computed, making it difficult to implement as
a mechanistic model that can predict or
generate actual choice behavior (Baum &
Aparicio, 1999). Our LNP model is consider-
ably more specific regarding the temporal
integration process, specifying a precise func-
tional form through which recent experience
influences current choice. It will be interesting
to test whether our model can account for
behavior in settings in which melioration has
been demonstrably superior to models based
upon global maximization in describing hu-
man and animal behavior (Herrnstein, Loe-
wenstein, Prelec, & Vaughan, 1993; Vaughan,
1981; Vaughan & Herrnstein, 1987). In fact,
there are some experimental findings that
appear initially challenging to melioration, but
may be more easily understood under income-
based models like our own (e.g., Buckner,
Green, & Myerson, 1993).

The Quest for Neural Correlates

Rich behavioral models can offer substantial
insight into the strategies adopted by animals
even in relatively complex behavioral tasks.
Such models are interesting to neurophysiol-
ogists, however, because of their potential
implications for the neural mechanisms that
underlie behavior. The LNP model advanced
here, for example, raises several obvious
questions: Where in the brain are the reward
integrators described in the L-stage? Do
separate neural subsystems mediate the fast
and slow aspects of reward evaluation? How
are the differencing and sigmoidal operations
for the N-stage implemented? Where is the
random number generator for the P-stage?
These questions all presuppose, however, that
behavioral models like ours not only provide
insight into behavioral strategies—the purpose
for which they were developed—but also
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describe the underlying neural mechanisms
that ultimately mediate the behavior. While
a literal implementation of our model is one
way that the brain could produce matching
behavior, there are alternative models that
might describe the behavioral data well but
have very different internal mechanisms. Thus
the success of our behavioral model does not
necessarily imply that its components will have
direct neural correlates. Therefore, we must be
cautious in making any leap from behavioral
description to neural mechanism.

Despite these caveats, there is reason for
optimism. Models such as ours offer precise,
quantitative metrics of value and choice that
neurophysiologists can use to probe underly-
ing neural systems. Indeed, evidence that
neural systems might actually compute some
of these metrics has emerged from an initial
set of neurophysiological studies of monkeys
engaged in free-choice tasks (Barraclough,
Conroy, & Lee, 2004, Dorris & Glimcher
2004, Sugrue et al., 2004; see Sugrue, Corrado,
& Newsome, 2005, for review). In our own
prior work, for example, we found that single

neurons in the lateral intraparietal area (LIP)
of the primate cortex carried signals that
correlated with the scalar value metric, frac-
tional value, which emerged from a simple
model of matching behavior developed in that
earlier study. In this paper, we have developed
a better behavioral model, but how does this
model fare in explaining neural data? To
answer this question, we reanalyzed the same
neurophysiological data using differential val-
ue, the scalar value metric operationalized by
our more sophisticated LNP model. Figure 12
is a scatterplot depicting how data from each
of 62 LIP neurons recorded in our 2 monkeys
correlate with these two scalar value metrics
(details of the experimental method, analysis,
and results pertaining to these neurophysio-
logical data can be found in Sugrue et al.,
2004). Both metrics generate similar numbers
of significant regressions in neural data from
both animals; however, correlation coefficients
tend to be higher for the scalar value metric
generated by our richer LNP model than for
the original leaky matching rule. Thus the
model presented here provides a better ac-

Fig. 12. Regressions of neural data onto two different value metrics. For each of 62 neurons recorded by Sugrue,
Corrado, and Newsome (2004) in the same 2 animals whose behavioral data are presented here, we plot the unsigned
Pearson’s correlation coefficient relating each of two putative value metrics to changes in neural firing rate preceding
choices both into and out of the cell’s response field. Fractional value, the value metric in the original study, is shown on
the abscissa and differential value, the hidden variable in the LNP model presented here, is shown on the ordinate.
Regressions that were statistically significant (p , 0.05) for both decision variables are plotted as filled circles, those that
were significant for one but not both are plotted as shaded circles, and those that were not significant for either are
shown as open circles.
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count of both the behavioral and the neural
data. Clearly, we should remain wary of
premature attempts to identify particular brain
areas or neural computations with specific
model stages. Nonetheless, initial results sup-
port guarded optimism that the operational
metrics provided by rich behavioral models
will prove useful for exploring the neural
systems that support such complex cognitive
functions as valuation and choice.
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Kirby, K. N., & Maraković, N. N. (1995). Modeling myopic
decisions: Evidence for hyperbolic delay-discounting
within subjects and amounts. Organization Behavior and
Human Decision Processes, 64, 22–30.

Lau, B., & Glimcher, P. W. (2005). Dynamic response-by-
response models of matching behavior in rhesus
monkeys. Journal of the Experimental Analysis of Behavior,
84, 555–579.

Loewenstein, G. (1987). Anticipation and the valuation of
delayed consumption. Economic Journal, 97, 666–684.

Mark, T. A., & Gallistel, C. R. (1994). The kinetics of
matching. Journal of Experimental Psychology: Animal
Behavior Processes, 20, 79–95.

Mazur, J. E. (1987). An adjusting procedure for studying
delayed reinforcement. In M. L. Commons, J. E.
Mazur, J. A. Nevin, & H. Rachlin (Eds.), Quantitative
analyses of behavior: Vol. 5. The effect of delay and of
intervening events on reinforcement value (pp. 55–73).
Hillsdale, NJ: Erlbaum.

McClure, S. M., Laibson, D. I., Loewenstein, G., & Cohen,
J. D. (2004, October 15). Separate neural systems
value immediate and delayed monetary rewards.
Science, 306, 503–507.

McDowell, J. J (1980). An analytic comparison of Herrn-
stein’s equations and a multivariate rate equation.
Journal of the Experimental Analysis of Behavior, 33,
397–408.

McDowell, J. J, Bass, R., & Kessel, R. (1983). Variable-
interval rate equations and reinforcement and re-
sponse distributions. Psychological Review, 90, 364–375.

McDowell, J. J, & Kessel, R. (1979). A multivariate rate
equation for variable-interval performance. Journal of
the Experimental Analysis of Behavior, 31, 267–283.

Palya, W. L., Walter, D., Kessel, R., & Lucke, R. (1996).
Investigating behavioral dynamics with a fixed-time
extinction schedule and linear analysis. Journal of the
Experimental Analysis of Behavior, 66, 391–409.

Palya, W. L., Walter, D., Kessel, R., & Lucke, R. (2002).
Linear modeling of steady-state behavioral dynamics.
Journal of the Experimental Analysis of Behavior, 77, 3–27.

Rachlin, H., Battalio, R., Kagel, J., & Green, L. (1981).
Maximization theory in behavioral psychology. Behav-
ioral and Brain Sciences, 4, 37l–388.

Shahan, T. A., & Lattal, K. A. (1998). On the functions of
the changeover delay. Journal of the Experimental
Analysis of Behavior, 69, 141–160.

Simoncelli, E. P., Paninski, L., Pillow, J. W., & Schwartz, O.
(2004). Characterization of neural responses with
stochastic stimuli. In M. S. Gazzaniga (Ed.), The
cognitive neurosciences III (3rd ed., pp. 327–338).
Cambridge, MA: MIT Press.

Southwick, C. H., & Siddiqi, M. F. (1985). Rhesus
monkey’s fall from grace. Natural History, 94(2),
63–70.

Strotz, R. H. (1956). Myopia and inconsistency in dynamic
utility maximization. Review of Economic Studies, 23,
165–180.

Stubbs, D. A., Pliskoff, S. S., & Reid, H. M. (1977).
Concurrent schedules: A quantitative relation be-
tween changeover behavior and its consequences.
Journal of the Experimental Analysis of Behavior, 27,
85–96.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2004,
June 18). Matching behavior and the representation
of value in parietal cortex. Science, 304, 1782–1787.

Sugrue, L. P., Corrado, G. S., & Newsome, W. T. (2005).
Choosing the greater of two goods: Neural currencies
for valuation and decision making. Nature Reviews in
Neuroscience, 6, 363–375.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning:
An introduction. Cambridge, MA: MIT Press.

Vaughan, W., Jr. (1981). Melioration, matching, and
maximization. Journal of the Experimental Analysis of
Behavior, 36, 141–149.

Vaughan, W., Jr. (1982). Choice and the Rescorla-Wagner
model. In M. L. Commons, R. J. Herrnstein, & H.
Rachlin (Eds.), Quantitative analyses of behavior. Vol. II:
Matching and maximizing accounts (pp. 263–279).
Cambridge, MA: Ballinger.

Vaughan, W., Jr., & Herrnstein, R. J. (1987). Stability,
melioration, and natural selection. In L. Green, & J.
H. Kagel (Eds.), Advances in behavioral economics.
(Vol. 1, pp. 185–215). Norwood, NJ: Ablex.

Received April 1, 2005
Final acceptance November 14, 2005

614 GREG S. CORRADO et al.



APPENDIX

THE SOUNDNESS OF MODEL ESTIMATION

Here we address two concerns regarding the
soundness of our LNP model estimation pro-
cedure. First, we assess the stability of our L-
stage estimates: if we estimate a linear filter
iteratively, do we obtain the same answer
repeatedly? Second, we would like to explore
our capacity to recover arbitrary L-stage filters:
can we recover an arbitrary filter of a known
shape, or is this procedure biased to recover
filters of the shape we extracted from the real
data?

To address the question of stability, we can
leverage our simulated task environment. The
top of Figure A1A diagrams our approach. We
(a) estimate an LNPmodel from real behavioral
data, (b) generate artificial data in simulated
play using the estimated LNP, and then (c)
reestimate an LNP model from these artificial
data. If our LNP model estimation procedure is
stable, we should recover the same LNP model
that generated the artificial data when we
perform the repeat estimation. The solid line
in the bottom of Figure A1A shows the fit to the
recovered kernel for Monkey F—this is identical
to the black fit line shown in Figure 4A of the
main text. The parameters from this fit describe
the LNP model that we use to generate artificial
choice data in simulation. The open data points
in Figure A1A then show the filter recovered
when we reapplied our estimation procedure,
extracting the filter from the artificial data as
though it were real animal data. The repeated-
estimation filter closely matches the double
exponential filter that generated the artificial
data from which it was extracted. This shows
that our estimation procedure is stable under
these conditions, recovering the same filter
when applied iteratively.

It still might be that the estimation procedure
is strongly biased to recover compound expo-
nential kernels like the ones we extracted from
our data set, and that while those estimates are
stable under simulation and reestimation, they
do not reflect the kernel that generated the
original data. We address this possibility directly
by simulating choice data using an arbitrary L-
stage kernel, and attempting reconstruction.
Figure A1B diagrams this procedure and shows
the results. The solid line in the bottom panel
shows an arbitrary kernel that was used to
generate synthetic choice data over the same

sequence of blocks that our animals were
exposed to. The open points show the re-
covered filter estimate. The fidelity of the
reconstruction is quite high. Subtle features
like differences in the height of the steps along
the length of the filter can be made out. Even
sharp transitions such as those of the high-
frequency spikes at the tail of the filter are
recovered quite well. Larger data sets would be
required to recover these features more crisply.
The greatest deviation comes at trials close to
zero lag where the reconstruction fails to
capture the downward corner of the filter’s
triangular ramp, but these small deviations are
far from the distortion or bias that might cause
us to confuse an arbitrary filter with one having
a double exponential form similar to that
recovered from the real data.

Taken together, these exercises attest to the
integrity of our LNP model estimation pro-
cedure and to its usefulness in extracting
behavioral models even in situations where
many of the assumptions that guarantee its
performance are violated.

THE COMPUTATION OF AVERAGE-LIKELIHOOD

We are given a binary data set, d, of length
N. A probabilistic model, p, predicts that d(i)
will take the value 1 with probability p(i). We
would like to compute how likely the data d are
under this model p.

The likelihood of d given p can be computed
directly, by multiplying by p(i) on all instances
where d(i) 5 1 and multiplying by 1 2 p(i) on
all instances where d(i) 5 0:

L djpð Þ ~
Y

for i where
d ið Þ~1

p ið Þ

|

Y

for i where
d ið Þ~0

1 { p ið Þð Þ :
ðA1Þ

This formulation is very cumbersome, as well
as numerically difficult to handle, and thus it is
often preferred to compute the log-likelihood.
By taking the log of Equation A1, we can
convert the products to sums:

logL d pjð Þ ~
X

for i where
d ið Þ ~ 1

log p ið Þ½ �

z

X

for i where
d ið Þ ~ 0

log 1 { p ið Þ½ �:
ðA2Þ

(A1)

(A2)
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This measure accumulates a sum from i 5 1
through N, adding log[p(i)] if d(i) 5 1 and
log[1 – p(i)] if d(i) 5 0. This is much simpler
to compute, but still has an undesirable
dependence on N, the length of the data set.

We would prefer a measure that is indepen-
dent of the size of the data set, in essence
a ‘‘per trial’’ metric of the likelihood of the
data given the model. To meet this need, we
define the average-log-likelihood simply by
normalizing Equation A2 by N, the length of
the data set:

Avg logL d pjð Þ ~ 1

N

X

for i where
d ið Þ ~ 1

log p ið Þ

2

6

6

4

z

X

for i where
d ið Þ ~ 0

log 1{p ið Þ½ �

3

7

7

5

:

This metric is easy to compute and has the
desired independence from the length of the

Fig. A1. (A) Kernel estimation stability. The top half of the panel diagrams the procedure used. Starting from raw
behavioral data obtained from a particular animal, a linear filter was reconstructed using Wiener kernel analysis. This raw
kernel was then fit with a double exponential, shown by the solid line (bottom panel). Artificial data were generated in
simulation using this fit kernel, and then a new kernel was reconstructed from these artificial data. This repeated estimate
of the kernel is shown in the open data points (bottom panel). (B) Arbitrary kernel estimation. An arbitrary linear filter
(the solid line in the bottom panel) was used to generate synthetic data in simulation as diagrammed in the top half of
the panel. These data were generated using the same block sequences, and were of the same size, as those presented to
the monkeys in actual behavioral experiments. The open data points (bottom panel) show the recovered estimate of the
underlying filter based on these artificial data. Recovered kernels in both A and B fit the input kernels quite well.

(A3)

616 GREG S. CORRADO et al.



data set. We can make the numerical values
easier to interpret by undoing the logarithmic
transformation, simply by exponentiating
Equation A3:

AvgL d pjð Þ~ exp
1

N

X

for i where
d ið Þ~1

log p ið Þ

2

6

6

4

8

>

>

<

>

>

:

z

X

for i where
d ið Þ~0

log 1{p ið Þ½ �

3

7

7

5

9

>

>

=

>

>

;

:

ðA4Þ

Now an average-likelihood value of 1.0 is easily
understood as perfect prediction of every trial,
whereas a value of 0.0 corresponds to exactly
wrong predictions, and a value of 0.5 indicates
that the model performs at chance levels
averaged across the entire data set.

(A4)
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